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Abstract Let r be an integer with 2 ≤ r ≤ 24 and let pr(n) be defined by
∑∞

n=0 pr(n)qn =
∏∞

k=1(1 −
qk)r. In this paper, we provide uniform methods for discovering infinite families of congruences and
strange congruences for pr(n) by using some identities on pr(n) due to Newman. As applications, we
establish many infinite families of congruences and strange congruences for certain partition functions,
such as Andrews’s smallest parts function, the coefficients of Ramanujan’s φ function and p-regular
partition functions. For example, we prove that for n ≥ 0,

spt

(
1991n(3n + 1)

2
+ 83

)
≡ spt

(
1991n(3n + 5)

2
+ 2074

)
≡ 0 (mod 11),

and for k ≥ 0,

spt

(
143 × 56k + 1

24

)
≡ 2k+2 (mod 11),

where spt(n) denotes Andrews’s smallest parts function.
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1. Introduction

The aim of this paper is to present uniform methods to establish infinite families of
congruences and strange congruences for pr(n) based on some identities due to Newman.
Here r is an integer with 2 ≤ r ≤ 24 and pr(n) is defined by

∞∑
n=0

pr(n)qn = (q; q)r
∞, (1.1)

where throughout the rest of the paper we use the standard notation

(a; q)n =
n−1∏
k=0

(1 − aqk), (a; q)∞ =
∞∏

k=0

(1 − aqk).
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Recall that a partition of a positive integer n is any non-increasing sequence of posi-
tive integers whose sum is n. Let p(n) denote the number of partitions of n. Owing to
Ramanujan, it is well known that for n ≥ 0,

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Motivated by Ramanujan’s work, the arithmetic properties of partitions with certain
restrictions have received a great deal of attention. Recently, Cui et al. [3] established
some congruence properties for a certain kind of partition function a(n) which satisfies∑∞

n=0 a(n)qn ≡ (q; q)k
∞ (mod m), where k is a positive integer with 1 ≤ k ≤ 24 and m ∈

{2, 3} in light of the modular equations of fifth and seventh order.
In this paper we present uniform methods for discovering congruence properties for

pr(n) which is defined by (1.1). Our methods mainly rely on the ranks of (a, b)-Lucas
sequences. For integers a and b, the (a, b)-Lucas sequence S(n) is defined by

S(n) = aS(n − 1) − bS(n − 2) (1.2)

with S(0) = 0 and S(1) = 1. Let M ≥ 2 be an integer. The rank of (a, b)-Lucas sequence
S(n) modulo M is the least positive integer k such that S(k) ≡ 0 (mod M), and we denote
the rank of S(n) modulo M by RS(M). For example, let F (n) denote the (1,−1)-Lucas
sequence, that is, the classic Fibonacci sequence. Since F (0) = 0, F (1) = 1, F (2) = 1,
F (3) = 2 and F (4) = 3, it is easy to see that RF (2) = 3 and RF (3) = 4. We also define
the dual (a, b)-Lucas sequence T (n) of S(n) as

T (n) = aT (n − 1) − bT (n − 2) (1.3)

with initial conditions T (0) = 1 and T (1) = 0.
In order to state the main results of this paper, we introduce the Legendre symbol. Let

p ≥ 3 be a prime. The Legendre symbol (a/p)L is defined by

(
a

p

)
L

:=

⎧⎪⎨
⎪⎩

1 if a is a quadratic residue modulo p and p � a,

0 if p | a,

−1 if a is a non − quadratic residue modulo p.

Newman [10] established an identity (see (3.4)) for pr(n) where r is an odd integer
with 3 ≤ r ≤ 23. In light of (3.4), we will prove the following theorem which is employed
to discover new infinite families of congruences for pr(n).

Theorem 1.1. Let r be an odd integer with 3 ≤ r ≤ 23 and let p be a prime with
p ≥ 3 if 3|r and p ≥ 5 otherwise. Define

π(p) := pr

(
r(p2 − 1)

24

)
+ (−1)(p−1)(p−1−2r)/8p(r−3)/2

(
r(p2 − 1)/24

p

)
L

. (1.4)

Let M ≥ 2 be an integer with gcd(M,p) = 1 and let Gp(n) be the (π(p), pr−2)-Lucas
sequences.
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(i) For n, k ≥ 0, if p � n, then

pr

(
p2RGp (M)(k+1)−1n +

r(p2RGp (M)(k+1) − 1)
24

)
≡ 0 (mod M), (1.5)

where RGp
(M) are the ranks of Gp(n) modulo M . Furthermore, for k ≥ 0,

pr

(
r(p2RGp (M)k − 1)

24

)
≡ Hp(RGp

(M))k (mod M), (1.6)

where Hp(n) are the dual (π(p), pr−2)-Lucas sequences of Gp(n).

(ii) For n, k ≥ 0, if

π(p)
(

(r(p2 − 1)/24) − n

p

)
L

≡ (−1)(p−1)(p−1−2r)/8p(r−3)/2 (mod M),

then

pr

(
p2RGp (M)k+2n +

r(p2RGp (M)k+2 − 1)
24

)
≡ 0 (mod M). (1.7)

Remark. From Lemma 2.1 in § 2, we see that RGp
(M) exists since gcd(M,p) = 1.

Based on Newman’s identity (3.4), we can deduce the following two theorems which
are used to discover strange congruences for pr(n).

Theorem 1.2. Suppose that M ≥ 2 is an integer, r is an odd integer with 3 ≤ r ≤ 23
and a is a non-negative integer such that pr(a) ≡ 0 (mod M). Suppose further that
24a + r =

∏u
i=1 fi

∏v
j=1 g

αj

j , with each αj ≥ 2, is the prime factorization of 24a + r. Then
for n ≥ 1,

pr

(
an2 +

r(n2 − 1)
24

)
≡ 0 (mod M), (1.8)

where gcd(n, 2
∏v

j=1 g
αj

j ) = 1 if 3|r and gcd(n, 6
∏v

j=1 g
αj

j ) = 1 otherwise.

Theorem 1.3. Let M ≥ 2 be an integer and define

SM := {(i, j)|0 ≤ i ≤ M − 1, 1 ≤ j ≤ M − 1 with gcd(M, j) = 1}. (1.9)

For any pair (i, j) ∈ SM , let G(i,j)(n) be the (i, j)-Lucas sequences and let RG(i,j)(M)
denote the ranks of G(i,j)(n) modulo M . Let γ(M) denote the lowest common multiple
of the set {RG(i,j)(M)|(i, j) ∈ SM}. If pr(a) ≡ 0 (mod M), then for n ≥ 1,

pr

(
an2γ(M) +

r(n2γ(M) − 1)
24

)
≡ 0 (mod M), (1.10)

where gcd(n, 2M) = 1 if 3|r and gcd(n, 6M) = 1 otherwise.
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Remark. From the definition of SM , we see that SM is a finite set when M ≥ 2
is an integer. Moreover, by Lemma 2.1, it is easy to see that R(i,j)(M) exists since
gcd(M, j) = 1. Therefore, γ(M) exists according to the definition of γ(M).

Newman [9] also discovered an identity (see (6.4)) on pr(n) where r is an even integer
with 2 ≤ r ≤ 24. In view of (6.4), we can prove the following theorem.

Theorem 1.4. Let r be an even integer with 2 ≤ r ≤ 24 and let p be a prime
with 24|r(p − 1). Let M ≥ 2 be an integer with gcd(M,p) = 1 and let Sp(n) be the
(pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences. For n, k ≥ 0, if p � (24n + r), then

pr

(
pRSp (M)(k+1)−1n +

r(pRSp (M)(k+1)−1 − 1)
24

)
≡ 0 (mod M), (1.11)

where RSp
(M) are the ranks of Sp(n) modulo M . Moreover, for k ≥ 0,

pr

(
r(pRSp (M)k − 1)

24

)
≡ Tp(RSp

(M))k (mod M), (1.12)

where Tp(n) are the dual (pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences of Sp(n).

As applications, employing Theorems 1.1–1.4, we establish many new infinite families
of congruences and strange congruences for certain partition functions, such as Andrews’s
smallest parts function, the coefficients of Ramanujan’s φ function and p-regular partition
functions. For example, we prove that for n ≥ 0,

spt
(

1991n(3n + 1)
2

+ 83
)

≡ spt
(

1991n(3n + 5)
2

+ 2074
)

≡ 0 (mod 11)

and for k ≥ 0,

spt
(

143 × 56k + 1
24

)
≡ 2k+2 (mod 11),

where spt(n) denotes Andrews’s smallest parts function.
This paper is organized as follows. In § 2 we present some properties for the (a, b)-Lucas

sequences. In § 3–6, using some identities due to Newman [9,10] and some lemmas proved
in § 2, we prove Theorems 1.1–1.4, respectively. In § 7–9, we will apply Theorems 1.1–
1.4 to establish new infinite families of congruences and strange congruences for the
coefficients of Ramanujan’s φ function, Andrews’s smallest parts function spt(n) and
p-regular partition functions, respectively.

2. Some properties for (a, b)-Lucas sequences

The aim of this section is to prove some lemmas on properties of the (a, b)-Lucas sequences
S(n) and their dual (a, b)-Lucas sequences T (n). These lemmas will be used to prove
Theorems 1.1, 1.3 and 1.4.

The following lemma states an upper bound for the ranks of the (a, b)-Lucas sequences
S(n).
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Lemma 2.1. Let M ≥ 2 be an integer and let S(n) be defined by (1.2). Suppose that
M =

∏s
i=1 pki

i (ki ≥ 1) is the prime factorization of M and gcd(M, b) = 1. Then RS(M)
exists and

RS(M) ≤
s∏

i=1

pki−1
i (pi + 1).

Proof. Let m1 and m2 be positive integers. Renault [11] proved that

RS([m1,m2]) = [RS(m1), RS(m2)],

where [c, d] denotes the least common multiple of c and d. Thus,

RS([m1,m2]) ≤ RS(m1)RS(m2). (2.1)

Renault [11] also proved that if pi is a prime and ki is a positive integer, then

RS(pki+1
i ) = RS(pki

i ) or piRS(pki
i ).

Thus,
RS(pki

i ) ≤ pki−1
i RS(pi). (2.2)

In light of (2.1) and (2.2),

RS(M) = RS

( s∏
i=1

pki
i

)
≤

s∏
i=1

RS(pki
i ) ≤

s∏
i=1

pki−1
i RS(pi). (2.3)

In order to find an upper bound for RS(M), it suffices to determine RS(2) and RS(p),
where p is an odd prime. It is easy to check that

RS(2) =

{
2 if a is even,

3 if a is odd,
(2.4)

where S(n) is defined by (1.2). Lucus [8] proved that if p is an odd prime with gcd(p, b) =
1, then

RS(p)|
(

p −
(

a2 − 4b

p

)
L

)
. (2.5)

Based on (2.4) and (2.5), we deduce that for any prime p,

RS(p) ≤ p + 1. (2.6)

It follows from (2.3) and (2.6) that Lemma 2.1 is true. The proof is complete. �

Lemma 2.2. Let S(n) and T (n) be defined by (1.2) and (1.3), respectively. For n, k ≥
0,

S(n + k) = S(k)S(n + 1) + T (k)S(n) (2.7)

and

T (n + k) = S(k)T (n + 1) + T (k)T (n). (2.8)
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Proof. Here we only prove (2.7). The proof of (2.8) is analogous to that of (2.7),
so we omit it. We prove (2.7) by induction on k. The facts that S(0) = T (1) = 0 and
S(1) = T (0) = 1 imply (2.7) holds when k = 0 and k = 1. Suppose that (2.7) holds when
k = m and k = m + 1, namely,

S(n + m) = S(m)S(n + 1) + T (m)S(n) (2.9)

and

S(n + m + 1) = S(m + 1)S(n + 1) + T (m + 1)S(n). (2.10)

It follows from (2.9) and (2.10) that

S(n + m + 2) = aS(n + m + 1) − bS(n + m) (by (1.2))

= a(S(m + 1)S(n + 1) + T (m + 1)S(n)) − b(S(m)S(n + 1) + T (m)S(n))

= (aS(m + 1) − bS(m))S(n + 1) + (aT (m + 1) − bT (m))S(n)

= S(m + 2)S(n + 1) + T (m + 2)S(n), (by (1.2) and (1.3)). (2.11)

Therefore, (2.7) holds when k = m + 2 and this completes the proof of the lemma by
induction. �

Lemma 2.3. Let S(n) be defined by (1.2) and let RS(M) denote the rank of S(n)
modulo M . For k ≥ 0,

S(RS(M)k) ≡ 0 (mod M). (2.12)

Proof. We also prove this lemma by induction on k. The fact that S(0) = 0 implies
that (2.12) is true when k = 0. Suppose that (2.12) is true when k = m, that is,

S(RS(M)m) ≡ 0 (mod M). (2.13)

It follows from the definition of RS(M) that

S(RS(M)) ≡ 0 (mod M). (2.14)

Taking n = RS(M)m and k = RS(M) in (2.7), we see that

S(RS(M)(m + 1)) = S(RS(M))S(RS(M)m + 1) + T (RS(M))S(RS(M)m). (2.15)

In light of (2.13)–(2.15),

S(RS(M)(m + 1)) ≡ 0 (mod M). (2.16)

Therefore, (2.12) is true when k = m + 1 and this completes the proof by induction. �

Lemma 2.4. Let T (n) be defined by (1.3). For k ≥ 0,

T (RS(M)k) ≡ T (RS(M))k (mod M). (2.17)
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Proof. We are ready to prove this lemma by induction on k. The fact that T (0) = 1
implies that (2.17) holds when k = 0. Assume that (2.17) holds when k = m, namely,

T (RS(M)m) ≡ T (RS(M))m (mod M). (2.18)

Putting n = RS(M)m and k = RS(M) in (2.8) yields

T (RS(M)(m + 1)) = S(RS(M))T (RS(M)m + 1) + T (RS(M))T (RS(M)m). (2.19)

Thanks to (2.14), (2.18) and (2.19),

T (RS(M)(m + 1)) ≡ T (RS(M))m+1 (mod M), (2.20)

which implies that (2.17) holds when k = m + 1. This completes the proof of the lemma
by induction. �

Lemma 2.5. Let S(n) and T (n) be defined by (1.2) and (1.3), respectively. For n ≥ 0,

aS(n) + T (n) = S(n + 1). (2.21)

Proof. We also prove this lemma by induction on n. It is easy to check that S(0) =
T (1) = 0, S(1) = T (0) = 1 and S(2) = a. Therefore, (2.21) is true when n = 0 and n = 1.
Assume that (2.21) holds when n = m and n = m + 1, namely,

aS(m) + T (m) = S(m + 1) (2.22)

and
aS(m + 1) + T (m + 1) = S(m + 2). (2.23)

In view of (1.2), (1.3), (2.22) and (2.23),

S(m + 3) = aS(m + 2) − bS(m + 1)

= a(aS(m + 1) + T (m + 1)) − b(aS(m) + T (m))

= a(aS(m + 1) − bS(m)) + (aT (m + 1) − bT (m))

= aS(m + 2) + T (m + 2),

which yields (2.21) holds when n = m + 2. The proof of the lemma by induction is
complete. �

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need to prove the following lemma.

Lemma 3.1. Let r be an odd integer with 3 ≤ r ≤ 23 and let p be a prime with p ≥ 3
if 3|r and p ≥ 5 otherwise. Let pr(n) be defined by (1.1) and let π(p) be defined by (1.4).
For n, k ≥ 0,

pr

(
p2kn +

r(p2k − 1)
24

)
= Gp(k)pr

(
p2n +

r(p2 − 1)
24

)
+ Hp(k)pr(n), (3.1)

where Gp(k) are the (π(p), pr−2)-Lucas sequences and Hp(k) are the dual (π(p), pr−2)-
Lucas sequences of Gp(k).
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Proof. We are ready to prove this lemma by induction on k. Let π(p) be defined by
(1.4), let Gp(k) be the (π(p), pr−2)-Lucas sequences and let Hp(k) be the dual(π(p), pr−2)-
Lucas sequences of Gp(k). From the fact that Gp(0) = Hp(1) = 0 and Gp(1) = Hp(0) = 1,
it is easy to check that (3.1) is true when k = 0 and k = 1. Assume that (3.1) holds when
k = m and k = m + 1 (m ≥ 0), namely,

pr

(
p2mn +

r(p2m − 1)
24

)
= Gp(m)pr

(
p2n +

r(p2 − 1)
24

)
+ Hp(m)pr(n) (3.2)

and

pr

(
p2m+2n +

r(p2m+2 − 1)
24

)
= Gp(m + 1)pr

(
p2n +

r(p2 − 1)
24

)
+ Hp(m + 1)pr(n).

(3.3)
Newman [10] proved that if p is a prime and r is an odd integer with 3 ≤ r ≤ 23, then

pr

(
p2n +

r(p2 − 1)
24

)
= χ(n)pr(n) − pr−2pr

(
n − (r(p2 − 1)/24)

p2

)
, (3.4)

where

χ(n) = pr

(
r(p2 − 1)

24

)
+ (−1)(p−1)(p−1−2r)/8p(r−3)/2

×
((

(r(p2 − 1)/24)
p

)
L

−
(

(r(p2 − 1)/24) − n

p

)
L

)
, (3.5)

with p ≥ 3 if 3|r and p ≥ 5 otherwise. It is easy to verify that

π(p) = χ

(
pn +

r(p2 − 1)
24

)
= χ

(
p2n +

r(p2 − 1)
24

)
, (3.6)

where π(p) is defined by (1.4). If we replace n by p2n + r(p2 − 1)/24 in (3.4) and then
employ (3.6), we deduce that

pr

(
p4n +

r(p4 − 1)
24

)
= π(p)pr

(
p2n +

r(p2 − 1)
24

)
− pr−2pr(n). (3.7)

Replacing n by p2mn + r(p2m − 1)/24 in (3.7) and employing (3.2) and (3.3), we have

pr

(
p2m+4n +

r(p2m+4 − 1)
24

)

= π(p)pr

(
p2m+2n +

r(p2m+2 − 1)
24

)
− pr−2pr

(
p2mn +

r(p2m − 1)
24

)
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= π(p)
(

Gp(m + 1)pr

(
p2n +

r(p2 − 1)
24

)
+ Hp(m + 1)pr(n)

)

− pr−2

(
Gp(m)pr

(
p2n +

r(p2 − 1)
24

)
+ Hp(m)pr(n)

)

= (π(p)Gp(m + 1) − pr−2Gp(m))pr

(
p2n +

r(p2 − 1)
24

)

+ (π(p)Hp(m + 1) − pr−2Hp(m))pr(n). (3.8)

Since Gp(k) are the (π(p), pr−2)-Lucas sequences and Hp(k) are the dual (π(p), pr−2)-
Lucas sequences of Gp(k),

π(p)Gp(m + 1) − pr−2Gp(m) = Gp(m + 2) (3.9)

and

π(p)Hp(m + 1) − pr−2Hp(m) = Hp(m + 2). (3.10)

Based on (3.8)–(3.10),

pr

(
p2m+4n +

r(p2m+4 − 1)
24

)
= Gp(m + 2)pr

(
p2n +

r(p2 − 1)
24

)
+ Hp(m + 2)pr(n),

which implies that (3.1) is true when k = m + 2. This completes the proof of the lemma
by induction.

We now turn to the proof of Theorem 1.1. �

Proof of Theorem 1.1. Combining (3.1) and (3.4) yields

pr

(
p2kn +

r(p2k − 1)
24

)
= Gp(k)

(
χ(n)pr(n) − pr−2pr

(
n − (r(p2 − 1)/24)

p2

))

+ Hp(k)pr(n)

= (Gp(k)χ(n) + Hp(k))pr(n)

− pr−2Gp(k)pr

(
n − (r(p2 − 1)/24)

p2

)
. (3.11)

If we replace n by pn + (r(p2 − 1))/24 in (3.11) and employ (3.6), we find that for n, k ≥
0,

pr

(
p2k+1n +

r(p2k+2 − 1)
24

)
= (π(p)Gp(k) + Hp(k))pr

(
pn +

r(p2 − 1)
24

)

− pr−2Gp(k)pr(n/p). (3.12)

Because of (2.21) and the fact that Gp(k) are the (π(p), pr−2)-Lucas sequences,

π(p)Gp(k) + Hp(k) = Gp(k + 1). (3.13)
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It follows from (3.12) and (3.13) that

pr

(
p2k+1n +

r(p2k+2 − 1)
24

)
= Gp(k + 1)pr

(
pn +

r(p2 − 1)
24

)
− pr−2Gp(k)pr(n/p).

(3.14)
Let M ≥ 2 be a positive integer with gcd(M,p) = 1. In view of Lemma 2.1, we see that
the ranks of Gp(n) modulo M exist. Let RGp

(M) denote the ranks of Gp(n) modulo M .
Thanks to Lemma 2.3, we deduce that for k ≥ 0,

Gp(RGp
(M)k) ≡ 0 (mod M). (3.15)

If we replace k by RGp
(M)(k + 1) − 1 in (3.14) and use (3.15), we see that for n, k ≥ 0,

pr

(
p2RGp (M)(k+1)−1n +

r(p2RGp (M)(k+1) − 1)
24

)

≡ −pr−2Gp(RGp
(M)(k + 1) − 1)pr(n/p) (mod M). (3.16)

If p � n, then n/p is not an integer and

pr(n/p) = 0. (3.17)

In light of (3.16) and (3.17), we arrive at (1.5).
If we set n = 0 and replace k by RGp

(M)k in (3.1), then employ (3.15) and the fact
that pr(0) = 1, we obtain

pr

(
r(p2RGp (M)k − 1)

24

)
≡ Hp(RGp

(M)k) (mod M). (3.18)

In view of Lemma 2.4,

Hp(RGp
(M)k) ≡ Hp(RGp

(M))k (mod M). (3.19)

Congruence (1.6) follows from (3.18) and (3.19).
From the fact that gcd(M,p) = 1, we find that if

π(p)
(

(r(p2 − 1)/24) − n

p

)
L

≡ (−1)(p−1)(p−1−2r)/8p(r−3)/2 (mod M), (3.20)

then (
(r(p2 − 1)/24) − n

p

)
L

�= 0 (3.21)

and

π(p) ≡ (−1)(p−1)(p−1−2r)/8p(r−3)/2

(
(r(p2 − 1)/24) − n

p

)
L

(mod M). (3.22)

It follows from (1.4), (3.5) and (3.22) that if (3.20) is true, then

χ(n) ≡ 0 (mod M). (3.23)
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Thanks to (3.21), we see that (r(p2 − 1)/24 − n)/p is not an integer. Therefore,
(n − r(p2 − 1)/24)/p2 is not an integer and

pr

(
n − (r(p2 − 1)/24)

p2

)
= 0. (3.24)

In view of (3.4), (3.23) and (3.24),

pr

(
p2n +

r(p2 − 1)
24

)
≡ 0 (mod M). (3.25)

If we replace k by RGp
(M)k in (3.1) and employ (3.15), we have

pr

(
p2RGp (M)kn +

r(p2RGp (M)k − 1)
24

)
≡ Hp(RGp

(M)k)pr(n) (mod M). (3.26)

Replacing n by p2n + (r(p2 − 1)/24) in (3.26) and using (3.25) yields (1.7). This completes
the proof. �

4. Proof of Theorem 1.2

We prove Theorem 1.2 by induction on the total number of prime factors of n. Suppose
that r is an odd integer with 3 ≤ r ≤ 23. Let pr(n) be defined by (1.1) and let M ≥ 2 be
an integer. If n = 1 (n has no prime factors), then (1.8) states that pr(a) ≡ 0 (mod M),
which is true by hypothesis. Define

Sr := {p|p is a prime with p ≥ 3 if 3|r and p ≥ 5 otherwise}. (4.1)

Furthermore, assume that 24a + r =
∏u

i=1 fi

∏v
j=1 g

αj

j , with each αj ≥ 2, is the prime
factorization of 24a + r. Let p1 be a prime with p1 ∈ Sr and gcd(p1,

∏v
j=1 g

αj

j ) = 1. If we
replace (n, p) by (a, p1) in (3.4) and utilize the hypothesis that pr(a) ≡ 0 (mod M) and
the fact that χ(a) is an integer, we find that

pr

(
ap2

1 +
r(p2

1 − 1)
24

)
≡ −pr−2

1 pr

(
a − (r(p2

1 − 1)/24)
p2
1

)
(mod M). (4.2)

From the hypothesis gcd(p1,
∏v

j=1 g
αj

j ) = 1, it follows that

a − (r(p2
1 − 1)/24)
p2
1

=
24a + r − rp2

1

24p2
1

=

∏u
i=1 fi

∏v
j=1 g

αj

j − rp2
1

24p2
1

is not an integer. Therefore,

pr

(
a − (r(p2

1 − 1)/24)
p2
1

)
= 0. (4.3)

Thanks to (4.2) and (4.3),

pr

(
ap2

1 +
r(p2

1 − 1)
24

)
≡ 0 (mod M).

Therefore, (1.8) holds when n = p1 (n has only one prime factor). Suppose that
(1.8) is true for all integers with not more than k prime factors. In order to prove
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Theorem 1.2, it suffices to prove that (1.8) is true when n has k + 1 prime fac-
tors. We can write n as n = p1p2 · · · pkpk+1 where 3 ≤ p1 ≤ p2 ≤ · · · ≤ pk ≤ pk+1 with
gcd(p1 · · · pk−1pkpk+1, 2

∏v
j=1 g

αj

j ) = 1 if 3|r and gcd(p1 · · · pk−1pkpk+1, 6
∏v

j=1 g
αj

j ) = 1
otherwise.

By hypothesis, (1.8) holds for all integers with not more than k prime factors. Hence,

pr

(
ap2

1p
2
2 · · · p2

k−1 +
r(p2

1p
2
2 · · · p2

k−1 − 1)
24

)
≡ 0 (mod M) (4.4)

and

pr

(
ap2

1p
2
2 · · · p2

k−1p
2
k +

r(p2
1p

2
2 · · · p2

k−1p
2
k − 1)

24

)
≡ 0 (mod M). (4.5)

Replacing n by

ap2
1p

2
2 · · · p2

k−1p
2
k +

r(p2
1p

2
2 · · · p2

k−1p
2
k − 1)

24
and replacing p by pk+1 in (3.4), then utilizing (4.5) and the fact that

χ

(
ap2

1p
2
2 · · · p2

k−1p
2
k +

r(p2
1p

2
2 · · · p2

k−1p
2
k − 1)

24

)

is an integer, we deduce that

pr

(
ap2

1p
2
2 · · · p2

k−1p
2
kp2

k+1 +
r(p2

1p
2
2 · · · p2

k−1p
2
kp2

k+1 − 1)
24

)

≡ −pr−2
k+1pr

(
ap2

1p
2
2 · · · p2

k−1p
2
k + r(p2

1p
2
2 · · · p2

k−1p
2
k − p2

k+1)/24
p2

k+1

)
(mod M). (4.6)

Now we break our proof into two cases: pk+1 = pk and pk+1 > pk. If pk+1 = pk, based on
(4.4), we can rewrite (4.6) as

pr

(
ap2

1p
2
2 · · · p2

k−1p
2
kp2

k+1 +
r(p2

1p
2
2 · · · p2

k−1p
2
kp2

k+1 − 1)
24

)

≡ −pr−2
k+1pr

(
ap2

1p
2
2 · · · p2

k−1 +
r(p2

1p
2
2 · · · p2

k−1 − 1)
24

)
≡ 0 (mod M). (4.7)

If pk+1 > pk, then pk+1 �∈ {p1, p2, . . . , pk}. From the fact that gcd(pk+1,
∏v

j=1 g
αj

j ) = 1,
we see that

ap2
1p

2
2 · · · p2

k−1p
2
k + r(p2

1p
2
2 · · · p2

k−1p
2
k − p2

k+1)/24
p2

k+1

=
(24a + r)p2

1p
2
2 · · · p2

k−1p
2
k − rp2

k+1

24p2
k+1

=
p2
1p

2
2 · · · p2

k−1p
2
k

∏u
i=1 fi

∏v
j=1 g

αj

j − rp2
k+1

24p2
k+1
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is not an integer. Therefore,

pr

(
ap2

1p
2
2 · · · p2

k−1p
2
k + r(p2

1p
2
2 · · · p2

k−1p
2
k − p2

k+1)/24
p2

k+1

)
= 0. (4.8)

Combining (4.6)–(4.8) yields

pr

(
ap2

1p
2
2 · · · p2

k−1p
2
kp2

k+1 +
r(p2

1p
2
2 · · · p2

k−1p
2
kp2

k+1 − 1)
24

)
≡ 0 (mod M). (4.9)

Therefore, in any case, (1.8) is true when n = p1p2 · · · pkpk+1. Theorem 1.2 is proved by
induction and the proof is complete.

5. Proof of Theorem 1.3

In order to prove Theorem 1.3, we first prove the following lemma.

Lemma 5.1. Let r be an odd integer with 3 ≤ r ≤ 23 and let Sr be defined by (4.1).
Suppose that p ∈ Sr and M ≥ 2 is an integer with gcd(M,p) = 1. Let Gp(k) be defined
in Lemma 3.1. Then

Gp(γ(M)) ≡ 0 (mod M), (5.1)

where γ(M) is defined in Theorem 1.3.

Proof. For any fixed p ∈ Sr (defined by (4.1)), let Gp(n) be a (π(p), pr−2)-Lucas
sequence. Assume that π(p) ≡ i (mod M) with 0 ≤ i ≤ M − 1 and pr−2 ≡ j (mod M)
with 1 ≤ j ≤ M − 1. It is easy to see that for n ≥ 0,

Gp(n) ≡ W(i,j)(n) (mod M), (5.2)

where W(i,j)(n) denotes an (i, j)-Lucas sequence. Let RW(i,j)(M) denote the rank of
W(i,j)(n) modulo M . By Lemma 2.1, RW(i,j)(M) exists. Thanks to (5.2),

RGp
(M) = RW(i,j)(M). (5.3)

Furthermore, define

H(M,p,r) := {(i, j)|π(p) ≡ i (mod M) with 0 ≤ i ≤ M − 1,

pr−2 ≡ j (mod M) with 1 ≤ j ≤ M − 1, p ∈ Sr and gcd(M,p) = 1}. (5.4)

Let μ(M) denote the lowest common multiple of the set {RW(i,j)(M)|(i, j) ∈ H(M,p,r)}.
Thus,

RW(i,j)(M)|μ(M). (5.5)

Note that H(M,p,r) is a non-empty subset of SM , where SM is defined in Theorem 1.3.
Therefore,

μ(M)|γ(M), (5.6)

where γ(M) is defined in Theorem 1.3. Thanks to (5.3), (5.5) and (5.6),

RGp
(M)|γ(M). (5.7)

Congruence (5.1) follows from Lemma 2.3 and (5.7). This completes the proof. �
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We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. We also prove Theorem 1.3 by induction on the total number
of prime factors of n. By hypothesis, it is easy to see that (1.10) is true when n = 1.
Let γ(M) be defined in Theorem 1.3 and let p1 ∈ Sr with gcd(M,p1) = 1, where Sr is
defined by (4.1). If we set (p, n, k) = (p1, a, γ(M)) in (3.1) and use the hypothesis that
pr(a) ≡ 0 (mod M), we have

pr

(
p
2γ(M)
1 a +

r(p2γ(M)
1 − 1)

24

)
≡ Gp1(γ(M))pr

(
p2
1a +

r(p2
1 − 1)
24

)
(mod M). (5.8)

In view of (5.1) and (5.8),

pr

(
p
2γ(M)
1 a +

r(p2γ(M)
1 − 1)

24

)
≡ 0 (mod M), (5.9)

which implies that (1.10) is true when n = p1. Assume that (1.10) is true when n =
p1p2 · · · pν , namely,

pr

(
(p1p2 · · · pν)2γ(M)a +

r((p1p2 · · · pν)2γ(M) − 1)
24

)
≡ 0 (mod M). (5.10)

Since gcd(n, 2M) = 1 if 3|r and gcd(n, 6M) = 1 otherwise, pi ∈ Sr and gcd(pi,M) = 1
(1 ≤ i ≤ ν). Let pν+1 be a prime with pν+1 ∈ Sr and gcd(pν+1,M) = 1. Setting (p, k) =
(pν+1, γ(M)) in (3.1) and employing (5.1) yields

pr

(
p
2γ(M)
ν+1 n +

r(p2γ(M)
ν+1 − 1)

24

)
≡ Hpν+1(γ(M))pr(n) (mod M). (5.11)

Replacing n by

(p1p2 · · · pν)2γ(M)a +
r((p1p2 · · · pν)2γ(M) − 1)

24

in (5.11) and then using (5.10) yields

pr

(
(p1p2 · · · pνpν+1)2γ(M)a +

r((p1p2 · · · pνpν+1)2γ(M) − 1)
24

)
≡ 0 (mod M),

which implies that (1.10) is true when n = p1p2 · · · pνpν+1. This completes the proof of
the theorem by induction. �

6. Proof of Theorem 1.4

The aim of this section is to present a proof of Theorem 1.4. We first prove the following
lemma.

https://doi.org/10.1017/S0013091520000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000115


Congruences for partition functions 723

Lemma 6.1. Let r be an even integer with 2 ≤ r ≤ 24 and let p be a prime with
24|r(p − 1). For n, k ≥ 0,

pr

(
pkn +

r(pk − 1)
24

)
= Sp(k)pr

(
pn +

r(p − 1)
24

)
+ Tp(k)pr(n), (6.1)

where pr(n) is defined by (1.1), Sp(k) are the (pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences
and Tp(k) are the dual (pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences of Sp(k).

Proof. We are ready to prove this lemma by induction on k. Since Sp(0) = Tp(1) = 0
and Sp(1) = Tp(0) = 1, (6.1) holds when k = 0 and k = 1. Suppose that (6.1) is true when
k = m and k = m + 1 (m ≥ 0), namely,

pr

(
pmn +

r(pm − 1)
24

)
= Sp(m)pr

(
pn +

r(p − 1)
24

)
+ Tp(m)pr(n) (6.2)

and

pr

(
pm+1n +

r(pm+1 − 1)
24

)
= Sp(m + 1)pr

(
pn +

r(p − 1)
24

)
+ Tp(m + 1)pr(n). (6.3)

Newman [9] proved that

pr

(
pn +

r(p − 1)
24

)
= pr

(
r(p − 1)

24

)
pr(n) − p(r−2)/2pr

(
n − (r(p − 1)/24)

p

)
, (6.4)

where pr(n) is defined by (1.1), p is a prime with 24|r(p − 1) and r is an even integer
with 2 ≤ r ≤ 24. If we replace n by pn + r(p − 1)/24 in (6.4), then

pr

(
p2n +

r(p2 − 1)
24

)
= pr

(
r(p − 1)

24

)
pr

(
pn +

r(p − 1)
24

)
− p(r−2)/2pr(n). (6.5)

Replacing n by pmn + r(pm − 1)/24 in (6.5) and then utilizing (6.2) and (6.3), we deduce
that

pr

(
pm+2n +

r(pm+2 − 1)
24

)

= pr

(
r(p − 1)

24

)
pr

(
pm+1n +

r(pm+1 − 1)
24

)

− p(r−2)/2pr

(
pmn +

r(pm − 1)
24

)

= pr

(
r(p − 1)

24

)(
Sp(m + 1)pr

(
pn +

r(p − 1)
24

)
+ Tp(m + 1)pr(n)

)

− p(r−2)/2

(
Sp(m)pr

(
pn +

r(p − 1)
24

)
+ Tp(m)pr(n)

)
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=
(

pr

(
r(p − 1)

24

)
Sp(m + 1) − p(r−2)/2Sp(m)

)
pr

(
pn +

r(p − 1)
24

)

+
(

pr

(
r(p − 1)

24

)
Tp(m + 1) − p(r−2)/2Tp(m)

)
pr(n). (6.6)

Since Sp(k) are the (pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences and Tp(k) are the dual
(pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences of Sp(k),

pr

(
r(p − 1)

24

)
Sp(m + 1) − p(r−2)/2Sp(m) = Sp(m + 2) (6.7)

and

pr

(
r(p − 1)

24

)
Tp(m + 1) − p(r−2)/2Tp(m) = Tp(m + 2). (6.8)

In view of (6.6)–(6.8), we deduce that (6.1) holds when k = m + 2. This completes the
proof of the lemma by induction. �

We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. Substituting (6.4) into (6.1) yields

pr

(
pkn +

r(pk − 1)
24

)
= Sp(k)

(
pr

(
r(p − 1)

24

)
pr(n) − p(r−2)/2pr

(
n − (r(p − 1)/24)

p

))

+ Tp(k)pr(n)

=
(

pr

(
r(p − 1)

24

)
Sp(k) + Tp(k)

)
pr(n)

− p(r−2)/2Sp(k)pr

(
n − (r(p − 1)/24)

p

)
. (6.9)

By Lemma 2.5 and the fact that Sp(k) are the (pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences,

pr

(
r(p − 1)

24

)
Sp(k) + Tp(k) = Sp(k + 1), (6.10)

where Tp(k) are the dual (pr(r(p − 1)/24), p(r−2)/2)-Lucas sequences of Sp(k). With the
aid of (6.9) and (6.10),

pr

(
pkn +

r(pk − 1)
24

)
= Sp(k + 1)pr(n) − p(r−2)/2Sp(k)pr

(
n − (r(p − 1)/24)

p

)
. (6.11)

Let M ≥ 2 be an integer with gcd(M,p) = 1. Thanks to Lemma 2.1, the ranks RSp
(M)

of Sp(n) modulo M exist. Based on Lemma 2.3, we deduce that for k ≥ 0,

Sp(RSp
(M)k) ≡ 0 (mod M). (6.12)
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If we replace k by RSp
(M)(k + 1) − 1 in (6.11) and then use (6.12), we see that for k ≥ 0,

pr

(
pRSp (M)(k+1)−1n +

r(pRSp (M)(k+1)−1 − 1)
24

)

≡ −p(r−2)/2Sp(RSp
(M)(k + 1) − 1)pr

(
n − (r(p − 1)/24)

p

)
(mod M). (6.13)

If p � (24n + r), then (n − r(p − 1)/24)/p is not an integer and

pr

(
n − (r(p − 1)/24)

p

)
= 0. (6.14)

Congruence (1.11) follows from (6.13) and (6.14).
If we replace k by RSp

(M)k in (6.1) and use (6.12), we get

pr

(
pRSp (M)kn +

r(pRSp (M)k − 1)
24

)
≡ Tp(RSp

(M)k)pr(n) (mod M). (6.15)

In view of Lemma 2.4 and the fact that Tp(k) are the dual (pr(r(p − 1)/24), p(r−2)/2)-
Lucas sequences of Sp(k), we deduce that for α ≥ 0,

Tp(RSp
(M)k) ≡ Tp(RSp

(M))k (mod M). (6.16)

If we set n = 0 in (6.15), then use (6.16) and the fact that pr(0) = 1, we find that for
k ≥ 0,

pr

(
r(pRSp (M)k − 1)

24

)
≡ Tp(RSp

(M))k (mod M),

which is nothing more than (1.12). This completes the proof. �

7. Congruences modulo 16 for Ramanujan’s φ function

Recently, Chan [2] established a number of congruences for the coefficients aφ(n) of
Ramanujan’s φ function φ(q), which is defined by

φ(q) =
∞∑

n=0

aφ(n)qn :=
∞∑

n=0

(−q; q)2nqn+1

(q; q2)2n+1

. (7.1)

Moreover, Chan [2] proved some congruences for aφ(n). For example, he proved that for
n ≥ 0,

aφ(9n + 4) ≡ 0 (mod 2),

aφ(18n + 10) ≡ 0 (mod 4),

aφ(25n + 14) ≡ aφ(25n + 24) ≡ 0 (mod 4).
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In this paper we prove congruences modulo 16 for aφ(n) based on Theorems 1.1–1.3.
In order to state congruences modulo 16 for aφ(n), define

π1(p) := p9

(
3(p2 − 1)

8

)
+ (−1)(p−1)(p−19)/8p3

(
3(p2 − 1)/8

p

)
L

, (7.2)

where p ≥ 3 is a prime. Moreover, define

α1(p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if π1(p) ≡ 0 (mod 16),

3 if π1(p)2 ≡ p7 (mod 16),

4 if π1(p) ≡ 8 (mod 16),

6 if π1(p)2 ≡ tp7 (mod 16) with t ∈ {3, 9, 11},
8 if π1(p) ≡ 4 (mod 8),

12 if π1(p)2 ≡ tp7 (mod 16) with t ∈ {5, 7, 13, 15},
16 if π1(p) ≡ 2 (mod 4),

(7.3)

and
g1(p) = f1(π1(p), p7, α1(p)) (7.4)

with

f1(x, y, α1(p))

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−y if α1(p) = 2,

−xy if α1(p) = 3,

−y(x2 − y) if α1(p) = 4,

−y(x4 − 3x2y + y2) if α1(p) = 6,

−y(x6 − 5x4y + 6x2y2 − y3) if α1(p) = 8,

−y(x10 − 9x8y + 28x6y2 − 35x4y3 + 15x2y4 − y5) if α1(p) = 12,

−y(x2 − y)(x4 − 3x2y + y2)(x8 − 9x6y + 26x4y2 − 24x2y3 + y4) if α1(p) = 16.

Theorem 7.1. Let p ≥ 3 be a prime and let aφ(n) be defined by (7.1).

(i) For n, k ≥ 0, if p � n, then

aφ

(
2p2α1(p)(k+1)−1n +

3p2α1(p)(k+1) + 1
4

)
≡ 0 (mod 16). (7.5)

Moreover, for k ≥ 0,

aφ

(
3p2α1(p)k + 1

4

)
≡ [g1(p)]k (mod 16). (7.6)
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(ii) For n, k ≥ 0, if

π1(p)
(

(3(p2 − 1)/8) − n

p

)
L

≡ (−1)(p−1)(p−19)/8p3 (mod 16),

then

aφ

(
2p2α1(p)k+2n +

3p2α1(p)k+2 + 1
4

)
≡ 0 (mod 16). (7.7)

(iii) If a is a non-negative integer such that p9(a) ≡ 0 (mod 16) and 24a + 9 =∏u
i=1 fi

∏v
j=1 g

αj

j , with each αj ≥ 2, is the prime factorization of 24a + 9. Then
for n ≥ 1,

aφ

(
2an2 +

3n2 + 1
4

)
≡ 0 (mod 16), (7.8)

where gcd(n, 2
∏v

j=1 g
αj

j ) = 1.

(iv) If a is a non-negative integer such that p9(a) ≡ 0 (mod 16), then for n ≥ 0,

aφ

(
2a(2n + 1)96 +

3(2n + 1)96 + 1
4

)
≡ 0 (mod 16). (7.9)

Example. If we set p = 3 in the above theorem, we get π1(3) ≡ 4 (mod 8) and g1(3) ≡
1 (mod 16). Therefore α1(3) = 8. In view of (7.5) and (7.6), we see that for n, k ≥ 0,

aφ

(
2 × 316k+15(3n + 1) +

316k+17 + 1
4

)
≡ aφ

(
2 × 316k+15(3n + 2) +

316k+17 + 1
4

)

≡ 0 (mod 16)

and

aφ

(
316k+1 + 1

4

)
≡ 1 (mod 16).

It is easy to check that 16|p9(142). Therefore, if we set a = 142 in (7.8), we deduce that
for n ≥ 0,

aφ(1139n2 + 1139n + 285) ≡ 0 (mod 16).

Proof. Chan [2] proved that
∞∑

n=0

aφ(2n + 1)qn =
(q2; q2)8∞
(q; q)7∞

. (7.10)

By the binomial theorem, for any k ≥ 0,

(q; q)2
k

∞ ≡ (q2; q2)2
k−1

∞ (mod 2k). (7.11)

With the aid of (7.10) and (7.11),
∞∑

n=0

aφ(2n + 1)qn ≡ (q; q)9∞ (mod 16),
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which implies that

aφ(2n + 1) ≡ p9(n) (mod 16). (7.12)

Setting r = 9 and M = 16 in (1.5), we see that for n, k ≥ 0 with p � n,

p9

(
p2RGp (16)(k+1)−1n +

3(p2RGp (16)(k+1) − 1)
8

)
≡ 0 (mod 16), (7.13)

where p ≥ 3 is a prime, Gp(n) are the (π1(p), p7)-Lucas sequences, RGp
(16) are the ranks

of Gp(n) modulo 16 and π1(p) is defined by (7.2). With the help of a computer, we can
check that

RGp
(16) = α1(p), (7.14)

where α1(p) is defined by (7.3). Therefore, from (7.13) and (7.14), we see that if p � n,
then

p9

(
p2α1(p)(k+1)−1n +

3(p2α1(p)(k+1) − 1)
8

)
≡ 0 (mod 16). (7.15)

Congruence (7.5) follows from (7.12) and (7.15).
Moreover, by (1.6) and (7.14), it follows that for k ≥ 0,

p9

(
3(p2α1(p)k − 1)

8

)
≡ [Hp(α1(p))]k (mod 16), (7.16)

where Hp(n) are the dual (π1(p), p7)-Lucas sequences of Gp(n). It is easy to check that

Hp(α1(p)) ≡ g1(p) (mod 16), (7.17)

where g1(p) is defined by (7.4). Combining (7.12), (7.16) and (7.17), we arrive at (7.6).
In view of (1.7) and (7.14), we deduce that for n, k ≥ 0, if

π1(p)
(

(3(p2 − 1)/8) − n

p

)
L

≡ (−1)(p−1)(p−19)/8p3 (mod 16),

then

p9

(
p2α1(p)k+2n +

3(p2α1(p)k+2 − 1)
8

)
≡ 0 (mod 16). (7.18)

Congruence (7.7) follows from (7.12) and (7.18).
By Theorem 1.2, we see that if a is a non-negative integer such that p9(a) ≡ 0 (mod 16)

and 24a + 9 =
∏u

i=1 fi

∏v
j=1 g

αj

j , with each αj ≥ 2, is the prime factorization of 24a + 9,
then for n ≥ 1,

p9

(
an2 +

3(n2 − 1)
8

)
≡ 0 (mod 16), (7.19)

where gcd(n, 2
∏v

j=1 g
αj

j ) = 1. Congruence (7.8) follows from (7.12) and (7.19).
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From the definition of γ(M) given in Theorem 1.3, we find that

γ(16) = 48. (7.20)

Thanks to (1.10) and (7.20), we see that if p9(a) ≡ 0 (mod 16), then

p9

(
an96 +

3(n96 − 1)
8

)
≡ 0 (mod 16), (7.21)

where n ≥ 1 is an odd integer. In view of (7.12) and (7.21), we arrive at (7.9). This
completes the proof. �

8. New congruences modulo 11 for Andrews’s spt-function

In [1], Andrews introduced the spt-function spt(n) which counts the number of smallest
parts in the partitions of a positive integer n. For example, one sees that spt(4) = 10 by
examining the partitions of 4 (with the smallest parts underlined):

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The generating function for spt(n) is

∞∑
n=0

spt(n)qn :=
1

(q; q)∞

( ∞∑
n=1

nqn

1 − qn
+

∞∑
n=1

(−1)n(1 + qn)qn(3n+1)/2

(1 − qn)2

)
. (8.1)

Andrews [1] also found the following surprising congruences for spt(n):

spt(5n + 4) ≡ 0 (mod 5),

spt(7n + 5) ≡ 0 (mod 7),

spt(13n + 6) ≡ 0 (mod 13).

Garvan [5] established congruences modulo powers for 5, 7 and 13 for spt(n). Moreover,
in another paper [4], Garvan showed that for n ≥ 0,

spt(11n + 6) ≡ 4p13(n) (mod 11). (8.2)

Based on Theorems 1.1–1.3 and (8.2), we can get new congruences modulo 11 for
spt(n). In order to state the main results, define

π2(p) := p13

(
13(p2 − 1)

24

)
+ (−1)(p−1)(p−27)/8p5

(
13(p2 − 1)/24

p

)
L

, (8.3)
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where p ≥ 5 is a prime with p �= 11. Furthermore, define

α2(p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if π2(p) ≡ 0 (mod 11),

3 if π2(p)2 ≡ p (mod 11),

4 if π2(p)2 ≡ 2p (mod 11),

5 if π2(p)2 ≡ 5p (mod 11) or π2(p)2 ≡ 9p (mod 11),

6 if π2(p)2 ≡ 3p (mod 11),

10 if π2(p)2 ≡ 6p (mod 11) or π2(p)2 ≡ 8p (mod 11),

11 if π2(p)2 ≡ 4p (mod 11),

12 if π2(p)2 ≡ 7p (mod 11) or π2(p)2 ≡ 8p (mod 11),

(8.4)

and

g2(p) = f2(π2(p), p11, α2(p)) (8.5)

with

f2(x, y, α2(p)) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−y if α2(p) = 2,

−xy if α2(p) = 3,

−y(x2 − y) if α2(p) = 4,

−xy(x2 − 2y) if α2(p) = 5,

−y(x4 − 3x2y + y2) if α2(p) = 6,

−y(x2 − y)(x6 − 6x4y + 9x2y2 − y3) if α2(p) = 10,

−xy(x4 − 3x2y + y2)(x4 − 5x2y + 5y2) if α2(p) = 11,

−y(x10 − 9x8y + 28x6y2 − 35x4y3 + 15x2y4 − y5) if α2(p) = 12.

Theorem 8.1. Let p ≥ 5 be a prime with p �= 11 and let spt(n) be defined by (8.1).

(i) For n, k ≥ 0, if p � n, then

spt
(

11p2α2(p)(k+1)−1n +
143p2α2(p)(k+1) + 1

24

)
≡ 0 (mod 11). (8.6)

Moreover, for k ≥ 0,

spt
(

143p2α2(p)k + 1
24

)
≡ 4[g2(p)]k (mod 11). (8.7)
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(ii) For n, k ≥ 0, if

π2(p)
(

(13(p2 − 1)/24) − n

p

)
L

≡ (−1)(p−1)(p−27)/8p5 (mod 11),

then

spt
(

11p2α2(p)k+2n +
143p2α2(p)k+2 + 1

24

)
≡ 0 (mod 11). (8.8)

(iii) If a is a non-negative integer such that p13(a) ≡ 0 (mod 11) and 24a + 13 =∏u
i=1 fi

∏v
j=1 g

αj

j , with each αj ≥ 2, is the prime factorization of 24a + 13. Then
for n ≥ 1,

spt
(

11an2 +
143n2 + 1

24

)
≡ 0 (mod 11), (8.9)

where gcd(n, 6
∏v

j=1 g
αj

j ) = 1.

(iv) If a is a non-negative integer such that p13(a) ≡ 0 (mod 11), then for n ≥ 0,

spt
(

11an1320 +
143n1320 + 1

24

)
≡ 0 (mod 11), (8.10)

where gcd(n, 66) = 1.

Example. We can verify that π2(5) ≡ 4 (mod 11) and g2(5) ≡ 2 (mod 11). Thus,
α2(5) = 3. If we set p = 5 in the above theorem, we see that for n, k ≥ 0,

spt
(

11 × 56(k+1)−1(5n + t) +
143 × 56(k+1) + 1

24

)
≡ 0 (mod 11),

where t is an integer with 1 ≤ t ≤ 4 and for k ≥ 0,

spt
(

143 × 56k + 1
24

)
≡ 2k+2 (mod 11).

If we set a = 7 in (8.9) and using the fact that 11|p13(7), we deduce that for n ≥ 0,

spt
(

1991n(3n + 1)
2

+ 83
)

≡ spt
(

1991n(3n + 5)
2

+ 2074
)

≡ 0 (mod 11).

Proof. Setting r = 13 and M = 11 in Theorem 1.1, we see that for n, k ≥ 0, if p � n,
then

p13

(
p2RGp (11)(k+1)−1n +

13(p2RGp (11)(k+1) − 1)
24

)
≡ 0 (mod 11), (8.11)

where p ≥ 5 is a prime with p �= 11, π2(p) is defined by (8.3), Gp(n) are the
(π2(p), p11)-Lucas sequences and RGp

(11) are the ranks of Gp(n) modulo 11. We can
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verify that

RGp
(11) = α2(p), (8.12)

where α2(p) is defined by (8.4). Therefore, by (8.11) and (8.12),

p13

(
p2α2(p)(k+1)−1n +

13(p2α2(p)(k+1) − 1)
24

)
≡ 0 (mod 11). (8.13)

Replacing n by p2α2(p)(k+1)−1n + 13(p2α2(p)(k+1) − 1)/24 in (8.2) and using (8.13), we
arrive at (8.6).

Moreover, from (1.6) and (8.12), we see that for k ≥ 0,

p13

(
13(p2α2(p)k − 1)

24

)
≡ Tp(α2(p))k (mod 11), (8.14)

where Tp(n) are the dual (π2(p), p11)-Lucas sequences of Gp(n). It is easy to verify that

Tp(α2(p)) ≡ g2(p) (mod 11), (8.15)

where g2(p) is defined by (8.5). Replacing n by 13(p2α2(p)k − 1)/24 in (8.2) and employing
(8.14) and (8.15), we obtain (8.7).

Thanks to (1.7) and (8.12), we deduce that if

π2(p)
(

(13(p2 − 1)/24) − n

p

)
L

≡ (−1)(p−1)(p−27)/8p5 (mod 11),

then

p13

(
p2α2(p)k+2n +

13(p2α2(p)k+2 − 1)
24

)
≡ 0 (mod 11). (8.16)

Replacing n by

p2α2(p)k+2n +
13(p2α2(p)k+2 − 1)

24

in (8.2) and utilizing (8.16), we arrive at (8.8).
Setting r = 13 and M = 11 in Theorem 1.2, we find that if a is a non-negative integer

such that p13(a) ≡ 0 (mod 11) and 24a + 13 =
∏u

i=1 fi

∏v
j=1 g

αj

j , with each αj ≥ 2, is the
prime factorization of 24a + 13, then for n ≥ 1,

p13

(
an2 +

13(n2 − 1)
24

)
≡ 0 (mod 11), (8.17)

where gcd(n, 6
∏v

j=1 g
αj

j ) = 1. Replacing n by an2 + 13(n2 − 1)/24 in (8.2) and using
(8.17), we get (8.9).
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Furthermore, it follows from the definition of γ(M) given in Theorem 1.3 that

γ(11) = 660. (8.18)

In view of (1.10) and (8.18), we see that if p13(a) ≡ 0 (mod 11), then

p13

(
an1320 +

13(n1320 − 1)
24

)
≡ 0 (mod 11), (8.19)

where gcd(n, 66) = 1. Congruence (8.10) follows from (8.2) and (8.19). This completes
the proof. �

9. Nonlinear congruences modulo p for p-regular partitions

Let l ≥ 2 be an integer. A partition is called an l-regular partition if there is no part
divisible by l. Let bl(n) denote the number of l-regular partitions of n. As usual, set
bl(0) = 1. The generating function of bl(n) is

∞∑
n=0

bl(n)qn =
(ql; ql)∞
(q; q)∞

. (9.1)

Recently, numerous congruence properties for l-regular partitions have been proved; see,
for example, [6,7,12].

Using Theorem 1.4, we can also find congruences modulo p for bp(n) where p is an odd
prime with p ≤ 23. In the following, we only present congruences modulo 23 for b23(n).

In order to state our main results, define

π3(p) = p22

(
11(p − 1)

12

)
, (9.2)

where p is a prime with 12|(p − 1). Furthermore, define

α3(p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if π3(p) ≡ 0 (mod 23),

3 if π3(p)2 ≡ p10 (mod 23),

4 if π3(p)2 ≡ 2p10 (mod 23),

6 if π3(p)2 ≡ 3p10 (mod 23),

8 if π3(p)2 ≡ tp10 (mod 23) with t ∈ {7, 20},
11 if π3(p)2 ≡ tp10 (mod 23) with t ∈ {6, 8, 12, 13, 16},
12 if π3(p)2 ≡ tp10 (mod 23) with t ∈ {9, 18},
22 if π3(p)2 ≡ tp10 (mod 23) with t ∈ {11, 14, 15, 19, 21},
23 if π3(p)2 ≡ 4p10 (mod 23),

24 if π3(p)2 ≡ tp10 (mod 23) with t ∈ {5, 10, 17, 22},

(9.3)
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and

g3(p) = f3(π3(p), p10, α3(p)) (9.4)

with

f3(x, y, α3(p))

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−y if α3(p) = 2,

−xy if α3(p) = 3,

−y(x2 − y) if α3(p) = 4,

−y(x4 − 3x2y + y2) if α3(p) = 6,

−y(x6 − 5x4y + 6x2y2 − y3) if α3(p) = 8,

−xy(x4 − 3x2y + y2)(x4 − 5x2y + 5y2) if α3(p) = 11,

−y(x10 − 9x8y + 28x6y2 − 35x4y3 + 15x2y4 − y5) if α3(p) = 12,

−y(x2 − y)(x6 − 5x4y + 6x2y2 − y3)(x12 − 13x10y

+64x8y2 − 146x6y3 + 148x4y4 − 48x2y5 + y6) if α3(p) = 22,

−xy(x10 − 11x8y + 44x6y2 − 77x4y3 + 55x2y4 − 11y5)
×(x10 − 9x8y + 28x6y2 − 35x4y3 + 15x2y4 − y5) if α3(p) = 23,

−y(x22 − 21x20y + 190x18y2 − 969x16y3 + 3060x14y4

−6188x12y5 + 8008x10y6 − 6435x8y7 + 3003x6y8

−715x4y9 + 66x2y10 − y11) if α3(p) = 24.

Theorem 9.1. Let p be a prime with p ≡ 1 (mod 12). For n, k ≥ 0, if p � (12n + 11),
then

b23

(
pα3(p)(k+1)−1n +

11(pα3(p)(k+1)−1 − 1)
12

)
≡ 0 (mod 23), (9.5)

where α3(p) is defined by (9.3). Moreover, for k ≥ 0,

b23

(
11(pα3(p)k − 1)

12

)
≡ g3(p)k (mod 23), (9.6)

where g3(p) is defined by (9.4).

Example. It is easy to check that π3(13) ≡ 10 (mod 23). Hence α3(13) = 11 and
g3(13) ≡ 1 (mod 23). If we set p = 13 in the above theorem, we see that for n, k ≥ 0, if
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13 � (12n + 11), then

b23

(
1311k+10n +

11(1311k+10 − 1)
12

)
≡ 0 (mod 23)

and

b23

(
11(1311k − 1)

12

)
≡ 1 (mod 23).

Proof. Setting r = 22 and M = 23 in Theorem 1.4, we see that for n, k ≥ 0, if p �
(12n + 11), then

p22

(
pRSp (23)(k+1)−1n +

11(pRSp (23)(k+1)−1 − 1)
12

)
≡ 0 (mod 23), (9.7)

where p is a prime with p ≡ 1 (mod 12), Sp(n) are the (π3(p), p10)-Lucas sequences and
RSp

(23) are the ranks of Sp(n) modulo 23. It is easy to check that

RSp
(23) = α3(p), (9.8)

where α3(p) is defined by (9.3). Combining (9.7) and (9.8) yields

p22

(
pα3(p)(k+1)−1n +

11(pα3(p)(k+1)−1 − 1)
12

)
≡ 0 (mod 23). (9.9)

Based on (1.1), (7.11) and (9.1),

∞∑
n=0

b23(n)qn =
(q23; q23)∞

(q; q)∞
≡ (q; q)22∞ =

∞∑
n=0

p22(n)qn (mod 23),

which implies
b23(n) ≡ p22(n) (mod 23). (9.10)

Congruence (9.5) follows from (9.9) and (9.10).
Furthermore, it follows from (1.12) and (9.8) that for k ≥ 0,

p22

(
11(pα3(p)k − 1)

12

)
≡ Tp(α3(p))k (mod 23), (9.11)

where Tp(n) are the dual (π3(p), p10)-Lucas sequences of Sp(n). It is easy to verify that

Tp(α3(p)) ≡ g3(p) (mod 23), (9.12)

where g3(p) is defined by (9.4). In view of (9.10)–(9.12), we arrive at (9.6). This completes
the proof. �
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