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We use the heat equation as an illustrative example to show that the unified method

introduced by one of the authors can be employed for constructing analytical solutions

for linear evolution partial differential equations in one spatial dimension involving non-

separable boundary conditions as well as non-local constraints. Furthermore, we show that

for the particular case in which the boundary conditions become separable, the unified

method provides an easier way for constructing the relevant classical spectral representations

avoiding the classical spectral analysis approach. We note that the unified method always

yields integral expressions which, in contrast to the series or integral expressions obtained by

the standard transform methods, are uniformly convergent at the boundary. Thus, even for the

cases that the standard transform methods can be implemented, the unified method provides

alternative solution expressions which have advantages for both numerical and asymptotic

considerations. The former advantage is illustrated by providing the numerical evaluation of

typical boundary value problems.

Key words: initial-boundary value problems; heat equation; unified method; non-separable

boundary conditions; non-local constraints

1 Introduction

Self-adjoint boundary value problems for linear partial differential equations (PDEs)

formulated in a separable domain and involving separable boundary conditions can

be solved via the standard transform methods. The unified method introduced by one

of the authors [5, 6], although originally developed for integrable nonlinear PDEs, has

had important implications for linear PDEs (see [7, 11]). In particular, it can be used

to construct analytical solutions to certain linear boundary value problems which are

either non-self-adjoint or involve non-separable boundary conditions; see [13–15] for

applications of the unified method to the classical spectral theory of non-self-adjoint

linear differential operators, and [2, 9] for recent reviews comparing the unified method

with the standard approaches.

Even for the simple cases where the standard transform methods can be applied, the

implementation of the classical techniques for constructing the relevant classical spectral

representations is quite cumbersome. For example, Cohen [1] in order to solve a particular
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boundary value problem for the heat equation formulated on the half-line, had to construct

the following spectral representation:

q(x) =
2

π

∫ ∞

0

cos kx + k sin kx

k2 + 1

[∫ ∞

0

(cos kξ + k sin kξ) q(ξ)dξ − q(0)

]
dk

+ 2e−x

[
q(0) −

∫ ∞

0

e−ξq(ξ)dξ

]
. (1.1)

The derivation of (1.1) is rather elaborate, see [1] and also the relevant discussion in [8].

Analogously, the authors of [12], in order to study a particular boundary value problem for

the heat equation formulated on the finite interval involving certain non-local constraints,

had to perform a rather involved spectral analysis; in this case, the relevant eigenvalues,

denoted by k, satisfy the transcendental equation

lk sin(lk) + 2 cos(lk) − 2 = 0, (1.2)

where l is the length of the interval.

The main advantages of the unified method are as follows: (i) It can be implemented in

a straightforward way without the need to derive a spectral representation, and (ii) it yields

an integral expression which is uniformly convergent at the boundary. Regarding (ii), we

recall that the solution obtained via the standard transform methods has the serious

disadvantage that it is not uniformly convergent at the boundary (unless the boundary

conditions are homogeneous). Thus, since the unified method is easier to implement than

the standard transform methods, and since it yields uniformly convergent solutions, it is

clear that it is preferable to the standard transform methods, even in the case that the

standard transform methods can indeed be applied. In particular, (a) it yields an effective

approach for the numerical evaluation of typical boundary value problems (see [3,4]), and

(b) it provides a straightforward approach to obtaining rigorous results.

Our goal in this paper is twofold: (1) Using as an example the heat equation in one

dimension, we show that the unified method can be implemented in a straightforward way

for problems involving non-separable boundary conditions as well as non-local constraints,

and (2) we emphasise a new application of the unified method, namely that it can be

used to construct classical spectral representations (such as (1.1) as well as the spectral

representations associated with (1.2)) in an easier way than the standard approaches.

In Section 2 we solve the heat equation on the half-line with given initial data and

with an oblique Robin boundary condition at x = 0,

ut(0, t) + αux(0, t) + βu(0, t) = γ(t), t > 0, (1.3)

where α, β are real constants and γ(t) is a given function. The particular case of β = γ = 0

is the case considered by Cohen in [1]; using the general solution formula obtained by

the unified method, we also derive in Section 2 equation (1.1) in a straightforward way.

In Section 3 we solve the heat equation on the finite interval 0 < x < l with given

initial data with the boundary condition (1.3) at x = 0, and with an oblique Robin

boundary condition at x = l,

ut(l, t) + Aux(l, t) + Bu(l, t) = Γ (t), t > 0, (1.4)

where A,B are real constants and Γ (t) is a given function.
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In Section 4 we solve the heat equation on the finite interval 0 < x < l satisfying the

non-local constraints

∫ l

0

u(x, t)dx = F(t),

∫ l

0

(l − x) u(x, t)dx = R(t), (1.5)

where F(t) and R(t) are given functions. Furthermore, using the general solution formula

obtained by the unified method, we derive in a straightforward way the classical spectral

representation associated with equation (1.2).

In Section 5, using the technique introduced in [4] we show that the integral expressions

obtained by the unified method can be evaluated numerically in a straightforward manner.

Indeed, for typical initial and boundary data, this evaluation only requires a few lines of

Mathematica.

The unified method. For the heat equation in one dimension, the unified method involves

the following steps:

(1) Rewrite the heat equation

ut = uxx (1.6)

in the divergence form

(
e−ikx+k2tu

)
t
=
[
e−ikx+k2t (ux + iku)

]
x
, k ∈ �. (1.7)

Use Green’s theorem in the plane in the given domain to obtain the so-called global

relation, namely an equation coupling the Fourier transform of u(x, t), denoted by

û(k, t), with appropriate transforms of the initial data and the boundary values.

(2) Solve the global relation for û(k, t) and use the inverse Fourier transform to obtain

u(x, t) in terms of transforms of the initial data and the boundary values. Deform the

contour of integration from the real line to an appropriate contour in the complex

k-plane to obtain an integral representation of u(x, t). This representation is not yet

effective because it involves transforms of unknown boundary values.

(3) Use the global relation, as well as the equation obtained from the global relation

under the transformation k �→ −k, to eliminate the transforms of the unknown

boundary values to derive an effective solution expression (effective in the sense that

it only involves transforms of the given data).

Classical spectral representations. For problems for which there exists a spectral repres-

entation, it is possible to deform the contours of integration from the complex plane back

to the real line. The resulting expressions evaluated at t = 0 yields the classical spectral

representation.

Numerical evaluations. Suppose the Fourier transform of the given data can be com-

puted in closed form. Then the numerical evaluation of the solution involves only the

computation of a single k-integral. By performing suitable contour deformations in the

complex k-plane, it is possible to deform to paths in regions where the integrands decay

exponentially for large k. This yields rapid convergence.
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solid rod u(x, t)
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x
r(t)liquid
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T (t)

Figure 1. Heat conduction between the tank and the solid rod.

Rigorous considerations. An important advantage of the unified method is that it provides

a straightforward approach to proving rigorous results. This is particularly simple for the

case that the given data have ‘sufficient smoothness and decay’ (see Appendix). Analogous

results for more restricted function spaces are given in [10].

2 The heat equation on the half-line with oblique Robin boundary conditions

Consider a tank filled with liquid, open at the top and with free surface area Al . A

horizontal semi-infinite solid rod is placed in direct contact with the tank on one of the

vertical sides so that heat conduction takes place between the two. The liquid, of arbitrary

initial temperature, absorbs heat from its surroundings which has a temperature T (t),

and is kept well stirred so that its temperature r(t) is uniform throughout its volume. The

lateral surface of the rod is insulated so that there is no heat flow to the surrounding

medium. Moreover, since the length of the rod is infinite, the temperature u of the rod

can also be regarded as uniform across the cross section As, i.e. we can assume that it is

only a function of the distance x from the point of contact with the tank and of the time

t (Figure 1).

Hence, u(x, t) obeys the one-dimensional heat equation

ut = uxx, 0 < x < ∞, t > 0. (2.1)

At time t = 0 we have

u(x, 0) = u0(x), 0 < x < ∞. (2.2)

Moreover, at the point of contact x = 0 we impose the boundary condition

u(0, t) = r(t), (2.3)

where r(t) is the unknown temperature of the liquid.

The rate of accumulation of heat in the liquid can be expressed in terms of the

incoming heat from the surrounding medium and the heat which flows from the tank to

the rod, i.e.

σ
dr

dt
(t) = −ux(0, t) + λ [T (t) − r(t)] , (2.4)

where the real constants σ and λ depend on the specific heat, the mass and the conduct-

ivities of the rod and the liquid.
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Combining equations (2.3) and (2.4), we obtain the following boundary condition,

known as an oblique Robin condition:

σut(0, t) + ux(0, t) + λ [u(0, t) − T (t)] = 0. (2.5)

For simplicity of notation, we let

α =
1

σ
, β =

λ

σ
, γ(t) =

λ

σ
T (t), (2.6)

so that the boundary condition (2.5) becomes

ut(0, t) + αux(0, t) + βu(0, t) = γ(t). (2.7)

Equations (2.2) and (2.7) define a well-posed initial-boundary value problem for the

heat equation on the half-line. Let û(k, t) denote the Fourier transform with respect to x

on the half-line,

û(k, t) =

∫ ∞

0

e−ikxu(x, t)dx, k ∈ �−. (2.8a)

The inverse Fourier transform is given by

u(x, t) =
1

2π

∫ ∞

−∞
eikxû(k, t)dk, 0 < x < ∞. (2.8b)

The symbols �+ and �− denote the closure of the upper and the lower half of the

complex plane respectively. Note that, as opposed to the Fourier transform along the real

line x ∈ �, the domain of definition of û(k, t) is now extended from the real line to the

lower half of the complex k-plane (e−ikx is analytic and bounded for all k ∈ �−).

In what follows, we apply steps 1–3 of the Introduction for the solution of the heat

equation on the half-line with the oblique Robin boundary condition (2.7).

Step 1. Apply Green’s theorem on the divergence form. Consider the formal adjoint of

equation (2.1),

−ũt = ũxx, ũ = ũ(x, t). (2.9)

Then, combining equations (2.1) and (2.9), we find

(ũu)t = (ũux − ũxu)x . (2.10)

Equation (2.9) admits the one-parameter family of solutions

ũ(x, t) = e−ikx+k2t, k ∈ �. (2.11)

Thus, equation (2.10) yields the following divergence form for equation (2.1):[
e−ikx+k2tu(x, t)

]
t
=
{
e−ikx+k2t

[
ux(x, t) + ik u(x, t)

]}
x
. (2.12)

Let ∂Ω denote the positively oriented boundary of the domain Ω = {0 < x < ∞,
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t

Ω

s

x

Figure 2. The domain Ω for Green’s theorem.

0 < s < t}, depicted in Figure 2. Green’s theorem in Ω implies∫
∂Ω

e−ikx+k2s
{
u(x, s)dx +

[
ux(x, s) + ik u(x, s)

]
ds
}

= 0, k ∈ �−. (2.13)

Consequently, recalling the definition (2.8a) we obtain the global relation

ek
2tû(k, t) = û0(k) −

[
g1(k

2, t) + ik g0(k
2, t)

]
, k ∈ �−, (2.14)

where û0(k) is the Fourier transform of the initial data u0(x) and the functions gj(k
2, t)

are defined by

gj(k
2, t) =

∫ t

0

ek
2s∂j

xu(0, s)ds, j = 0, 1. (2.15)

The restriction k ∈ �− is due to equation (2.8a).

Step 2. Invert the global relation. Using the inverse Fourier transform (2.8b), the global

relation yields the following expression for u(x, t):

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk − 1

2π

∫ ∞

−∞
eikx−k2t

[
g1(k

2, t) + ik g0(k
2, t)

]
dk. (2.16)

We now study the integrand of the second integral in the above expression. Using

the definition (2.15) we find that this integrand involves the exponentials eikx and ek
2(s−t).

Since x � 0 and s − t � 0, these exponentials are bounded as |k| → ∞, respectively in �+

and in

Re
(
k2
)

� 0. (2.17)

Define the regions D+ and D−, shown in Figure 3, as the regions of the upper half and

the lower half of the complex k-plane where Re
(
k2
)
< 0:

D+ = {k ∈ �+ : (Im k)2 > (Re k)2}, D− = {k ∈ �− : (Im k)2 > (Re k)2}. (2.18)

Then according to equation (2.17) the second integral on the right-hand side of equation

(2.16) is well defined not only for k ∈ � but actually for k ∈ �+ \ D+. In fact, by using

Cauchy’s theorem and Jordan’s lemma, we can deform the contour of integration from the

real line to the contour ∂D+ (see Figure 3) so that the following proposition is established.

Proposition 2.1 (The integral representation) The heat equation (2.1) formulated on the

half-line 0 < x < ∞ with the initial data (2.2) admits the integral representation

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk − 1

2π

∫
∂D+

eikx−k2t
[
g1(k

2, t) + ik g0(k
2, t)

]
dk, (2.19)
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k

π
4

∂D+

∂D−

D+

D−

Figure 3. The regions D+ and D− and the associated contours ∂D+ and ∂D−.

where û0(k) is the Fourier transform (2.8a) of the initial data u0(x), the functions gj(k
2, t)

are defined by equation (2.15) and the contour ∂D+ is depicted in Figure 3.

Step 3. Elimination of the unknown spectral functions. The integral representation (2.19)

does not provide an effective solution expression, since both spectral functions g0 and g1

defined by equation (2.15) are unknown.

We observe that these functions depend on k only through k2, and therefore they are

invariant under the transformation k �→ −k. Under this transformation, which leaves the

functions gj(k
2, t) invariant, the global relation (2.14) becomes

ek
2tû(−k, t) = û0(−k) −

[
g1(k

2, t) − ik g0(k
2, t)

]
, k ∈ �+. (2.20)

Multiplying the boundary condition (2.7) by ek
2s and integrating with respect to s from 0

to t, we find,

∫ t

0

ek
2sus(0, s)ds + α

∫ t

0

ek
2sux(0, s)ds + β

∫ t

0

ek
2su(0, s)ds =

∫ t

0

ek
2sγ(s)ds. (2.21)

Integrating by parts we obtain the condition,

ek
2tu(0, t) − u0(0) − k2g0(k

2, t) + αg1(k
2, t) + βg0(k

2, t) = γ̃(k2, t), (2.22)

where γ̃ is defined by

γ̃(k2, t) =

∫ t

0

ek
2sγ(s)ds. (2.23)

We solve equation (2.22) for g1(k
2, t) in terms of the unknown functions g0

(
k2, t

)
,

u(0, t) and the known functions γ
(
k2, t

)
, u0(0), i.e.

g1(k
2, t) =

1

α

[(
k2 − β

)
g0(k

2, t) − ek
2tu(0, t) + δ̃(k2, t)

]
, (2.24)

where δ̃(k2, t) is defined by

δ̃(k2, t) = γ̃(k2, t) + u0(0). (2.25)
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Then substituting for g1(k
2, t) in equation (2.20), we find

g0(k
2, t) =

1

ik +
β − k2

α

{
ek

2tû(−k, t) − û0(−k) +
1

α

[
δ̃(k2, t) − ek

2tu(0, t)
]}

, k ∈ �+.

(2.26)

Using (2.24) we obtain

g1(k
2, t) + ik g0(k

2, t) = − k2 + iαk − β

k2 − iαk − β

[
ek

2tû(−k, t) − û0(−k)
]

− 2ik

k2 − iαk − β

[
δ̃(k2, t) − ek

2tu(0, t)
]
, k ∈ �+. (2.27)

Inserting (2.27) in the integral representation (2.19), we find

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
∂D+

eikx−k2t

k2 − iαk − β

{(
k2 + iαk − β

) [
ek

2tû(−k, t) − û0(−k)
]

+ 2i k
[
δ̃(k2, t) − ek

2tu(0, t)
]}

dk. (2.28)

The representation (2.28) is not yet effective, since it involves the unknown functions

û(−k, t) and u(0, t). However, the contributions of the corresponding k-integrals can

be computed explicitly. In this respect, we need to study the roots of the polynomial

k2 − iαk − β, which are given by

k1,2 =
1

2

(
iα ±

√
−α2 + 4β

)
. (2.29)

We consider the following two cases:

(1) No roots in the region D+.

If k1,2 � D+, then the integrals of equation (2.28) that involve û(−k, t) and u(0, t) vanish

by direct application of Cauchy’s theorem and Jordan’s lemma in the upper half complex

k-plane.

(2) One or more roots lie in the region D+.

The integrand of the second integral on the right-hand side of equation (2.28) involves

the functions g0 and g1 (see equation (2.27)), which are entire functions. Thus, the

singularities at k1 and k2 must be removable. Since it will be necessary to treat the terms

{g0

(
k2, t

)
, u(0, t)} and {γ

(
k2, t

)
, u0(0)} separately, we first deform the contour ∂D+ to

avoid these singularities before splitting the integral. Let L+ denote the contour of the

upper half k-plane such that the singularities k1,2 lie outside the region enclosed by L+
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k

L+

kj

Figure 4. The contour L+.

(see Figure 4). Then equation (2.28) becomes

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
L+

eikx−k2t

k2 − iαk − β

{(
k2 + iαk − β

) [
ek

2tû(−k, t) − û0(−k)
]

+ 2i k
[
δ̃(k2, t) − ek

2tu(0, t)
]}

dk. (2.30)

By applying Cauchy’s theorem and Jordan’s lemma in the region enclosed by the contour

L+, we find that the terms that involve û(−k, t) and u(0, t) yield zero contributions, hence

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
L+

eikx−k2t

k2 − iαk − β

[
2ik δ̃(k2, t) −

(
k2 + iαk − β

)
û0(−k)

]
dk. (2.31)

Equation (2.31) provides an effective integral expression since it only involves transforms

of known functions. An alternative integral expression can be obtained by replacing L+

with the contour ∂D+ plus the residues due to the simple poles at k1,2. Therefore, the

following proposition is established.

Proposition 2.2 Suppose that the roots k1,2 of the polynomial k2 − iαk−β, given by equation

(2.29), do not lie in the region D+ depicted in Figure 3. Then the heat equation on the half-

line with the initial data (2.2) and the boundary condition (2.7) admits the solution

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
∂D+

eikx−k2t 2ik δ̃(k2, t) −
(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk, (2.32a)

where û0(k) denotes the Fourier transform (2.8a) of the initial data, the function δ̃(k2, t) is

defined by equation (2.25) and the contour ∂D+ is depicted in Figure 3.

If k1 ∈ D+ and k2 � D+, then the solution is given by the expression (2.32a) plus the

function u1(x, t) defined by

u1(x, t) = − 2k1

2k1 − iα
eik1x−k2

1 t
[
α û0(−k1) − δ̃(k2

1 , t)
]
. (2.32b)
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If k2 ∈ D+ and k1 � D+ then the solution is given by the expression (2.32a) plus the function

u2(x, t) defined by

u2(x, t) = − 2k2

2k2 − iα
eik2x−k2

2 t
[
α û0(−k2) − δ̃(k2

2 , t)
]
. (2.32c)

If both k1 and k2 lie in the region D+, then the solution is given by the expression (2.32a)

plus the functions u1(x, t) and u2(x, t).

Return to the real line and the classical spectral representation. The problem solved by

Cohen [1] is the particular case of

α = 1, β = γ = 0. (2.33)

In this case, the boundary condition (2.7) becomes

ut(0, t) + ux(0, t) = 0. (2.34)

Letting α = 1 and β = γ = 0 in equation (2.32b), we find the solution expression

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
∂D+

eikx−k2t 2i u0(0) − (k + i) û0(−k)

k − i
dk

− 2e−x+t [û0(−i) − u0(0)] . (2.35)

In order to obtain the representation of Cohen [1], we deform the contour of integration

∂D+ back to the real line. Note that for general boundary value problems such a

deformation is not possible; however, in this particular case the exponentials involved

in equation (2.35) are bounded and analytic for k ∈ �+ \ D+, thus ∂D+ can indeed be

deformed back to the real line:

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫ ∞

−∞
eikx−k2t

[
2i

k − i
u0(0) − k + i

k − i
û0(−k)

]
dk

+ 2e−x+t
[
u0(0) − û0(−i)

]
. (2.36)

Using the definition (2.8a) and rearranging, we find

u(x, t) =
1

2π

∫ ∞

0

e−k2t

[
eikx

∫ ∞

0

e−ikξu0(ξ)dξ + e−ikx

∫ ∞

0

eikξu0(ξ)dξ

]
dk

− 1

2π

∫ ∞

0

e−k2t

[
eikx

k + i

k − i

∫ ∞

0

eikξu0(ξ)dξ + e−ikx k − i

k + i

∫ ∞

0

e−ikξu0(ξ)dξ

]
dk

+
1

iπ

∫ ∞

0

e−k2t

[
e−ikx

k + i
− eikx

k − i

]
u0(0)dk + 2e−x+t

[
u0(0) −

∫ ∞

0

e−ξu0(ξ)dξ

]
. (2.37)
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Simplifying, we obtain the representation of Cohen [1]:

u(x, t) =
2

π

∫ ∞

0

e−k2t cos kx + k sin kx

k2 + 1

[∫ ∞

0

(cos kξ + k sin kξ) u0(ξ)dξ − u0(0)

]
dk

+ 2e−x+t

[
u0(0) −

∫ ∞

0

e−ξu0(ξ)dξ

]
. (2.38)

For the boundary condition (2.34) the method of separation of variables yields a problem

where the eigenvalue occurs in both the equation and the boundary condition. Cohen

was able to construct the relevant spectral representation, which is given by equation

(1.1), using a series of novel, ingenious steps. It is interesting to note that the spectral

representation (1.1) can be obtained directly via the unified method in a much simpler

way: Evaluating equation (2.38) at t = 0 and replacing u(x, 0) and u0(x) by f(x), we find

equation (1.1).

3 The heat equation on the finite interval with oblique Robin boundary conditions

Consider the heat equation (2.1) formulated on the finite interval 0 < x < l. In addition

to the initial data (2.2) and the boundary condition (2.7) at x = 0, we also prescribe an

analogous boundary condition at x = l,

ut(l, t) + Aux(l, t) + Bu(l, t) = Γ (t). (3.1)

The Fourier transform pair in this case is

û(k, t) =

∫ l

0

e−ikxu(x, t)dx, k ∈ �, (3.2a)

u(x, t) =
1

2π

∫ ∞

−∞
eikxû(k, t)dk, 0 < x < l. (3.2b)

Step 1. Apply Green’s theorem on the divergence form. Green’s theorem in the domain E
depicted in Figure 5 yields the global relation

ek
2tû(k, t) = û0(k) + e−ikl

[
h1(k

2, t) + ik h0(k
2, t)

]
−
[
g1(k

2, t) + ik g0(k
2, t)

]
, k ∈ �, (3.3)

where the functions gj , j = 0, 1, are defined by equation (2.15), and the functions hj , j =

0, 1, are defined by

hj(k
2, t) =

∫ t

0

ek
2s∂j

xu(l, s)ds, j = 0, 1. (3.4)

The global relation is now valid for all complex values of the spectral variable k, since

the Fourier transform with respect to x is now taken over a finite domain.
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t

x

E

s

l

Figure 5. The domain E for Green’s theorem.

Step 2. Invert the global relation. Inverting the global relation by means of equation (3.2b),

we obtain the integral representation

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk +

1

2π

∫ ∞

−∞
eik(x−l)−k2t

[
h1(k

2, t) + ik h0(k
2, t)

]
dk

− 1

2π

∫ ∞

−∞
eikx−k2t

[
g1(k

2, t) + ik g0(k
2, t)

]
dk. (3.5)

Similarly to the half-line case, using Cauchy’s theorem and Jordan’s lemma in the regions

�+ \ D+ and �− \ D− of the complex k-plane, where the regions D+ and D− are defined

by equation (2.18), we arrive at the following proposition.

Proposition 3.1 (The integral representation) The heat equation (2.1) posed on the finite in-

terval 0 < x < l with the initial data (2.2) admits the following integral representation:

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk − 1

2π

∫
∂D−

eik(x−l)−k2t
[
h1(k

2, t) + ik h0(k
2, t)

]
dk

− 1

2π

∫
∂D+

eikx−k2t
[
g1(k

2, t) + ik g0(k
2, t)

]
dk, (3.6)

where û0(k) is the Fourier transform (3.2a) of the initial data u0(x), the functions gj(k
2, t)

and hj(k
2, t) are defined by equations (2.15) and (3.4) respectively and the contours ∂D+ and

∂D− are shown in Figure 3.

Step 3. Elimination of the unknown spectral functions. Equation (3.6) involves the unknown

spectral functions gj , hj , j = 0, 1. Integrating the boundary condition (3.1), we find

ek
2tu(l, t) − u0(l) + Ah1(k

2, t) +
(
B − k2

)
h0(k

2, t) = Γ̃ (k2, t), (3.7)

where

Γ̃ (k2, t) =

∫ t

0

ek
2s Γ (s)ds. (3.8)

Thus, combining equations (2.22) and (3.7), we can express g1 and h1 in terms of g0 and

h0:

αg1(k
2, t) =

(
k2 − β

)
g0(k

2, t) − ek
2tu(0, t) + δ̃(k2, t), (3.9a)

Ah1(k
2, t) =

(
k2 − B

)
h0(k

2, t) − ek
2tu(l, t) + Δ̃(k2, t), (3.9b)
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where δ̃(k2, t) is defined by equation (2.25) and

Δ̃(k2, t) = Γ̃ (k2, t) + u0(l). (3.10)

Inserting these expressions in the global relation (3.3), we find

ek
2tû(k, t) = û0(k) + e−ikl

(
k2 − B

A
+ ik

)
h0(k

2, t) −
(
k2 − β

α
+ ik

)
g0(k

2, t)

+
e−ikl

A

[
Δ̃(k2, t) − ek

2tu(l, t)
]

− 1

α

[
δ̃(k2, t) − ek

2tu(0, t)
]
, k ∈ �. (3.11a)

The symmetry k �→ −k yields the additional identity

ek
2tû(−k, t) = û0(−k) + eikl

(
k2 − B

A
− ik

)
h0(k

2, t) −
(
k2 − β

α
− ik

)
g0(k

2, t)

+
eikl

A

[
Δ̃(k2, t) − ek

2tu(l, t)
]

− 1

α

[
δ̃(k2, t) − ek

2tu(0, t)
]
, k ∈ �. (3.11b)

Equations (3.11) can be put in the form of the linear system,

A(k)

(
g0(k

2, t)

h0(k
2, t)

)
= N(k, t), (3.12)

where A(k) and N(k, t) are defined by

A(k) =

⎛
⎜⎜⎝

−
(

k2−β
α

+ ik
)
e−ikl

(
k2−B
A

+ ik
)

−
(

k2−β
α

− ik
)
eikl

(
k2−B
A

− ik
)

⎞
⎟⎟⎠ (3.13)

and

N(k, t) =

(
ek

2tû(k, t) − û0(k) − e−iklϑ(k2, t) + ρ(k2, t)

ek
2tû(−k, t) − û0(−k) − eiklϑ(k2, t) + ρ(k2, t)

)
, (3.14)

with the functions ϑ and ρ defined by

ϑ(k2, t) =
1

A

[
Δ̃(k2, t) − ek

2tu(l, t)
]
, (3.15a)

ρ(k2, t) =
1

α

[
δ̃(k2, t) − ek

2tu(0, t)
]
. (3.15b)

Let P (k) denote the determinant of the matrix A(k), i.e.

P (k) = −
(
k2 − β

α
+ ik

)(
k2 − B

A
− ik

)
eikl+

(
k2 − β

α
− ik

)(
k2 − B

A
+ ik

)
e−ikl . (3.16)

The system (3.12) can be solved uniquely for g0 and h0 provided that the determinant

P is non-zero along the contours ∂D+ and ∂D−. Actually, we are only interested in the

large |k| behaviour of this determinant, since we can deform the contours ∂D+ and ∂D−

in order to avoid the finite zeros of P (k).
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As |k| → ∞, we find

P (k) ∼ − 1

αA
k4
(
eikl − e−ikl

)
. (3.17)

Hence, the possible zeros of P for large |k| lie on the real k-axis, and therefore solving

equation (3.12) for k ∈ � \ �, we find the following expressions:

g0(k
2, t) =

1

P (k)

{
eikl

(
k2 − B

A
− ik

)[
ek

2tû(k, t) − û0(k) − e−iklϑ(k2, t) + ρ(k2, t)
]

− e−ikl

(
k2 − B

A
+ ik

)[
ek

2tû(−k, t) − û0(−k) − eiklϑ(k2, t) + ρ(k2, t)
]}

, (3.18a)

and

h0(k
2, t) =

1

P (k)

{(
k2 − β

α
− ik

)[
ek

2tû(k, t) − û0(k) − e−iklϑ(k2, t) + ρ(k2, t)
]

−
(
k2 − β

α
+ ik

)[
ek

2tû(−k, t) − û0(−k) − eiklϑ(k2, t) + ρ(k2, t)
]}

. (3.18b)

Combining these two equations with equations (3.9), we can compute the integrands

involved in the integral representation (3.5):

h1(k
2, t) + ik h0(k

2, t)

= ϑ(k2, t) +
1

P (k)

(
k2 − B

A
+ ik

)

×
{(

k2 − β

α
− ik

)[
ek

2tû(k, t) − û0(k) − e−iklϑ(k2, t) + ρ(k2, t)
]

−
(
k2 − β

α
+ ik

)[
ek

2tû(−k, t) − û0(−k) − eiklϑ(k2, t) + ρ(k2, t)
]}

, (3.19a)

and

g1(k
2, t) + ik g0(k

2, t)

= ρ(k2, t) +
1

P (k)

(
k2 − β

α
+ ik

)

×
{
eikl

(
k2 − B

A
− ik

)[
ek

2tû(k, t) − û0(k) − e−iklϑ(k2, t) + ρ(k2, t)
]

− e−ikl

(
k2 − B

A
+ ik

)[
ek

2tû(−k, t) − û0(−k) − eiklϑ(k2, t) + ρ(k2, t)
]}

. (3.19b)

Analogous to the case of the half-line, the unknown functions û(k, t) and û(−k, t), as well

as the unknowns u(l, t) and u(0, t) involved in the functions ϑ(k2, t) and ρ(k2, t), correspond

to terms of the integral representation (3.6) that can be handled with the help of Cauchy’s

theorem and Jordan’s lemma. Indeed, the integrands of these terms are bounded and tend

to zero uniformly as |k| → ∞ in the regions D+ and D−. For example, consider the term
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k

L+

kj

L−
kj

Figure 6. The contours L+ and L−.

corresponding to û(k, t) generated by (3.19b); this term is equal to

∫
∂D+

eikx
eikl

P (k)

(
k2 − β

α
+ ik

)(
k2 − B

A
− ik

)
û(k, t)dk. (3.20)

Since k ∈ �+,

P (k) ∼ 1

αA
k4 e−ikl , |k| → ∞, (3.21)

hence, the behaviour of the integrand of (3.20) for large |k| is governed by the exponential

eik(x+2l−ξ), which is analytic and tends to zero uniformly as |k| → ∞.

To apply Cauchy’s theorem, we need to consider the following cases:

(1) P (k)� 0 for k ∈ D+ ∪ D−.

Then analyticity and uniform convergence to zero as |k| → ∞ imply that the terms

û(k, t), û(−k, t), u(l, t) and u(0, t) yield zero contributions. In this case the solution is

obtained by inserting expressions (3.19a) and (3.19b) in the integral representation (3.6)

after neglecting the aforementioned unknown functions.

(2) P (k) has zeros in the region D+ ∪ D−.

In this case we deform the contours ∂D+ and ∂D− to the contours L+ and L−

respectively so that the zeros of P (k) lie outside the regions enclosed by L+ and L−

(see Figure 6). Then by applying Cauchy’s theorem and Jordan’s lemma we find that

the integrals involving the unknown functions û(k, t), û(−k, t), u(l, t) and u(0, t) have zero

contributions and therefore an effective integral expression is obtained. Furthermore, it is

possible to replace the contours L+ and L− with the contours ∂D+ and ∂D− respectively

plus the residues associated with the zeros of the function P (k). Therefore, the following

proposition is established.

Proposition 3.2 Suppose that the function P (k), defined by equation (3.16), does not have

any zeros for k ∈ D+ ∪ D−. Then the heat equation (2.1) posed on the finite interval with

the initial data (2.2) and the oblique Robin boundary conditions (2.7) and (3.1) admits the
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solution

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
∂D−

eikx−k2t

αAP (k)

{
−2ik

(
k2 + iαk − β

)
Δ̃(k2, t) + 2ik

(
k2 + iAk − B

)
e−ikl δ̃(k2, t)

+
(
k2−iαk−β

) (
k2+iAk−B

)
e−ikl û0(k)−

(
k2+iαk−β

) (
k2+iAk−B

)
e−ikl û0(−k)

}
dk

+
1

2π

∫
∂D+

eikx−k2t

αAP (k)

{
−2ik

(
k2 + iαk − β

)
Δ̃(k2, t) + 2ik

(
k2 + iAk − B

)
e−ikl δ̃(k2, t)

+
(
k2+iαk−β

) (
k2−iAk−B

)
eikl û0(k)−

(
k2+iαk−β

) (
k2+iAk−B

)
e−ikl û0(−k)

}
dk,

(3.22a)

where û0(k) denotes the Fourier transform (3.2a) of the initial data, the functions δ̃(k2, t),

Δ̃(k2, t) and P (k) are defined by equations (2.25), (3.10) and (3.16) respectively, and the

contours ∂D+ and ∂D− are depicted in Figure 3.

In the case that one or more zeros kj of P (k) lie in the region D+ ∪ D−, the solution is

given by

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
L−

eikx−k2t

αAP (k)

{
−2ik

(
k2 + iαk − β

)
Δ̃(k2, t) + 2ik

(
k2 + iAk − B

)
e−ikl δ̃(k2, t)

+
(
k2−iαk−β

) (
k2+iAk−B

)
e−ikl û0(k)−

(
k2+iαk−β

) (
k2+iAk−B

)
e−ikl û0(−k)

}
dk

+
1

2π

∫
L+

eikx−k2t

αAP (k)

{
−2ik

(
k2 + iαk − β

)
Δ̃(k2, t) + 2ik

(
k2 + iAk − B

)
e−ikl δ̃(k2, t)

+
(
k2+iαk−β

) (
k2−iAk−B

)
eikl û0(k)−

(
k2+iαk−β

) (
k2+iAk−B

)
e−ikl û0(−k)

}
dk,

(3.22b)

where the contours L+ and L− are depicted in Figure 6. These contours can be deformed

back to the contours ∂D+ and ∂D− respectively so that equation (3.22b) becomes equation

(3.22a) plus the relevant residues at k = kj .

4 The heat equation on the finite interval with non-local constraints

Consider the heat equation for the function u(x, t) formulated on the finite interval,

ut = uxx, x ∈ (0, l) , t > 0, (4.1)

with the initial data

u(x, 0) = u0(x), 0 < x < l. (4.2)

We supplement equations (4.1) and (4.2) with the following non-local constraints:

∫ l

0

u(x, t)dx = F(t) (4.3a)

https://doi.org/10.1017/S0956792513000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792513000223


The unified method for the heat equation 873

and ∫ l

0

(l − x) u(x, t)dx = R(t), (4.3b)

where F and R are given functions.

Steps 1 and 2 of the unified method are the same as in Section 3 and yield the global

relation (3.3) and the integral representation (3.6).

Step 3. Elimination of the unknown spectral functions. Letting

dF
dt

(t) = F(t),
dR
dt

(t) = R(t), (4.4)

and using equation (4.1), the non-local constraints (4.3) imply the following boundary

conditions: ∫ l

0

ut(x, t)dx = F(t) ⇔
∫ l

0

uxx(x, t)dx = F(t),

thus,

ux(l, t) − ux(0, t) = F(t) (4.5a)

and ∫ l

0

(l − x) ut(x, t)dx = R(t) ⇔
∫ l

0

(l − x) uxx(x, t)dx = R(t),

hence

l ux(0, t) = u(l, t) − u(0, t) − R(t). (4.5b)

The conditions (4.5) imply the following relations for the spectral functions:

g1

(
k2, t

)
=

1

l

[
h0

(
k2, t

)
− g0

(
k2, t

)
− r

(
k2, t

)]
, (4.6a)

h1

(
k2, t

)
= h0

(
k2, t

)
− g0

(
k2, t

)
+ f

(
k2, t

)
− r

(
k2, t

)
, (4.6b)

where

f
(
k2, t

)
=

∫ t

0

ek
2sF(s)ds, r

(
k2, t

)
=

∫ t

0

ek
2sR(s)ds. (4.7)

Combining equations (4.6) with the global relation (3.3), we find

ek
2tû(k, t) = û0(k) +

[(
1

l
+ ik

)
e−ikl − 1

l

]
h0

(
k2, t

)
+

[(
1

l
− ik

)
− e−ikl

l

]
g0

(
k2, t

)
+ e−iklf

(
k2, t

)
+

1

l

(
1 − e−ikl

)
r
(
k2, t

)
, k ∈ �. (4.8a)

The transformation k �→ −k implies the additional identity

ek
2tû(−k, t) = û0(−k) +

[(
1

l
− ik

)
eikl − 1

l

]
h0

(
k2, t

)
+

[(
1

l
+ ik

)
− eikl

l

]
g0

(
k2, t

)
+ eiklf

(
k2, t

)
+

1

l

(
1 − eikl

)
r
(
k2, t

)
, k ∈ �. (4.8b)

The spectral functions depend on k only through k2, hence the transformation k �→ −k

leaves the spectral functions invariant.
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Equations (4.8) constitute a 2 × 2 linear system for the unknown functions g0(k
2, t)

and h0(k
2, t). This system can be written in matrix form,

A(k)

(
g0

(
k2, t

)
h0

(
k2, t

)) = N(k, t), (4.9)

where A(k) and N(k, t) are defined by

A(k) =
1

l

(
1 − ilk − e−ikl (1 + ilk) e−ikl − 1

1 + ilk − eikl eikl (1 − ilk) − 1

)
(4.10)

and

N(k, t) =

⎛
⎜⎝ ek

2tû(k, t) − û0(k) − e−iklf
(
k2, t

)
+

1

l

(
e−ikl − 1

)
r
(
k2, t

)
ek

2tû(−k, t) − û0(−k) − eiklf
(
k2, t

)
+

1

l

(
eikl − 1

)
r
(
k2, t

)
⎞
⎟⎠ . (4.11)

The determinant of matrix A(k), denoted by P (k), is equal to

P (k) =
k

l

[
(lk − 2i) e−ikl + 4i − (lk + 2i) eikl

]
. (4.12)

We are interested in the roots of P (k) when |k| → ∞, since by using Cauchy’s theorem we

can deform the contours ∂D+ and ∂D− so that all the finite roots of P (k) lie outside the

regions D+ and D− (the theorem applies because the integrands are analytic and bounded

for finite |k|). For k ∈ �+ \ �,

P (k) ∼ k2e−ikl → ∞, |k| → ∞, (4.13a)

while for k ∈ �− \ �,

P (k) ∼ k2 eikl → ∞, |k| → ∞. (4.13b)

Hence, the only singularities in the case of large |k| can occur along the real k-axis (for

example, it is straightforward to see that P (2nπ/l) = 0, n ∈ �).

Thus, inverting equation (4.9), we find

(
g0

(
k2, t

)
h0

(
k2, t

)) =
1

lP (k)

(
eikl (1 − ilk) − 1 1 − e−ikl (1 + ilk)

eikl − 1 − ilk 1 − ilk − e−ikl

)
N(k, t). (4.14)

We note that the terms of N(k, t) involving û(k, t) and û(−k, t) yield a zero contribution

in the representation (3.6) and therefore these can be neglected. Indeed, equations (4.6)

yield

g1

(
k2, t

)
+ ik g0

(
k2, t

)
=

1

l

[
h0

(
k2, t

)
+ (ilk − 1) g0

(
k2, t

)
− r

(
k2, t

) ]
, (4.15a)

and

h1

(
k2, t

)
+ ik h0

(
k2, t

)
= (1 + ik) h0

(
k2, t

)
− g0

(
k2, t

)
+ f

(
k2, t

)
− r

(
k2, t

)
. (4.15b)
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Hence, equation (4.14) implies that the terms involving û(k, t) and û(−k, t) in the repres-

entation (3.6) are equal to the following expressions:

− 1

2π

∫
∂D−

eik(x−l)−k2t

lP (k)

{[
(1 + ik)

(
eikl − (1 + ilk)

)
+
(
eikl (ilk − 1) + 1

)]
û(k, t)

+
[
(1 + ilk)

(
1 − ilk − e−ikl

)
+
(
e−ikl (1 + ilk) − 1

)]
û(−k, t)

}
dk (4.16a)

and

− 1

2π

∫
∂D+

eikx−k2t

l2P (k)

{[(
eikl − 1 − ilk

)
+ (ilk − 1)

(
eikl (1 − ilk) − 1

)]
û(k, t)

+
[(

1 − ilk − e−ikl
)

+ (ilk − 1)
(
1 − e−ikl (1 + ilk)

)]
û(−k, t)

}
dk. (4.16b)

Since x ∈ (0, l), the integrands of the above two terms decay exponentially fast as |k| → ∞.

Hence, Cauchy’s theorem and Jordan’s lemma in the regions D+ and D− imply that the

expressions (4.16a) and (4.16b) vanish.

Thus, equation (4.14) implies

g0

(
k2, t

)
≈ 1

lP (k)

{[
eikl (ilk − 1) + 1

]
û0(k) +

[
e−ikl (ilk + 1) − 1

]
û0(−k)

+
[
2ilk + e−ikl − eikl

]
f
(
k2, t

)
+ ik

[
e−ikl + eikl − 2

]
r
(
k2, t

)}
(4.17a)

and

h0

(
k2, t

)
≈ 1

lP (k)

{[
1 + ilk − eikl

]
û0(k) +

[
ilk − 1 + e−ikl

]
û0(−k)

+
[
(1 + ilk) e−ikl + (ilk − 1) eikl

]
f
(
k2, t

)
+ ik

[
2 − e−ikl − eikl

]
r
(
k2, t

)}
,

(4.17b)

where the symbol ≈ denotes that we have neglected the terms which yield zero contribu-

tion.

Consequently, we find the following expressions for the combinations of the spectral

functions that appear in the representation (3.6):

g1

(
k2, t

)
+ ik g0

(
k2, t

)
≈ k

lP (k)
{
[
2i − (2i + lk) eilk

]
û0(k) − lk e−ikl û0(−k)

+ 2i
[
e−ikl + ilk − 1

]
f
(
k2, t

)
+ 2k

(
1 − e−ikl

)
r
(
k2, t

)}
(4.18a)

and

h1

(
k2, t

)
+ ik h0

(
k2, t

)
≈ k

lP (k)

{[
2i − lk − 2i eikl

]
û0(k) − lk û0(−k)

+ 2i
[
1 + (ilk − 1) eikl

]
f
(
k2, t

)
+ 2k

(
eikl − 1

)
r
(
k2, t

)}
. (4.18b)

Inserting these expressions in representation (3.6), we establish the following proposition.

https://doi.org/10.1017/S0956792513000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792513000223


876 D. Mantzavinos and A. S. Fokas

Proposition 4.1 The heat equation (4.1) posed on the finite interval x ∈ (0, l) with the initial

data (4.2) and the non-local constraints (4.3) admits the following solution:

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

− 1

2π

∫
∂D−

eik(x−l)−k2t k

lP (k)

{[
2i − lk − 2i eikl

]
û0(k) − lk û0(−k)

+ 2i
[
1 + (ilk − 1) eikl

]
f
(
k2, t

)
+ 2k

(
eikl − 1

)
r
(
k2, t

)}
dk

− 1

2π

∫
∂D+

eikx−k2t k

lP (k)

{[
2i − (2i + lk) eilk

]
û0(k) − lk e−ikl û0(−k)

+ 2i
[
e−ikl + ilk − 1

]
f
(
k2, t

)
+ 2k

(
1 − e−ikl

)
r
(
k2, t

)}
dk, (4.19)

where the function û0(k) denotes the Fourier transform (3.2a) of the initial data (4.2),

the contours ∂D+ and ∂D− are depicted in Figure 3, the determinant P (k) is defined

by equation (4.12) and the functions f
(
k2, t

)
and r

(
k2, t

)
are defined by equations

(4.7).

Return to the real line and the spectral representation. The integrands involved in equation

(4.19) are bounded for k ∈ � \
(
D+ ∪ D−), hence by Cauchy’s theorem and Jordan’s

lemma we can collapse the contours ∂D+ and ∂D− on the real line. In particular, the

contour integrals of (4.19) are equal to the residues due to the roots of P (k) in the region

� \
(
D+ ∪ D−) plus the following principal value integrals:

1

2π
−
∫ ∞

−∞
eik(x−l)−k2t k

lP (k)

{[
2i − lk − 2i eikl

]
û0(k) − lk û0(−k)

+ 2i
[
1 + (ilk − 1) eikl

]
f
(
k2, t

)
+ 2k

(
eikl − 1

)
r
(
k2, t

)}
dk

− 1

2π
−
∫ ∞

−∞
eikx−k2t k

lP (k)

{[
2i − (2i + lk) eilk

]
û0(k) − lk e−ikl û0(−k)

+ 2i
[
e−ikl + ilk − 1

]
f
(
k2, t

)
+ 2k

(
1 − e−ikl

)
r
(
k2, t

)}
dk

= − 1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk. (4.20)

Therefore, the principal value integrals cancel with the first term on the right-hand side

of equation (4.19).

Regarding the residues, we first note that k = 0 is a removable singularity. Next, we

recall our earlier remark that the contours ∂D+ and ∂D− can be deformed for finite k so

that all finite roots of P (k) lie outside the regions D+ and D−. Hence, when collapsing

these contours on the real line, the roots with non-zero imaginary part contribute a full

residue, while the roots on the real line contribute only half a residue.

However, by definition the roots of P (k), denoted by km, satisfy the equation

km
[
(lkm − 2i) e−ikml + 4i − (lkm + 2i) eikml

]
= 0, (4.21)
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therefore for km � 0,

2i − (2i + lkm) eikml = (2i − lkm) e−ikml − 2i. (4.22)

Thus, the integrands of the integrals along ∂D+ and ∂D− are equal at k = km and hence

the half residues at the real roots of P (k) add up to a full residue.

Therefore,

u(x, t) =
∑
km

km�0

eikmx−k2
mt

ikm

lP ′(km)

{[
(2i − lkm) e−ikml − 2i

]
û0(km) − lkm e−ikml û0(−km)

+ 2i
(
ilkm − 1 + e−ikml

)
f(k2

m) + 2km
(
1 − e−ikml

)
r(k2

m)
}
, (4.23)

where P ′(k) denotes the derivative of P (k) with respect to k and km are the non-zero roots

of P (k) in the region � \
(
D+ ∪ D−) of the complex k-plane.

Evaluating the expression (4.23) at t = 0 and replacing u(x, 0) and û0(km) by q(x) and

q̂(k) respectively, we obtain the following spectral representation:

q(x) =
∑
km

km�0

eikmx
ikm

lP ′(km)

{[
(2i − lkm) e−ikml − 2i

]
q̂(km) − lkm e−ikml q̂(−km)

}
, (4.24a)

where

P (k) =
k

l

[
(lk − 2i) e−ikl + 4i − (lk + 2i) eikl

]
(4.24b)

and km are the solutions of equation (1.2).

Remark 4.1 (Weyl’s asymptotic law) The roots km, m ∈ �, of P (k) appearing in the

spectral representation (4.23) can be regarded as the eigenvalues of the one-dimensional

Laplace operator, ∂xx. It is straightforward to see that P (2nπ/l) = 0, thus

k2n =
2nπ

l
, ∀n ∈ �. (4.25a)

Furthermore, it is shown in [12] that

k2n−1 =
(2n − 1)π

l
+ O

(
1

n

)
, n ∈ �, |n| → ∞. (4.25b)

An immediate consequence of equations (4.25) is the so-called Weyl’s asymptotic law for

the eigenvalues of the Laplace operator:

lim
|km|→∞

k2
m l2

m2 π2
= 1. (4.26)

5 Numerical evaluations

We now consider particular initial and boundary conditions. In all three cases considered

below, we have u0(0) = 0 and hence, γ̃ ≡ δ̃.
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k

π/8

L+

π/8

∂D+

Figure 7. The steepest descent path L+.

(1) Suppose that

u0(x) = xe−a2x, γ(t) = sin bt, a, b ∈ �. (5.1)

Then equations (2.8a) and (2.23) yield

û0(k) =
1

(ik + a2)2
, γ̃(k2, t) =

1

2i

[
e(k2+ib)t − 1

k2 + ib
− e(k2−ib)t − 1

k2 − ib

]
. (5.2)

Thus, the solution formula (2.32a) becomes

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2t 1

(ik + a2)2
dk

− 1

2π

∫
∂D+

eikx−k2t k2 + iαk − β

(k2 − iαk − β)(−ik + a2)2
dk

+
1

2π

∫
∂D+

eikx−k2t

[
e(k2+ib)t − 1

k2 + ib
− e(k2−ib)t − 1

k2 − ib

]
k

k2 − iαk − β
dk. (5.3)

Following the hybrid analytical-numerical method of Flyer and Fokas [4], we deform

the contour of integration from ∂D+ to the steepest descent path L+, which forms

an angle of π/8 with the real k-axis (see Figure 7). This deformation is very helpful

regarding numerical computations since now both the x- and t-parts of the relevant

exponentials decay as |k| → ∞, providing the integrand with the maximal exponential

decay. Then using the change of variables k = i sin(π/8 − iθ), a few lines of code in

Mathematica produce the graphical representations shown in Figures 8 and 9.

(2) Suppose that

u0(x) = x2e−a2x, γ(t) = sin bt, a, b ∈ �. (5.4)

Then equations (2.8a) and (2.23) yield

û0(k) =
2

(ik + a2)3
, γ̃(k2, t) =

1

2i

[
e(k2+ib)t − 1

k2 + ib
− e(k2−ib)t − 1

k2 − ib

]
. (5.5)
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Figure 8. (Colour online) The solution (5.3) depicted over (x, t) ∈ [0, 1] × [0, 2] for a = 2, b = 5,

α = 2, β = 1.

Thus, the solution formula (2.32a) becomes

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2t 2

(ik + a2)3
dk

− 1

2π

∫
∂D+

eikx−k2t 2(k2 + iαk − β)

(k2 − iαk − β)(−ik + a2)3
dk

+
1

2π

∫
∂D+

eikx−k2t

[
e(k2+ib)t − 1

k2 + ib
− e(k2−ib)t − 1

k2 − ib

]
k

k2 − iαk − β
dk. (5.6)

The same technique as in the previous case yields the following graphical representa-

tions (see Figures 10 and 11):

(3) Finally, choosing

u0(x) = 0, γ(t) = te− t
2 (5.7)

gives

û0(k) = 0, γ̃(k2, t) =
1

(k2 − 1
2
)2

{
e(k2− 1

2 )t

[
t

(
k2 − 1

2

)
− 1

]
+ 1

}
. (5.8)
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Figure 9. (Colour online) The solution (5.3) depicted over (x, t) ∈ [0, 1] × [0, 2] for a = 2, b = 7,

α = 2, β = 1.

The solution (2.32a) now becomes

u(x, t) =
1

2π

∫
∂D+

eikx−k2t

k2 − iαk − β

2ik

(k2 − 1
2
)2

{
e(k

2− 1
2 )t
[
t

(
k2 − 1

2

)
− 1

]
+ 1

}
dk. (5.9)

A graph of this solution in the case of α = 2 and β = 1 is shown in Figure 12.

6 Conclusion

The integral expression (2.32) expresses the solution of the heat equation on the half-line

with given initial data and the oblique Robin boundary condition (2.7). The particular

case of the simplified boundary condition (2.34) was solved by Cohen in [1]. The integral

expression (2.35) obtained by the unified method is different from the expression (2.38)

obtained by Cohen. It is stated in [1] that the expression obtained via a Laplace transform

in the temporal variable t is not particularly useful either for the physical interpretation of

the solution or for numerical purposes, as opposed to (2.38). In this respect, it is remarkable

that the expression (2.35) obtained via the unified method is even better than Cohen’s

representation (2.38). Indeed, the solution expression (2.35) is uniformly convergent at

the boundary and this allows the direct evaluation of u(x, t) and its derivatives at x =

0. Furthermore, it involves exponentially decaying integrands which make numerical

computations very efficient. An illustration of typical numerical evaluations is presented

in Section 5.
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Figure 10. (Colour online) The solution (5.6) depicted over (x, t) ∈ [0, 1] × [0, 2] for a = 2, b = 5,

α = 2, β = 1.

Figure 11. (Colour online) The solution (5.6) depicted over (x, t) ∈ [0, 1] × [0, 2] for a = 3, b = 5,

α = 6, β = 9.
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Figure 12. (Colour online) The solution (5.9) for x ∈ [0, 1] and t ∈ [0, 20] for α = 2, β = 1.

The unified method can also be used for the derivation of the spectral representation

(1.1). Actually the unified method yields the alternative ‘spectral representation’,

q(x) =
1

2π

∫ ∞

−∞
eikxq̂(k)dk +

1

2π

∫
∂D+

eikx
2i q(0) − (k + i) q̂(−k)

k − i
dk

+ 2e−x [q(0) − q̂(−i)] . (6.1)

The spectral interpretation of the above expression remains an interesting open question.

In this respect we emphasise that for non-self-adjoint problems there do not exist the

analogues of equation (1.1) but there always exist the analogues of equation (6.1).

The integral expression (3.22) expresses the solution of the heat equation on the finite

interval 0 < x < l with given initial data and the oblique Robin boundary conditions

(2.7) and (3.1). This expression is uniformly convergent at the boundary and this allows

the direct evaluation of u(x, t) and its derivatives at x = 0 and x = l. Furthermore,

(3.22) involves exponentially decaying integrands which make numerical computations

very efficient.

The integral expression (4.19) expresses the solution of the heat equation on the

finite interval 0 < x < l with given initial data and the non-local constraints (4.3). In

this case, the classical spectral representation is given by equations (4.24), where the

eigenvalues km satisfy equation (4.22) (see also equation (1.2) of [12]). The expression

(4.19) is uniformly convergent at the boundary and this allows the direct evaluation of

u(x, t) and its derivatives at x = 0 and x = l. Moreover, it involves exponentially decaying

integrands which make numerical computations very efficient.
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Appendix Verification of the solution

In the applied mathematics literature, a PDE is solved under the assumption of existence.

Indeed, since the solution is obtained by applying an appropriate transform, this procedure

makes sense only if one assumes that the solution exists and has certain decay and

smoothness properties. In order to eliminate this assumption one should prove a posteriori

that the expression obtained by this approach satisfies the PDE and the given initial and

boundary conditions (then one has to address independently the question of uniqueness).

However, this is not done in the applied literature. Actually this verification is not

straightforward because any representation obtained via the usual transform methods

is non-uniformly convergent at the boundary. A major advantage of the unified method

is that it constructs a solution which is uniformly convergent at the boundary. Thus, it is

straightforward, at least formally, to verify that the solution satisfies the given PDE and

the given data. The rigorous implementation of this verification for a large class of PDEs

is discussed in [10].

Here we illustrate this feature by considering the integral expression (2.32a) derived for

the heat equation on the half-line with given initial data and the oblique Robin boundary

condition (2.7):

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
∂D+

eikx−k2t 2ik δ̃(k2, t) −
(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk, (A.1)

where û0(k) is the Fourier transform of the initial data u0(x), the function δ̃(k2, t) is defined

by equation (2.25) and the contour ∂D+ is depicted in Figure 3.

First, we note that for any T > t we have:

∫
∂D+

eikx−k2t 2ik δ̃(k2, t)

k2 − iαk − β
dk =

∫
∂D+

eikx−k2t 2ik δ̃(k2, T )

k2 − iαk − β
dk. (A.2)

The above equation is a direct consequence of Cauchy’s theorem and Jordan’s lemma

applied in the region D+. Consequently, the expression (A.1) can be written in the following

equivalent form:

u(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tû0(k)dk

+
1

2π

∫
∂D+

eikx−k2t 2ik δ̃(k2, T ) −
(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk. (A.3)

The heat equation. The integral expression of u(x, t) in the form (A.3) depends on x and t

only through the exponential eikx−k2t, which is a particular solution of the heat equation,

thus the expression (A.3) satisfies the heat equation.
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Initial condition. Evaluating the expression (A.1) at t = 0, we find

u(x, 0) =
1

2π

∫ ∞

−∞
eikxû0(k)dk

+
1

2π

∫
∂D+

eikx
2ik u0(0) −

(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk. (A.4)

The integrand of the integral along the contour ∂D+ is bounded and analytic for all

k ∈ �+, hence by Cauchy’s theorem and Jordan’s lemma this integral vanishes. Thus,

u(x, 0) =
1

2π

∫ ∞

−∞
eikxû0(k)dk = u0(x), (A.5)

where the last equality above follows by the definition (2.8b) of the inverse Fourier

transform.

Boundary condition. We will compute the derivatives ut(0, t), ux(0, t) as well as function

u(0, t) by using the expression (A.3):

ut(0, t) =
1

2π

∫ ∞

−∞
e−k2t

(
−k2

)
û0(k)dk

+
1

2π

∫
∂D+

e−k2t
(
−k2

) 2ik δ̃(k2, T ) −
(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk, (A.6a)

ux(0, t) =
1

2π

∫ ∞

−∞
e−k2t ik û0(k)dk

+
1

2π

∫
∂D+

e−k2t ik
2ik δ̃(k2, T ) −

(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk (A.6b)

and

u(0, t) =
1

2π

∫ ∞

−∞
e−k2tû0(k)dk

+
1

2π

∫
∂D+

e−k2t 2ik δ̃(k2, T ) −
(
k2 + iαk − β

)
û0(−k)

k2 − iαk − β
dk. (A.6c)

Taking the combination ut(0, t) + αux(0, t) + βu(0, t), we find

ut(0, t) + αux(0, t) + βu(0, t) =
1

2π

∫ ∞

−∞
e−k2t

(
−k2 + iαk + β

)
û0(k)dk

+
1

2π

∫
∂D+

e−k2t
[(
k2 + iαk − β

)
û0(−k) − 2ik δ̃(k2, T )

]
dk. (A.7)

The change of variables k �→ −k in the first integral on the right-hand side of the above

equation yields

ut(0, t) + αux(0, t) + βu(0, t) =
1

2π

∫ ∞

−∞
e−k2t

(
−k2 − iαk + β

)
û0(−k)dk

+
1

2π

∫
∂D+

e−k2t
[(
k2 + iαk − β

)
û0(−k) − 2ik δ̃(k2, T )

]
dk. (A.8)
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Furthermore, Cauchy’s theorem and Jordan’s lemma for k ∈ �+ \ D+ imply that we can

deform the contour of the first integral from the real line to ∂D+, i.e.

ut(0, t) + αux(0, t) + βu(0, t) =
1

2π

∫
∂D+

e−k2t
(
−k2 − iαk + β

)
û0(−k)dk

+
1

2π

∫
∂D+

e−k2t
[(
k2 + iαk − β

)
û0(−k) − 2ik δ̃(k2, T )

]
dk. (A.9)

Hence, recalling the definition (2.25) of δ̃(k2, T ), we find

ut(0, t) + αux(0, t) + βu(0, t) = − 1

2π

∫
∂D+

e−k2t 2ik

[∫ T

0

ek
2sγ(s)ds + u0(0)

]
dk. (A.10)

Letting k2 = il, equation (A.10) becomes

ut(0, t) + αux(0, t) + βu(0, t) =
1

2π

∫ ∞

−∞
e−ilt

[∫ T

0

eilsγ(s)ds + u0(0)

]
dl

= γ(t), (A.11)

where the last equality follows by using Cauchy’s theorem in the lower half complex

l-plane and by the definition of Dirac’s δ-function:

δ(t) =
1

2π

∫ ∞

−∞
eil(s−t)dl. (A.12)

Hence, the oblique Robin boundary condition (2.7) has been verified.
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