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Abstract Let X be a smooth complex projective manifold of dimension n equipped with an ample line
bundle L and a rank k holomorphic vector bundle E. We assume that 1 < k < n, that X, E and L are
defined over the reals and denote by RX the real locus of X. Then, we estimate from above and below
the expected Betti numbers of the vanishing loci in RX of holomorphic real sections of E ® L4, where d
is a large enough integer. Moreover, given any closed connected codimension k submanifold ¥ of R" with
trivial normal bundle, we prove that a real section of E ® L9 has a positive probability, independent of
d, of containing around Jd" connected components diffeomorphic to X in its vanishing locus.
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1. Introduction

Let X be a smooth complex projective manifold of positive dimension n equipped with
an ample line bundle L and let E be a holomorphic vector bundle of rank k over X.
From the vanishing theorem of Kodaira and Serre, we know that the dimension Ny
of the complex vector space HO(X, E® L) of global holomorphic sections of E ® L?
grows as a polynomial of degree n in d. We will assume throughout this paper that
1 <k <n and that X, E and L are defined over the reals. We denote by RX the real
locus of X and by RHY(X, E ® L?) the real vector space of real holomorphic sections of
E QLY see (5). Its dimension equals Ny. The discriminant locus RA; C RHY(X, EQ L?)
of sections which do not vanish transversally is a codimension 1 submanifold for d large
enough, and for every o in its complement, the real vanishing locus RC, of ¢ is a smooth
codimension k submanifold of RX. The topology of RC, drastically depends on the choice
of 0 e RHY(X,EQ LY)\RA;. Whenn =k =1, X =CP!', L = O¢pi(1) and E = O pi
for example, o is a real polynomial of degree d in one variable and RC, the set of its
real roots.
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The space RHY(X, E ® L?) inherits classical probability measures. Indeed, let g be a
Hermitian metric on E and &7 be a Hermitian metric of positive curvature on L, both hAg
and hy being real, that is invariant under the Z/27Z-Galois action of E and L. We denote
by hga=he® h‘z the induced metric on E ® L. Then, the vector space RHO(X, E® Ld)
becomes Euclidean, with the L2-scalar product defined by

Vo,7 e RHYX,E® LY, (0,7) =/ hE.q(o, T)dx,
X

where dx denotes any chosen volume form on X (our results being asymptotic in d, they
turn out not to depend on the choice of dx). It thus inherits a Gaussian probability
measure g whose density at o € RHY(X, E ® L%) with respect to the Lebesgue measure
is (1/de)e—|\0ll

What is the typical topology of RC, for ¢ € RH(X, E® L) chosen at random for
dur? We do not know, but can estimate its average Betti numbers. To formulate our
results, let us denote, for every i € {0,...,n —k}, by b;(RCs, R) = dim H; (RC,, R) the
ith Betti number of RC, and by

B = | bi(RCy . R)d iz (0)
RHO(X,EQLY)\RA,
its expected value.

1.1. Upper estimates

As in [14], for every i € {0,...,n—k}, we denote by Symp(i,n —k —i) the open cone
of real symmetric matrices of size n — k and signature (i,n —k —i), by ugr the classical
Gaussian measure on the space of real symmetric matrices and by er(i,n —k —i) the
numbers

erliin—k —i) = / det Ald g (A); (1)
Symp (i,n—k—i)

see §3.1. We then denote by VoI, (RX) the volume of RX for the Riemannian metric
induced by the Kahler metric gy, defined by the curvature form of Ay ; see (3) and (4).

Theorem 1.1.1. Let X be a smooth real projective manifold of dimension n, (L,hr) be
a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg) be a
rank k real holomorphic Hermitian vector bundle, with 1 < k < n, k # n. Then, for every
0<i<n—k,

Voly,, (RX)

n—1
li —E(b; n—k—i)—————-.
imsup —E(b;) < (k— 1>eR(l n l)VolFS(RPk)

d—o00 «/_

Moreover, when k = n, (l/ﬁn)E(bo) converges to Voly, (RX)/Volps(RP") as d grows to
infinity.

In fact, the right hand side of the inequality given by Theorem 1.1.1 also involves
the determinant of random matrices of size k —1 and the volume of the Grassmann
manifold of (k—1) linear subspaces of R"~! (see Theorem 3.1.2), but these can be
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computed explicitly. Note that when E is the trivial line bundle, Theorem 1.1.1 reduces
to Theorem 1.1 of [14].

Theorem 1.1.1 relies on Theorem 3.1.3, which establishes the asymptotic equidis-
tribution of clouds of critical points; see §3.1. We obtain a similar result in a complex
projective setting, for critical points of Lefschetz pencils; see Theorem 3.5.1.

1.2. Lower estimates and topology

Let X be a closed submanifold of codimension k£ of R", 1 < k < n, which we do not
assume to be connected. For every 0 € RHY(X, E® L)\ RA,, we denote by Nx (o) the
maximal number of disjoint open subsets of RX having the property that each such open
subset U’ contains a codimension k submanifold ¥’ such that ¥’ ¢ RC, and (U’, X) is
diffeomorphic to (R”, X'). We then set

E(Ns) = / N (0)dpz(0) 2)
RHO(X,EQLY)\RA,

and we associate with X', in fact with its isotopy class in R", a constant ¢y which is
positive if and only if ¥ has trivial normal bundle in R"; see (14) for its definition and
Lemma 2.2.3. The latter measures ¢ la Donaldson the amount of transversality that a
polynomial map R” — R vanishing along a submanifold isotopic to ¥ may have.

Theorem 1.2.1. Let X be a smooth real projective manifold of dimension n, (L,hr) be
a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg) be
a rank k real holomorphic Hermitian vector bundle, with 1 <k < n. Let X be a closed
submanifold of codimension k of R" with trivial normal bundle, which does not need to
be connected. Then,

1
liminf —; E > RX).
imin N (Nx) = cxVolp, (RX)

In particular, when X is connected, Theorem 1.2.1 bounds from below the expected
number of connected components diffeomorphic to X in the real vanishing locus of a
random section o € RHY(X, E® L%). The constant ¢x does not depend on the choice
of the triple (X, (L, hr), (E, hg)); it only depends on ¥. When k=1 and E = Oy,
Theorem 1.2.1 coincides with Theorem 1.2 of [16]. Computing ¢ for explicit submanifolds
XY yields the following lower bounds for the Betti numbers.

Corollary 1.2.2. Under the hypotheses of Theorem 1.2.1, for everyi € {0, ...,n —k},
N | 8446
lbrggéfﬁﬂi(b,-) > exp(—e®* ) Vol,, (RX).

1.3. Some related results

The case where X = CP!, E = O¢p1 and L = Ogpi(1) was first considered by M. Kac
in [18] for a different measure. In this case and with our measure, Kostlan [19] and Shub
and Smale [34] gave an exact formula for the mean number of real roots of a polynomial,
as well as the mean number of intersection points of n hypersurfaces in RP". Still in
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RP", Podkorytov [27] computed the mean Euler characteristics of random algebraic
hypersufaces, and Biirgisser [4] extended this result to complete intersections. In [13], we
proved the exponential rarefaction of real curves with a maximal number of components
in real algebraic surfaces. In [14, 15], we bounded from above the mean Betti numbers
of random real hypersurfaces in real projective manifolds and in [16], we gave a lower
bound for them.

A similar probabilistic study of complex projective manifolds has been performed by
Shiffman and Zelditch (see [2, 30, 33] for example, and also [3, 36]). In particular, the
asymptotic equidistribution of critical points of random sections over a fixed projective
manifold has been studied in [8, 9, 22], and also [1, 5, 11], while we studied critical points
of the restriction of a fixed Morse function on random real hypersurfaces; see [14, 15].

A similar question concerns the mean number of components of the vanishing locus of
eigenfunctions of the Laplacian. It has been studied on the round sphere by Nazarov and
Sodin [25] (see also [35]), Lerario and Lundberg [20] and Sarnak and Wigman [28]. For a
general Riemannian setting, Zelditch proved in [38] the equidistribution of the vanishing
locus, whereas critical points of random eigenfunctions of the Laplacian were addressed
by Nicolaescu in [26].

Section 2 is devoted to lower estimates and the proof of Theorem 1.2.1. In this proof,
the L2-estimates of Hormander play a crucial role (see §2.3), and we follow the same
approach as in [16] (see also [12] for a similar construction). Section 3 is devoted to
upper estimates and the proof of Theorem 1.1.1.

2. Lower estimates for the expected Betti numbers

2.1. Statement of the results

2.1.1. Framework. Let us first recall our framework. We denote by X a smooth
complex projective manifold of dimension n defined over the reals, by cx : X — X the
induced Galois antiholomorphic involution and by RX = Fix(cx) the real locus of X which
we implicitly assume to be non-empty. We then consider an ample line bundle L over X,
also defined over the reals. It comes thus equipped with an antiholomorphic involution
cr : L — L which turns the bundle projection map 7 : L — X into a Z/2Z-equivariant
one, so that cy om = mocp. We equip L in addition with a real Hermitian metric Ay,
being thus invariant under ¢z, which has a positive curvature form w locally defined by

1 _
= —9dloghy(e, 3
©= im0 l0BALEE €) @

for any non-vanishing local holomorphic section e of L. This metric induces a Kéahler
metric

gh, =w(.,i.) (4)
on X, which reduces to a Riemannian metric g5, on RX. Let finally E be a holomorphic
vector bundle of rank k, 1<k <n, defined over the reals and equipped with an
antiholomorphic involution c¢g and a real Hermitian metric hg. For every d > 0, we
denote by

RHX,E®LY) ={oc e HHX,E®L?) | (cE®cja)oo =0 ocx} (5)
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the space of global real holomorphic sections of E ® L. It is equipped with the L2-scalar
product defined by the formula

Y(o,7) e RHY(X, E® LY), (o,r)=/ hE.a(o, T)(x)dx, (6)
X

where hg g =hg ®h”z. Here, dx denotes any volume form of X. For instance, dx can
be chosen to be the normalized volume form dV;, = "/ [ x @".This L?-scalar product
finally induces a Gaussian probability measure ur on RHY(X, E ® L) whose density
with respect to the Lebesgue one at 0 € RHY(X, E ® LY) is written as (l/ﬁNd)e’”"nz,
where Ny = dim HO(X, E® L9). Tt is with respect to this probability measure that we
consider random real codimension & submanifolds (as in the works [19] and [14-16, 34]).

2.1.2. The lower estimates. The aim of §2 is to prove Theorem 1.2.1. In addition
to Theorem 1.2.1, we also get the following Theorem 2.1.1, which is a consequence of
Proposition 2.4.2 below.

Theorem 2.1.1. Under the hypotheses of Theorem 1.2.1, for every 0 < e < 1,
lilminf,u]g{a eRH(X, E®QLY) | Nx(0) > ecxVoly, RX)Vd'} > 0.
—00

In fact, the positive lower bound given by Theorem 2.1.1 can be made explicit; see (30).

Let us now denote, for every 1 < k < n, by Hp the set of diffeomorphism classes of
smooth closed connected codimension k& submanifolds of R". For every i € {0, ...,n —k}
and every [X] € H,k, we denote by b;(X) = dim H;(X; R) its ith Betti number with
real coefficients and by m;(X) its ith Morse number. This is the infimum over all Morse
functions f on X of the number of critical points of index i of f. Then, we set c[x] =
SUPx¢(x) €x and

E(m;) = f mi(RCy)d g (0).
RHO(X,EQLY)\RA,

Corollary 2.1.2. Let X be a smooth real projective manifold of dimension n, (L,hy) be
a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg) be
a rank k real holomorphic Hermitian vector bundle, with 1 <k < n. Then, for every
ief0,....,n—k},

. 1 o

lbrglor;fW]E(bi) > < Z c[g]bi(2)>Voth(]RX) and likewise (7
[Z1eHnk

. 1

1gggéfﬁﬂ«:(m,-) > Z crzymi (2) | Volp, (RX). (8)
[Z1eHnk

Note that in Corollary 2.1.2, we could have chosen one representative X in each
diffeomorphism class [X] € H, x and obtained the lower estimates (7), (8) with constants
cy instead of cx). But it turns out that in the proof of Corollary 2.1.2 we are free to
choose the representative that we wish in every diffeomorphism class and that the higher
¢y is, the better the estimates (7), (8) are. This is why we introduce the constant ¢y,
which is positive if and only if [X'] has a representative X with trivial normal bundle in
R"; see (14) and Lemma 2.2.3.
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2.2. Closed affine real algebraic submanifolds

We introduce here the notion of a regular pair (see Definition 2.2.1), and the constant
cy associated with any isotopy class of the smooth closed codimension k£ submanifold X
of R"; see (14).

Definition 2.2.1. Let U be a bounded open subset of R” and P € R[xy, ... x,1%, 1 <k < n.
The pair (U, P) is said to be regular if and only if
1. zero is a regular value of the restriction of P to U,

2. the vanishing locus of P in U is compact.

Hence, for every regular pair (U, P), the vanishing locus of P does not intersect the
boundary of U and it meets U in a smooth compact codimension k£ submanifold.

In the sequel, for every integer p and every vector v € R?, we denote by |v| its Euclidean
norm, and for every integer p and ¢, and every linear map F : R? — R9Y, we denote by
F* the adjoint of F, defined by the property

Yv e RP, Yw eRY, (F@),w)= (v, F*(w)),
and denote by || F|| its operator norm, that is

IFll= sup [F)|/[v]
veRP\{0}

We will also use the norm

IFll2 =~Tr FF*.
These norms satisfy || F|| < ||F|l2. Finally, if P = (P, ..., Py) € Rlxq, ..., x,]5, we denote
by [|P|;2 its L>-norm defined by

k k
_ 2 _ 2
P13, =/C IP@)Pe ™ dz =) j/@ |Pi()Pe ™ dz =Y || P13 (9)
i=1 i=l1

Definition 2.2.2. For every regular pair (U, P) given by Definition 2.2.1, we denote by
Tw.p) the set of (3, €) € (R%)? such that

1. there exists a compact subset K of U satisfying infyecp\x |P(x)] > 6,
2. for every y € U, |P(y)| < 8§ = Yw € R, [(dy P)*(w)| = €|w].

Hence, for every regular pair (U, P) given by Definition 2.2.1, (8, €) belongs to T, p)
provided that the §-sublevel of P does not intersect the boundary of U while inside this
3-sublevel, and P is in a sense e-far from having a critical point. This quantifies how
much transversally P vanishes in a way similar to the one used by Donaldson in [7].

Then, for every regular pair (U, P), we set Ry, p) = max(l,sup,y [y]), so U is
contained in the ball centered at the origin and of radius Ry, p). Finally, we set

v =280k P12 inf (4 + ) e Rt (10)
. p) w.p L? (8,6)67—([]_}7) 52 €2 +
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where, for every R > 0,

pr = infgr, (11)
(R4 ooy
gr:s €RY STe”( R (12)
and so
2 2
enR < OR < 4ne47rR . (13)

This constant 7(y,py is the main ingredient in the definition of c¢x; see (14). The lower
Tw,p) is, the larger cx is and the better the estimates given by Theorem 1.2.1 are. Note
that 7y, p) remains small whenever 8, € are not too small, that is when P vanishes quite
transversally in U.

Now, let X be a closed submanifold of codimension k of R", not necessarily connected.
We denote by Zx the set of regular pairs (U, P) given by Definition 2.2.1, such that the
vanishing locus of P in U contains a subset isotopic to ¥ in R".

Lemma 2.2.3. Let X be a closed submanifold of codimension k > 0 of R", not necessarily
connected. Then, Ty is non-empty if and only if the normal bundle of X in R" is trivial.

Proof. If (U, P) € Is, then P : R" — R¥ contains in its vanishing locus a codimension
k submanifold & which is isotopic to X' in R"”. The normal bundle of ¥ in R" is thus
trivial if and only if the normal bundle of Y in R is trivial. But the differential of P at
every point of b3) provides an isomorphism between the normal bundle of Y in R" and
the product 5 x RF.

Conversely, if ¥ has a trivial normal bundle in R”, it has been proved by Seifert [29] (see
also [24]) that there exist a polynomial map P : R" — R* and a tubular neighborhood
U of X in R” such that P~1(0) N U is isotopic to X in U. The strategy of the proof is to
first find a smooth function U — R in a neighborhood of ¥ which vanishes transversally
along X and then to suitably approximate the coordinates of this function by some
polynomial; see [24, 29]. The pair (U, P) then belongs to Zx by Definition 2.2.1. O

We then set ¢5; = 0 if X does not have a trivial normal bundle in R” and

Mry, p :
cy = sup otherwise, (14)
W.P)ezs \2"VOl(B(Rw,P)))

where Vol(B(R,p))) denotes the volume of the Euclidean ball of radius Ry, py in R",
and where, for every T > 0,

m; = sup fr, (15)
[/T,+oo[

with fr 1a € [T, 4oo[ = 1//m(1 - (t/a?)) f;oo e~ dt. For large values of m, such as
the ones which appear in § 2.6, the estimate

cx > e Fwp (16)

holds; compare (2.8) of [16].
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2.3. Hormander sections

Our key tool for proving Theorems 1.1.1 and 1.2.1 has been developed by L. Hérmander.
We introduce in this part, § 2.3, the material that we need. For every positive d and every
o€ RHO(X, E (X)Ld)7 we set

2 2
0122, = /X 012, ,dVi,

where dVj, = "/ [y @"; compare (6). Let us choose a field of hp-trivializations of L on
RX given by Definition 3.2 of [16]. It provides in particular, for every x € RX, a local
holomorphic chart ¥, : (Wy,x) C X — (V,,0) C C" isometric at x, and a non-vanishing

holomorphic section e of L defined over W, such that ¢ = —loghy (e, e) vanishes at x
and is positive elsewhere. Moreover, there exists a positive constant « such that
Vy € Vi g oy ') —mlylPl < arlyl. (17)
Restricting W, if necessary, we choose a holomophic trivialization (ey, ..., ex) of Ew,
which is orthonormal at x. This provides a trivialization (e; ® e, .., e ® ed) of E®Q LIdWx'
In this trivialization, the restriction of o to W, is written as
k .
U:ngej(@ed (18)
j=1
for some holomorphic functions fg : Wy — C. We write f, = (fal, e, f(f) and we set
lol =1/ol, (19)
k 2 .
so on Wi, ||0||%1E’d = ” ijl f;‘ej ||hEe d¢ agd ||a(x)||%lE‘d = |0(x).|2 since the frames
(e1,...,ex) and e are orthonormal at the point x, and so in particular ¢(x) = 0. For
every z € Wy, we define
ldizo ll2 = iy (fo 0 ¥y D2, (20)
ldizoll = lldyy(fs oy DIl (21)
and
(d.0)* =y (fo 0¥y, (22)

where y = ¥, (z). Finally, we denote, for every small enough r > 0, by B(x,r) C W, the
ball centered at x and of radius r for the flat metric of V, pulled back by ¥y, so

B(x,r) =y; ' (B(0.r)). (23)

Proposition 2.3.1. Let X be a smooth real projective manifold of dimension n, (L, hr)
be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg)
be a rank k real holomorphic Hermitian vector bundle, with 1 <k < n. We choose a
field of hy -trivializations on RX. Then, for every regular pair (U, P), every large enough
integer d, every x in RX and every local trivialization of E orthonormal at x, there exist
ow,p) € RH(X, E® L) and an open subset Ug of B(x, R(U,p)/\/g) NRX such that
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L low,pyll2n,) becomes equivalent to ((|IPll;2)/+/3L) as d grows to infinity, where
| Pll2 is defined by (9) and 81 = [y ",

2. (Uy, O'(;]{P)(O) NUy) is diffeomorphic to (U, P*I(O) NnNU) Cc R",

3. for every (8,¢) € Tw,p) given by Definition 2.2.2, there exists a compact subset
K4 C Uy such that

) n
inf —Jd,
Uif\le low,pyl > >

while for every y in Uy,

8 € +1
low.n I < 5Vd" = Yw e R, [dyow.p) @) > SVd wl. (24)

Proof. We proceed as in the proof of Proposition 3.4 of [16]. Let (U, P) be a regular
pair, x € RX and d large enough. We set Uy = I/IX_]((I/\/E)U) C B(x, R(pr)/«/g) and
Ky = wx_l((l/\/g)l(). Let x : C* — [0, 1] be a smooth function with compact support in
B(0, Ry, py), which equals 1 in a neighborhood of the origin. Then, let o be the global
smooth section of E® L? defined by ox\w, = 0 and

k
ow, = (X Ol/fx)<2 P;i(Vdyy)e; ®ed>,

j=1

where P = (Py, ..., Py) is now considered as a function C" — Ck. From the L2-estimates
of Hérmander (see [17] or [21]), there exists a global section 7 of E ® L such that 37 = do
and ||t lz20ne o) < oo ”LZ(hE.d) for d large enough. This section 7 can be chosen orthogonal
to holomorphic sections and is then unique, and in particular real. Moreover, there exist
positive constants ¢; and ¢z, which do not depend on x, such that [[7]l,2¢, ) < cre—24
and supy, (I7]+ ll7ll2) < c2e™%; see Lemma 3.5 of [16]. We then set oy py = Vd' (o —1).
It has the desired properties, as can be checked along the same lines as in the proof of
Proposition 3.4 of [16] and thanks to Lemma 2.3.2. O

Lemma 2.3.2. Let U be an open subset of R", 1 <k <n, f:U — R be a function of
class C1 and (8, ¢€) € (]Ri)2 be such that

1. there exists a compact subset K of U such that infy\g | f| > 6,
2. for every y in U, | f(y)| <8 = Yw € Rk, [d}y /)*(w)| = e|w].

Then, for every function g : U — RF of class C' such that supy |gl < & and supy |ldg|l <
€, zero is a reqular value of f+g and (f +g)~1(0) is compact and isotopic to f~'(0)
m U.

Proof. The proof is analogous to that of Lemma 3.6 of [16], since |(dg)*| = lldg]. O

The following Lemma 2.3.3 establishes the existence of peak sections for higher rank
vector bundles.

Lemma 2.3.3 (Compare Lemma 1.2 of [37]). Let X be a smooth real projective manifold of
dimension n, (L, hr) be a real holomorphic Hermitian line bundle of positive curvature
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over X and (E,hg) be a rank k real holomorphic Hermitian vector bundle, with 1 <
k<n.Letx e RX, (p1,....,pn) eN" i e{l,...,k} and p’ > p1+---+ pu. There exists
dy € N independent of x such that for every d > dy, there exists o € RHY(X, E® LYY with
the property that |0l 2,y = 1 and if (y1, ..., ya) are local real holomorphic coordinates
in the neighborhood of x and (ey,...ex) is a local real holomorphic trivialization of E
orthonormal at x, we can assume that in a neighborhood of x,

O esy) = 2Py @ (14 072 + 0Oy PP, (25)

where 172 = fB(x,(logd/ﬁ)) [y ~-~yf,7"|2||ed||zdthL, with dViy, = 0"/ [y @" and where e

is a local trivialization of L whose potential —loghy (e, e) reaches a local minimum at x
with Hessian mw(.,1i.).

Proof. The proof goes along the same lines as that of Lemma 1.2 of [37]. Let n be a
cutoff function on R with n = 1 in a neighborhood of 0, and

dlz))? dlz))?
=m+2p) ( lo
4 pon log?d £ log?d
in the coordinates z on X. Then, i3y is bounded from below by —Cw, where C is some
uniform constant independent of d and x. Let s € C®(X, E® LY) be the real section

defined by
d||Z||2> PP d
= e-®e .
7l<10g2d N Yn €i

Then, from Theorem 5.1 of [6], for d large enough and not depending on x, there
exists a real section u € C®(X, E ® L?) such that du = ds, and satisfying the Hormander
L?-estimates

/X ul?, eV dVi, < fx 13512, e~V dVi, .

The presence of the singular weight e~V forces the jets of u to vanish up to order
2p’ at x. As in Lemma 1.2 of [37], we conclude that the real holomorphic section
o= (s—u)/lls—ull 2@, , satisfies the required properties. O

In this first section we will only need peak sections given by Lemma 2.3.3 with
', pi =0, whereas in the second one we will need those given with Y 7_, p; < 2.

Definition 2.3.4. Fori € {1,...,k}, let 06 be the section given by Lemma 2.3.3 with p’ = 3
and p; = --- = p, = 0. Likewise, for every j € {1, ..., n}, let a; be a section given by (25)
with p" =3, pj =1and p; =0 for [ € {1,...,n}\{j}. Finally, for every 1 <I <m <n,
let o] be a section given by (25) with p’ =3, p; = 0 for every j € {1,...,n}\{l, m} and
p1 = pm = 1if l #m, while p; = 2 otherwise.

The asymptotic values of the constants A in (25) are given by Lemma 2.3.5 (compare
Lemma 2.1 of [37]).
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Lemma 2.3.5. For everyi € {1,...,k}, the sections given by Definition 2.3.} satisfy

op/Vord" ~ e @e’+0(yl", (26)
d—00
Vie(l,....n}ol/VmoLdmt! LT vie e +0(|y)%), (27)
— 00
Viom e (1,...on) l #m o, /(TV/oLd™?) ~ yymei @+ OV, (28)

; 1
and Vi € (1,...,n}, o} /(xv/8rd"+2) ~ —yle@el+0(Iy1%.  (29)
d—o0 ﬁ
Moreover, these sections are asymptotically orthonormal as d grows to infinity, as
follows from Lemma 2.3.6.

Lemma 2.3.6 (compare Lemma 3.1 of [37]). For every x € RX, the sections (O’})]gigk and
0<jsn

(al"m) 1<i<k given by Definition 2.3.4 have L%-norm equal to 1 and their pairwise scalar
1<i<m<n

products are dominated by an O(d~") term which does not depend on x. Likewise, their
scalar product with every section of RHY(X, E® L) of L*-norm equal to 1 and whose
2-jet at x vanishes is dominated by an O(d—3/%) term which does not depend on x.

Proof. The proof goes along the same lines as that of Lemma 3.1 of [37]. O

Lemma 2.3.7. Denote by v the density of dVj, =a)"/fX 0" with respect to the
volume form dx chosen in (6), such that dVy, = v(x)dx. Then the sections given by
Definition 2.3.4 times /v(x) are still asymptotically orthonormal for (6).

Proof. This is a direct consequence of Lemmas 2.3.3 and 2.3.6 and the asymptotic
concentration of the support of the peak sections near x. O

Remark 2.3.8. The complex analogues of Lemmas 2.3.3, 2.3.5 and 2.3.6 hold;
compare [37].

2.4. Proof of Theorem 1.2.1

We first compute the expected local C'-norm of sections.

Proposition 2.4.1. Let X be a smooth real projective manifold of dimension n, (L, hr) be
a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg) be a
rank k real holomorphic Hermitian vector bundle, with 1 < k < n. We equip RX with a
field of hp-trivializations; see § 2.3. Then, for every positive R,

. 1 jo|?
limsup sup —E|( sup —— ) < 6kdrpr and

d RX &, v(x)
—>00 Xe€ B(X’ﬁ)

Ido I3

v(x

1
limsup sup WE< sup ) < 6mnkér pr,

d—oo xeRX R
B(x, 72
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where v is given by Lemma 2.5.7 and pr 1is given by (11); see (19) and (20) for the
definitions of |o| and ||do||>.

Note that a global estimate on the sup norm of L? random holomorphic sections is
given by Theorem 1.1 of [32].

Proof. The proof goes along the same lines as the proof of Proposition 3.7 of [16]. We
first establish from the mean value inequality that for every x € RX, R > 0 and s > 0,

1
E( sup |a|2> < —/ i ]E(|U|2)w:dy
Vol(B(ﬁ)) Bl )

R
Bx. 20

for d large enough, not depending on x. Then, for every z € B(x, (R +s)/+/d) NRX, we
write o = Y5, aiol + 7, where T € RHY(X, E ® L?) vanishes at z and (0{)i=1,..x are the
peak sections at z given by Definition 2.3.4. In particular, by Lemma 2.3.5, at the point z,
for every i = 1,....k, llo} .., P A/81.d"™. Moreover, since (e, ..., e,) is orthonormal

at x,
log()I° = llog@ s, ,(1+ Oz —xe?@
< 80" R (1 4 0(1))

from the inequalities (17), where the o(d") term can be chosen not to depend on x € RX.
Suppose that dy = dVj,. Then, by Lemma 2.3.6, the peak sections are asymptotically
orthogonal to each other for the scalar product defined by (6), and asymptotically
orthogonal to the space of sections t vanishing at x. We deduce that

k

i
> aio
i=1

k : 1 2
— (;w(;(z)ﬁ)ﬁflgaze—“ da (140(1))

1 ,
< EkéLd”e”(R“)z(l +o(1)).

2
E(lo(z)?) = E( )(1 +o(1))

When z ¢ B(x, (R +s/+/d)) NRX, the space of real sections vanishing at z becomes of real
codimension 2k in RHO(X, E®LY). Let (61,05, i €{1,...,k}) be an orthonormal basis
of its orthogonal complement. From Remark 2.3.8, for every i € {1,...,k}, j € {1, 2},

. 1 i 2 n(R+s)2
hénsupd—nlej(z)l < 281e ,
—00

an upper bound which does not depend on z. We deduce that

E(lo(2)P) = /
R2k

k
2 . . . .
< 28.d" " BT (1 +0(1)) § /Rz ((@h)? + (aby)? +2lai llaby)) ...
i=1

2
— Y@@ Lk a4l da
e~ &i=11%1 02 nkl'll-zldamdaoz

k
> (ah,0](2) + al,04(2))
i=1
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1 P2 (i N2 :
. —e @) (ag) dag,dag,
T

< 68,d" "R (1 4 o(1)).

We deduce the first part of Proposition 2.4.1 by taking the supremum over RX, choosing
s which minimizes gr, », and taking the limsup as d grows to infinity.

In general, the Bergman section at x for the L2-product (6) associated with the
volume form dx is equivalent to the Bergman section og at x for dVj times /v(x);
see Lemma 2.3.7. The same holds true for the o;, and the result follows on replacing d;.
with v(x)d.

The proof of the second assertion goes along the same lines; see the proof of Proposition
3.7 of [16] (and [31] for similar results). O

As in [16], we then compute the probability of the presence of closed affine real algebraic
submanifolds, inspired by an approach of Nazarov and Sodin [25]; see also [20]. Let
(U, P) be a regular pair given by Definition 2.2.1 and ¥ = P~'(0) ¢ U. Then, for every
x € RX, we set By = B(x, Ry.p)/~/d)NRX (see (23)), and denote by Proby x(E ® LY)
the probability that o € RHY(X, E ® L) has the property that ¢ ~!(0) N By contains a
closed submanifold X’ such that the pair (By, X’) is diffeomorphic to (R”?, X). That is,

Prob, 5(E® L") = pr{c e RH(X,E®LY) | (e ' (0)NBy) D X', (Bs, ¥') ~ (R, D)}

We then set Probx (E ® LY) = inf,cry Prob, s (E ® LY).

Proposition 2.4.2. Let X be a smooth real projective manifold of dimension n, (L, hr) be
a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg) be a
rank k real holomorphic Hermitian vector bundle, with 1 < k < n. Let (U, P) be a regular
pair given by Definition 2.2.1 and ¥ = P~1(0) C U. Then,

liminf Probs (E ® LY) > mq, p;
d—o00 ’

see (15).

Proof. The proof is the same as that of Proposition 3.8 of [16] and is not reproduced
here. O

The proof of Theorem 1.2.1 (resp. Corollary 2.1.2) then just goes along the same lines
as that of Theorem 1.2 (resp. Corollary 1.3) of [16].

2.5. Proof of Theorem 2.1.1

Let (U, P) be a regular pair given by Definition 2.2.1. For every d > 0, let Ay be
a maximal subset of RX with the property that two distinct points of Ay are at
distance greater than (2R, P))/«/E. The balls centered at points of Ay and of radius
Rw,p) /\/3 are disjoint, whereas those of radius 2Ry, P))/\/E cover RX. Note that if
we use the local flat metric given by a trivial hp-trivialization, then the associated
lattice has asymptotically the same number of balls as Ay as d grows to infinity, so
we can suppose from now on that the balls are defined for this local metric. For every
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o € RHY(X, E® L?), denote by N5 (Ag, o) the number of x € Ay such that the ball By =
B(x, (R(U,p))/\/ﬁ) NRX contains a codimension k submanifold X’ with X’ ¢ ¢~!(0) and
(Bg4, X') diffeomorphic to (R", X). By definition of Nx(c), Nx(Ag,0) < Nx(o) (see
§1.2), while from Proposition 2.4.2, for every 0 < € < 1,

|Adlmey p, < Y Proby s(E® L)

xelAy
[Adl

< Y jurloINs(Ag, o) = j)
j=1

< emyy p |Aalur {0 |Ns (A, 0) < emyy | Aal}
+ |Ad|l‘LR {G|NZ(Ad’ 0) 2 eml’(U_p) |Ad|} .

‘We deduce that
(1 - E)mT(U,p) < /’LR {Ul NE(G) 2 6”n‘L’(Uﬂp)ll\dl} (30)

and the result follows on choosing a sequence (U, P,), € Zx such that
. n
plggo My, ol Al = csVol,, RX)Vd ;
see (14). O

2.6. Proof of Corollary 1.2.2

In this paragraph, for every positive integer p, S? denotes the unit sphere in RPT!,
Corollary 1.2.2 is a consequence of Theorem 1.2.1 and the following Propositions 2.6.1
and 2.6.3.

Proposition 2.6.1. For every 1 <k < n, cgnx > exp(—e 1),

Recall the following.

Lemma 2.6.2 (Lemma 2.2 of [16]). If P =} ¢ . e ,',,Zil' ez €Rlz1, .. 20l

,,,,,,,,,,

then o
2 2 _ﬂlzlz o ) ) 21]."‘ln.
P12, = [E PP dz = Y ay P
(i1 in)eN"
Proof of Proposition 2.6.1. For every n > 0, we set Py(xq,...,x;) = Z';:k sz. — 1. For

every x € R" and § > 0,

n n
IPi)| <8 1-8<) x7<1+8= |ldPll3=4) x}>4(1-9).
i=k i=k

Moreover from Lemma 2.6.2,

2n—k+1) .

2 _
1Pl =1+ — n—k+2.
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Now set Ps = (Py, ..., Pr) with Pj(x) =x; for 1 < j <k—1,s0
1P}, < (k= D/m+(n—k+2) <n+1<2n.

Since for every w = (wy, ..., wx) € R¥ and every x € R",
y Yy

k—1
ldjx PEw)* = > w} + willdy Pell3.

i=1

we get that ||d|xP§||2 > min (1, 4(1 —8)) if |Pr(x)| < 8. Choose

n
Us = {(x1,...,x,) € R"| fo < 4).

j=1
Then if 0 <8 < 1,
n k—1 1
K(g:{erS|l—3< x3<1+3and2x§<1—5(1+3)2}
i=k i=1

is compact in Ug and taking R(2US Py = 4, we see that the pair (Ug, Ps) is regular in
the sense of Definition 2.2.1. The submanifold PS_I(O) C Ug is isotopic in R” to the unit
sphere "%, We deduce that (3/4, 1) € Ty, ps)- From (10) and (13) we deduce

TWws.pg) < 24k4"e'92n(2 4 n) < 3,

The estimate cgn1 > exp(—e ") follows then from (16).

Proposition 2.6.3. For every 1<k<n and every 0<i<n—k, cgi gn-i-k >
exp(—382+6").
Proof. For every 1 <k <n and every 0 <i < n—k, we set

n—k—i
Qu((x1. - X)), 01 ynmie) = (X P =22+ > yi— 1L
j=1
For every (x,y) € R x R"™™ =1 and 0 <8 < 1/2,
n—k—i
10k(x, Y| <8 & 1-8 < (Ix]*—2)>+ Z <1+
j=1

n—k—i

= iy Qcll =4 D yi+16x (x> —2)%,
j=1

with |x|> > 2—+/T+8 > 1/2. Thus ||d(x,y) Qkll5 > 4(1 —§); compare Lemma 2.6 of [16].
Moreover from Lemma 2.6.2, ”Q"”iZ < 13n%; compare §2.3.2 of [16]. Now set Q =
(Q1,..., Q) with Q;(x,y) = yp—i—j for 1 < j <k—1,s0

1017, < (k—1)/m +13n* < 13(n + 1),
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For every w = (wy, ..., w) € R¥ and every (x, y) € RIF! x R* =1

k—1

(i Q* W) =Y w} +widjx.y) Ok 13

i=1
> min(1, 4(1 — 8))|w|?

if |Qx(x, y)| <8 < 1/2. We choose
U ={(x,y) e RFl xR=i~! | x>+ |y[* < 6},
Ks =y e U= <P -22+ X0y <1sand TAT02, <1-5),

and R<2U 0) = = 6. The pair (U, Q) is regular in the sense of Definition 2.2.1 and Q~1(0) c U

is isotopic in R” to the product §¢ x §"~~k of unit spheres in Ri*t! and R*~1=k+1 We
deduce that for every positive €, (1/2—¢€, 1) € T, ), and from (10) and (13), that

Tw,0) < 24k4"e** 13(n 4 1)? (4 + 7wn) < 3176,

The estimate cgi, gni—« > exp(—e32+") follows then from (16). O

3. Upper estimates for the expected Betti numbers

3.1. Statement of the results

For every 1 < k < n, we denote by Gr(k—1,n — 1) the Grassmann manifold of (k — 1)-
dimensional linear subspaces of R*~!. The tangent space of Gr(k—1,n—1) at every
H e Gr(k—1,n—1) is canonically isomorphic to the space of linear maps L(H, HL)
from H to its orthogonal H+ and we equip it with the norm

Ae L(H, HY — AL = J/Tr(A*A) e RT.

The total volume of Gr(k—1,n—1) for this Riemannian metric is denoted by
Vol(Gr(k —1,n—1)) and we set

Vicin—1 = WVO[(GI(/C —1,n—-1))

as its volume for the rescaled metric A € L(H, H') — (1//7)||A|». Likewise, we equip
Mj._1(R) with the Euclidean norm A € M;_1(R) — ||All2 = /Tr(A*A) and set du(A) =
(l/rrk_l)e_”A”%dA as the associated Gaussian measure on My_;(R). Then, we set
Evrdet ™) = [ et Al apca)
My \(®)

Remark 3.1.1.

1. The orthogonal group O,_;(R) acts transitively on the Grassmannian Gr(k —1,
n — 1) with fixators isomorphic to Ox—1(R) x O,_r(R). We deduce that

https://doi.org/10.1017/S1474748014000115 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000115

Expected topology of random real algebraic submanifolds 689
Vol(Gr(k —1,n — 1)) = Vol(O,-1(R))/(Vol(Og—1 (R)) x Vol (Op—(R)))
k—1 .
-1 e (1 +j/2)
(n )ﬁ(k 1) (n—k) Eifl / )
k—1 [Tjch TA+/2)
where I denotes the Gamma function of Euler; see for example Lemma 3.4 of [14].

2. From formula (15.4.12) of [23] it follows that

kol pnka24)

Ep_i(|det]" 42 = [T ———.
J
o T
_ —1)!
S0 Vk*l,nflEk71(|det|n k+2) = (n(_nk)!z)k—l .

We now keep the framework of §2.1. Let us denote, for every i € {0,...,n—k}, by
bi(RCy,R) = dim H;(RC,, R) the ith Betti number of RC, and by
m;(RCy) = inf |Crlt,(f)|
f Morse on RC

its ith Morse number, where |Crit;(f)| denotes the number of critical points of index i
of f. We then denote by

E@®i) = / bi(RCq, R)dpur (o)
RHO(X,EQLY)\RA,

and

E(m;) = / mi(RCy)dpiz(0)
RHO(X,EQLY)\RA,

their expected values. The aim of § 3 is to prove the following Theorem 3.1.2; see (1) for
the definition of er(i,n —k —1i).

Theorem 3.1.2. Let X be a smooth real projective manifold of dimension n, (L,hr) be
a real holomorphic Hermitian line bundle of positive curvature over X and (E, hg) be
a rank k real holomorphic Hermitian vector bundle, with 1 < k < n—1. Then, for every
0<i<n—k,

lim sup —-E(m;) < Vi tn—1Ex_1(|det|" ") er (i, n — k — i) Vo, (RX).

1

d—00 f ré)

Note that the case k = n is covered by Theorems 1.1.1 and 3.1.3. When k =1 and E =

Ox, Volps(RP*) = /7 (see Remark 2.14 of [14]), so Theorem 3.1.2 reduces to Theorem

1.0.1 of [14] in this case. The proof of Theorem 3.1.2 actually goes along the same lines

as that of Theorem 1.1 of [14]. The strategy goes as follows. We fix a Morse function

p : RX — R. Then, almost surely on 0 € RHY(X, E ® L), the restriction of p to RCy is

itself a Morse function. For i € {0, ..., n —k}, we denote by Crit; (p|rc,) the set of critical
points of index i of this restriction and set

1
VRC) =— > &
\/E x€Criti (P|RCy )
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if n > k and vo(RCy) = ﬁ erRC(, 8y if k = n. We then set

E(vj) = / 0 (RCy)dpp (o)
RHO(X,E®L?)

and prove the following equidistribution result (compare Theorem 1.2 of [14]).

Theorem 3.1.3. Under the hypotheses of Theorem 3.1.2, let p:RX — R be a Morse
function. Then, for everyi € {0, ..., n—k}, the measure E(v;) weakly converges to

1
— Vi 11 Ex1 (et e (i, n — k — i)dvoly,
I'(3)
as d grows to infinity. When k = n, E(vy) converges weakly to 1//7T((n+ 1)/2)dvoly, .

In Theorem 3.1.3 dvol,, denotes the Lebesgue measure of RX induced by the Kéahler
metric. Theorem 3.1.2 is deduced from Theorem 3.1.3 by integration of 1 over RX. The
following paragraphs are devoted to the proof of Theorem 3.1.3.

Proof of Theorem 1.1.1. It follows from Theorem 3.1.2, the Morse inequalities,
Remark 3.1.1 and the computation VolpsRP" = /7 /T (n+ 1/2) (see Remark 2.14 of [14])
when k£ < n—1 and from Theorem 3.1.3 when k = n.

3.2. Incidence varieties
Under the hypotheses of Theorem 3.1.3, we set
RA?, ={o € RHY(X, E ®Ld)| o € RA; or pre, is not Morse}

and
Z; = {(0.x) € RH(X. E® L) \RA}) x (RX \ Crit(p)) | x € Criti(prc,)).
We set
71 :(0,x) €L — o e RHY(X, E®Q LY) and (31)
m:(0,x) €L — x € RX. (32)

Then, for every (o0, x0) € (RH*(X, E® L) \RA%) x (RX \ Crit(p))), 7 is invertible in
a neighborhood RU of op, defining an evaluation map at the critical point

eVogry) 0 € RU > myom; (o) = x € Crity(pjre,) "RV,

where RV denotes a neighborhood of xp in RX; compare §2.4.2 of [14]. We denote by
d|doev(J;,0’xO) the restriction of its differential map ds,ev(y,x,) at 00 to the orthogonal

complement of nl(ngl(xo)) in RHY(X, EQ® LY).

Proposition 3.2.1. Under the hypotheses of Theorem 3.1.3,

E(v) = ﬁ(ﬂz)*(ﬁduu&a)-

Moreover, at every point x € RX \ Crit(p),

1 _
f o ldet dievig |~ dug(o)dvoly, .
w1 (my (X))

ﬁn

(M)« (i dur)x =
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Proof. The proof is the same as that of Proposition 2.10 of [14] and is not reproduced

here. ]

Fix x € RX \ Crit(p). Then m(nz_l(x)) is open in a subspace of RHY(X, E® L?).
Namely,

mi(ry ' (1) = {o e RHOX, EQ L)) \RAY | o(x) =0 and (33)

I e R(EQ LD, LoVyo =dypl, (34)

where R((E(X)Ld)rx) is the real part of the fiber (E®Ld)‘*;. We deduce a well-defined

map
px s mi(my ' (x)) = Gr(n —k, kerd), p) x (R(E ® L)}, \ {0}) (35)
o — (ker V|yo, ). (36)

For every 0 € RHY(X, E® L)\ IRA%, the tangent space of nl(nz_l(x)) at o reads
T,mi(y ' (x)) = {6 e RHOX, E® LY) | 6(x) =0 and
3 e R(EQ LD}, | ko Vo +io Ve, =0}

Likewise, for every A € R(E® Ld)|*x \ {0}, the tangent space of ,ox_l(Gr(n —k, kerd|; p) x
{A}) at o reads

Ty07 (Gr(n —k, kerd) p) x {A})) = (6 e RH(X, EQ L) | 6(x) =0 and Ao V|6 = 0}.
Finally, for every K € Gr(n —k, kerd|, p), the tangent space of ,o;l(K, A) at o reads
Topy "(K, ) = {6 e RHY(X, E® LY)|6(x) =0, V|;61x =0 and Ao V|;6 =0}.

Let us choose local real holomorphic coordinates (xi,...,x,) of X near x such that
(0/9x1,...,0/0x,) is orthonormal at x, with d)xp being collinear to dx; and such
that K =kerV|,o = (9/0xk41,...,9/0x,). Let us choose a local real holomorphic
trivialization (e1,...,ex) of E near x that is orthonormal at x and is such that
ker Ay = (e2 el ..., e ®ed)|x. For d large enough, we define the following subspaces
of RHO(X, E® LY):

Hy = ((0§)1<i<k» (0] kp1<j<n) (37)

H;, = ((U})lgjgk) (38)

Hg = ((0}) 2<i<k ) (39)
k+1<j<n

where the sections (06)1<i<k and (0;)15’5" of RHO(X, E ® L?) are given by Lemma 2.3.3
and Definition 2.3.4. h

Hg is a complement of Topx_l(K, A) in Tgpx_l(Gr(n —k,kerdxp) x{A}), H, is a
complement of T, p;l(Gr(n —k,kerd|xp) x {A}) in Tgm(nz_l(x)) and H, is a complement
of T,m (nz_l(x)) in RHO(X, E ® L?). Then, from Lemmas 2.3.6 and 2.3.7, up to a uniform
rescaling by +/v(x), these complements are asymptotically orthogonal and their given
basis orthonormal. Hence, we can assume from now on that v = 1.
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Lemma 3.2.2. Under the hypotheses of Theorem 3.1.3, let (0,x) € Z; and A € R(E®
Ld)‘*x \ {0} be such that o V|yo =d| p. Then, Lo Vza“(x = Vz(p”RC{,)pc, so the quadratic

form Ao V2ok, is non-degenerate of index i.

Proof. The proof is similar to that of Lemma 2.9 of [14]. O

3.3. Computation of the Jacobian determinants

3.3.1. The Jacobian determinant of p,.  Under the hypotheses of Theorem 3.1.3,
let (o,x) € Z;. We set (K, L) = px(0) and denote by d|gpf the restriction of dj, px to
Hg & H,. We then denote by det(dk,,of) the Jacobian determinant of d‘g,of computed
in the given basis of H, and Hk (see (38), (39)) and in the orthonormal basis of Tk
Gr(n—k,kerd;;p) x R(E® Ld)‘*x. By assumption, the operator V|yo does not depend on

the choice of a connection V on E ® L? and is onto. We denote by V|xc7L its restriction
to the orthogonal K+ of K = ker Vixo,

Vol Kt - R(E® LY.

Likewise, for every (ck, o) € Hx @ Hy, the operators V|y6x and V|6, do not depend
on the choice of a connection V on E ® L?. Finally, we write at a point y € RX near x

k

n
a(y)zZ(aaaé+Za;a;+ > a;,,,o;m)(y>+o(|y|2),
j=1

i=1 1<I<m<n
where (af)), (a’)) and (alim) are real numbers and (aé), (a;:) and (ol"m) are given by
Definition 2.3.4. From Lemma 2.3.5 and (33), we deduce that a(i) =0= ajl. for 1 <i <k
and k+1 < j < n, and that
n+1
IMlV78LVd " laj] = lldipll +o(1), (40)
where the o(1) term is uniformly bounded over RX.

Lemma 3.3.1. Under the hypotheses of Theorem 3.1.3, let (o, x) € Z; and (K, L) = py(0).
Then, dxpl is written as

Hkx ® H), — Tx Gr(n —k, kerd),p) x R(E ® Ld)"ﬁr

(6K, 63) = (= (Veo D) b © Viebk Kk, =40 Vixdy 0 (Viea ™) 7).
Moreover, |detd|g,of|_1 = (|a11|/||k||k)|det(a§.)2<i,j<kI"_kH(1 4+ o(1)), where the o(1) term
1s uniformly bounded over RX.

Proof. Let (6x,6x) € Hx @ H) and (05)se]—e,¢[ De a path of m (n;] (x)) such that og = o
and 69 = 0k + 06;.. Then, for every s €] —¢, €[ and every vy € ker V|, 0y, there exists A; €
R(E ® L)% such that

Vixos(vs) =0 and
AsoVixo5 = d|xp.
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By derivation, we deduce

Vix60(vo) + Vixo (vp) = 0 and
)';()OVMO' +AoVo9 = 0.

By setting ¥ as the orthogonal projection of vy onto K-+, we deduce that

Vo= —(V|XGJ-)’10V|X<'7K(U0) and

ho = —Ao V&5 0(Veot)h
The first part of Lemma 3.3.1 follows. Now, recall that d)xp is collinear to dxi,
that K is equipped with the orthonormal basis (3/8xxi1,...,9/0x,), K+ with the

orthonormal basis (9/dx1, ..., d/0x;), and that kerA, is spanned by the orthonormal
basis (e2, ..., ex)|x. From Lemma 2.3.3, the map

ok € Hg — V|yok |k € L(K,ker})

just dilates the norm by the factor v/78,d"t1(1 4 0(1)), where the o(1) term is uniformly
bounded over RX. Now, since the matrix of the restriction of V|XUJ‘ to K+ Nker dxp in
the given basis of K+ Nkerd|;p and ker A equals

- 11
vV T[(SLdn-H (a;)Zgi,jgk + 0(\/3’1 ),

where the o(\/gnﬂ) term is uniformly bounded over RX, we deduce that the Jacobian
determinant of the map

M € L(K. kerA) > (Vx07ker,) ' oM € L(K, K Nkerd), p))

equals
(Vrspd" 1 det(a))axi <k (1 +0(1))F "

The Jacobian determinant of the map
ox € Hg — (V|XO'L)|_kLr)L oVx0k |k € TxGr(n —k, kerdx p)

thus equals |det(aj.)2<,-,j<k|k7” 4+ o0(1), where the o(1) term is uniformly bounded over
RX. Likewise, from Lemma 2.3.3, the map

oy € Hy— LoV|i0) € ([(L)#<

just dilates the norm by a factor /w8 d" ||| —i—o(\/gnﬂ), where the 0(«/3”“) term is
uniformly bounded over RX, while the Jacobian determinant of the map

M e (K'Y > Mo (Vo)™ e REE® LYY,
equals («/néL\/c_ln+1)_k|det(a§.)1g,-,jgkrl(l 4 0(1)), so the Jacobian determinant of the

map
63 € Hy > 2o Vi6,0 (Vo) e RIE® LY,
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equals ||A||k|det(aj-)1<,~,j<k|_l 4+ 0(1), with an o(1) term uniformly bounded over RX. As
a consequence,

|detdis p 17" = 11 ¥|det(@))asi j<k " a1+ 0(1)),

with an o(1) term uniformly bounded over RX, since the relation A o V|0 = d|, p implies
that a} vanishes for 2 < j < n. O

3.3.2. Jacobian determinant of the evaluation map. Again, under the
hypotheses of Theorem 3.1.3 and for (o, x) € Z;, we set for every y in a neighborhood of
'x’
k n
o(y) = Z ayop + Za;a}- + Z a;,,00, | ) +o(ly|), (41)
i=1 j=1 1<I<m<n

where a(i)7 aé- and alim are real numbers. We then set, for 1 <1, m < n, &lll = «/Ea}l, Ezllm =
aj, il < mand @, =a,, ifl > m. We denote by dizev!  the restriction of djsevs,y) to

H, (see (37)) and by det d|aevg’ 4 its Jacobian determinant computed in the given basis

of H, and orthonormal basis of TyRX.

Lemma 3.3.2. Under the hypotheses of Theorem 3.1.3, let (o, x) € Z;. Then,
|detdigev{l 17" = Vamd"|af||det(a})a<i. j<k|1det(@j,, )kt 1<t.m<nl (14 0(1)),

where the o(1) term has poles of order at most n — k near the critical points of p.

Remark 3.3.3. In Lemma 3.3.2, a function f is said to have a pole of order at most n — k
near a point x if 7% f is bounded near x, where r denotes the distance function to x.
Such a function thus belongs to L' (RX, dvoly,).

Proof. We choose a torsion free connection VI'X (resp. a connection VE®Ld) on RX\
Crit(p) (resp. on E®L‘1) such that V' ¥dp = 0. They induce a connection on T*X ®
E ® LY which makes it possible to differentiate twice the elements of RH O(X JE® Ld).
The tangent space of Z; then reads

ToxnTi = {(6,%) e RHO (X, E® L) x TyRX | 6(x) + Vioc = 0 and (42)

Jh e R(EQ LD}, hoVpo+AioVi6+1oV; o =0} (43)

Recall that T, RX is the direct sum K @ K+, where K = ker Vixo. We write x = (g, Xg1),
the coordinates of x in this decomposition. From the first equation we deduce, keeping

the notation of § 3.3.1, that Xx1 = —(V\xoL)’l(d(x)). From Lemma 2.3.3, the evaluation

map at x,

G € ((ob)<ick) m> 0 (x) € E®Lﬁc,

just dilates the norm by a factor /6.d"(1+ o(1)), where the o(1) term is uniformly
bounded over RX, while

|det(VixoH)| = (Vaspd ) |det(a})1<i, j<kl(1+o(1)).
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We deduce by composition that the Jacobian of the map
& € (Ophi<ick) P> dgt = —(Vieo D) (6 (x)

equals (v JTl‘dk|det(a§)2<,-,j<k||al1 |)_1(1 +o(1)), where the o(1) term is uniformly bounded
over RX. Now, equation (43) restricted to K reads

Ao V)%K>~J|K = —AoV,0k.
From Lemma 2.3.3, the map

. 1 .
o€ ((Uj)k-i-lgjgn) = —Ao V| ok € K*

just dilates the norm by a factor ||A|v/78,d"t1 (14 0(1)), where the o(1) term is uniformly
bounded over RX. Likewise, from Lemma 2.3.3, the Jacobian of the map A o V20|K K —
K* equals

(12170 v/ d"*2)" ¥ |det(@jy )i+ <t.m<nl (1 +0(1)). (44)

Here, the o(1) term is no longer uniformly bounded over RX, though. Indeed, from
Lemma 2.3.5 and (41),

roVioik = aj(IMVasLd )V Xdx+ Y a, (IMV8Ld ) dx; @ dxip,

1<I<m<n

since the relation Ao V|xo =d|yp imposes that a]]. vanishes for j > 1. Moreover, since
dp =", aidxi, with ap(x) = -+ = au(x) = 0 and |a;(x)| = ||d|xpll, we get that

n
0=V""dp)x = ar(V ¥dx))x + ) _(do; ®dx;) .
i=1

so VI Xdx k| = m | "7, doii ® dx;|| has a pole of order 1 at x. In formula (44), the

o(1) term has thus a pole of order at most n — k near the critical points of p.
We deduce that the Jacobian determinant of the map

0 € <(U;)k+1<j<n) = Xg = —()»OV20’|K)71 o(AoVoik) € K
equals (V" —kd"=K|det(@}, Jk+1<i,m<a) (14 0(1)), up to sign, where the o(1) term has
a pole of order at most n — k near the critical points of p. The result follows. O

3.4. Proof of Theorem 3.1.3
3.4.1. The case k <n. From Proposition 2.4.1 we know that

E(v) = |detdoevégx)l_lduR(a))dvoth.

mall
7 d" Ny ey ()
From the coarea formula (see [10]), we likewise deduce that
1 </ 7((11)2 dK /\d)\
e — .
tdr Gr(n—k kerd), p) xR(EE®L!)* \{0} ﬁ(”_k)(k_l)+k

E(v) =
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f . )|detd|aev({;’x)|_1|detdg,oj‘|_1dp,R(a)>dvath,
o7 LK A

since with the notation (41), o € p; (K, A) if and only if Vi € {1,...,k} and Vj € {k+
l,....,n}, ah=0= aj., while Vj > 2, a}. =0 and |a]| = ||d‘xp||/(||)ul|«/mSL«/En—H). From
Lemma 2.3.6 and the relation (40), we deduce that for every x € RX \ Crit(p) and every
(K. %) € Gr(n — k. kerdj; p) x R(E ® L)%, \ {0},

fl |detdjgevi, |~ Idetdio oy |~ d g (o)
px (K1)

- / (detdipevt? | detdip p [~ dpz (o).
d=00 Jp (K.

X

Thus, from Lemmas 3.3.1, 3.3.2 and 3.2.2, E(v;) converges to
/ |det (a})a<i j<k " * 2 dpu(al) |det(@y, )i+ 1<t m<nldn(@ly,) - .-
M1 (R) Symp (i,n—k—i)
/ @)2e @’ dK ndh
o Gr(n—k.ker dj; p) xR(EQL?)* \ {0} A% ﬁ(n—k)(k—l)+k’

where the convergence is dominated by a function in L' (RX, dvoly .); see Remark 3.3.3.
We deduce that E(v;) becomes equivalent to

—||d|xp||2 Vi i1 Ex_1(|det|" ) er (i, n —k — i) (/ ﬂdl) dvoly, .
spdntl Skt ’ RERLY\(0) [AIFH2 t
Now,
ldyep 1 [ el Yol Dldpl? [ e
w8rd"t Jreeray o) 1M1 woLd ! 1713

+o0 > 1
Vol(SK—1) / e rdr = EVol(Sk’l).
0

Since Vol(SK—1) = Zﬁk/ I'(k/2), we finally deduce that E(v;) weakly converges to

1 _ . .
rez) Vo B (det” “)ep(i,n —k —i)dvoly, ,
where the convergence is dominated by a function in LY(RX, dvoly, ). O

3.4.2. The case k =n.  When the rank of E equals the dimension of X, the vanishing

locus of a generic section o of RHY(X, E® L?) is a finite set of points. We set v =
1/ \/cjn) erRCa 8x, and define the incidence variety as

7 ={(0,x) € RH’(X, EQ L) \RA,) x RX | o(x) = 0}.

The projections 1 and 7y are defined by (31) and (32). As before, for every (o9, x0) €
RH(X, E® LY \RAy) x RX, 7 is invertible in a neighborhood RU of o, defining an
evaluation map at the critical point

V(ooxp) 1 0 € RU > myom; (o) = x e RC, NRYV,
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where RV denotes a neighborhood of x¢ in RX; compare §2.4.2 of [14]. We denote by
d|aoev({;0’ ) the restriction of its differential map djgyev(,xy at oo to the orthogonal

complement of nl(nz_l(xo)) in RHY(X, E ® L?). Then, from Proposition 3.2.1,
1

wd" Sy (o)

1
E() = W(ﬂz)*(ﬂf‘duﬂ@)u =
The space Hy = ((06)1<i<k) is a complement to Tgm(nz_l(x)) in RHO(X, E® Ld) and in
the decomposition (41), ay =0 for every i =1,..., k. The tangent space of Z at (o, x)
reads

\detdjgevis )| dur(o)dvoly, .

ToyZ = {(6,%) e RHY(X, E®Q L) x T,RX |6 (x) + V|0 (%) = 0}.

As in the proof of Lemma 3.3.2, we deduce that the Jacobian determinant of the map
&€ Hy > i=—(Vyoh) ' (6(x) e TuRX
equals v/7"d"|det(a})1<i, j<al (14 0(1)), s0
|detdizevt 7" = Vwd"|det(@})1<i j<nl (1 +0(1)),

where the o(1) term is uniformly bounded over RX. From lemma 2.3.6 we deduce that
E(v) becomes equivalent to

< / |det(a})1<i, j<,,|du(aj.)> dvoly, = E,(|det|)dvoly, .
M, (R)

Formula (15.4.12) of [23] (see Remark 3.1.1) now gives

resh
E,(|det]) = =
I'(1/2) Volps(RP™)
(see Remark 2.14 of [14]), and hence the result. O

3.5. Equidistribution of critical points in the complex case

Let X be a smooth complex projective manifold of dimension n, (L, hz) be a holomorphic
Hermitian line bundle of positive curvature w over X and (E, hg) be a rank k holomorphic
Hermitian vector bundle, with 1 < k < n. For every d > 0, we denote by L? the dth tensor
power of L and by A¢ the induced Hermitian metric on L?. We denote by HO(X, L)
its complex vector space of global holomorphic sections and by Ny the dimension of
HO(X, L?). We denote then by (.,.) the L?-Hermitian product on this vector space,
defined by the relation

Vo, 7 € HO(X, LY), (0, 1) =/ h'(o, v)dx. (45)
X

The associated Gaussian measure is denoted by uc. It is defined, for every open subset
U of H(X, LY), by

1 2
ucU) = W/;]e_””” do, (46)
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where do denotes the Lebesgue measure of HO(X, LY). For every d > 0, we denote by A?
the discriminant hypersurface of H%(X, E ® L?), that is the set of sections 0 € H(X, E®
L?) which do not vanish transversally. For every o € HY(X, E ® L)\ {0}, we denote by
C, the vanishing locus of o in X. For every 0 € HY(X, E® L)\ A4, C, is then a smooth
codimension k complex submanifold of X. We equip X with a Lefschetz pencil p : X --»
CP'. We then denote, for every d > 0, by A;’, the set of sections 0 € H(X, E ® L)) such
that o € A4, or C, intersects the critical locus of p, or the restriction of p to C, is not
a Lefschetz pencil. For d large enough, this extended discriminant locus is of measure 0
for the measure uc.

For every o € H)(X, EQ L)\ AZ, we denote by Crit(p|c,) the set of critical points of
the restriction of p to C, and set, for 1 <k <n-—1,

1
vCo = ) b (47)

n
xECrit(p‘Co)

where &, denotes the Dirac measure of X at the point x. When k =n, v(C,) =

(l/dn) ercc, Oy

Theorem 3.5.1. Let X be a smooth complex projective manifold of dimension n, (L, hyp)
be a holomorphic Hermitian line bundle of positive curvature w over X and (E,hg) be
a rank k holomorphic Hermitian vector bundle, with 1 <k <n. Let p: X --» CP! be a
Lefschetz pencil. Then, the measure E(v) defined by (47) weakly converges to (Z:})a)" as
d grows to infinity.

When & = 1, Theorem 3.5.1 reduces to Theorem 3 of [15]; see also Theorem 1.3 of [14].

Proof. The proof goes along the same lines as that of Theorem 3.1.2, so we only give a
sketch of it. Firstly, the analogue of Proposition 3.2.1 provides

1
E(v) = d—n(ﬂz)*(ﬂl*duc),

and at every point x € X \ (Crit(p) UBase(p)), where Base(p) denotes the base locus of p,

n

1 _ w
(m2)s (T dpc) = — detdioevig |~ *dum (o)

" ey o)

see Proposition 2.10 of [14]. Choosing complex coefficients in decomposition (41),
Lemmas 3.3.1 and 3.3.2 remain valid in the complex setting; see Remark 2.3.8. We deduce

that
1 "
E(w) = / |det d, evi |_2d,u(c(o) —
wd" < iy () oen n!
1 / “jal P dK ANdA
~ e —
a0 7" \ JaremtkerdypyxEoLiy o) 7 =R G—D)+k

n

nl’

_ _ [}
f 1 \detdjgev(; )| |detdio oy | 2d,u(c(a)>
px (K,2)
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with |a11| given by (40); see Lemma 2.3.6 as before. Here, Gre(n — k, kerd|, p) denotes the
Grassmann manifold of n — k-dimensional complex linear subspaces of kerd|, p. From the
complex versions of Lemma 2.3.5 and 2.3.6 (see Remark 2.3.8 and the relation (40)), we
deduce that for every x € X \ (Crit(p) UBase(p)) and every (K, A) € Gr(n —k, kerd|; p) x
(E® LY)r \ {0},

/1 |detd|gev(; )| "*|detdio oy | 2dpc(o)
px (K,2)

|a11|4”ndn/ j 2(n—k+2 j
~ |det(a’)o<i, j<k PP dpial) . ..
d—00 ”)"HZk My _1(C) J J
. / |det(@p, ) r1<tms<n | *d 1 (@ly,).
Symg (n—k)

We deduce that E(v) is equivalent to

I pI* Vol(Gre(k — 1,1 — 1))
(778, d" )2 g n=k=T)+k c ’ e
—lal? n
e 1 w
. EC (|det)P" D)o (n — k) / —_dr| —,
! oLty o) IMPEFDT |t
where ec(n — k) = fsymc =) |det A|*duc(A) and
EE (P ) = [ et AP D),
Mi—1(C)
Now,
_lal? .12
ldy. pI* e sty dplt e el 41l
5, dn )2 \ g dh = Vol S TR, IWE
(oL )= JEgra o) 1A (oL )= Jo A1

+o00 N 1
Vol(S*~1) / e Pdr = 5VOZ(SZk—l).
0

Hence, E(v) is equivalent to

n

_ _ 2k—1y pC 2(n—k+2) N
WVOZ(GI‘(C(]C 1, n 1))VOZ(S ) Ek_l(|det| )@(C(n k) )l .

where ec(n —k) = (n — k + 1)! by Proposition 3.8 of [14], Vol(S*~1) = 27k /(k — 1)!,
2T —k+2+ ) [T s TO)

E’((C_l(|det|2(n—k+2)) — — : — — :
[Zire) [Zire)

by formula 15.4.12 of [23] and

k=1 v
[l= T k=1 —k)

Vol(Gre(k—1,n—1)) = —————
Hj:rlz—k-H r'()
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by a computation analogous to the one given for the real case by Remark 3.1.1. We
conclude that E(v) weakly converges to (ﬁ:})a)", where the convergence is dominated by
a function in L'(X, (0" /n!)), for it has poles of order at most 2(n — k) near the critical
points of p and at most 2 near the base points; see [15]. O

Corollary 3.5.2. Under the hypotheses of Theorem 38.5.1, for every generic o €
RHY(X, EQ®L?), let |Critpic, | be the number of critical points of pic,. Then,

L (Critpie, 1 -l /-(L)"
dan TPICs d—oo \n —1 XC1 ’

Proof. Corollary 3.5.2 follows from Theorem 3.5.1 by integration of 1 over X. A direct
proof can be given though. The modulus of p is a Morse function on C, \ (Base (p)U
FoU Fy), where Fy (resp. Fa) is the fiber of 0 (resp. of o) of p : X --» CP'. Moreover,
the index of every critical point of |p| is n — k. As in the proofs of Propositions 1 and 2
in [15], we deduce that E(|Critp|c,|) is equivalent to |x(Cy)| as d grows to infinity. Now,

X(Co) = / enk(Co) = / cnk(Co) Ak (E® LY,
Co X

while from the adjunction formula, ¢(Cy) A c(E ® Ld)|c(, = ¢(X). Moreover, for 0 < i <k,

G (E®LY) = (¥)dici (L) +o(d), so

c(E® LY = (1+dei (L) +o((1 +dei (L)).

From the formula (1 +x)% = Z;?‘;O(—l)f((k — 14+ )H/j'k — DYHx/, we then deduce that
eni(Co) = (=" (121" e (L)' + 0(@" %) and finally that

n—

X(Co) = (—U”"(k_

1
)d”f ci1(L)* +o(d™).
1 X
Hence the result. O
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