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The instability of Faraday waves in Hele-Shaw cells is investigated experimentally
and theoretically. A novel hydrodynamic model involving capillary action is proposed
to capture the variation of the dynamic contact line between two close walls of
narrow containers. The amplitude equations are derived from the gap-averaged model.
By means of Lyapunov’s first method, a good prediction of the onset threshold of
forcing acceleration is obtained, which shows the model’s validity for addressing
the stability problem for Faraday waves in Hele-Shaw cells. It is found that the
effect of the dynamic contact line is much greater than that of Poiseuille assumption
of velocity profile for the cases under investigation. A new dispersion relation is
obtained, which agrees well with experimental data. However, we highly recommend
the conventional dispersion relation for gravity–capillary waves, which can generally
meet common needs. Surface tension is found to be a key factor of interface flows in
Hele-Shaw cells. According to our experimental observations, a liquid film is found
on the front wall of the Hele-Shaw cell when the wave is falling. As a property of the
friction coefficient from molecular kinetics, wet and dry plates show different wetting
procedures. Unlike some authors of previous publications, we attribute the hysteresis
to the out-of-plane interface shape rather than to detuning, i.e. the difference between
natural frequency and response frequency.

Key words: Faraday waves

1. Introduction
One type of resonant surface wave, named the Faraday wave, is a classic physical

phenomenon which occurs when a container filled with fluids is under a vertical
vibration. It was first reported by Faraday (1831), who found that the frequency of
the wave motions was half of the frequency of the external vibrations. However,
Matthiessen (1868) obtained a different result in that the response frequency was
synchronous in his experiment. A later experiment by Rayleigh (1883) again supported
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Stability and hysteresis of Faraday waves in Hele-Shaw cells 695

the observation of Faraday (1831). This distinction was finally explained by Benjamin
& Ursell (1954) via the theory of Mathieu functions. Several instability regions
corresponding to different responses were predicted. This work, despite being a linear
one, shed light on the theoretical research of this problem, and many researchers
devoted themselves to exploring the untapped knowledge of this area. Miles &
Henderson (1990) reviewed related studies of great physical significance.

Kumar & Tuckerman (1994) extended the linear stability theory of Benjamin
& Ursell (1954) to viscous fluids and employed Floquet-based analysis to calculate
Faraday waves numerically. The stability analysis based on this numerical method was
confirmed by experimental data of Edwards & Fauve (1993) and Bechhoefer et al.
(1995). Thereafter, this advanced linear approach was widely used to understand
Faraday waves (Kumar 1996; Besson, Edwards & Tuckerman 1996). Even recently
this method was applied to the analysis of Faraday waves for the case of a two-layer
liquid (Pototsky & Bestehorn 2016). But, due to its fully numerical identity, it
‘renders a physical understanding difficult’ (Müller et al. 1997). Beyer & Friedrich
(1994), Cerda & Tirapegui (1997) and Müller et al. (1997) also developed theories
including integral formulations of the viscous dissipation to deal with linear stability
problems. Besides linear analysis, weakly nonlinear theory provides more details of
pattern collection and amplitude stability. Meron (1987) factored out the multiple-scale
analysis by considering a more general form of the free surface. Then, autonomous
equations were obtained to analyse the stability of parametric excitation systems. The
method utilized by Milner (1991) to obtain amplitude equations was straightforward,
but the damping term was plugged in from a viewpoint of mechanical energy. A
comparison was made by Milner (1991) between his theoretical prediction and
experiment (Douady & Fauve 1988) in terms of the threshold accelerations. There
is still a large discrepancy even though the theory is weakly nonlinear. Zhang
& Viñals (1997) assumed that dissipation is only located near the surface skin and
used a quasi-potential theory to derive the amplitude equations. Chen & Viñals (1999)
extended previous research by using a more general model and the viscous dissipation
was not restricted to small values. Miles (1999) also discussed this problem by using
an indirect approach. Rajchenbach & Clamond (2015) reviewed previous methods
and summarized that the critical point of initial instability is a balance between
acceleration and dissipation plus detuning.

Among the various features of Faraday waves, the diverse wave patterns are most
attractive. The complexity in the presence of free surfaces is easy to investigate
by relatively simple experimental devices. Many wave patterns have been found in
laboratory observations including squares, hexagons, strips, stars and lattices (Douady
& Fauve 1988; Cross & Hohenberg 1993; Edwards & Fauve 1993, 1994; Bosch,
Lambermont & van de Water 1994; Kudrolli, Pier & Gollub 1998; Kityk et al. 2005).
Besides, spatio-temporal chaos of the free surface was observed by Kudrolli & Gollub
(1996). The free surface can also exhibit standing solitary waves (Wu, Keolian &
Rudnick 1984; Rajchenbach, Leroux & Clamond 2011) which are rarely seen except
in a relatively narrow container. Wu et al. (1984) conducted an experiment in a
tank with a width of 2.54 cm and Rajchenbach et al. (2011) found standing solitons
in a tank with a width of 1.7 mm which can be definitely sorted into Hele-Shaw
cells. The latter research inspired Li, Xu & Liao (2014) to design experiments in a
Hele-Shaw cell filled with water–ethanol solution. It was discovered that three types
of localized standing waves can be connected following a combination law. Then,
another series of periodic wave patterns were reported in Hele-Shaw cells filled with
one or two layers of liquids with different liquid depths (Li, Yu & Liao 2015; Li,
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696 J. Li, X. Li and S. Liao

Li & Liao 2016, 2018b). An intriguing design of experiments in a Hele-Shaw cell
was reported by Bronfort & Caps (2012) in that the interface was between foam
and water. It was concluded that bubbles covering the liquid free surface can lead
to extra energy loss based on a scaling analysis of the damping coefficient. Pradenas
et al. (2017) also studied the parametric forcing waves in Hele-Shaw cells. In their
study, the laboratory set-up was well arranged and an amplitude equation was derived.
However, it still lacked a consistent numerical diagram in experimental results when
a pure two-dimensional model was used. Although these recent laboratory tests enrich
the knowledge of Faraday waves, all the literature indicates that Faraday waves in
Hele-Shaw cells may have a different physical identity from ones in a wide-mouth
container, and the mechanism is as yet less well understood.

In fact, computational fluid dynamics has been maturely applied to Faraday wave
simulations (Ubal, Giavedoni & Saita 2003; Périnet, Juric & Tuckerman 2009; Périnet
et al. 2016). However, even though some numerical wave profiles were similar to
experimental observations in Hele-Shaw cells, the numerical set-up did not consider
dissipation from the internal walls, which cannot illustrate the real nature. Moreover,
three-dimensional simulation of Faraday waves in Hele-Shaw cells is difficult because
of the high computational cost (the cell size can be quite small inside the thin
boundary layer) and the inaccurate numerical scheme dealing with the dynamic contact
line. Li et al. (2018a) applied a Kelvin–Helmholtz–Darcy theory proposed by Gondret
& Rabaud (1997) to obtain the gap-averaged Navier–Stokes equations and applied
an open-source code (Popinet 2003, 2009) to successfully simulate Faraday waves in
a Hele-Shaw cell for the first time. Although this simplified mathematical model is
well validated by experiments, the surface tension term is still two-dimensional and
the coefficient is empirical, because the out-of-plane interface shape (see figure 1)
was not directly taken into account. Rajchenbach et al. (2011) employed a similar
model to analyse the stability by potential flow theory without considering surface
tension. All these treatments may lead to miscalculations. Therefore, a model for
better understanding Faraday waves in Hele-Shaw cells is still missing.

Hence, we want to establish a more sophisticated model to include the capillary
motion arising from the small scale of the gap size between two walls of a Hele-Shaw
cell. For this purpose, we choose a molecular kinetics model (Blake 1993; Hamraoui
et al. 2000) to resolve the moving contact line. Note that ‘the contact angle depends
on the speed and direction of movement of the contact line, an adequate description
of the wetting process becomes quite complex’ (Hamraoui et al. 2000). Accordingly,
there is no exclusive model to tackle the whole problem. Our second aim is to
predict the onset threshold of the forcing acceleration by stability analysis for the
free surface in Hele-Shaw cells. A preliminary calculation from Rajchenbach et al.
(2011) cannot allow the evaluation of the onset instability, and the omitted surface
tension is the most likely factor. Therefore, we examine the impact of the surface
tension by means of the new model. As shown below, the out-of-plane interface
shape makes a large contribution to impeding the initial instability in Hele-Shaw
cells, and the prediction by our model is the closest to experimental measurements.
According to the discrepancy between theory and experiment, the validity of the
dispersion relation considering forcing and damping is also discussed. The last aim
of this paper is to reveal the real reason for the hysteresis of the initial instability
which was found both in Rajchenbach et al. (2011) and in our experiments. Since
the detuning, which was suggested as the reason for hysteresis by Rajchenbach &
Clamond (2015), cannot make up the large difference between the upper and lower
branches of the instability threshold, a more appropriate explanation should be given.
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FIGURE 1. Schematic diagram of a Faraday wave in a Hele-Shaw cell. Here b denotes
the gap size of the Hele-Shaw cell and θ is the dynamic contact angle of the liquid on
the front wall.

The paper is organized as follows. In § 2, we describe how to establish the model
for Faraday waves in Hele-Shaw cells with the capillary effect included. In § 3, we
briefly show how to derive the amplitude equations from our new model. Then we
describe the configuration of the laboratory experiments in § 4. Finally we present
the instability analysis and other theoretical discussions in § 5, in which detailed
comparisons with experimental results are reported as well.

2. Mathematical model
2.1. Gap-averaged equations

We consider here a Hele-Shaw cell filled with a kind of liquid and which is oscillated
vertically. The motion of the liquid inside the cell is governed by the Navier–Stokes
equations. However, since the gap b is rather small and the liquid is confined between
two walls as shown in figure 1, we are interested only in the vertical displacement.
Since there is no accurate definition of a Hele-Shaw cell, more clarification of the
size of b needs to be given. Some investigations gave the relative expression of
b geometrically (Lagrée, Staron & Popinet 2011), for instance b � cell length. In
previous literature (Talib, Jalikop & Juel 2007; Pradenas et al. 2017) the gap size is
in the range from 1 to 40 mm, but it really depends. According to our laboratory
observation (Li et al. 2019), the three-dimensional wave profile becomes obvious if
the gap is beyond 6 mm when the wavelength is around 20 mm. In this case the
two-dimensional assumption does not make sense. Hence, we stand by Schwartz
(1986) that the gap-to-wavelength ratio is small. So far, this system can be simplified
by the Kelvin–Helmholtz–Darcy theory (Gondret & Rabaud 1997). Different from
regular Hele-Shaw flow assuming that flow in the z′ direction is of Poiseuille type,
the main idea is averaging the Navier–Stokes equations across the gap to include
consideration of the inertial term. Consequently, the two-dimensional system is

∂x′u+ ∂y′v = 0, (2.1)
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∂t′u+ 6
5
(u∂x′u+ v∂y′u)=− 1

ρ
∂x′p− 12ν

b2
u, (2.2)

∂t′v + 6
5
(u∂x′v + v∂y′v)=− 1

ρ
∂y′p− 12ν

b2
v − (g− F cosΩt′), (2.3)

where u is the horizontal component of the averaged velocity and v is its vertical
counterpart. Here ρ, p, ν and g denote density, pressure, kinetic viscosity and gravity,
respectively. The external oscillatory force is denoted by F cosΩt′, with F the forcing
acceleration and Ω the forcing angular frequency. Rajchenbach et al. (2011) first used
this model to analyse one kind of Faraday wave in a Hele-Shaw cell. If we take
account of the bulk dissipation and the surface tension, it will be the gap-averaged
Navier–Stokes equations (Li et al. 2018a).

For stability analysis, there is no vortex initially in liquids with free surface at rest
plus perturbation. Since (2.1)–(2.3) only describe the (x′, y′)-plane motion and the
damping term has nothing to do with shear stress, vorticity, if it occurs, does not
contribute to dissipation. Given a weakly damped system due to the Darcy effect,
inertia obviously dominates the flow. This assumption can be verified by laboratory
measurements from the later analysis of the dispersion relation. Figure 7 in § 5.2
will demonstrate the close agreement between experimental data and the dispersion
relation obtained from potential theory by Benjamin & Ursell (1954). Hence, the
approximation we use here is convincing, and it is plausible to assume that the
two-dimensional average flow is vortex free under some weak dissipation. Similar
treatment can be found in much literature with respect to free-surface flow (Alam,
Liu & Yue 2011; Abdolali, Kirby & Bellotti 2015) even for parametric forcing waves
(Miles & Henderson 1990; Jiang et al. 1996; Zhang & Viñals 1997; Milewski et al.
2015; Rajchenbach & Clamond 2015). We may define velocity potential ϕ to simplify
(2.1)–(2.3) (Rajchenbach et al. 2011; Li et al. 2018a). With boundary conditions, we
can rewrite these equations by integrating along the streamline as

∂x′x′ϕ + ∂y′y′ϕ = 0, (2.4)

∂t′ϕ + 3
5
[(∂x′ϕ)

2 + (∂y′ϕ)
2] = −(g− F cosΩt′)ζ − 12ν

b2
ϕ + γ

ρ
κ,

at y′ = ζ (x′, t′), (2.5)

∂t′ζ + ∂x′ϕ∂x′ζ = ∂y′ϕ, at y′ = ζ (x′, t′), (2.6)
∂y′ϕ = 0, at y′ =−∞, (2.7)

where γ , κ and ζ are surface tension coefficient, surface curvature and wave elevation,
respectively. Due to the capillary effect, ζ represents the projection of the bottom of
the concave meniscus on the (x′, y′) plane as shown in figure 1.

2.2. Capillary term
Capillary force is highlighted for large wavenumber. However, the small gap of Hele-
Shaw cells will also make free surface tension more important than ever. Thus the
curvature can be divided into two parts: (Saffman & Taylor 1958; Chouke, van Meurs
& van der Poel 1959)

κ = ∂x′

[
∂x′ζ√

1+ (∂x′ζ )2

]
+ 2

b
cos θ, (2.8)
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Stability and hysteresis of Faraday waves in Hele-Shaw cells 699

where the first term indicates the principal radii of curvature of the wave profile ζ
and the second term represents the out-of-plane curvature of the meniscus which can
also contribute to the surface tension force (see figure 1). For regular Hele-Shaw flow,
when multi-phase flow occurs, the out-of-plane interface shape is always assumed
to be semicircular and the contact angle θ is naturally 180◦ (Saffman & Taylor
1958; McLean & Saffman 1981; Park & Homsy 1984; Afkhami & Renardy 2013).
Nevertheless, this assumption is not appropriate for Faraday waves in Hele-Shaw cells.
From laboratory observation, liquid in Hele-Shaw cells will endure an up-and-down
driving force, and θ will constantly change. Jiang, Perlin & Schultz (2004) also
conducted a series of experiments and found that the frequency of the oscillating
free surface in the vicinity of the solid has a significant relevance to the contact line.
This feature gives rise to the dynamic contact angle approximation.

We employ a validated model (Hamraoui et al. 2000) to evaluate the cosine of the
dynamic contact angle as

cos θ = 1− β
µ

Ca, (2.9)

where the capillary number Ca= µv/γ , with µ the dynamic viscosity of the liquid.
The friction coefficient β comes from a molecular kinetics theory (Blake 1993, 2006).
From (2.9), it is obvious that β has the same units as dynamic viscosity µ. It
only relies on the nature of the liquid–solid interaction, but the mechanism of the
dissipation at the contact line is not yet understood (Johansson & Hess 2018). Hence,
it is actually a phenomenological parameter that defines the energy dissipation rate
per unit length of the contact line. This coefficient comes from the idea of a friction
force at the wetting line by Voinov (1976), who pointed out that the determination
of this force falls outside the scope of hydrodynamics. However, it does not hinder
the utilization, and the final equations become

∂x′x′ϕ + ∂y′y′ϕ = 0, (2.10)

∂t′ϕ + 3
5
[(∂x′ϕ)

2 + (∂y′ϕ)
2] = −(g− F cosΩt′)ζ − 12ν

b2
ϕ + γ

ρ

(
∂x′x′ζ − ∂x′(∂x′ζ )

3

2

)
+ 2γ
ρb
− 2β
ρb
∂y′ϕ, at y′ = ζ (x′, t′), (2.11)

∂t′ζ + ∂x′ϕ∂x′ζ = ∂y′ϕ, at y′ = ζ (x′, t′), (2.12)
∂y′ϕ = 0, at y′ =−∞. (2.13)

3. Amplitude equations

Following Tadjbakhsh & Keller (1960) and Milner (1991) we derive amplitude
equations which in terms of regular Faraday waves were also obtained by other
researchers (Zhang & Viñals 1997; Rajchenbach & Clamond 2015). It is worth
noting that the amplitude equations for Faraday waves in Hele-Shaw cells were only
taken into account by Rajchenbach et al. (2011) without capillary concerns.

To non-dimensionalize equations (2.10)–(2.13), let us define k−1 as the characteristic
length, with k the wavenumber, and g as the characteristic acceleration. By introducing
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an expansion bookkeeping parameter ε, variables and parameters can be expressed in
dimensionless form as follows:

ϕ = εg1/2k−(3/2)φ, (3.1)
ζ = εk−1η, (3.2)
x′ = k−1x, (3.3)
y′ = k−1y, (3.4)

12ν
b2
= ε2(gk)1/2Σ = (gk)1/2σ , (3.5)

γ

ρ
= gk−2Γ , (3.6)

2β
ρb
= ε2g1/2k−(1/2)Γ1 = g1/2k−(1/2)δ, (3.7)

Ω

2
=
(

gk+ γ
ρ

k3

)1/2

ω= [(1+ Γ )gk]1/2ω, (3.8)

t′ = [(1+ Γ )gk]−(1/2)ω−1t, (3.9)
F= ε2gF̃= gΛ. (3.10)

According to the above definitions, it is easy to see that φ∼O(1), η∼O(1), σ ∼O(ε2),
δ ∼ O(ε2) and Λ ∼ O(ε2). Multi-scale analysis (Nayfeh 1993) is used to examine
the variation of variables in a long time. Hence, we have a slow time T = ε2t, and
naturally ∂t→ ∂t + ε2∂T . Since the capillary force can be seen as a pressure balance,
the constant term 2γ /(ρb) in (2.11) can be dropped for incompressible flow (similar
treatment can be found in Schwartz (1986)). Now the dimensionless equations read

∇2φ = 0, (3.11)

(1+ Γ )1/2ω∂tφ + η− Γ ∂xxη+ ε 3
5
(∇φ)2 + ε2

[
(1+ Γ )1/2ω∂Tφ − F̃ cos 2tη

+ Σφ + Γ
2
∂x(∂xη)

3 + Γ1∂yφ

]
= 0, at y= εη, (3.12)

(1+ Γ )1/2ω∂tη− ∂yφ + ε∂xφ∂xη+ ε2(1+ Γ )1/2ω∂Tη= 0, at y= εη, (3.13)
∂yφ = 0, at y=−∞. (3.14)

Let us assume that φ and η have limits φ0 and η0, and have first and second
derivatives, φ1, η1, φ2 and η2, with respect to ε, as ε tends to zero. The second order
will satisfy our needs because we are going to solve (3.11)–(3.14) until the amplitude
equations emerge. We shall also define ω0 the limit of response frequency ω when
ε = 0 with the form ω=ω0 + ε2ω1.

For each order problem, equations (3.11) and (3.14) will not change, and thus only
free-surface boundary conditions are listed. The zero-order problem reads

(1+ Γ )1/2ω0∂tφ0 + η0 − Γ ∂xxη0 = 0|y=0, (3.15)

(1+ Γ )1/2ω0∂tη0 − ∂yφ0 = 0|y=0. (3.16)
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Therefore, we have the neutral solutions

φ0(x, y, t, T)= iey[A(T)eit − A∗(T)e−it] cos x, (3.17)

η0(x, t, T)= 1
(1+ Γ )1/2 [A(T)e

it + A∗(T)e−it] cos x, (3.18)

with ω0 = 1 and A∗ being the conjugate of A.
To take the derivative of (3.12) and (3.13) we utilize the relation

d
dε
φ(x, εη, t, T, ε)= [∂ε + (η+ ε∂εη)∂y]φ. (3.19)

Then letting ε = 0, we have the first-order problem

(1+ Γ )1/2∂tφ1 + (1− Γ ∂xx)η1 =− 3
5(∇φ0)

2 − (1+ Γ )1/2η0∂t∂yφ0|y=0, (3.20)

(1+ Γ )1/2∂tη1 − ∂yφ1 = η0∂yyφ0 − ∂xη0∂xφ0|y=0. (3.21)

The particular solutions read

φ1 =− 11i
20(1+ Γ )1/2 A2e2it + 3iΓ

2(2Γ − 1)(1+ Γ )1/2 A2e2it cos 2xe2y + c.c., (3.22)

η1 =−1
5
|A|2 + 1

1+ 4Γ
|A|2 cos 2x+ 8Γ − 1

2(2Γ − 1)(1+ 4Γ )
A2e2it cos 2x+ c.c. (3.23)

It is straightforward to obtain the second-order problem by differentiating (3.11)–
(3.14) with respect to ε twice and letting ε = 0 as follows:

(1+ Γ )1/2∂tφ2 + (1− Γ ∂xx)η2 = 2F̃ cos 2tη0 − 2Σφ0 − 3Γ (∂xη0)
2∂xxη0

− 2(1+ Γ )1/2∂Tφ0 − (1+ Γ )1/2ω1∂tφ0

− 12
5 ∂yφ0∂yφ1 − 2(1+ Γ )1/2η1∂t∂yφ0

− 2(1+ Γ )1/2η0∂t∂yφ1 − 12
5 η0∂yφ0∂yyφ0

− (1+ Γ )1/2η2
0∂t∂yyφ0 − 12

5 ∂xφ0∂xφ1

− 12
5 η0∂xφ0∂x∂yφ0 − 2Γ1∂yφ0|y=0, (3.24)

(1+ Γ )1/2∂tη2 − ∂yφ2 = 2η1∂yyφ0 + 2η0∂yyφ1

− 2(1+ Γ )1/2∂Tη0 − (1+ Γ )1/2ω1∂tη0

+ η2
0∂yyyφ0 − 2∂xη1∂xφ0

− 2∂xη0∂xφ1 − 2η0∂xη0∂x∂yφ0|y=0. (3.25)

By combining (3.24) and (3.25), one equation of φ2 is afforded. Let us substitute
(3.17)–(3.18) and (3.22)–(3.23) into this equation. According to the Fredholm
alternative, a solvability condition appears on the right-hand side:

dA
dT
+
[

iω1 + Σ + Γ1

2(1+ Γ )1/2
]

A+ iF̃
4(1+ Γ )A

∗ + iN |A|2A= 0, (3.26)
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PC

Light Hele-Shaw cell Camera

Shaker

FIGURE 2. (Colour online) Schematic illustration of the experimental set-up.

Liquid µ (mPa s) γ (mN cm−1) ρ (g cm−3) β (Pa s)

Pure ethanol 1.096 0.218 0.785 0.040
Mixture 2.362 0.296 0.926 0.070

TABLE 1. The parameters of liquids.

with

N = −32− 105Γ − 438Γ 2 + 40Γ 3

80(1+ Γ )2(2Γ − 1)(1+ 4Γ )
. (3.27)

This is the final amplitude equation.

4. Experimental set-up
A schematic demonstration of the experimental set-up is shown in figure 2. In our

experiments, two types of Hele-Shaw cells (made of poly(methyl methacrylate)) are
used. Both of them have a length of 300 mm and a height of 60 mm. However, the
gap size b is different. One is 2 mm, the other is 5 mm. Pure ethanol (>99.7 wt%)
and a mixture of ethanol and water (50 vol%) are the working liquids for different
sets of experiments. Their physical properties are given in table 1.

An electrodynamic vibration generator (ESS-050) is utilized to provide a peak force
of 500 N and a vertical sinusoidal oscillation of acceleration F cos 2πft′, with f the
driving frequency, and Ω = 2πf in (2.3). The cell is fixed on it. A closed-loop control
system will output signals of the driving frequency f and the acceleration amplitude F
of the shaker. Precision is guaranteed with a waveform deviation factor <0.3 % and a
forcing frequency resolution of 0.01 %. To achieve this goal, this instrument can also
adjust the signals by measuring the real-time working parameters of the motion of the
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shaker. We realize the visualization of the free surface for observation by a high-speed
camera which is positioned perpendicular to the front wall of the cell. A maximum
resolution of 1696 × 1710 pixels per snapshot at a speed of 500 frames per second
can be offered by this camera. Before we conduct any experiments, we ensure that the
floor is flat by using a level meter. On top of that, the shaker is very heavy (95 kg)
and it is directly put on the flat floor. Given the shaker’s fundamental frequency of
8000 Hz, the torquing motion is largely prevented by the experimental frequency of
less than 30 Hz. The top gap of the container is covered by a lid and sealed due to
the volatilization of ethanol. An air conditioner helps us maintain the temperature at
around 25 ◦C (±0.5 ◦C).

We follow the experimental procedure of Douady & Fauve (1988) in that we
gradually increase the amplitude of acceleration F with the driving frequency f
fixed. For different sets of experiments, the instability threshold is different as well.
Hence, we start below the instability threshold of each case and at every level of
the amplitude of acceleration we expect a growth time corresponding to 103 periods
of the waves. When Faraday waves emerge we record F as the onset threshold of
instability from rest.

5. Results and discussions
5.1. Stability analysis

We use Lyapunov’s first method to examine the stability of the autonomous nonlinear
dynamic system (3.26). Hence, finding solutions of (3.26) is the first step. We are
interested in two solutions: one is the zero solution, the other is the standing wave.

Let us first consider the trivial one which represents the rest state of the free
surface. To what extent of the acceleration amplitude F cannot the rest state remain
stable? The so-called onset threshold problem has been studied by many researchers
through a theoretical approach (Milner 1991; Rajchenbach et al. 2011; Rajchenbach
& Clamond 2015). All of them gave consideration to the dissipation; if the balance
between the driving acceleration and the dissipation is broken, Faraday waves emerge.
According to published experimental results, the dissipation includes bulk damping
and the damping at the walls of the container. This conclusion can qualitatively
indicate the physical nature for a wide-mouth container. However, even in this
case, the discrepancy between theory and experiment still cannot be neglected. For
Hele-Shaw cells, Rajchenbach et al. (2011) tried to give some theoretical description
of the initial instability but unfortunately the damping term cannot afford a much
larger onset threshold. The reason is quite clear: Hele-Shaw cells are different from
common wide-mouth containers. Even dissipation on the walls in the direction of
the width of the cell was considered by Rajchenbach et al. (2011); both the large
curvature of the wave profile and the dynamic contact line require careful attention
for the free surface tension.

Note that there is another conjugate equation of (3.26). After taking the derivative
with respect to A around the zero solution, we have the linearized equations in terms
of the introduced perturbation ξi(i= 1, 2) as follows:

dξ1

dT
=−

[
Σ + Γ1

2(1+ Γ )1/2 + iω1

]
ξ1 − iF̃

4(1+ Γ )ξ2, (5.1)

dξ2

dT
=−

[
Σ + Γ1

2(1+ Γ )1/2 − iω1

]
ξ2 + iF̃

4(1+ Γ )ξ1. (5.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.335


704 J. Li, X. Li and S. Liao

Assuming ξi = ξ̄ieλT , we have an eigenvalue equation

λ2 + Σ + Γ1

(1+ Γ )1/2λ+
(Σ + Γ1)

2

4(1+ Γ ) +ω
2
1 −

F̃2

16(1+ Γ )2 = 0. (5.3)

Its eigenvalue reads

λ± =− Σ + Γ1

2(1+ Γ )1/2 ±
√

F̃2

16(1+ Γ )2 −ω
2
1. (5.4)

One solution is certainly negative. In order to make this state asymptotically stable,
λ+ must be negative. Therefore, the corresponding forcing must satisfy

|F̃|< 2
√

1+ Γ
√
(Σ + Γ1)2 + 4(1+ Γ )ω2

1. (5.5)

It is obvious that different signs of F̃ represent different directions of the
acceleration, which is the same for this periodically vertical excitation system. To be
practical, we multiply the bookkeeping parameter ε2 to this inequality. According to
(3.5), (3.7) and (3.10), the onset acceleration amplitude is

Λ= 2
√
(1+ Γ )(σ + δ)2 + 4(1+ Γ )2(ω− 1)2. (5.6)

Our above result and the previous theory (Rajchenbach et al. 2011) are compared
with experimental data. The experimental results of the dimensionless acceleration
amplitude Λ driving the initial instability are shown in figure 3 against forcing
frequencies f . We also use the averaged wavenumber so as to calculate the
dimensionless parameters for each case. Hence, the theoretical and experimental
results can be compared in figure 3. As mentioned before, the conventional prediction
of the onset threshold of the acceleration amplitude is based on a balance between
forcing and damping if we ignore the deviation between the natural frequency and the
response frequency (Milner 1991; Rajchenbach et al. 2011; Rajchenbach & Clamond
2015). For Hele-Shaw cells, the Poiseuille assumption only gives the dissipation
σ on the front and the back walls (Rajchenbach et al. 2011). It cannot evaluate
a good enough threshold. We also provide data of the conventional theory with
on-plane surface tension correction; the free surface tension Γ due to wave profile
is considered to improve the conventional theory. According to figure 3, our model
proposed in § 2 gives us a much better evaluation (about three times higher), which is
much closer to the experimental data than others for the initial instability of Faraday
waves in Hele-Shaw cells. This is reasonable, since the out-of-plane surface tension
δ indeed makes a great contribution to the stability of the rest free surface, which
unfortunately was not considered in the previous theory. Besides, even though the
on-plane surface tension is essential for determining the dispersion relation (as will
be discussed below), in our case due to the relatively large wavenumber, it barely
enhances the conventional theory. This can be explained by (5.6). Since the value
of Γ for our experiments falls within the range 0.08–0.4, the correction due to the
wave surface tension will not surpass half of the conventional prediction. Hence, this
small change cannot match the laboratory measurement. In addition, according to
(5.6), Λ experiences a rise as f increases, which however cannot be predicted by
the previous theories. In order to explain this point, we plot the curves of σ and
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FIGURE 3. Comparisons of dimensionless acceleration amplitude Λ between theoretical
data (squares: Λ given by (5.6); triangles: Λ given by the conventional relation; circles:
Λ given by wave surface tension correction) and experimental data (asterisks) for the onset
instability: (a) in cases of pure ethanol with b= 2 mm; (b) in cases of mixture of ethanol
and water with b= 2 mm; (c) in cases of pure ethanol with b= 5 mm; (d) in cases of
mixture of ethanol and water with b= 5 mm.

δ against wavenumber k in figure 4. The range of wavenumber in figure 4 covers
our experimental measurement. The reason for the opposite trends in figure 3 is
obvious. Dimensionless damping due to the container wall sees a gradual decline
while the out-of-plane capillary effect increases quickly as wavenumber increases.
Hence, an increase of σ + δ can be expected without doubt. We can attribute the
increasing tendency of Λ to the dynamic contact line. Both σ and δ are quite
sensitive to the gap size of the Hele-Shaw cell if we look closely at figure 4(a,c)
and figure 4(b,d). Expressions (3.5) and (3.7) reveal the truth. Parameters σ and δ
are inversely proportional to b2 and b, respectively. We may expect that σ decreases
faster than δ when the gap size becomes wider. Hence, if the Hele-Shaw cell has a
relatively wide gap the conventional theory will lose its validity quickly. However, it
also means that if the gap size is small enough, σ will dominate, which is more or
less against common sense that the capillary effect is more important at small scale,
yet not for Hele-Shaw dissipation.
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FIGURE 4. Results of σ and δ against wavenumber k: (a) in cases of pure ethanol with
b= 2 mm; (b) in cases of mixture of ethanol and water with b= 2 mm; (c) in cases of
pure ethanol with b= 5 mm; (d) in cases of mixture of ethanol and water with b= 5 mm.

It is unfortunate that we still cannot exactly predict the onset threshold, which can
be observed in figure 3. A discrepancy is still there. We do not want to attribute
this to any rational assumptions before derivations, but to the factors we do not take
into account. One is the dissipation on the lateral walls of the Hele-Shaw cell in the
x′ direction. Although our container is long enough to ignore it, we cannot entirely
replace an infinite length model by a practical experiment. Hence, this dissipation is
part of the reason. Another factor is the bulk dissipation mostly located near the free
surface, which has been verified by the simulation in figure 9 of Li et al. (2018a).
These two aspects are beyond the scope of the present work, but we will give some
discussion of this in the last section. Quantitatively, Milner (1991) reported that his
theoretical evaluation of 60 cm s−2 of the threshold for the initial instability is much
less than the experimental value of 200 cm s−2 of Douady & Fauve (1988), though
he mentioned a contaminated water surface may contribute to the damping. This is
for the initial instability of Faraday waves in a wide-mouth container, yet this result
still demonstrates that prediction of the onset threshold for this kind of issue remains
a great challenge for theoretical analysis.

The other solution of (3.26) is the standing wave. We assume its form A = ae−iα.
Similar to the previous procedure of the stability analysis for the rest state, a
corresponding criterion for a stable standing wave is

|F̃|< 2
√
(1+ Γ )(Σ + Γ1)2 + 4(1+ Γ )2(ω1 +N )2. (5.7)
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FIGURE 5. (Colour online) The experimental measurement of a versus f /
√

F/d in the
case of pure ethanol. Symbols: experimental data; dashed line: the fitting function log a≈
−0.58( f /

√
F/d)+ 0.36.

If we let ε= 1 we may have a feasible instability threshold for standing waves, which
reads

Λs = 2
√
(1+ Γ )(σ + δ)2 + 4(1+ Γ )2(ω− 1+N a2)2. (5.8)

Although in our experiment liquid depth d is a constant, according to Li et al. (2018a),
we know that a is a variable for different forcing acceleration, driving frequency and
liquid depth. Hence, the dimensionless wave amplitude a is parameterized for one
liquid as

a= G( f , F, d), (5.9)

which, due to two independent physical dimensions, can be written in a non-
dimensional form as

a=Π
(

f√
F/d

)
. (5.10)

Can (5.8) give us a sufficient prediction of the instability threshold for standing
waves in Hele-Shaw cells? Let us use (5.10) to evaluate a. Without loss of generality,
we consider pure ethanol in the Hele-Shaw cell with b = 2 mm, but to examine
if b has any influence on (5.10) one needs to investigate both b = 2 mm and
b= 5 mm. According to the experience of Li et al. (2018a), the scaling law should
obey a logarithmic expression. According to figure 5, the experimental data can be
approximated by

log a≈−0.58
(

f√
F/d

)
+ 0.36, (5.11)

which is totally consistent with the observation by Li et al. (2018a). It is obvious that,
for parametric forcing instability in Hele-Shaw cells, a, f , F and d can be estimated
by (5.11) and the effect of gap size is trivial. There is some dispersion of the points
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in figure 5, which comes from the sensitivity of the experimental measurement for the
onset threshold. In our experiment, if one wants to gauge the acceleration amplitude
F three times for the initial instability in the same working condition, three different
values will be recorded. Different values correspond to different wave heights and
wavelengths. As a result, the values will not be that concentrated around the onset
instability. However, laboratory observation is much more stable for Faraday waves
above the critical point (Li et al. 2018a), and the general trend in figure 5 agrees
well with the fitting line.

Defining when standing waves are unstable or turning into turbulence is difficult.
In our experiments, we observe several phenomena at the critical moment. There may
be some modes which are quite different from others. They are stretched much higher
than other waves but can still exist for a long time. We cannot put them into ‘transient
states’ (Douady & Fauve 1988), while, obviously, they are no longer spatially periodic.
We tend to believe this state is unstable. Li et al. (2018a) recorded the thresholds of
instability for standing waves of pure ethanol in a Hele-Shaw cell with b= 1.7 mm.
For different cases with f = 20 Hz, Λs is around 2. Equation (5.8) is transcendent
for a versus F. However, we can make an approximate assumption of Λs ≈ 2 and
utilize (5.11) to verify (5.8). If we let f = 20 Hz, a can be estimated to be 0.976.
Then Λs is about 4, which is almost twice the value of our assumption. Note that
the term N a2 has nothing to do with the out-of-plane capillary effect. A similar term
can also be found in Rajchenbach & Clamond (2015). Therefore, this failure is mainly
because our derivation is based on a weakly nonlinear theory. For extreme waves close
to instability, their finite amplitude will impede the accuracy of our theory. At this
point we agree with Rajchenbach et al. (2011) in that a highly nonlinear theory is
necessary to account for extreme Faraday waves in Hele-Shaw cells.

5.2. Dispersion relation
Rajchenbach & Clamond (2015) revisited the dispersion relation of Faraday waves
and they thought that the traditional dispersion relation only reflects the connection
between wavenumber and the natural frequency without forcing and damping.
Nonlinear resonance occurs when ω is close to ω0. Some laboratory evidence validates
this argument (Edwards & Fauve 1994). Hence, the actual dispersion relation of
Faraday waves was established by Rajchenbach & Clamond (2015). Rajchenbach
et al. (2011) and Li et al. (2018a) modified this dispersion relation and applied it to
Faraday waves in Hele-Shaw cells.

Following Rajchenbach & Clamond (2015), we directly substitute A = ae−iα into
(3.26), and then setting ε = 1 we have

ω= 1−N a2 ±
√

Λ2

16(1+ Γ )2 −
(σ + δ)2
4(1+ Γ ). (5.12)

Combined with (3.8), equation (5.12) is the modified dispersion relation for Faraday
waves in Hele-Shaw cells. Just as Rajchenbach & Clamond (2015) obtained, there are
two wave angular frequencies ω corresponding to the same wavenumber k. We would
like to see how this relation works compared with the experimental data. In figure 6,
surprisingly, we find that consideration of N a2 does not make the prediction better
but worse. The positive term N a2 depresses the value of ω quite significantly. When
a→ 0, the guess performs much better. According to figure 5, a convincing way to
explain this phenomenon is that a higher nonlinear theory is needed for Faraday waves
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FIGURE 6. Comparison of dispersion relations in the case of pure ethanol with b= 2 mm.
Dashed and dotted line: data from (5.12); solid and dotted line: data from (5.12) as a→ 0;
asterisks: experimental data; lines with circles: the upper branch; lines with squares: the
lower branch.

in Hele-Shaw cells with finite wave amplitudes. This result, although disappointing,
is still inspiring. The idea of obtaining a new dispersion relation by Rajchenbach
& Clamond (2015) is totally right, but the finite wave amplitude even at the onset
point for Faraday waves in Hele-Shaw cells is hard to predict. It loses its validity. If
we degrade the relation letting a = 0, the dispersion relation is much closer to the
experimental data. However, there is an error of about 10 % even with consideration
of the out-of-plane surface tension. Hence, the deviation of theory will be far away
from the experimental observation if no δ is added in our model.

Alternatively, we do not bother to find a more accurate or theoretically correct
dispersion relation, since the conventional dispersion relation without forcing and
damping is so far the best fit. Although a maximum error of 5 % was reported
in figure 7 of Edwards & Fauve (1994), the error is much lower in most of our
laboratory tests. Figure 7 shows the comparisons. If we look at each diagram, the
sign of ω − ω0 is not the same for different liquids. It can somewhat reflect the
two branches predicted by (5.12). According to Rajchenbach & Clamond (2015),
with the assumption ∂kF = 0, the first mode will emerge from rest with ω > ω0.
However, figure 3 tells us this assumption is not appropriate for Faraday waves in
Hele-Shaw cells. Hence, to assess which branch will work when resonance occurs
is still complicated. We would think of it as a stochastic problem although without
solid evidence yet. Note that without considering the capillary effect, there is an
obvious deviation of dispersion relations from experimental results in Li et al.
(2018a). Therefore, we recommend to highlight surface tension of Faraday waves
in Hele-Shaw cells.

5.3. Hysteresis
A hysteretic phenomenon was observed in our experiment. According to the experi-
mental set-up, we gradually increase the driving acceleration F from rest, and record
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FIGURE 7. Comparison between the dispersion term (dashed lines) and the corresponding
experimental results (asterisks): (a) in cases of pure ethanol with b=2 mm; (b) in cases of
mixture of ethanol and water with b= 2 mm; (c) in cases of pure ethanol with b= 5 mm;
(d) in cases of mixture of ethanol and water with b= 5 mm.

F+ as the threshold when instability occurs. Next, we slowly decrease F so that
the surface waves disappear when another threshold F− is also reached. Therefore,
a hysteretic region [F−, F+] occurs, which was also reported and explained by
Rajchenbach et al. (2011), who found that

|ω−1 − 1| = (Λ
2
+ −Λ2

−)
2

4
, (5.13)

where Λ+ and Λ− are the dimensionless F+ and F−, respectively. This comes in
handy, and if ω = ω0, the hysteresis region does not exist. The start point with
a balance between forcing and damping is right. Indeed, in their study, without
considering the capillary effect, there is a gap between the criterion Λ> 2σ to avoid
imaginary numbers and the other Λ < 2

√
σ + 4(ω−ω0)2 to circumvent positive

eigenvalues. Nevertheless, the small contribution of |ω − ω0| cannot afford the
difference between Λ+ and Λ−.

Our model can provide a new viewpoint to this problem. As mentioned before,
the wave profile surface tension works as a tiny correction, and the out-of-plane
interface shape is the major factor for the onset instability of Faraday waves in
Hele-Shaw cells. Hence, we go back to the friction coefficient β. According to a
personal communication with Blake, the evaluation of β is not entirely straightforward
and requires some assumptions. During this process, one needs not only the shear
viscosity but also the molecular flow volume. Although it can lead to a useful degree
of insight, the whole procedure may still not be perfectly correct. Hence, we directly
use values employed by Hamraoui et al. (2000) to avoid such a complexity. In
figure 8, we show the observation during our experiments. A liquid film is yielded
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FIGURE 8. The shadow of liquid film on the front wall while the wave crest is falling.

on the front wall of the Hele-Shaw cell, which is a wetting process. Therefore, given
the definition of F−, the corresponding friction coefficient must be different from
the one used in the onset situations. The exact parameter needs more accurate and
refined experimental measurement considering more successful molecular kinetics
theories which is far beyond the scope of hydrodynamic scales. Voué et al. (1999)
once used a stratified droplet model to study droplet spreading on a surface. A quite
essential feature of this parameter mentioned by them was that β for the layer of
liquid directly on a solid is two times larger than that for the layer on a liquid film.
A linear plot shows good agreement with experiments in their work and βw/βd of 0.5
was recommended for cases of βw/βd < 1, where βw denotes the dimensional friction
coefficient of liquid on the first layer of fluid (wet condition) and βd indicates the
dimensional friction coefficient of the first layer of liquid on a solid surface (dry
condition). Furthermore, as introduced by Voué et al. (1998), lowering the friction
of molecules by humidity has been widely investigated. As a qualitative discussion
within the scope of hydrodynamics, it is reasonable to use half of the initial values
of β (βd) as βw to qualitatively estimate the effect of the wetting process on this
problem.

We plot the hysteresis regions in figure 9. The shaded areas represent what we
observe in the laboratory tests. The hatching patterns are the approximate evaluation
by our model and letting |ω−ω0| = 0. First we look at the experimental results. The
hysteresis phenomenon is more obvious in a Hele-Shaw cell of 2 mm in width than in
one of 5 mm in width no matter what the filling liquid. According to figure 7, there is
no great difference between the two types of containers. Hence, again, the ‘detuning’
|ω−ω0| is not the key reason for hysteresis. Equation (5.13) also cannot tell us why
the onset forcing F+ has to be larger than F−. Following the previous assumption, we
define δd and δw as the dimensionless friction coefficients for dry and wet solid walls,
respectively. We may obtain a relation to evaluate the hysteresis region:

Λ2
+ −Λ2

−
4(1+ Γ ) = (2σ + δd + δw)(δd − δw). (5.14)

A rough estimate is shown in figure 9 with the assumption 2δw = δd. Figure 9(a,b)
demonstrates that the wetting effect of the liquid film can provide a relatively large
hysteresis region. We argue that the same phenomenon observed by Rajchenbach
et al. (2011) can be explained by this theory since the gap size of the Hele-Shaw
cell is 1.7 mm which is smaller than 2 mm, and a larger region can be expected.
As for figure 9(c,d), the hysteresis regions shrink and the rough evaluation also
experiences the same trend, but it is overestimated. We remind readers again that δw
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FIGURE 9. Hysteresis regions of the experimental measurement (shaded area) and the
theoretical rough estimation (hatching pattern): (a) in cases of pure ethanol with b=2 mm;
(b) in cases of mixture of ethanol and water with b= 2 mm; (c) in cases of pure ethanol
with b= 5 mm; (d) in cases of mixture of ethanol and water with b= 5 mm.

is an approximate assumption, and determining this parameter is a quite tricky work
and high-precision devices are needed to gauge some microscale physics. Another
factor is that the wave amplitude in a Hele-Shaw cell with b= 5 mm is quite small at
the onset point. This feature means that the liquid wetting process will be depressed.
Accordingly, we may expect δw to be much larger in this situation. Thereafter, Λ−
may be larger and the hysteresis region can be evaluated as smaller than what is
shown in figure 9. If this model reveals the truth, the hysteresis for onset instability
is hardly observed or the hysteresis region is quite small for a wide-mouth container,
which can be easily examined by future investigations.

6. Concluding remarks
Milner (1991) mentioned that ‘dissipation from a moving contact line’ can be

neglected for the experiments of Douady & Fauve (1988). However, considering the
scaling law given by Jiang et al. (2004), the dynamic contact line cannot be ignored
in analysing the parametric forcing free-surface flows in a wide-mouth container but
with two-dimensional wave profiles. It consequently becomes a more essential factor
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for Faraday waves in Hele-Shaw cells. In this paper, we propose a new model to
take into consideration the out-of-plane capillary action. With the aid of the dynamic
contact line, we can explain more issues hidden by traditional theories. Multi-scale
analysis is used to derive the amplitude equation for Faraday waves in Hele-Shaw
cells. By using Lyapunov’s first method, we give a law to predict the acceleration
amplitude when onset instability occurs. This theoretical estimate is verified by
our laboratory experiments. Although there is some difference between them, our
prediction is still much closer to the observation than conventional ones. Besides,
the same increasing trend as forcing frequency increases can also be seen. Given
other factors which may play a role in dissipation but overlooked, this result is quite
convincing. We also carry out a stability analysis of standing waves. Because of
the finite amplitude of the extreme scenarios, the prediction of the acceleration for
instability of standing waves is overvalued by the weakly nonlinear theory. Hence,
the dispersion relation with forcing and damping correction will not coincide with the
experiments. Even when we let the wave amplitude be zero, the linear relation still
cannot compete with the traditional one. Therefore, we suggest that the dispersion
relation without damping and forcing is accurate enough to give a connection between
wavenumber and resonant frequency. Hysteresis emerges in our experiments and other
research. Rajchenbach & Clamond (2015) gave an explanation for this phenomenon
but we beg to differ. First, the ‘detuning’ |ω− ω0| cannot afford the large hysteresis
region. Second, we have no idea which acceleration is greater between F+ and F−
from this theory. By introducing the out-of-plane interface shape, this phenomenon
can be explained as the difference of friction coefficients between the dry and the
wet container walls. Some qualitative comparisons are also carried out to support this
point of view.

This study has not answered all questions ahead of us, and there are several
issues that need addressing in the future. If these restrictions can be improved, we
would have a much better understanding of Faraday waves in Hele-Shaw cells. The
first issue is the attenuation from the bulk and the lateral walls of the container.
The former can be dealt with by some fully hydrodynamic approaches from the
gap-averaged Navier–Stokes equations with the out-of-plane interface correction.
Li et al. (2018a) gave a hint for this application of computational fluid dynamics,
but the instability analysis depending on interface capturing schemes, such as volume
of fluid, may lead to numerical dispersion and capillary force balance problems. Of
course, the Floquet-based analysis is an option. The prediction of initial instability
should be fulfilled by this numerical, linear approach. As for the latter factor, there is
no effective way to resolve this unless a fully three-dimensional numerical approach is
validated. However, we have attempted to conduct some three-dimensional simulations
of Navier–Stokes equations by several numerical schemes, and all our results are quite
sensitive to grids and surface tension approximation, with a high computational cost.
Hopefully computational fluid dynamics could tackle this problem one day, because
the instability of standing waves in Hele-Shaw cells is also a difficult issue in current
theoretical frameworks for their finite amplitude. The second issue is the evaluation
of out-of-plane surface tension. As mentioned before, there is no exclusive model
for the dynamic contact line. In addition to the molecular kinetics model, there
are some other models, e.g. hydrodynamic theory and combined models (Blake
2006). Unfortunately, no one model can predict the physics for all situations. Even
for the model we employ in the present study, the measurement of the friction
coefficient is still a tricky aspect. In fact this model also in turn affects the numerical
approximation of surface tension. Hence, it is necessary to address this for Faraday
waves in Hele-Shaw cells in the future.
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