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We investigate the inception of cavitation and resulting structures when a sphere
collides with a solid surface covered with a layer of non-Newtonian liquid having
a kinematic viscosity of up to ν0 = 20 000 000 cSt. We show the existence of
shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the
pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed
imaging system. For the experimental parameters employed, liquids having viscoelastic
properties of De > O(1) are shown to enable sphere rebound without any prior
contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in
such non-contact cases is observed to onset after a noticeable delay from when the
minimum gap distance is reached. Also, the cavities created originate from remnant
bubbles, being the remains of the primary bubble entrapment formed by the lubrication
pressure of the air during film entry. Cases where physical contact occurs (contact
cases) in 10 000 cSt 6 ν0 6 1000 000 cSt films produce cavities attached to the base
wall, which extend into an hourglass shape. In contrast, strikingly different structures
occur in the most viscous liquids due to the disproportionality in radial expansion and
longitudinal extension along the cavity length. Horizontal shear rates calculated using
particle image velocimetry (PIV) measurements show the apparent fluid viscosity to
vary substantially as the sphere approaches and rebounds away from the base wall. A
theoretical model based on the lubrication assumption is solved for the squeeze flow
in the regime identified for shear-induced cavity events, to investigate the criterion
for cavity inception in further detail.

Key words: cavitation, drops and bubbles, viscoelasticity

1. Introduction
The interaction of an immersed particle with a solid surface has been extensively

researched due to its practical relevance in many industrial and natural processes
including filtration, agglomeration, adhesion, wet granular flow, spray coating, drying,

† Email address for correspondence: jeremy.marston@ttu.edu
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polishing, pollen capture on wet leaves, erosion and sedimentation. The first studies in
this rich topic investigated the interaction of dry objects resulting in the classical Hertz
contact theory (Love 1927; Landau & Lifshitz 1959), which assumed the collisions
to be perfectly elastic with no energy losses. Thus, the particles were predicted to
rebound with no change in their kinetic energy. In reality however, energy loses are
inevitable owing to interparticle adhesive forces (Dahneke 1972; Löffler 1980), plastic
deformation in the solids (Johnson 1985) and energy radiated away by vibrations
(Zener 1941).

In the case of a spherical particle colliding with a wetted surface, energy losses by
viscous dissipation within the liquid also have to be taken into account. The liquid
in the diminishing gap between the sphere and wall squeezes to create a lubrication
force (Brenner 1961), expressed as Fl = 6πµR2

0ḣ/h, where R0 is the radius of the
sphere, µ is the liquid’s dynamic viscosity, h is the separation distance and ḣ= dh/dt
is the speed of the approaching sphere. When the impact velocity of the sphere is
above a critical value, this force can be large enough to deform the sphere around
the axis of symmetry and store a portion of its kinetic energy as elastic strain energy.
The conversion of this stored energy back to kinetic energy allows the sphere to
rebound, even without wall contact, if a sufficiently high hydrodynamic pressure is
built up during sphere approach. This is called the elastohydrodynamic model (Davis,
Serayssol & Hinch 1986) which integrates both Hertz theory and lubrication theory.
It reveals that the tendency of an impacting particle to bounce back from a wetted
surface is largely dependent on two parameters, namely the Stokes number, St, and
the elasticity parameter, ε, given as:

St= 2ρsR0V0

9µ
, (1.1)

ε = 4θµV0R3/2
0

x5/2
0

, (1.2)

where ρs is the sphere density, V0 is the impact velocity specified at an initial
separation of x0, θ = (1− ν2

1)/πE1 + (1− ν2
2)/πE2 where E1 and E2 are the Young’s

moduli of the sphere and the plane and ν1 and ν2 are Poison’s ratios of the sphere
and the plane.

The elastohydrodynamic theory has since been put to use in several other studies;
Serayssol & Davis (1986) incorporated interparticle force potentials, Davis (1987)
included the effects of surface roughness, Barnocky & Davis (1989) accounted for the
changes in fluid density and viscosity with pressure and Barnocky & Davis (1988a)
replaced no-slip boundary conditions at the surfaces by Maxwell slip boundary
conditions when the separation gap reduces to a few nanometers for high inertial
impacts. Experimental verification of the elastohydrodynamic model was provided
by Barnocky & Davis (1988b), Lundberg & Shen (1992) and Gondret et al. (1999).
Davis, Rager & Good (2002) performed experiments to investigate the non-zero
rebound velocity cases, which were shown to occur only above a critical Stokes
number value, Stc. The separation distance h at which the lubrication force becomes
large enough to deform the sphere was approximated as being comparable to an
elasticity length scale, xr = (3πθµR3/2

0 V0/
√

2)2/5. This was recently verified in a
time-resolved experimental investigation by Marston, Yong & Thoroddsen (2010). As
most of the collisions in real situations are not normal but oblique, Kantak & Davis
(2004) conducted experiments for oblique impacts to find that the previous results
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Cavitation structures in ultra-viscous liquids 475

for head-on collisions can be applied, considering only the normal component in the
oblique impact cases. A comprehensive model for oblique impacts was presented
in further work by Kantak & Davis (2006). Donahue et al. (2010) investigated
three-particle collisions using a Stokes’ cradle, comparing their results to the theory
of a series of two-particle collisions. Their proposed theory incorporated the effect
of glass transition whereby the silicone oils behave like a solid at a high enough
pressure called the glass-transition pressure.

Some studies have also investigated particle–wall collisions in non-Newtonian fluids
having both elastic and shear-thinning properties. The relevant parameters here are the
Stokes and Deborah numbers, the latter being defined by De= λV0/R0, which is the
ratio of the characteristic relaxation time of the fluid λ to the characteristic time scale
of the experiment R0/V0. The Stokes number has either been based on the apparent
viscosity µapp of the liquid, obtained from an estimation of the shear rate γ̇ , or its
low-shear viscosity µ0 for simplicity purposes.

One of the first studies in this area was performed by Stocchino & Guala
(2005), who investigated particle–wall collisions in a shear-thinning fluid (aqueous
carboxymethyl cellulose, CMC). For a fixed Stokes number, the coefficient of
restitution, e = vr/vi (ratio of the rebound to the impact velocity), was found to
be higher than that obtained for Newtonian fluids, which was reasoned to be due
to the viscoelastic nature of the CMC solution. Ardekani, Rangel & Joseph (2007)
examined the forces and normal stresses on a spherical particle moving towards a wall
in a second-order fluid. It was found that the fluid contributed with an attractive force
towards the wall, irrespective of the direction of motion of the particle. Ardekani
et al. (2009) conducted impacts in viscoelastic liquids to study the effect of the
Stokes and Deborah numbers on the coefficient of restitution. The rate at which
the value of e increased with the Stokes number was found to become smaller
for higher Deborah numbers, corresponding to liquids with higher viscoelastic and
shear-thinning properties. For a given Stokes number, higher rebounds were noted for
larger De values.

While many studies have investigated the motion and deformation of spheres for
wetted impacts, only a few have focused on the resulting behaviour and dynamics
of the fluid during this process. The sudden deceleration of the sphere upon impact,
followed by expansion of the gap between the solid surfaces during rebound, causes
depressurization around the axis of symmetry of the sphere, inducing cavitation
(Brennen 1995). A series of images portraying this event is shown in figure 1. Chen
& Israelachvili (1991) and Kuhl et al. (1994) conducted experimental studies to show
that cavitation can only occur when a fluid is subjected to a threshold value of tensile
stress.

An extensive review of the criterion for cavitation was presented by Joseph (1998),
who predicted that for a liquid at atmospheric pressure which cannot tolerate tension,
cavitation will occur once tensile stresses in the liquid exceeds one atmosphere.
A model for shear-stress-induced cavitation was also proposed. This predicted that
the liquid squeezing in the diminishing gap between the approaching sphere and
the wall could be ripped open in tension in the direction of the principal stresses.
The first experimental evidence for shear-induced cavitation was provided earlier by
Blair & Winer (1992), who utilized a custom-built rotary viscometer (Blair & Winer
1987) to investigate the yielding shear stresses of high molecular weight polymers at
variable absolute pressures. The polymers tested were noted to yield at shear stresses
slightly higher than the absolute pressure for the lowest pressures investigated, which
suggested the maximum principal stress criterion to be applicable at low pressures.
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476 M. M. Mansoor and others

1 mm

FIGURE 1. Sequence of images showing cavity formation during the impact of a tungsten
carbide sphere onto a glass plate covered with a 37 mm deep layer of water. The
sphere was released with its bottom just touching the surface of the water (hr = 37 mm).
R0 = 10 mm, µ0 = 9.1× 10−4 Pa s; h represents the distance between the bottom tip of
the sphere and the glass plate. The frame at which the sphere makes first contact with
the glass base is taken as a reference point (t0 = 0 µs and h0 = 0 µm, marked with the
asterisk ∗ symbol) and can be seen to coincide with the onset of cavitation. The arrows
pointing downwards and upwards indicate the sphere’s approach towards and rebound
away from the wall, respectively.

Experimental visualization of shear-induced cavitation was claimed recently by
Seddon et al. (2012), who performed particle–wall collisions in Newtonian fluids
(µ= 1–1200 mPa s) for spheres dropped from heights ranging 1–200 mm. However,
since the qualitative results provided therein suffered from a relatively low spatial
and temporal resolution, further investigation was conducted by Mansoor et al.
(2014) using a synchronized dual-view (side and bottom) high-speed imaging system
for similar experimental parameters. The results clarified that the annular bubble
structure misinterpreted by Seddon et al. (2012) as cavitation was in reality created
by the entrapment of bubbles (Marston, Vakarelski & Thoroddsen 2011a) on the
sphere surface as it entered into the viscous film, which subsequently squeezed
radially outwards from the sphere centre as it approached the wall. Cavitation
was only observed once the sphere made wall contact and started to rebound (e.g.
figure 1), agreeing with the conventional theory which predicts cavitation during
depressurization. Hence, although the occurrence of shear-stress-induced cavitation
was thereby confirmed to be highly unrealistic in the parameter space of these
collisions employing Newtonian fluids, no further studies have been conducted so
far to investigate this phenomenon in highly viscous and non-Newtonian liquids with
high viscoelastic properties.

More relevant to the work presented in this paper, Guala & Stocchino (2007) used
particle image velocimetry to investigate large-scale flow structures formed during
fully immersed particle–wall collisions in Newtonian (water, aqueous glycerol) and
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Cavitation structures in ultra-viscous liquids 477

in non-Newtonian (1 % aqueous CMC, shear thinning, weakly viscoelastic, De� 1)
liquids. A similar velocity field and vortical structure evolution was obtained in both
the glycerol and CMC solutions, which showed that the shear-thinning effect of the
non-Newtonian CMC fluid was dominant over its viscoelastic nature for low Deborah
numbers. Dabiri, Sirignano & Joseph (2010) performed numerical simulations to
study the deformation of a cavitation bubble in simple shear and extensional flows.
The deformation of the bubble during growth was shown to result in high pressure
regions at its sides upon collapse. This produced re-entrant jets that impinged the
bubble internally to cause bubble break-up in some instances. Uddin, Marston &
Thoroddsen (2012) investigated the squeeze flow during the impact of a sphere onto
a thin film of viscous non-Newtonian (Carreau) fluid. High-speed imaging and particle
tracking were used to visualize the flow in the film and provide measurements for
the corresponding velocity fields. Marston et al. (2011b) presented a detailed analysis
of the complex cavitation structures formed during the rebound stages of impacts
onto a thin (1.5 mm deep) film of Newtonian (glycerol, syrup) and non-Newtonian
(silicone oil, low-shear γ̇ < 100 s−1 kinematic viscosity of ν0 = 12 500–1000 000
cSt) liquid. The cavitation bubbles in both kinds of fluids were observed to form
in discrete rings, growing radially outwards from the centre of impact. However,
the bubbles were more discrete and increased in size in Newtonian liquids, while
those in the shear-thinning non-Newtonian fluids, appeared to be connected in a
foam-like structure and decrease in size with increasing distance from the centre.
Cavitation structures in non-Newtonian liquids with high viscoelastic properties were
not investigated.

The present work extends the analysis of aforementioned studies by investigating
cavitation structures formed during wetted particle–wall collisions in extremely high
viscosity (ν0 6 20 million cSt) non-Newtonian liquids. These liquids are highly shear
thinning and also possess viscoelastic properties. The latter promotes sphere rebound
without prior contact with the solid wall, which leads to significantly different
cavitation structures compared to those observed in contact cases by Marston et al.
(2011b). These structures are found to originate specifically from bubbles entrapped
on the sphere surface during its entry into the thin film (Marston et al. 2011a;
Mansoor et al. 2014). In addition, given the lack of any conclusive experimental
evidence supporting or disproving the possibility of shear-stress-induced cavitation
in such liquids, we use a synchronized dual-view (side and bottom) high-speed
imaging system to determine the first point of cavity inception in time, as the sphere
approaches and rebounds from a solid wall during a collision.

2. Experimental set-up, fluid rheology and parameter space

Figure 2(a) shows a schematic of the experimental set-up used in this study. A
tungsten carbide sphere (Fritsch GmbH, Germany, R0 = 10 mm, ρs = 14 890 kg m−3,
E = 550 GPa) was attached to an electromagnet, which was placed directly above
the centre of a thick-bottomed glass container having inner measurements of
100 × 100 × 20 mm. The matte finishing of Tungsten carbide helped to eliminate
any reflections from the sphere surface during experiments. To avoid impact-induced
oscillations in the glass container, it was firmly fixed to a 10 kg U-shaped solid
stainless steel frame, which was in turn screwed to a 1000 kg optical table. A 45◦
angled mirror was placed below the glass container at the base of the U-shaped
frame to make observations from underneath the sphere. Two high-speed cameras,
a Phantom v1610 and a Photron SA-5, were each equipped with a long working
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High-speed camera and
LWD microscope

High-speed camera and
LWD microscope

DC power supply
and switch

Electromagnet
Sphere

Fibre-optic
light source

Fibre-optic
light source

Support frame

Tightening bolt

Glass container
and thin liquid film

Angled mirror

v1610

12 V

SA-5

Sumita350 W

Sumita350 W

Oil film

Glass container

B

h

H(r)

(a)

(b)

FIGURE 2. (Colour online) (a) Schematic of the experimental set-up used. (b) Close-up
view of the impact region showing the gap distance at the sphere tip, h, the sphere
radius, R0, the radial distance from the axis of symmetry, r, the oil film thickness, δ, the
gap height across the sphere curvature, H(r)= h+ R0 −

√
R2

0 − r2 and the wetted radius
of the sphere, B=√(δ − h)(2R0 − (δ − h)).

distance microscope and synchronized to record images at 33 018 f.p.s. from the
side and bottom with effective pixel resolutions of 7 and 5 µm pixel−1, respectively.
Gap distances could hence be measured with an accuracy of up to 7 µm and time
to ±1 frame, translating to a maximum velocity error of ±0.2 m s−1. Lighting was
provided by two 350 W Sumita metal halide lights, which were equipped with fibre
optic light guides. Regular temperature measurements showed these to induce minimal
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FIGURE 3. Rheological properties of the silicone oils used having low-shear kinematic
viscosities of ν0 = 1000 cSt, 10 000 cSt, 100 000 cSt, 1000 000 cSt and 20 000 000 cSt
measured from tests performed on a research rheometer (ARES-G2, TA Instruments). Fits
to the data (dashed lines) are formed using the Carreau model with parameters listed in
table 1.

Kinematic Density, ρl Dynamic Surface λ (s) n G′ (Pa) G′′

viscosity, ν0 (kg m−3) viscosity, µ0 tension, σ (Pa)
(cSt) (Pa s) (mN m−1)

100 965 9.65× 10−2 20.9 — — — —
1 000 970 0.97 21.2 1.01× 10−4 0.68 5.14× 10−3 1.32
10 000 975 9.75 21.5 7.96× 10−4 0.48 1.48× 10−2 10.7
100 000 977 97.7 21.5 5.71× 10−3 0.39 1.70 114
1 000 000 978 978 21.6 7.85× 10−2 0.35 183 1341
20 000 000 979 19 580 21.6 6.95× 10−1 0.28 6430 11 235

TABLE 1. Physical properties of the silicone oils (dimethylpolysiloxane, Clearco Products
Co. Inc, USA) used in the experiments. The parameters λ and n are obtained by fitting the
Carreau model to the apparent viscosity versus shear data shown in figure 3. G′ and G′′
correspond to the storage (elastic) and loss (viscous) moduli, respectively, obtained from
the linear viscoelastic region in oscillation strain sweeps.

heating in the liquid films. All ultra-viscous non-Newtonian films were prepared at
least one week (left covered) before the experiments were performed to ensure that
a uniform thickness δ was achieved. The experimental environment was maintained
at a temperature of 22 ◦C and a relative humidity of 55 %.

When the electromagnet was switched off, the sphere fell freely to impact the liquid
surface with a velocity of V0≈√2g(hr − δ), where hr is the release height (measured
from the bottom tip of the sphere to the base of the glass wall). A close-up view of
the impact region is shown in figure 2(b). Upon detecting motion in the side view, the
Phantom v1610 employed the IBAT (Image based auto-trigger) function to trigger the
recording automatically on both cameras. The resulting set of video clips was saved
on a PC for post-processing. After each trial the glass container was replaced with a
new one containing a fresh, uniform and level film of the same thickness.
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2.1. Liquid rheology
The liquids used in this study were (dimethylpolysiloxane) silicone oils (Clearco
Products Co. Inc, USA) with low-shear kinematic viscosities of ν0 = 100, 1000,
10 000, 1000 000 and 20 000 000 cSt (at 25 ◦C). The shear-thinning nature of these
liquids for ν0 > 1000 cSt can be seen in figure 3 from the apparent viscosity µapp
versus shear rate γ̇ data, obtained from tests conducted on a research rheometer
(ARES-G2, TA Instruments). Fits to the rheological properties of these fluids have
been formed using the Carreau model,

(µapp −µ∞)
(µ0 −µ∞) = [1+ (λγ̇ )

2](n−1)/2, (2.1)

where µ∞ = 0 and values for the relaxation time λ and power index n are given in
Table 1. Liquids with ν0 > 1000 000 cSt are found to be associated with relatively
large relaxation times and G′′/G′ ratios approaching closer to unity, which indicates
their high viscoelastic nature.

2.2. Parameter space
In accordance with previous studies (Ardekani et al. 2009; Marston et al. 2011a;
Uddin et al. 2012), the main dimensionless numbers used in this work are the
impact Stokes number, St0 = 2ρsR0V0/9µ0, Deborah number, De = λV0/R0 and the
capillary number, Ca = µ0V0/σ . Since a single-valued viscosity µ0 is assumed, the
impact Stokes number and capillary number do not account for non-Newtonian
effects. The film thickness was kept in the range of δ = 4–6 mm. Experiments for
the relatively low viscosity liquids (100 and 1000 cSt silicone oils), however, were
conducted for δ= 37 mm to result in fully immersed impacts. The release height was
varied between hr = 4.2–170 cm, giving impact velocities of 0.31 6 V0 6 5.77 m s−1

based on the film thicknesses used. These correspond to Stokes numbers ranging
8.18 × 10−3 6 St0 6 305.3, Deborah numbers ranging 0 6 De 6 401 and capillary
numbers of 1.44 6 Ca 6 5.23× 106 depending on µ0 and λ, respectively.

3. Results and discussion
3.1. Qualitative results

Figure 4 shows the impact of a sphere onto a glass wall covered with a 37 mm
deep pool of ν0 = 100 cSt silicone oil (see caption for details). Since the sphere is
released from above the surface of the liquid (hr = 67 mm), we observe a main or
‘primary’ bubble entrapped on the sphere surface due to the lubrication pressure of
the air (Marston et al. 2011a). This is clearly seen at the bottom tip of the sphere in
the first image (see black arrow). Other smaller (secondary) bubbles are also observed
(see grey arrows), caused by the dynamic wetting of the sphere with the viscous liquid,
as the main (outer) contact line moves up around the sphere.

As the sphere approaches the wall, these bubbles squeeze radially outwards and act
as flow tracers. However, as soon as the sphere makes contact with the wall (taken
as the reference point, t0 = 0 µs and h0 = 0 µm) and undergoes rapid deceleration,
the liquid near the sphere surface depressurizes, causing the entrapped bubbles to
expand and form more small bubbles around the region of contact. This region
was shown by Marston et al. (2011b) to be approximately equal to the Hertzian
contact area, being the area on the tip of the sphere that flattens elastically during
the collision period (t= 0–31 µs). As the bubbles expand rapidly, the radial expanse
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Side view Bottom view
2 mm 2 mm

Side view Bottom view

Bubbles collapsing
at the outer extent

Elongated bubbles immediately
around the region of contact

Inner expanding bubble ring

Primary bubble entrapment

FIGURE 4. Series of images (top to bottom and left to right) showing cavitation during the
impact from hr = 67 mm onto a glass plate covered with a 37 mm deep pool of ν0= 100
cSt silicone oil. R0 = 10 mm, V0 = 0.77 m s−1, St0 = 264, Ca= 3.54. The insets present
an enlarged image of the primary bubble entrapment (indicated by black arrows). The
secondary bubbles are denoted with grey arrows in the first side-view image. A close-up
of the bottom view at t = 125 µs labelled with various cavitation structure features has
also been provided. (See caption of figure 1 for description of t0, h0, ∗, ↑, ↓ and h for
this and all figures presented hereafter.)
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of the cavitation increases reaching a maximum rmax ≈ 6.6 mm at t= 63 µs. By this
time the sphere has reversed its direction of motion and the cavitation structure then
starts to contract radially inwards. While bubbles on the outer edge collapse, those
closer to the centre expand to form a distinct inner ring. Bubbles different from the
rest of the structure having elongated interfaces are also observed immediately around
the region of contact. At t= 219 µs, bubbles collapsing at the outer extent reach the
inner bubble ring, preventing it from further expansion. The inner ring then shrinks
as the sphere moves further away and the entire structure disappears at t = 594 µs.
These observations are in agreement with those of Mansoor et al. (2014) and show
cavitation to occur by depressurization in the liquid when the sphere makes contact
and rebounds away from the wall, as predicted by the conventional theory. Though
the primary bubble entrapped by the lubrication pressure of the air can be observed
as a large expanded bubble during the collision, bubbles expanding from the air
entrainment by the dynamic wetting of the sphere (secondary bubbles) are difficult to
distinguish from cavitation bubbles surrounding the region of contact.

This is not true for collisions occurring in more viscous liquids, whereby bubbles
expanding from secondary bubbles and those opening from within the liquid to form
cavitation bubbles can be observed to form in distinct regions at the sphere’s surface.
Figure 5 shows the impact of a sphere onto a glass wall covered with 37 mm deep
pool of ν0 = 1000 cSt silicone oil, for three different release heights hr = 47, 77 and
147 mm. It can be observed that the air bubbles entrained by the dynamic wetting
of the sphere become smaller in size and larger in number as the speed of impact
onto the liquid surface increases (see insets). This phenomenon can be explained
by the mechanism with which air entrainment occurs in liquid coating procedures
(e.g. slot die coating), where a thin liquid film is applied onto a moving substrate.
Air entrainment results from a series of processes which initiate when the dynamic
contact line is unable to move quicker than a threshold speed perpendicular to itself
(i.e. when the dynamic contact angle between the film and the substrate approaches
180◦), producing sawtooth structures or air pockets (Blake & Ruschak 1979). At this
point, viscous forces pulling the liquid in the direction of substrate motion become
dominant over surface tension forces acting in the opposite direction (Bhamidipati,
Didari & Harris 2012), which results in an interfacial instability, causing the film
liquid to entrain the air pocket from all sides (Severtson & Aidun 1996). When the
substrate velocity (scaling with V0 in our case) is increased, the viscous stresses also
increase, enabling them to propagate upstream more quickly and causing the sawteeth
to extend over a smaller area before pinch-off occurs (Bhamidipati et al. 2012). This
mechanism, which is dictated by the capillary number, results in the entrainment of
smaller air bubbles as also noted in figure 5 (see figure caption).

For all three release heights, the primary (white arrows) and secondary bubbles
squeeze radially outwards as the sphere approaches towards the glass wall to create an
annular bubble structure, which has previously been misinterpreted as shear-induced
cavitation by Seddon et al. (2012). While the deceleration of the sphere upon contact
for hr = 47 mm is not enough for the liquid to open from these bubbles, an annular
pattern of small bubbles connected in a foam-like structure is clearly seen for
hr = 147 mm. In contrast, a distinct pattern of elongated cavity bubbles (Marston
et al. 2011b) is observed immediately around the Hertzian contact area for all three
release heights. While bubbles expanding from pressure reduction in the annular
structure comprise of a mixture of air and vapour, those surrounding the contact
region are mainly vapour filled. Also, since the liquid films are exposed to the
atmosphere, the possibility of dissolved air cannot be neglected, which can result in
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2 mm

(a) (b) (c)

FIGURE 5. Bottom-view images of impacts onto a 37 mm deep pool of ν0 = 1000 cSt
silicone oil from release heights of hr=47, 77 and 147 mm. R0=10 mm, V0=0.44 m s−1,
0.89 m s−1, 1.47 m s−1 corresponding to St0= 15.0, 30.4, 50.1, De= 4.44× 10−3, 8.99×
10−3, 1.50× 10−2 and Ca= 20.1, 40.7, 67.3, in (a), (b) and (c) respectively. Notice the
decrease in size but increase in number of the secondary bubbles as the release height
is increased (see insets for magnified views). The bubble entrapped by the lubrication
pressure of air in each case has been marked by a white arrow.
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optically similar cavity bubbles near the contact region and in the annular structure
during the decompression stage.

Figure 6 shows the sphere impact from hr = 25 cm onto a glass plate covered
with a 5 mm thick layer of ν0 = 10 000 cSt silicone oil. The primary bubble, which
initially spreads into an air sheet following the entry of the sphere into the liquid, is
observed to deform into a ring of several smaller bubbles as the sphere approaches
closer towards the wall (h = 809 µm). These bubbles squeeze radially outwards in
the final moments before contact, which is followed by a series of cavity formation
events similar in nature to those observed from underneath the sphere in the 1000 cSt
silicone oil film (figure 5). Since the secondary bubbles entrained are even smaller in
size and larger in number, due to further increase in viscous forces experienced by the
liquid, the annular cavitation structure formed is much more densely packed and noted
to occur for a brief time period (t= 0–30 µs). Meanwhile, the cavity pattern formed
immediately around the contact area is composed of a distinct ring of fine bubbles
(see inset for magnified view). The cavitation bubbles and the film liquid peel off
from the sphere’s surface as it rebounds away from the wall to form a single larger
cavity, which extends into a noticeably large hourglass shape (t = 30 µs–1.79 ms).
Such an occurrence is not noted for impacts in lower viscosity liquids discussed in
the preceding figures.

Impacts from (a) hr = 40 cm and (b) hr = 60 cm onto a glass plate covered with a
5 mm thick layer ν0 = 100 000 cSt silicone oil are shown in figure 7. In both cases
the primary bubble entrapped on the sphere’s surface is squeezed radially outwards
until it escapes into the atmosphere. The process however is so intense and instant
that the bubble fragments at the sphere–bubble interface, leaving behind a cluster of
much smaller bubbles in a circular patch at the point of close approach. We call these
‘remnant bubbles’ and indicate them by black arrows.

The inertia of the sphere is insufficient to fully penetrate the film and contact
the base for hr = 40 cm (i.e. St0 < Stc

0 in § 3.2), as a significant portion of the
kinetic energy is lost due to viscous dissipation, while the remaining is stored as
elastic energy in the liquid film. The sphere is not expected to deform elastically
in this manner since the deformation length scale, identified by Davis et al. (1986)
as x1 = (4θµV0R3/2

0 )2/5, is calculated as being small (x1 ≈ 10 µm) relative to the
minimum separation distance hm reached, even when the shear-thinning effects are
neglected for h 6 x0. As the sphere reaches hm at time tm (taken as the reference
point for non-contact cases), the remnant bubbles compress from the pressure in the
squeeze flow, making them nearly invisible in the process. After this point the elastic
energy stored in the film starts converting back to the kinetic energy of the sphere,
enabling it to rebound. The liquid however does not cavitate immediately during the
depressurization stage but at t= 121 µs after reaching hm. To our knowledge, this is
the first experimental evidence of cavitation by depressurization for a new class of
non-contact cases during the impact of a sphere onto a wall covered with a film of
viscoelastic liquid. Cavitation is first observed to originate from the same patch of
remnant bubbles to form a dense foam-like circular structure, which then extends to
a pattern composed of discrete bubbles. These bubbles generally increase in size as
we move radially outwards from the point of closest approach. The circular foam-like
structure is formed in the same region as the position of remnant bubbles observed
when the sphere enters and descends (t = −909 µs) into the film, which confirms
them to exist in a compressed form and not to squeeze radially outwards at hm. The
cavity reaches its maximum radial extent at t = 1.67 ms. As the sphere rebounds
away from the wall, its motion is slowed down by gravity and viscous lubrication
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1 mm 2 mm

FIGURE 6. Images of an impact from hr= 25 cm onto a glass wall covered with a 5 mm
thick layer of ν0 = 10 000 cSt silicone oil. R0 = 10 mm, V0 = 2.19 m s−1, St0 = 7.43,
De= 0.17, Ca= 993. The primary bubble entrapped on the sphere’s surface deforms by
viscous shear flow as the sphere approaches the base wall (see insets for magnified views).
The cavity is noted to peel off from the sphere’s surface while extending vertically to
assume an hourglass shape.
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1 mm
2 mm

(b)(a)

FIGURE 7. Images of impacts from (a) hr= 40 cm and (b) hr= 60 cm onto a 5 mm thick
layer of ν0 = 100 000 cSt silicone oil. R0 = 10 mm, V0 = (a) 2.78 m s−1, (b) 3.42 m s−1

corresponding to St0 = 0.94, 1.16, De = 1.59, 1.95 and Ca = 12.6 × 103, 15.5 × 103,
respectively. The black arrows indicate remnant bubbles composed in a circular patch at
the point of close approach. The sphere rebounds without making contact for hr = 40 cm
where the onset of cavitation is observed 181 µs after time tm (reference point at which
the sphere reaches its minimum gap distance hm, marked with the square symbol @ for
this and all other figures presented hereafter). See also supplementary movie 1 available
at http://dx.doi.org/10.1017/jfm.2016.229.

forces until it comes to a halt at t = 3.15 ms. By this time the liquid has started
to flow back into the cavitated region, which causes the cavity to shrink, and with
further passage of time (t = 10.75 ms) the sphere gradually moves back towards the
wall.

For hr= 60 cm, the sphere has enough kinetic energy to impact the glass wall after
penetrating into the liquid film. The remnant bubbles in a circular patch (observed e.g.
at t=−394 µs) are again difficult to perceive in their compressed state (t=−91 µs),
but then get squeezed out from the diminishing gap to create a dark circular area
as physical contact is made (t0 = 0 µs, see panel 3 in the final column of figure 7).
The dark spot, which corresponds to the Hertzian contact area, contrasts with the
reflection of light from secondary bubbles in the surrounding region formed by air
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entrainment. These secondary bubbles are also present in the case of hr = 40 cm but
are not as easily noticeable. Similar to contact cases in the less viscous liquid films
shown in the preceding figures, cavitation for hr = 60 cm is observed as soon as the
sphere impacts and starts to rebound away from the wall. In comparison to figure 6
however, the cavitation bubbles coalesce to form a single cavity structure, which
extends into an hourglass shape (t = 3.03 ms). The bubbles expand radially in the
process to form elongated interfaces (see bottom views), which are more prominently
observed at the periphery of the structure. The annular cavitation structure, which is
known to originate from the secondary bubbles, is not observed upon impact.

To understand the change in cavitation structures as the wetted collision changes
from a non-contact to a contact case, we show a series of images in figure 8
taken from underneath the sphere for release heights ranging 36–70 cm (V0 =
2.64–3.69 m s−1). The images are taken when the cavitation structure reaches its
maximum radial extent, from the moment the sphere either reaches its minimum gap
distance (tm) or makes contact with the wall (t0). This time interval t is generally
noted to decrease as hr is increased (see figure for details). As seen from the images,
the fine foam-like structure in a circular region, which originates from the remnant
bubbles at the point of closest approach, is consistent among all three non-contact
cases (hr = 36, 38 and 40 cm). The differences develop in the surrounding bubbles,
which enlarge in size and become increasingly discrete entities (hr = 40 cm) from
being connected by small bubbles in a foam-like network (hr = 36 cm). The discrete
bubbles begin experiencing radial expansion and coalescence to form a single cavity
bubble for contact cases starting with hr = 50 cm. More energetic impacts occurring
for hr > 60 cm intensify this phenomenon to result in the formation of elongated
interfaces in the bottom views; these are generally prominent at the periphery of the
structure, and are also found immediately around the Hertz contact area for hr = 70
cm. This area corresponds to the white region at the point of closest approach, which
can be noticed to increase with the impact velocity. It is noteworthy to mention
that while impacts here are categorized into non-contact and contact cases based
on the visual appearance of a separation gap between the sphere and base wall
before rebound, the impacting surfaces in the latter case can still be separated by
an extremely thin liquid layer, as dictated by the elastohydrodynamic theory. A
true contact in such cases may occur if the sphere has sufficient initial inertia to
reduce the separation gap to a few nanometers (Serayssol & Davis 1986), where
additional effects such as surface roughness and interparticle surface forces become
important.

Investigating cavitation structures in the ultra-viscous liquid regime, figure 9 shows
the impact of a sphere onto a 5.5 mm thick layer of ν0= 1000 000 cSt silicone oil for
(a) hr = 90 cm (non-contact case) and (b) 120 cm (contact case). A circular patch of
remnant bubbles at the point of closest approach is again observed in the bottom view
(t=−545 µs) for the non-contact case (figure 9a), which fades as the sphere reaches
its minimum separation gap distance hm. Cavitation is noticed to initiate at t= 273 µs
in the form of small bubbles, which originate from the region of remnant bubbles
observed earlier. The bubbles expand and coalesce as the sphere rebounds further away
from the wall to form a single cavity bubble. Similar to the contact case shown in
figure 7, a single cavity bubble having an hourglass shape is also formed on contact
for hr = 120 cm in figure 9(b). The cavity surface, however, has a much smoother
texture, which comprises of a few streak lines extending along the length of the cavity
bubble, but many at the interface where the cavity attaches to the sphere (from above)
and the wall (from below). The cavity reaches its maximum radial extent at t= 1.51
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Non-contact cases

Contact cases

1 mm

36 cm, rebound w/o contact 38 cm, rebound w/o contact 40 cm, rebound w/o contact

50 cm, rebound with contact 60 cm, rebound with contact 70 cm, rebound with contact

FIGURE 8. Comparison of cavitation structures observed underneath impacts from various
release heights onto a 5 mm thick layer of ν0=100 000 cSt silicone oil. R0=10 mm, V0=
2.64 m s−1, 2.71 m s−1, 2.78 m s−1, 3.12 m s−1, 3.42 m s−1, 3.69 m s−1 corresponding
to St0 = 0.89, 0.92, 0.94, 1.06, 1.16, 1.25 and De = 1.51, 1.55, 1.59, 1.78, 1.95, 2.11,
respectively. The images are taken when the cavity reaches its maximum radial distance
during the rebound stage of the sphere. The Hertzian contact area can be observed as a
white circular region at the centre of the structure for hr = 50, 60 and 70 cm.

ms and then starts shrinking as the sphere is brought to a halt by viscous forces and
gravity, at a maximum rebound height of h= 3.45 mm at t= 4.30 ms. A portion of
the rebound kinetic energy is again stored as elastic energy in the film, which pulls the
sphere back towards the wall (t=8.96 ms). The process repeats resulting in a series of
sphere oscillations which come to a complete halt at t= 45.97 ms. The cavity bubble
shrinks to a structure composed of thin filaments, which break up one by one till the
sphere is completely detached from the wall at t= 148.94 ms.

Figure 10 shows a series of cavities at their maximum radial extent as the release
height onto the liquid film is systematically increased. As also noticed in figure 8,
the time interval t between reaching tm (for non-contact cases) or t0 (for contact
cases) and this state is found to decrease as hr is increased (see figure for details).
Cavitation in the non-contact cases is observed to originate from remnant bubbles,
which expand and coalesce during the rebound stage to form a single cavity bubble.
Since the minimum gap distance decreases with increase in release height, the
remnant bubbles at the point of close approach have an increasingly lesser room
to expand longitudinally. This forms a region appearing grainy at the centre of the
cavity structure, which increases in size till hr = 105 cm. For hr = 110 cm, the hm
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1 mm 1 mm

2.97 mm
33.86 ms

2.98 mm
45.97 ms

2.99 mm
58.09 ms

2.99 mm
73.23 ms

2.96 mm
148.94 ms

2.90 mm, 16.90 ms

(a) (b)

FIGURE 9. Images of impacts onto a 5.5 mm thick layer of ν0 = 1000 000 cSt silicone
oil from (a) hr = 90 cm and (b) hr = 120 cm. R0 = 10 mm, V0 = (a) 4.19 m s−1, (b)
4.84 m s−1 giving St0= 0.14, 0.16 and De= 32.9, 38.0, respectively. The remnant bubbles
are observed to expand, coalesce and form a single large cavity bubble in the rebound
stage of the non-contact case.
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85 cm, rebound w/o contact 95 cm, rebound w/o contact 105 cm, rebound w/o contact

110 cm, rebound w/o contact 120 cm, rebound with contact

1 mm

FIGURE 10. Bottom-view images of impacts from various drop heights onto a 5.5 mm
thick layer of ν0 = 1000 000 cSt silicone oil. R0 = 10 mm, V0 = 4.07 m s−1, 4.30 m s−1,
4.53 m s−1, 4.63 m s−1, 4.84 m s−1, corresponding to St0 = 0.138, 0.145, 0.153, 0.157,
0.164 and De = 31.9, 33.7, 35.5, 36.3, 38.0, respectively. For each release height the
pictures show the maximum radial distance reached by the cavity during sphere rebound.
Notice the reduction in the maximum radial cavity distance in the contact case of hr= 120
cm.

reached is small enough to squeeze the remnant bubbles radially outwards from the
point of closest approach. Qualitatively, the maximum radial cavity extent is observed
to decrease as the collision changes from a non-contact to a contact case at hr = 120
cm. This is simply because the cavity attaches to the glass wall in the latter, which
resists its radial expansion as the sphere rebounds away. This trend is not observed
for contact cases shown in figure 8 as the cavities formed therein are only attached
around the Hertzian contact area (see figure 7b).

Investigating cavitation structures in the most viscous liquid used in this study,
figure 11 shows the impact onto a glass wall covered with a 5 mm thick layer
of ν0 = 20 000 000 cSt silicone oil. The release height is hr = 150 cm for which
the sphere rebounds without making contact with the base wall. Though the close
approach region is again observed to contain remnant bubbles (t = −424 µs), their
deposition is not uniform (as compared to those shown in figures 7 and 9) but rather
concentrated in the direction of the primary bubble’s escape into the atmosphere
(see grey arrow). A fact proved later in the rebound stage when the bubbles start
to expand (t = 242 µs) and coalesce in the process to form a single cavity bubble,
which is noticed to grow faster (t= 363 µs) in the region where the majority of the
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1 mm
1 mm

FIGURE 11. Images of an impact from hr = 150 cm onto a 5 mm thick layer of ν0 =
20 000 000 cSt silicone oil. R0 = 10 mm, V0 = 5.42 m s−1, St0 = 9.16 × 10−3, De = 376.
The grey arrow indicates the escape direction of the primary bubble entrapment into the
atmosphere for reference purposes. Notice that the deposition of remnant bubbles on the
sphere’s surface is not uniform.

remnant bubbles are situated. With the passage of more time (t= 666 µs) the cavity
enlarges further to develop an inverted conical structure.

Cavitation structures formed for increased release heights of hr = 155, 160 and 170
cm are shown in figure 12 (see caption for details). In contrast to all the preceding
figures where cavitation is only observed upon contact or during the rebound stage
for non-contact cases, here we observe the liquid to cavitate when the sphere has
reached a sufficiently small separation distance while approaching towards the glass
wall i.e. during pressurization (marked with symbol S ). This phenomenon known as
shear-stress-induced cavitation was first predicted on theoretical grounds by Joseph
(1998). The model presented was considered by Seddon et al. (2012) in proposing
a new formal requirement for the onset of cavitation (see § 4, (4.1)). This stated that
a liquid squeezing radially outwards in the diminishing gap between the sphere and
the wall could rip open in tension if the applied shear stress overcomes the pressure
in the film, reducing it below the liquid vapour pressure.

We find shear-induced cavities formed in figure 12 not to be characterized by
well-defined edges but rather a hazy interface, which makes observing them in the
bottom views (not shown) difficult. The cavities grow while the sphere continues its
approach towards the wall to either reach a minimum gap distance (for hr = 155 cm)
or make wall contact (for hr = 160 and 170 cm). Before shear-induced cavitation
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2.63 ms

S
1

S

2.69 ms

1

1 mm

2.27 ms

1S

2.33 ms2.79 ms

2.82 ms

2
D

2
D

2

3.03 ms

3

D

2.94 ms

3

2.54 ms

3

3.21 ms

4

3.09 ms

4

2.69 ms

4

3.48 ms

5

3.39 ms

5

2.97 ms

5

59.63 ms

6

59.63 ms

6

59.63 ms

6

4.21 mm, 1.85 ms 4.66 mm, 1.70 ms

3.20 mm, 1.42 ms 3.44 mm, 1.27 ms

4.66 mm, 1.97 ms

3.29 mm, 1.48 ms

FIGURE 12. Side-view images of impacts onto a 5 mm thick layer of ν0= 20 000 000 cSt
silicone oil from hr = 155, 160 and 170 cm. R0 = 10 mm, V0 = 5.51 m s−1, 5.59 m s−1,
5.77 m s−1 corresponding to St0 = 9.31 × 10−3, 9.45 × 10−3, 9.75 × 10−3 and De =
383, 388, 401, respectively. The onset of shear-induced cavitation and cavitation by
depressurization is marked by symbols S and D , respectively. See also supplementary
movie 2.
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initiates however, remnant bubbles deposited on the sphere’s surface begin squeezing
radially outwards from the point of closest approach. These are subsequently caught
up and get trapped at the expanding interface of the cavity bubble formed by
depressurization (marked with symbol D ), when the sphere rebounds away from the
wall.

In contrast to perfect hourglass shaped cavity bubbles observed for impacts in
less viscous liquids, figure 12 and close-ups in figure 13 collectively show strikingly
different cavitation structures. The radial expansion and longitudinal extension of
structures along their length occurs in a disproportionate manner. Considering the case
of hr = 155 cm for example (figure 12), the cavity bubble elongates more extensively
in the central region during its early stages of formation by depressurization
(151–666 µs) to experience necking. As the cavity stretches further with time
(666–909 µs), it starts to peel off from the sphere’s surface creating a grainy texture
at the top of the cavity wall (see figure 13). The neck shrinks further meanwhile and
the cavity region underneath also experiences a strong resistance to radial expansion
due to the ongoing longitudinal extension. As soon as the depressurization in the
cavity bubble overcomes the effect of radial shrinkage resulting from its longitudinal
elongation, the structure starts expanding radially outwards, reaching its maximum
radial extent at t= 1.97 ms. Close-up images of this process are shown in figure 13.
Remnant bubbles that are squeezed radially outwards from the point of closest
approach but subsequently caught and carried up along the cavity wall, can also
be observed as spots or shorts streaks due to elongation. Because the cavity–sphere
interface peels off steadily, the longitudinal extension is noted to localize beneath
the necking region. The concentration of remnant bubbles in this cavity wall region
therefore reduces, which becomes apparent with the increasingly reflective area
formed. Interestingly, even though the sphere makes no contact with the wall for
hr = 155 cm, the cavity formed is still observed to be attached to it by means of
small bubbles, which rip open from the wall under depressurization. These bubbles
are also noticed to form around the base of the cavity bubble for contact cases as
shown for hr = 160 cm.

After reaching its maximum radial extent (t= 1.97 ms), the cavity starts to shrink
radially inwards again due to the ongoing elongation as the sphere rebounds further
away. The rebound kinetic energy is enough to overcome viscous forces, allowing the
sphere to escape the fluid film. When the peeling cavity–sphere interface rises to the
height at which it is about to break open into the atmosphere (t = 2.63 ms) in the
process, the cavity reaches its maximum elongation (marked by symbol 1 ). As soon
as the seal breaks (t = 2.82 ms) allowing air to enter inside, the partially detached
cavity shrinks further radially inwards and starts to contract back towards the wall
(marked by symbol 2 ). After the sphere has detached completely and escaped the
liquid film, the longitudinal contraction of the cavity becomes rapid (t = 3.03 ms).
Since the process of peeling does not occur proportionately along the cavity–sphere
interface, the grainy textured cavity wall formed is asymmetric, which detaches and
retracts earlier from one side to give the structure a noticeable tilt (marked by symbol
3 ). The cavity contracts to a minimum length (marked by symbol 4 ) at t= 3.21 ms

where a portion of its kinetic energy is stored as elastic energy in the film. The release
of this energy enables the cavity to elongate again (t = 3.48 ms, marked by symbol
5 ), hence completing a cycle of vertical oscillation, which repeats with decreasing
amplitudes until all the energy is dissipated internally by viscous forces. The ultra-
viscous liquid flows back slowly into the cavitated space amidst these events thus
collapsing the cavitation bubble. This becomes evident with the passage of further
time, for example, at t= 59.63 ms (marked by symbol 6 ).
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1 mm

1 mm

3.29 mm, 1.48 ms 4.66 mm, 1.97 ms

3.20 mm, 1.42 ms 4.21 mm, 1.85 ms

FIGURE 13. Close-up views from the side and bottom of selected cavitation events shown
in figure 12 for hr = 155 and 160 cm. The remnant bubbles that squeeze radially out
during the sphere’s close approach towards the base wall and get caught up in the cavity
walls can be seen as small pecks.
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For the higher release height of hr = 170 cm, in which case the sphere impacts the
wall, the radial extent of the cavity formed in the initial stages of depressurization
(t = 30–91 µs) is comparatively much larger (see figure 12). However, the effect of
elongation during (t = 91–515 µs) is so dominant that the cavity not only develops
a smaller neck but also shrinks noticeably radially inwards. This causes the contact
angle of the cavity–wall interface to increase significantly, which promotes the
formation of an additional necking region near the wall as the cavity extends further
(t = 848 µs). The cavity then expands as the effect of depressurization becomes
prominent, reaching its maximum radial extent at t= 1.70 ms, which is succeeded by
the sequence of development stages marked 1 – 6 explained in the preceding passage.

Investigating shear-induced cavitation structures in further detail, figure 14 shows
close-up images taken from the side and bottom for the impact of a sphere from
hr = 165 cm onto a 5 mm thick layer of ν0 = 20 000 000 cSt silicone oil film. From
the images shown, shear-induced cavitation is observed to originate from the sphere’s
bottom tip (t = −91 µs) upon reaching h = 102 µm, while advancing towards the
wall. As mentioned earlier, the cavity is observed to have a hazy interface from the
side views, which makes it difficult to see in the images taken from underneath.
Therefore, an additional close-up view taken from the bottom, outlining the region
of impact, shear-induced cavitation and cavitation by depressurization (see caption
for details), has also been provided. The bottom views reveal the cavity to have an
irregular shape, which grows radially until the sphere makes contact with the wall
(t0 = 0 µs). Cavitation by depressurization initiates as soon as the sphere reverses its
direction of motion (t = 30 µs) to form a circular structure, which overlaps a large
portion of the volume cavitated earlier by shear stress. The rebound also implies
an absence of positive shear stress in the film, causing the shear-induced cavitation
structure to shrink radially inwards. This resists the expansion of the cavity structure
forming by depressurization to create an evident lag (t = 30–61 µs) at the interface
where the two cavities meet. No further resistance upon the complete collapse of the
shear-induced cavity at t= 91 µs allows the lag to be overcome and the structure to
become perfectly circular. We also note the cavity walls in the corresponding side
views to become relatively well defined at this point. As the sphere rebounds further
away, the effect of elongation becomes prominent (t= 151 µs), causing the cavity to
shrink radially inwards and onset the formation of a necking region.

We summarize our qualitative results in figure 15 by producing a three-dimensional
space (St0, Ca, De) plot and categorizing the principal observations into St–Ca and
St–De phase diagrams on the horizontal and vertical planes, respectively. Phases in the
St–Ca plane are marked (i)–(iii) and distinct features in the St–De plane are lettered
a–e, (see caption for details).

3.2. Quantitative results
In figure 16(a–d) we plot data for the cavity diameter, Dcavity as a function of time t
for impacts onto different viscosity silicone oil films with increasing impact velocities
(see caption for details). Contrary to contact cases where the cavity is noted to form
as soon as, or immediately after, the sphere touches the glass wall, a noticeable time
period from when hm is reached is required in non-contact cases for cavity initiation
during rebound. Plotting the time period taken for cavity initiation tc versus the impact
speed V0 for all trials in figure 16(a–d), we produce figure 16(e, f ). Interestingly, tc

values are found to decrease linearly with increase in impact speed for all non-contact
cases until reaching minimum values in the range of 0–30 µs, for cases where the
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1 mm

1 mm

S D

FIGURE 14. Close-up images from the side and bottom of shear-induced cavitation and
cavitation by depressurization (onsets marked by S and D , respectively) for an impact
onto a ν0 = 20 000 000 cSt silicone oil film from hr = 165 cm. R0 = 10 mm, δ =
5 mm, V0 = 5.68 m s−1, St0 = 9.6 × 10−3, De = 395. Areas indicated by white and
grey dashed lines are further magnified. An additional bottom-view sketches the areas of
shear-induced cavitation (solid white line) and cavitation by depressurization (dashed black
line) and the site of impact (black region).
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FIGURE 15. Summary of qualitative results in a three-dimensional (St0, Ca, De) plot,
showing phase diagrams in the St–Ca and St–De planes. Phases in the horizontal St–Ca
plane are identified as: (i) annular cavitation structure with a distinct pattern of elongated
bubbles around Hertzian contact area, (ii) dense annular cavitation structure with a ring
of fine bubbles around contact region and (iii) formation of remnant bubbles from
primary bubble fragmentation at film entry. The dashed line serves as a phase boundary
between contact (blue) and non-contact cases (yellow) in the St–De plane. The letters
here correspond to cavity features: (a) dense foam-like circular structure surrounded by
a pattern of discrete bubbles; (b) single large cavity bubble, which assumes an inverted
conical structure in (c); (d) hourglass-shaped single large cavity bubble, characterized by
a smooth texture in (e). The region in red indicates shear-induced cavitation. δ = 5 mm
and 37 mm for ν0 > 10 000 cSt and ν0 6 1000 cSt, respectively.

sphere impacts the glass wall. Reasonable linear empirical fits to the data have been
found using α and β as prefactors (see caption of figure 16e, f ).

Following cavity initiation, Dcavity values in figure 16(a–d) are generally noted to
increase and reach a maximum value Dmax, followed by a gradual reduction with time
due to the incoming fluid. An exception to this trend occurs for V0 = 5.77 m s−1

(hr = 170 cm) in the 20 million cSt silicone oil film, where the cavity formed upon
impact shrinks instantly and expands again (as explained in the preceding section).
Figure 16( f ) plots Dmax versus V0 values for instances in figure 16(a–d) where the
cavity diameter reaches a maximum value in the time frame of the videos recorded.
Since Dmax values also depend noticeably on the degree of cavity attachment to the
glass wall (e.g. as shown in figure 10), we classify each type for both sphere contact
and non-contact cases into distinct categories (see legend). For contact cases the cavity
either attaches only around the Hertzian contact area (e.g. figure 7b) marked as partial
cavity attachment or entirely at its base (e.g. figure 9b) referring to a complete cavity
attachment. The cavity does not attach to the wall in non-contact sphere cases with
the exception of the impact at V0 = 5.51 m s−1 in the 20 million cSt film (as shown
in figure 13, hr = 155 cm).
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FIGURE 16. (Colour online) (a–d) Cavity diameter Dcavity versus time t from impact onto
the glass wall (t0 = 0 µs for contact cases) or from reaching the minimum separation
distance (tm=0 µs for non-contact cases) in different silicone oil viscosities and increasing
impact velocities V0 (see legend). (e) Time to cavity initiation tc and ( f ) maximum cavity
diameter Dmax versus impact velocity onto liquid films, corresponding to plots in (a–d). (a)
R0=10 mm, δ=5 mm, ν0=10 000 cSt (St0=4.65–7.43, De=0.11–0.17), (b) ν0=100 000
cSt (St0 = 0.66–1.25, De = 1.12–2.11), (c) ν0 = 1000 000 cSt (St0 = 0.10–0.16, De =
24.5–36.3), (d) ν0 = 20 000 000 cSt (St0 = 8.18× 10−3–9.75× 10−3, De= 336–401). The
fits in (b) plot V0 = αtc + β (in SI units for tc > 0 m), where α =−5397,−2450,−1559
and β = 3.42, 4.54, 5.75 for ν0 = 100 000, 1 million and 20 million cSt, respectively.

The increasing viscosity of films up to 20 million cSt adds resistance to cavity
expansion under depressurization in the form of fluid friction, requiring higher
impact velocities to obtain a given Dmax value. While Dmax increases with V0 for
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ν0 = 10 000 cSt, the values become steady as soon as contact cases start occurring
for ν0 = 100 000 cSt. When ν0 = 1000 000 cSt, a decline in Dmax is noted for the
contact case due to the added resistance to radial expansion offered by a complete
cavity–wall attachment.

Figure 17(a–d) shows plots of the separation height h between the sphere’s bottom
tip and the glass wall versus time t (see caption for details) for realizations in
figure 16(a–d). The sphere is noted to reach a minimum position (set at t= 0 µs) in
non-contact cases before rebounding away from the wall. This refers to the minimum
separation height hm, which has been plotted for increasing impact velocities and film
viscosities in figure 17(e). The data shows hm values to decrease linearly with increase
in impact velocity until becoming zero for contact cases. Larger film viscosities
require higher impact velocities to achieve a given hm value due to the increase in
energy dissipation by internal fluid friction.

Non-dimensionalizing the results in figures 16(e) and 17(e), figure 18 plots the (a)
normalized minimum seperation distance hm/δ and (b) normalized cavity initiation
time tcV0/δ against the impact Stokes number St0 = 2ρsR0V0/9µ0, respectively. The
results show hm/δ and tcV0/δ values to decrease as the impact Stokes number is
increased for a given film viscosity. Also, St0 values at which the first contact case
occurs decline as the viscosities are increased for a steady film thickness of δ= 5 mm.
From the empirical fits to the data plotted (see caption for details), the critical impact
Stokes number Stc

0 for contact cases to begin occurring is calculated to be 0.97, 0.15
and 9.5× 10−3 for ν0 = 100 000, 1 million and 20 million cSt, respectively.

Performing a regression analysis of the data shown in figure 17(a–d) and
differentiating the h profiles with respect to t, we calculate the sphere tip velocity
Vz as a function of time. Using the lubrication length scale in accordance with
Ardekani et al. (2009), the average radial velocity from the continuity equation can
be expressed as Vr ≈ Vz

√
R0h/h. We then obtain estimates of the apparent horizontal

shear rate γ̇ = γrz=Vr/h≈Vz
√

R0h/h2 as the sphere approaches towards and rebounds
away from the wall with time. Plots of γrz versus h in this manner are presented in
figure 19 (see caption for details) for all realizations in figure 17(a–d).

Shear rates during the approach stage (figure 19a,c,e,g) for contact cases are noted
to increase with a decrease in h, reaching maximum values in the range of 6.5 ×
105 s−1 . γrz . 2.7 × 107 s−1 for h 6 35 µm. In the non-contact cases, γrz increases
until suddenly coming to a decline as the sphere comes to a halt upon reaching hm.
Maximum values here were found to reach as high as 105 s−1 at close approach in
some instances. In the rebound stage (figure 19b,d, f,h), the direction of fluid flow
reverses as indicated by the negative γrz values. Shear rates in contact cases decline as
the separation distance increases while in non-contact cases, an immediate increase to
reach a maximum is noticed before the values start to decline as the sphere rebounds
further away.

3.3. Velocity field measured by particle image velocimetry analysis
Results for the apparent horizontal shear rate γrz in the preceding section are based
on average values of the radial velocity Vr derived from Vz. In order to obtain more
reliable results directly from the velocity fields, we conducted further experiments
employing particle image velocimetry (PIV) techniques.

For this purpose the ultra-viscous liquids were seeded with 10 µm diameter hollow
glass beads (Potters Industries Inc.) and mixed thoroughly to ensure a uniform
composition was achieved before being left for a week to set into evenly levelled
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FIGURE 17. (Colour online) (a–d) Separation height h plotted as a function of time t
for realizations in figure 16(a–d). t= 0 µs is taken as a reference point corresponding to
the moment of impact with the glass wall (for contact cases) or reaching the minimum
separation distance (for non-contact cases). The inset provides a magnified view in one of
the plots. (e) Minimum separation height hm plotted against the impact velocity V0 from
results in (a–d). Notice the linear decay in hm as V0 increases for all non-contact cases.
The fits plot V0 = αhm + β (in SI units for hm > 0 m) where α =−1027,−1203,−1767
and β = 2.83, 4.49, 5.66 for ν0 = 100 000, 1 million and 20 million cSt, respectively.

films. The use of high magnification (4×) ensured a narrow depth-of-field, which
coupled with the high capture rate (33 018 f.p.s.) rendered a pseudo-high-speed
micro-PIV, where the plane of interest was directly in alignment with the focus of
the bottom tip of the sphere. Consecutive images from the recorded videos were then
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FIGURE 18. (Colour online) The (a) normalized minimum separation distance hm/δ and
(b) normalized cavity initiation time tcV0/δ plotted against the impact Stokes number
St0= 2ρsR0V0/9µ0 corresponding to results in figures 16(e, f ) and 17(e), respectively. The
fits plot (a) hm/δ = αln(St0) + β where α = −0.46, −0.62, −0.58 and β = −1.60 ×
10−2, −1.16, −2.70 and (b) tcV0/δ = ηln(St0) + ζ where η = −0.18, −0.91, −3.44 and
ζ = 0.04,−1.65,−15.96 for ν0 = 100 000, 1 million and 20 million cSt, respectively.

analysed using using a sequential frame cross-correlation in MATLAB and DaVis 7.2
software (LaVision GmbH).

Figure 20 shows results for the PIV analysis of a tungsten carbide sphere (R0 =
20 mm) impacting onto a 4 mm thick film of ν0 = 1000 000 cSt silicone oil when
released from a height hr = 65 cm. The presence of PIV particles in the film here
provides additional points for the liquid to cavitate from during depressurization in
comparison to films without beads used in figure 9. These appear as a few number
of small bubbles that originate at the surface of the sphere and the base wall, in
the vicinity of the significantly larger single cavity bubble (see also supplementary
movie 3), and are noted to have a negligible effect on the surrounding flow field. The
velocity fields where the vectors represent the absolute velocity, |v| are superimposed
on the left half of the raw images in order that the sphere, cavity and wall edges can
be observed. Colour maps of the radial velocity component, Vr are superimposed on
the right half where positive values correspond to flow away from the sphere’s centre
and negative values towards it. Plots of Vr versus height Z (mm) above the wall at
r = 3 mm (see caption) have also been included to portray the changes incurred by
the radial velocity component at a given a radial distance.

The velocity fields obtained in the squeeze flow regime during the approach stage
are noted to be in agreement with Engmann, Servais & Burbidge (2005) and Uddin
et al. (2012). At t=−787 µs for example, the radial velocity component is observed
to be prominent in a central band, the vertical position of which increases with radial
distance. An approximately parabolic profile for Vr at r= 3 mm further implies Vr,max
to occur at z∼ h(r, t)/2, as also predicted by Uddin et al. (2012). The band is noted
to draw towards the axis of symmetry as the sphere approaches closer to the wall
(t=−212 µs). Moments before the sphere comes to a halt (t=−60 µs) and reaches
its minimum gap distance, Vr diminishes rapidly as noticed by the almost vertical
line, indicating a nearly zero radial flow Vr ≈ 0 across the gap. This flow direction
reverses (t= 242 µs) once the sphere starts to rebound, forming a completely inverted
parabolic Vr profile in the negative half. The expanding cavity bubble (t = 454 µs),
observed briefly after the onset of cavitation, opposes the radial influx of film liquid
into the extending sphere–wall gap, as indicated by the velocity vectors near the
cavity surface. The opposition weakens (see colour maps) as the rate of radial cavity
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FIGURE 19. (Colour online) Shear rate γrz versus separation distance h at the line of
closest approach (a,c,e,g) and rebound (b,d, f,h) corresponding to plots in figure 17(a–d).

expansion decreases with time (t = 454 µs–1.64 ms) until eventually becoming zero
when the cavity starts to shrink radially inwards (t = 2.30 ms). Further away from
the cavity interface at r = 3 mm, the fluid inflow is noted to decrease incessantly
(t= 454 µs–2.30 ms) as the sphere moves away from the wall.

Given the experimental configuration in this study, the horizontal shear is γrz ≡
∂Vr/∂z. In accordance with Ardekani et al. (2009) and Uddin et al. (2012) this shear
rate at a given radial distance can be calculated as γrz ≈ Vr,max/H(r, t) where:

H(r, t)= h(t)+ R0 −
√

R2
0 − r2 (3.1)

is the separation gap distance across the curvature of the sphere in time.
From the PIV analysis of the realization in figure 20, figure 21(a,b) shows plots

of γrz at r = 2 and 3 mm versus the separation distance h at sphere tip. Results
derived from Vz values where γrz ≈ Vz

√
R0h/h2 (Ardekani et al. 2009) are also
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FIGURE 20. Particle image velocimetry measurements for a non-contact impact from hr=
65 cm onto a δ= 4 mm thick layer of ν0 = 1000 000 cSt silicone oil. R0 = 10 mm, V0 =
3.56 m s−1, St0= 0.12, De= 27.9. The left half of the sphere displays the velocity vectors
(see scale bar) while the right half maps the radial component of velocity Vr (see colour
bar). Plots of Vr versus height Z (mm) from the base wall at a radial distance of r=3 mm
(vertical dashed line) have also been shown. The horizontal dashed line corresponds to
H(r, t)= h(t)+ R0 −

√
R2

0 − r2 at r= 3 mm. See also supplementary movie 3.
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FIGURE 21. (Colour online) (a,b) Shear rate γrz versus separation distance h, (c,d)
apparent viscosity µapp versus h and (e, f ) apparent Stokes number Stapp = 2ρsR0Vz/9µapp
versus normalized gap height h/δ profiles obtained from direct measurements of the
velocity fields at r = 2 and 3 mm (see legend), by the PIV analysis of the realization
in figure 20 (V0= 3.56 m s−1, µ0= 978 Pa s, St0= 0.12, De= 27.9). Estimated shear rate
values derived from Vz using γrz ≈ Vz

√
R0h/h2 (Ardekani et al. 2009) and the empirical

scaling γrz≈Vz
√

R0h/3h2, have also been inscribed in (a) for comparison purposes. (a,c,e)
and (b,d, f ) correspond to the approach and rebound stages, respectively.

added for comparison purposes. While these derived shear rate values are found to
be higher by approximately 0.5–1 orders of magnitude than those obtained directly
from the velocity fields during both the approach and rebound stages, they capture
the trend noted in the PIV results with reasonable accuracy. The shear profiles
produced in a similar manner in figure 19, based on the scaling from Ardekani et al.
(2009), can hence be deemed in accordance with actual values only at a qualitative
level. Performing fits to the PIV results to form an empirical scaling, an acceptable
agreement can be obtained for γrz ≈ Vz

√
R0h/3h2. From the PIV measurements of

the non-contact case in figure 20, we note the shear rates in the approach stage to
rise from γrz ∼ 800 s−1 at h ≈ 2.6 mm to γrz ∼ 3000 s−1 at h ∼ 0.60 mm, before
declining steeply as the sphere slows down to reach its minimum gap distance. For
the reversed flow direction in the rebound stage, shear rate values increase rapidly
to reach an average maximum of γrz ∼ −2500 s−1 at h ∼ 0.40 mm, followed by a
continuous decline to γrz∼−80 and −125 s−1 at r= 2 and 3 mm respectively, when
the sphere reaches h∼ 2.1 mm.

Given the shear-thinning nature of the fluid used, these shear rates can correspond
to apparent viscosities that are significantly different from the zero shear viscosity
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value, µ0. This effect is depicted in figure 21(c,d) where the Carreau model and
parameters from Table 1 are used to plot the apparent viscosity, µapp (from shear
values at a given radial distance), at r = 1 and 2 mm as a function of gap height
h. We note the local viscosity in the approach stage to decline at a similar rate
at both radial positions to reach a minimum of µapp ∼ 28 Pa s (γrz ∼ 3000 s−1

at h ∼ 0.60 mm, µapp/µ0 ∼ 0.03), followed by a steep increase as the shear rates
decrease. A minimum of µapp ∼ 32 Pa s is noted, corresponding to the maximum
shear rate in the rebound stage at h∼ 0.40 mm. With further increase in gap height,
the local viscosity increases at a distinctly higher rate at r = 2 mm than 3 mm,
reaching µapp ∼ 300 and 220 Pa s respectively, when h∼ 2.1 mm.

Since the apparent viscosity varies substantially, a modified Stokes number, Stapp =
2ρsR0Vz/9µapp, based on µapp is more pertinent to the flow configuration, as also
suggested by Uddin et al. (2012). From the plots of modified Stokes number versus
normalized gap height produced accordingly in figure 21(e, f ), we note Stapp (i.e. the
instantaneous ratio of sphere inertia to viscous forces) to increase during approach,
despite the decline in sphere velocity and reach a maximum of Stapp∼ 2.4. The effect
of decreasing Vz, however, becomes prominent for h/δ . 0.23 and 0.38 at r = 2 and
3 mm, leading to the onset of Stapp decline. A maximum of only Stapp∼ 0.7 is noted
in the rebound stage, which reduces to become almost negligible as the sphere slows
down, while µapp rises with further increase in gap distance.

In addition to the PIV analysis of the non-contact case in figure 20, figure 22 shows
velocity vectors, Vr colour maps and plots against length Z (mm) at r = 2 mm for
the contact case of a sphere impacting a δ= 4 mm thick layer of ν0= 20 000 000 cSt
silicone oil from hr= 140 cm. The glass beads here do not have any discernible effect
on the inception or structure of the cavity in comparison to observations made in non-
seeded films. As expected, the radial velocity profiles are noted to be approximately
parabolic, which invert due to flow reversal in the rebound stages (see arrows). The
cavity bubble formed by depressurization following the onset of cavitation shrinks
radially inwards and experiences necking (t= 333, 515 and 666 µs, see explanation in
§ 3.1), resulting in the influx of nearby fluid. Radial expansion begins to occur when
the effect of depressurization becomes dominant, which is observed from the velocity
vectors and the corresponding Vr colour map (t = 969 µs) to initiate in the cavity
section beneath the necking region.

Similar in format to figure 21, figure 23 plots (a,b) γrz versus h, (c,d) µapp versus h
and (e, f ) Stapp versus h/δ at r= 1 and 2 mm, from the PIV analysis of the realization
in figure 21. Shear values derived from Vz in (a), based on the approximation from
Ardekani et al. (2009), are again only in qualitative agreement with those obtained
by particle tracking measurements while being approximately O(0.5–1) higher in
magnitude. Results from the empirical scaling (obtained in figure 21a,b) are however
in accordance with the PIV measurements, indicating Vr ≈ Vz

√
R0h/3h to be the

pertinent scaling for the average radial velocity in this study. The PIV measurements
show shear values to increase incessantly in the approach stage to reach maximums of
γrz ∼ 65 000 s−1 and 30 000 s−1 at h∼ 0.05 mm for r = 1 and 2 mm, corresponding
to apparent viscosities of µapp ∼ 8 Pa s and 15 Pa s, respectively. Declining shear
rates are noted throughout the rebound stage which translate to apparent viscosities
increasing at a higher rate for the smaller radial distance of r= 1 mm, as also noticed
in figure 21(c,d). Maximum values here are found to be µapp∼ 550 Pa s and 250 Pa s
at h= 2.16 mm, for r= 1 and 2 mm.

In contrast to figure 21(e, f ), the modified Stokes number for the contact case in
figure 23(e, f ) increases uninterruptedly during sphere approach at r= 1 mm, to reach

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.229


506 M. M. Mansoor and others

2.5

2.0

1.5

Z
 (

m
m

)

1.0

0.5

0

1.5

Z
 (

m
m

)
Z

 (
m

m
)

1.0

0.5

0

1.5

Z
 (

m
m

)
1.0

0.5

0

1.5

2.0

Z
 (

m
m

)

1.0

0.5

0

1.5

2.0

2.5

3.0

Z
 (

m
m

)

1.0

0.5

0
–4 –2 0 2 4 6

–4 –2 0 2 4 6

–4 –2 0 2 4 6

–4 –2 0 2 4 6

–4 –2 0 2 4 6

–4 –2 0 2 4 6

1.0

0.5

0

0 1 2 3 4 5 6

0 2 4 6

–2–3–4 –1 0

–2–3 –1 0

–2.0–3.0 –2.5 –1.0–1.5 –0.5 0

–1.0–1.5 –0.5 0.50
Base wall

Base wall

Base wall

Base wall

Base wall

Base wall

FIGURE 22. PIV measurements for the contact case of a sphere dropped onto a 4 mm
thick layer of ν0 = 20 000 000 cSt silicone oil from hr = 140 cm. R0 = 10 mm, V0 =
5.23 m s−1, St0 = 8.84 × 10−3, De = 363. Similar to figure 19, the left and right half
of the sphere display the velocity vectors (see scale bar) and colour maps of the radial
velocity component Vr, respectively. Plots on the right side show the variation in Vr versus
distance Z (mm) from the base wall at r= 2 mm (see vertical dashed line). The horizontal
dashed line marks the distance to the sphere edge from the base wall at r= 2 mm, using
(3.1). See also supplementary movie 4.
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FIGURE 23. (Colour online) (a,b) Shear rate γrz versus the separation distance h, (c,d)
µapp versus h and (e, f ) Stapp versus normalized gap height h/δ obtained from the PIV
measurements at r= 1 and 2 mm of the realization in figure 22 (V0 = 5.23 m s−1, µ0 =
19 580 Pa s, St0 = 8.84 × 10−3, De = 363). Shear rate results derived from Vz using the
empirical scaling γrz≈Vz

√
R0h/3h2 and that provided by Ardekani et al. (2009) have also

been included in (a). The approach and rebound stages have been assigned the (a,c,e) and
(b,d, f ), respectively.

Stapp ∼ 5.8 at h/δ ∼ 0.012. Values at r = 2 mm meanwhile plateau at Stapp ∼ 3.3,
signifying a higher dominance of viscous effects further away for h/δ. 0.1. A similar
occurrence is observed in the rebound stage for h/δ. 0.05, where maxima of Stapp∼
2.5 and 1.7 at r= 1 and 2 mm decline with increase in normalized gap height. Lower
values of Stapp for the rebound compared to approach stages in this and figure 21(e, f )
are expected due to energy losses by viscous dissipation in the fluid film.

4. Theoretical considerations
For small separation gap distances (h . 100 µm), the number of seeding particles

available to the PIV interrogation window for tracking purposes are insufficient
to produce reasonably accurate velocity field measurements. Since these gap heights
correspond to the regime whereby cavitation is noted to occur during sphere approach
(e.g. in figures 12 and 14 for ν0 = 20 million cSt silicone oil films), it is important
to analyse the squeeze flow for these parameters in further detail.

For this purpose, we solve a theoretical model for the motion of sphere towards a
solid wall covered with a thin layer of Carreau fluid (see figure 2b), which has been
shown (Uddin et al. 2012) to be in good agreement with results from experiments
similar in nature to those found here. We then examine if the criterion for cavitation,
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based on the concept of vapour pressure pv by Seddon et al. (2012), holds true inline
with the shear-induced cavity observations made in this study. This is given as:

P− |S11|< pv, (4.1)

where S11 is the largest component of shear stress (in the principal coordinate system)
and P is the pressure.

We formulate the equations in a cylindrical coordinate system describing an axially
symmetric incompressible squeeze flow. To simulate the most favourable conditions
for shear-induced cavitation and also for simplicity purposes, we assume the liquid to
be devoid of any elastic effects. Under these circumstances and in conjunction with
the lubrication approximation, where the inertial effects of the fluid can be neglected,
the continuity and momentum equations can be expressed as:

1
r
∂

∂r
(rur)+ ∂uz

∂z
= 0, (4.2)

∂P
∂r
= ∂

∂z
σrz, (4.3)

where ur and uz are radial and axial velocities, respectively, and σrz is the tangential
shear stress. For µ∞ = 0, the Carreau model (2.1) is given by:

µapp =µ0(1+ (λγ̇ )2)(n−1)/2, (4.4)

where λ and n are described earlier. When γ̇ ≡ ∂ur/∂z � 1, i.e. for large shear
rates which occur when the sphere approaches close to the base wall, µapp can be
represented by a power-law model (Lian et al. 2001) given as:

µapp =µ0λ
n−1γ̇ n−1, (4.5)

µapp = µ̂γ̇ n−1, (4.6)

where µ̂=µ0λ
n−1. The tangential shear stress can then be expressed as:

σrz ≡ S11 = µ̂
(
∂ur

∂z

)n

. (4.7)

Using this, the momentum equation can be written as:

∂P
∂r
= ∂

∂z

[
µ̂

(
∂ur

∂z

)n]
. (4.8)

We then apply the no-slip boundary condition on the sphere surface and the base
wall as:

ur = 0, uz =−V at z=H(r), (4.9a,b)

ur = 0, uz = 0 at z= 0, (4.10a,b)

where H(r)= h+R0−
√

R2
0 − r2 and V is the velocity of approach of the sphere. The

boundary conditions for pressure under the lubrication approximation are given by:

∂P
∂r
= 0 at r= 0, (4.11)

P= Patm at r= B, (4.12)
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FIGURE 24. Contour plots of the (a) radial velocity ur, (b) absolute tangential shear stress
|S11|, (c) pressure P and (d) the quantity P− |S11| when the sphere from figure 14 reaches
h= 53 µm while approaching the base wall at a velocity of V = 1.62 m s−1. The insets
provide a magnified view of the close approach region.

where Patm = 1.01 × 105 Pa is the atmospheric pressure and B (see figure 2b) is
the wetted radius of the sphere given by B = √(δ − h)[2R0 − (δ − h)], at which the
pressure in the film is set equal to Patm.

Solving (4.2) and (4.8) together with the boundary conditions (4.9)–(4.12), the
pressure distribution inside the squeeze film is given by:

P(r)= 2µ̂
(

2n+ 1
n

)n

Vn
∫ B

r

ζ n

H(ζ )2n+1
dζ + Patm (4.13)

and the radial velocity component is expressed by:

ur(r, z)=
( −n

n+ 1

)(
2n+ 1

n

)
21/n Vr

H(r)(2n+1)/n

[(
z− H(r)

2

)(n+1)/n

−
(

H(r)
2

)(n+1)/n
]
.

(4.14)

We then use the model for a case where cavitation is observed when a sphere is
travelling through a fluid film towards a solid wall (i.e. the pressurization stage) e.g.
in figure 14 at t = −61 µs when h = 53 µm. The corresponding distribution of the
radial velocity ur, absolute tangential shear stress |S11|, pressure P and the quantity
P− |S11| is shown in figure 24(a–d), respectively.

From the results obtained, P− |S11| values are never noted to fall below the vapour
pressure of pv = 133 Pa for a ν0 = 20 000 000 cSt silicone oil film, except in regions
far from the sphere centre (r > 7.2 mm i.e. near the edges), where the lubrication
approximation is no longer valid. Also, since the model here does not account for the
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liquid’s elasticity, which acts to oppose the formation of shear-induced cavitation, it
becomes more apparent that the criterion for cavitation framed in terms of the vapour
pressure by Seddon et al. (2012) does not concur with our experimental observations.
Interestingly though, for this and all other cases where we observe cavitation to
onset during the pressurization stage, the maximum tangential shear stress is noted to
reach a threshold value of S11≈ 1× 106 Pa. These findings raise questions as to how
effectively pressurization opposes shear-induced cavitation and what criterion should
be considered to model it.

The vast literature on cavitation, which recognizes liquids to open up only in
tension, frames the cavitation threshold either in terms of the vapour pressure pv or
the tensile strength σl of the liquids. A few studies (e.g. Knapp, Daily & Hammit
1970; Plesset 1969), which have compared the two concepts in this context, reason
σl to be more pertinent in determining the break-up of liquids. Knapp et al. (1970)
say that:

We define the vapour pressure as the equilibrium pressure, at a specified
temperature, of the liquid’s vapour which is in contact with an existing free
surface. If a cavity is to be created in a homogeneous liquid, the liquid
must be ruptured, and the stress required to do this is not measured by the
vapour pressure but is the tensile strength of the liquid at that temperature.
The question naturally arises then as to the magnitudes of tensile strengths
and the relation these have to experimental findings about inception.

Joseph (1998) reported that the state of stress described by the principal stresses at
each point in the moving liquid should be considered in determining the criteria for
cavitation. The breaking threshold should be defined in terms of the tensile strength
along the principal axes of stress, and the liquid would open up in the direction of
maximum tension in principal coordinates. Also, since the stresses cannot be averaged
in the case of a moving fluid, the pressure has no intrinsic significance. In the words
of Joseph (1998):

Cavitation criteria for liquids in motion must be based on the stress and
not on the pressure. The liquid cannot average its stresses or recognize the
non-unique quantity called pressure in non-Newtonian fluids.

Considering the stress T in the flow conditions of our study, we have:T11 T12 0
T21 T22 0
0 0 T33

 =
−σ p

11 − σ e
11 0 0

0 −σ p
22 − σ e

22 0
0 0 −σ p

33 + σ e
33



+ µ̂


0

(
∂ur

∂z

)n

0(
∂ur

∂z

)n

0 0

0 0 0

 , (4.15)

where σ p
11, σ

p
22, σ

p
33 and σ e

11, σ
e
22, σ

e
33 are the orthogonal normal stresses resulting from

pressure and the elastic strain developed inside the liquid, respectively. Since the
separation gap distances for which shear-induced cavitation observations occur are
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very small (h . 100 µm), the orthogonal normal stresses resulting from pressure
are significantly higher than those arising from the liquid’s elasticity. Under these
circumstances, where the elastic stresses can be omitted, we diagonalize the system
in principal coordinates to get:T11 0 0

0 T22 0
0 0 T33

=−
σ p

11 0 0
0 σ

p
22 0

0 0 σ
p
33

+ µ̂(∂ur

∂z

)n
1 0 0

0 −1 0
0 0 0

 (4.16)

and since

P 6= (σ
p
11 + σ p

22 + σ p
33)

3
(4.17)

applies in the case of a moving fluid (Joseph 1998), pressure is not the fundamental
quantity to be compared with the tangential shear stress S11 in (4.1). Instead the
individual normal stress component σ p

11, which occurs as a consequence of pressure
and directly opposes the effect of S11 (as per (4.16)), should be evaluated at each
point in the moving liquid to determine if:

|S11| − σ p
11 > σl (4.18)

holds true for the liquid to rip open in tension. Since the break-up in essence occurs
from the liquid being subjected to a sufficiently large tension, the cavitation threshold
here is expressed in terms of the liquid’s tensile strength (Knapp et al. 1970).

Although formulating an expression for σ p
11 is beyond the scope of this work, the

fact that we find cavitation during sphere approach in our experiments to be dictated
primarily by a threshold value of S11 indicates σ

p
11 to be relatively insignificant.

Considering (4.18), we predict this threshold (1× 106 Pa) to be approximately equal
to the tensile strength of a ν0 = 20 million cSt silicone oil. However, given the
absence of any data in the archival literature on σl for such a liquid, reaching a
conclusion on this subject matter at this point is not possible. Further studies in the
future investigating the breaking strength of ultra-viscous silicone oils are therefore
recommended. It is also noteworthy to mention that, since the time scale of the
impacts performed is short, the delay incurred by the microstructure of viscoelastic
liquids in reacting to the flow and also in undergoing deformation, can become
relatively important. The Carreau model not being effective instantaneously can hence
introduce discrepancies between the actual and calculated shear-stress values. These
postulated errors, however, may have been compensated to an extent by the higher
shear rates from assuming the liquids as being inelastic in this study. The thixotropic
properties of the ultra-viscous liquids used here are still important in this regard and
can be a potential topic for investigation by future studies.

5. Summary and conclusions
We have presented an experimental investigation of the onset of cavitation and its

structures during the collision of a sphere with a solid surface covered with a layer
of ultra-viscous non-Newtonian liquid (kinematic viscosities ν0 6 20 000 000 cSt). A
synchronized dual-view high-speed imaging system was used to make simultaneous
observations from the side and bottom. It has been shown that both the primary
bubble entrapped by the lubrication pressure of air and secondary bubbles from air
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entrainment by the dynamic wetting of the sphere with viscous liquids can play
a significant role in the formation of cavitation structures. The secondary bubbles
formed as the main (outer) contact line moves up around the sphere are noted to
become smaller in size and larger in number as viscous forces become increasingly
dominant relative to surface tension effects, in essence being characterized by the
capillary number, Ca=µ0V0/σ .

For impacts conducted on relatively low viscosity silicone oils (ν0 = 100 cSt, 1000
cSt, St0 = O(10–102), Ca = O(1–10)), the entrapped bubbles act as flow tracers
as the sphere approaches towards the wall to create an annular bubble structure
similar to the observations of Seddon et al. (2012) and Mansoor et al. (2014). As
soon as the sphere makes contact and starts to rebound away from the base wall,
causing depressurization in the liquid film, the entrapped bubbles expand to form an
annular cavitation structure while a distinct pattern of elongated cavity bubbles is
also observed immediately around the region of sphere contact.

In the event of using a higher film viscosity of ν0 = 10 000 cSt (St = O(1), Ca=
O(102–103)), the primary bubble, which initially spreads into an air sheet as the sphere
enters into the liquid film (Marston et al. 2011a), is deformed into a ring of several
smaller bubbles as the flow approaches the squeeze flow configuration. Since the size
of the air entrained bubbles reduces further causing the effect of surface tension to
be more influential, the annular cavitation structure forms momentarily upon sphere
contact and is noted to be very densely packed. The cavity pattern formed immediately
around the contact region is observed to consist of an annulus of fine bubbles. Unlike
impacts in less viscous liquids, the cavity bubbles and the film liquid peel off from
the sphere’s surface to form a single larger cavity, which extends vertically to assume
an hourglass shape as the sphere rebounds further away from the wall.

For impacts onto ν0 > 100 000 cSt films (St 6 O(1), Ca > O(104)), the primary
bubble entrapped at the sphere’s bottom tip is instantly squeezed out into the
atmosphere. The intensity of the process fragments the bubble at the sphere–bubble
interface, leaving behind a cluster of small remnant bubbles at the point of close
approach.

When St0 < Stc
0 (critical impact Stokes number for contact), films with high

viscoelasticity characterized by De > O(1), are found to enable sphere rebound
without prior contact with the base wall, resulting in cavitation by depressurization
for a new class of non-contact cases. The cavity here is noted to originate from the
remnant bubbles during sphere rebound. While a dense foam-like circular structure
extending into a pattern consisting of discrete bubbles, which generally increase in
size away from the point of close approach, is observed in ν0 = 100 000 cSt films,
the remnant bubbles expand and coalesce to form a single large cavity bubble in
ν0 > 1000 000 cSt films. Cavity initiation is observed to occur after a notable time
delay tc from when the sphere reaches its minimum gap distance hm, both of which
are noted to decrease linearly with increase in impact speed.

For contact cases (St0 > Stc
0), the annular cavitation structure is no longer observed

upon impact with the base wall. The cavitation bubbles formed by depressurization
coalesce to produce a single large cavity, which extends into an hourglass shape with
sphere rebound, and is characterized by an increasingly smooth texture up till impacts
onto ν0 = 1000 000 cSt films. The maximum cavity diameter is noted to reduce as
the collision changes from a non-contact to contact case in ν0 = 1000 000 cSt films.
This results from the added resistance against radial expansion arising from a complete
cavity attachment in contrast to a partial cavity attachment to the base wall in ν0 =
100 000 cSt films, whereby the cavities attach only around the Hertzian contact area.
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Remarkably different cavitation structures are noted to form in ν0 = 20 000 000 cSt
films, where the cavities experience an ongoing competition between radial expansion
and shrinkage, resulting from depressurization and localized elongation along the
cavity length, respectively. Necking is therefore observed even in the initial stages of
cavity formation during sphere rebound. As the cavities are stretched in the process,
they peel off from the sphere’s surface to form a grainy wall texture. The remnant
bubbles, which are initially squeezed radially outwards during sphere approach, are
caught and carried up by these cavity walls, appearing as spots or short streaks from
elongation.

Velocity field measurements inside the fluid film are obtained by performing
pseudo-micro high-speed PIV. Horizontal shear rates calculated from these are
noted to increase during sphere approach to values as high as γrz = O(103 s−1)

and O(104 s−1) at r/R0= 0.2, for the non-contact (St0= 0.12, De= 27.9) and contact
cases (St0 = 8.84 × 10−3, De = 363.5) analysed, respectively. These corresponded to
significantly large viscosity reductions of µapp/µ0 = 0.03 and 7.7 × 10−4, suggesting
the use of a modified Stokes number Stapp (being the instantaneous ratio of sphere
inertia to viscous forces) to be a more relevant parameter for the shear-thinning flow.
Although the sphere velocity Vz declines as the sphere approaches the base wall,
Stapp is noted to increase for h/δ > 0.23 and 0.012 at r/R0 = 0.2 and 0.1, in the
non-contact and contact case, respectively. Hence, despite the ultra-viscous nature of
the liquids used, the inertial effects of the sphere remain dominant for a significant
portion of the penetration into the film.

In contradiction to the conventional theory predicting cavitation to occur during
depressurization, the inception of cavitation in ν0 = 20 000 000 cSt films (St =
O(10−3), De = O(102)) is observed when the sphere reaches a sufficiently small
separation distance (h. 100 µm) while approaching towards the base wall (i.e. in the
pressurization stage). The cavity formed is characterized by a hazy interface rather
than a well-defined edge and of having an irregular shape, which grows radially until
the sphere makes contact with the base wall.

This phenomenon described as shear-stress-induced cavitation (Joseph 1998) can
result from the liquid breaking open in tension, in the direction defined by principal
stresses. The cavitation criterion (equation (4.1)) attributed to this concept by Seddon
et al. (2012) suggests the liquid break-up to occur when the largest element of the
shear-stress tensor dominates over pressure to reduce it below the liquid vapour
pressure. However, results from a theoretical model for the motion of a rigid sphere
through a thin film of Carreau fluid towards a solid wall in our study do not agree
with this requirement, in the parameter space for shear-induced cavity observations
made in our experiments.

The disagreement is explained as follows: firstly, pressure itself is not recognized
by a fluid in motion since the fluid cannot average its stresses (Joseph 1998). Only
the normal stress component resulting from pressure, which directly opposes the
maximum shear-stress component in principal coordinates, needs to be considered.
Secondly, since rupturing the liquid essentially requires it being subjected to a
sufficiently large tension, the breaking threshold should be considered in terms of
the tensile strength σl rather then the vapour pressure pv of the liquid (Knapp et al.
1970).

Though a modified cavitation criterion (equation (4.18)) is proposed in consideration
of these arguments, the archival literature lacks data on the tensile strength of
ultra-viscous silicone oils needed for validation purposes. Investigations on the
measurement of σl for such liquids and on the evaluation of normal stress components,
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arising from pressure in squeeze films, can be prospective research topics for future
studies in this context. Also, since the remnant bubbles formed on the sphere surface
can act as weak points for the liquid to open up in shear during the approach
stage, it would be interesting to study submerged spheres being forced towards the
base wall, to investigate the possibility of shear-induced cavitation from the bulk
liquid. Similar observations of shear-induced cavitation during pressurization may
seem highly unlikely but are still plausible in the less viscous Newtonian liquids, if
subjected to extremely high shear rates (e.g. a minimum of γrz ≈ 107 s−1 is required
for the ν0 = 100 cSt silicone oil in figure 4 at h = 26 µm). Such experiments will
similarly be far from realistic conditions but ought to be attempted in the future.
Extensions of the theoretical flow model presented here to incorporate viscoelastic
in addition to non-Newtonian effects of the ultra-viscous liquids is the subject of
ongoing work.
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