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The buoyancy-driven motion of two identical gas bubbles released in line in a liquid at
rest is examined with the help of highly resolved simulations, focusing on moderately
inertial regimes in which the path of an isolated bubble is vertical. Assuming first an
axisymmetric evolution, equilibrium configurations of the bubble pair are determined as
a function of the buoyancy-to-viscous and buoyancy-to-capillary force ratios which define
the Galilei (Ga) and Bond (Bo) numbers of the system, respectively. The three-dimensional
solutions reveal that this axisymmetric equilibrium is actually never reached. Instead,
provided Bo stands below a critical Ga-dependent threshold determining the onset of
coalescence, two markedly different evolutions are observed. At the lower end of the
explored (Ga, Bo)-range, the tandem follows a drafting–kissing–tumbling scenario, which
eventually yields a planar side-by-side motion. For larger Ga, the trailing bubble drifts
laterally and gets out of the wake of the leading bubble, barely altering the path of the latter.
In this second scenario, the late configuration is characterized by a significant inclination
of the tandem ranging from 30◦ to 40◦ with respect to the vertical. Bubble deformation
has a major influence on the evolution of the system. It controls the magnitude of vortical
effects in the wake of the leading bubble, hence the strength of the attractive force acting
on the trailing bubble. It also governs the strength and even the sign of the lateral force
acting on this bubble, a mechanism of particular importance when the tandem is released
with a small angular deviation.
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1. Introduction

Buoyancy-driven bubbly flows are widely encountered in natural environments (e.g.
breaking waves, bubbly plumes released from the floor of lakes and oceans) and
engineering devices (e.g. bubble columns, ladle steel making, boiling flows in power
plants). Such applications have driven fundamental studies of fluid–bubble interactions
in bubbly suspensions for a long time. Early computational investigations (Sangani &
Didwania 1993; Smereka 1993) assumed spherical bubble shapes and neglected any
possible influence of vorticity in the liquid. The corresponding potential flow simulations
predict the formation of large horizontal bubble clusters. However, subsequent laboratory
experiments and simulations based on the full Navier–Stokes equations revealed a less
clear-cut picture. When bubbles remain nearly spherical and viscous effects, while smaller
than inertial effects, remain significant in the bulk, experiments (Cartellier & Riviere 2001)
and three-dimensional simulations (Esmaeeli & Tryggvason 1998; Bunner & Tryggvason
2002; Yin & Koch 2008; Loisy, Naso & Spelt 2017) show that the microstructure
is governed by the pair interaction mechanism known as drafting–kissing–tumbling
(hereinafter abbreviated as DKT) for sedimenting solid particles (Joseph et al. 1986;
Fortes, Joseph & Lundgren 1987). This is primarily a wake effect by which two particles
or bubbles initially aligned vertically are first attracted toward each other, then repel
in the horizontal direction when they get very close to each other, until they reach an
equilibrium separation and fall/rise side by side. The process is self-repeating, since at
some point each of the two bodies enters unavoidably in the wake of one of its neighbours.
In more inertial regimes, experiments (Cartellier & Riviere 2001; Zenit, Koch & Sangani
2001; Figueroa-Espinoza & Zenit 2005) and simulations (Esmaeeli & Tryggvason 1999;
Yin & Koch 2008) with nearly spherical bubbles reveal a clear tendency of bubbles to
align horizontally. However, the corresponding clusters are less strong, i.e. the bubble
distribution is less anisotropic, than predicted by potential flow theory. Simulations also
considered effects of bubble deformation. In moderately inertial regimes, the results show
that pairs of significantly oblate bubbles tend to align vertically, forming vertical streams
(Bunner & Tryggvason 2003). However, this ‘chimney’ effect disappears in strongly
inertial regimes in which bubbles tend to follow zigzagging or spiralling paths (Esmaeeli
& Tryggvason 2005).

This brief review highlights the fact that the microstructure of buoyancy-driven bubbly
suspensions is to a large extent governed by pair interactions. In particular, the two
canonical configurations in which two bubbles are released either in line or side by side
are of particular relevance to obtain a better understanding of the local mechanisms at
stake in freely rising suspensions. Configurations corresponding to intermediate initial
inclinations connect these two extreme geometries and were considered in the nearly
inviscid limit, both theoretically (assuming a spherical bubble shape) and experimentally,
by Kok (1993a,b). Detailed experiments were carried out with bubble pairs rising side
by side (Duineveld 1998; Sanada et al. 2009; Kong et al. 2019), varying the liquid
properties, bubble sizes and initial separation. Depending on flow conditions, the two
bubbles were found to repel or attract each other. In the latter case, they may reach an
equilibrium separation or collide, in which case they subsequently bounce or coalesce.
The respective roles of irrotational and vortical effects on the sign and magnitude of the
transverse interaction force were examined in the simulations of Legendre, Magnaudet
& Mougin (2003) assuming spherical bubbles. In particular, a regime map predicting
the characteristics of the final configuration as a function of the initial separation was
obtained. Influence of bubble deformation, which beyond a critical oblateness makes the
wake unstable, was considered numerically by Zhang, Chen & Ni (2019). The resulting

920 A16-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.429


Deformable bubbles rising initially in line

double-threaded wakes and their interactions were found to be critically important during
the collision stages. Indeed, in most cases this interaction is responsible for an extra
repulsive transverse force which makes the two bubbles bounce.

Not surprisingly, the in-line configuration was first considered assuming spherical
bubbles and an axisymmetric flow at all times. With an irrotational flow in the bulk
supplemented with a weak boundary layer and wake past each bubble, Harper (1970)
established the existence of a finite equilibrium separation of the two bubbles. He showed
that this equilibrium stems from the balance between a repulsive force corresponding
to the irrotational flow past the two bodies and an attractive force resulting from the
influence of the boundary layer past the leading bubble on the boundary layer of the
trailing bubble. His conclusions were qualitatively confirmed and extended toward lower
Reynolds numbers through axisymmetric computations by Yuan & Prosperetti (1994) (and
later by Hallez & Legendre (2011) who considered arbitrary orientations of the bubble
pair). This investigation prompted Harper to improve his theory by accounting for viscous
diffusion in the wake of the leading bubble, allowing him to reach a better agreement
with the numerical results for large Reynolds numbers (Harper 1997). Early experiments
with nearly spherical bubbles were performed in weaker inertial regimes corresponding
to Reynolds numbers lower than those considered by Yuan & Prosperetti (1994). Using
distilled water, Katz & Meneveau (1996) observed that under such conditions the two
bubbles always collide and coalesce. Experiments performed in silicone oils by Watanabe
& Sanada (2006) in the same regime confirmed that the bubbles collide but revealed no
coalescence. In moderately inertial regimes, these authors did not observe any head-on
collision, in line with the numerical findings of Yuan & Prosperetti (1994). However, they
found the equilibrium axisymmetric configuration to be unstable, confirming Harper’s
theoretical analysis (Harper 1970). The three-dimensional evolution of the bubble pair in
moderately inertial regimes was explored in more detail by Kusuno & Sanada (2015) and
Kusuno, Yamamoto & Sanada (2019), using ultrapure water and silicone oil, respectively.
Several interaction scenarios were reported, including the DKT process and a distinct
evolution (also noticed in the computations of Gumulya et al. 2017) in which the trailing
bubble drifts laterally without significantly modifying the path of the leading bubble. In
this case, the separation between the two bubbles remained significantly larger than their
radius throughout the rise.

Focusing on the initial in-line configuration, possibly with some small angular
deviation, the present investigation aims at providing a more detailed understanding of
the interaction processes reviewed above. For this purpose, we carried out high-resolution
three-dimensional time-dependent computations allowing a complete interplay of inertial,
viscous and capillary effects over a wide range of flow regimes. The present paper reports
on the first half of this investigation. It focuses on moderately inertial regimes in which
each bubble, taken as isolated, would follow a straight vertical path. High-inertia regimes
in which isolated bubbles follow a non-straight path will be examined in a companion
paper. The entire work is based on the open source code Basilisk (Popinet 2015) which
employs the volume of fluid (VOF) approach. This method enables the bubbles to deform
freely in the liquid as they rise and interact. Moreover, the adaptive mesh refinement
(AMR) technique embedded in this code, supplemented with a specific refinement (Zhang
et al. 2019), makes it possible to properly capture the flow in the vicinity of the bubble
surface, in the near wake as well as within the film that forms between the two bubbles
when they get very close to each other. The paper is organized as follows. The problem and
the dimensionless parameters are introduced in § 2, while § 3 summarizes the numerical
method. Before embarking on the discussion of numerical results, the fundamental
mechanisms involved in the interaction process for spherical and deformed bubbles are
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Figure 1. Sketch of the problem. (a) Initial configuration; (b) definition of some geometric parameters used
to characterize the relative position of the two bubbles.

reviewed in § 4. Predictions obtained by constraining the flow to remain axisymmetric are
discussed in § 5. Then, fully three-dimensional evolutions are examined in § 6. Influence of
bubble deformation and initial conditions on the evolution of the bubble pair is discussed
in § 7. The main findings and some open issues are summarized in § 8.

2. Problem statement

We consider a pair of deformable gas bubbles rising in line in a large expanse of
liquid. The bubbles are assumed to have the same volume V , hence the same equivalent
radius R = (3V/4π)1/3. Initially spherical, they are released from rest near the bottom
of the numerical tank, with their line of centres vertical (Y-direction) and their centres
separated by a distance S0. The initial configuration is illustrated in figure 1(a). The
three-dimensional computational domain is cubic, with a size of (240R)3, which makes
it large enough for minimizing artificial confinement effects. The two bubbles start to
rise simultaneously under the effect of buoyancy, which is somewhat different from
experimental studies in which they are usually released in sequence. During the rise,
deviations of the line of centres of the bubble pair from the vertical are characterized
by the angle θ(t) (figure 1b).

The liquid and bubble motions are governed by the incompressible one-fluid
Navier–Stokes equations

∇ · u = 0, ρ(∂tu + u · ∇u) = (ρ − ρ̄)g − ∇p + ∇ · Σ + F s. (2.1)

In (2.1), p denotes the pressure F s = γ κδsn stands for the capillary force, with γ the
surface tension, n the unit normal to the interface, κ = −∇ · n the interface mean
curvature and δs the Dirac function identifying the interface position. The suspending
liquid and the gas within the bubbles being assumed Newtonian, the viscous stress tensor
reads Σ = μ(∇u + ∇uT), with μ the dynamic viscosity and the superscript T standing
for the transpose operator. The density ρ and viscosity μ are uniform in both the liquid
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Name Abbreviation Expression

Reynolds number Re ρluT R/μl
Weber number We ρlu2

T R/γ

Galilei number Ga ρlg1/2R3/2/μl
Bond number Bo ρlgR2/γ

Morton number Mo gμ4
l /ρlγ

3

Table 1. Dimensionless parameters characterizing the system; uT is the terminal rise speed of the bubble, and
the subscript l refers to the properties of the liquid.

and the gas and experience a jump at the interface. A free-slip condition is imposed
on all four lateral boundaries, while a periodic condition is assumed to hold on the
top and bottom boundaries. In order to ensure that the net momentum flux through the
bottom and top planes is constant, and to prevent gravity from accelerating the flow in
the vertical direction, the gravity force ρg is supplemented by a body force −ρ̄g with
ρ̄ = f ρg + (1 − f )ρl, f denoting the global volume fraction of gas in the computational
domain, and ρl and ρg the liquid and gas densities, respectively (Bunner & Tryggvason
2002).

In addition to the gas/liquid density and viscosity ratios, usually very small, the
dynamics of the system is governed by three independent dimensionless numbers, among
which the dimensionless initial separation S̄0 = S0/R. The other two control parameters
may be chosen among those listed in table 1. The Reynolds (Re) and Weber (We) numbers
are generally preferred in theoretical studies. In contrast, in experiments and computations
like those discussed here, the terminal rise speed uT is unknown a priori. This is why
the Galilei (or Archimedes) number (Ga) and the Bond number (Bo) are usually selected
and are used throughout the present study. The Morton number (Mo) is frequently used
in place of the Bond number, since Mo = Bo3/Ga4. In what follows, we vary Ga and Bo
in the range 10 < Ga < 30 and 0.02 < Bo < 1.0, respectively. In this parameter range, an
isolated bubble follows a rectilinear path, i.e. path instability which is commonly observed
for millimetre-size bubbles rising in water does not take place. For such an isolated bubble,
selecting Ga and Bo in the above range leads to terminal Reynolds numbers in the range
10 � Re � 120, depending on bubble deformation. In most of the present work, the initial
separation between the two bubble centres is set to S̄0 = 8, hence the initial gap between
the two bubbles is 6R. In what follows, all variables are normalized using R and

√
R/g

as characteristic length and time scales, respectively. The bubble deformation will often
be characterized using the aspect ratio χ = b/a, where b and a denote the length of
the major and minor axes, respectively. Note that in most available studies, especially
the computational works of Yuan & Prosperetti (1994) and Hallez & Legendre (2011), the
Reynolds number is based on the bubble diameter rather than the radius. When used for
comparison, the corresponding results were converted accordingly.

3. Numerical approach

3.1. General features
The results to be discussed below are obtained by solving (2.1) with the open source
flow solver Basilisk developed by Popinet (Popinet 2009, 2015). Basilisk (see basilisk.fr)
is the successor of Gerris (http://gfs.sourceforge.net) which has been widely employed
over the last fifteen years in detailed explorations of interfacial flows. It makes use of
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(a) (b)

Figure 2. Detail of a typical grid for a bubble pair with Ga = 30 and Bo = 0.3 at t = 8. (a) Grid refinement in
the wake and boundary layer regions; four refinement levels are shown, from dark blue (Δ = R/8.5) to yellow
(Δ = Δmin = R/68). (b) Grid detail within the leading bubble and in the neighbourhood of its surface. The
gas–liquid interface is marked with a black (respectively red) line in (a) (respectively b).

Cartesian grids with a collocated discretization of the velocity and scalar fields. The
temporal discretization is based on a second-order fractional step method. In particular,
the Godunov-type unsplit upwind scheme developed by Bell, Colella & Glaz (1989) is
used to discretize the advection term, and a fully implicit scheme is used to compute the
viscous term. A second-order projection method is employed to ensure that the computed
velocity field is divergence free at the end of each time step. Interfaces are tracked and
geometrically reconstructed by a VOF approach in which an accurate well-balanced height
function method is used to calculate the interface curvature (Popinet 2009, 2018). An AMR
technique makes it possible to locally refine the grid close to interfaces and high-vorticity
regions, based on a wavelet decomposition of the gas volume fraction and velocity fields,
respectively (Van Hooft et al. 2018). This strategy greatly enhances the computational
efficiency while guaranteeing a high numerical accuracy in flow regions where subtle
physical phenomena are likely to take place. In the present study, the spatial resolution is
refined down to Δmin = R/68 close to the bubble interface. Hence, at the highest Reynolds
number considered here (Re ≈ 120), approximately 6 grid points lie within the boundary
layer whose thickness is estimated to δb ∼ Re−1/2. Figure 2 shows how a typical grid is
refined in the vicinity of the two bubbles. In addition to the near-interface zones where
Δ = Δmin = R/68, refined regions include the boundary layer and wake of each bubble,
where the local cell size is Δ = R/17. The grid coarsens drastically beyond the region
displayed in the figure, the largest cells in the far field corresponding to Δ ≈ 7.5R. Hence
the ratio between the largest and smallest cells in the whole domain is 29 = 512. Previous
works have established the capability of Basilisk to accurately simulate the dynamics of
isolated rising bubbles. Moreover, since Basilisk succeeded Gerris and essentially makes
use of the same algorithms, the numerous validations performed with Gerris over the years
also hold for Basilisk. For instance, Popinet (2017) reproduced successfully with Basilisk
the results obtained with Gerris by Cano-Lozano et al. (2016a) concerning the transition
from rectilinear to zigzagging or spiralling paths of air bubbles rising in various liquids.
In § 5 we shall compare present predictions for the equilibrium distance of two nearly
spherical bubbles (Bo � 1) rising in line with the findings of Yuan & Prosperetti (1994)
and Hallez & Legendre (2011). This comparison will establish the relevance and accuracy
of the present approach in the axisymmetric case. Nevertheless, this configuration will
be proved to be unstable in § 6. Therefore, it is necessary to determine to which extent
the fate of the three-dimensional system depends on numerical details driving the onset
of this instability. This is the purpose of Appendix A in which several specific tests are
reported.
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Most of the computations were run on a personal computer with 24 Intel® Xeon®
E5-2630 v3 processors. The Intel-MPI library was used to exchange information between
the processors. A typical run extending over 50 time units took approximately 50 days (e.g.
the case Ga = 30, Bo = 0.3 discussed in § 6.3). Note that, since capillary effects impose
a specific time step constraint, low-Bo cases require longer computational times. For
instance, to reach a given physical time, the case Ga = 30, Bo = 0.05 was 1.5 more time
consuming than the previous case. Due to the AMR procedure, the grid evolves over time.
For Ga = 30, Bo = 0.3, its size stabilizes at approximately 2.5 million cells during the
second half of the run. When additional levels of grid refinement are introduced because
the bubbles get very close to each other (see below), this size increases significantly. In
such cases, e.g. Ga = 20, Bo = 0.5 discussed in § 6.4, the complete grid involves up to
4.2 million cells.

3.2. Treatment of thin films: numerical vs physical coalescence
In the present problem it is likely that, under certain conditions, the two bubbles get
very close to each other. When this happens in a real flow, coalescence may or may
not take place, depending on the mobility of the interfaces involved and on the strength
and duration of the forces that drive the two bubbles toward each other (Chesters 1991;
Chan, Klaseboer & Manica 2011). Dealing numerically with such situations is particularly
challenging, owing to the very small scales involved. Some numerical approaches,
especially the front tracking technique (Unverdi & Tryggvason 1992; Tryggvason et al.
2001), totally prevent coalescence. The same may be achieved in VOF approaches by
identifying the two bubbles with separate markers, each of them representing the local
volume fraction of the corresponding body. However, this numerical option is not fully
appropriate here. Indeed, for the reasons mentioned below, bubbles rising in line in a
pure liquid offer one of the physical situations with the highest coalescence probability. If
coalescence takes place under real conditions, it is of course desirable to track numerically
the post-coalescence dynamics, i.e. the shape and path evolution of the resulting bubble,
which the above option would not allow.

That bubbles rising in line in a pure liquid are prone to coalesce in a number of
cases is due to the combination of two factors. First, as will be discussed in the next
section, the wake of the leading bubble provides a permanent attractive force to the trailing
bubble. Under a number of flow conditions, this force is strong enough to make the two
bubbles come virtually in contact in the head-on configuration. Second, the mobility of the
gas–liquid interfaces when the bubbles are free of any contamination makes the drainage
of the interstitial film several orders of magnitude faster than that of liquid–liquid or
contaminated gas–liquid interfaces (Vakarelski et al. 2018). The coalescence process may
take several distinct forms, depending on the fluid characteristics and bubble size. After
the two bubbles collide, the interstitial film may rupture quickly, or the bubbles may stay
almost in contact during a long time before eventually coalescing. If viscous effects are
small enough, bubbles larger than a critical size bounce after the film has been drained
partially and coalesce only after one or several bounces. Energetic considerations and
detailed experimental data may be employed to determine which of these scenarios takes
place. This issue, together with the specificities of the coalescence of ‘clean’ bubbles are
discussed in Appendix B.

In situations potentially leading to coalescence, one would ideally like to track
numerically all steps of the drainage, until non-hydrodynamic effects such as the
London–van der Waals force come into play and rupture the film. This typically
occurs when the minimum gap between the two interfaces is of the order of 10 nm.
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(a) (b) (c)

Figure 3. Topology-based AMR strategy employed to refine the grid from time t = t1 in (a) to t = t1 + Δt in
(b, c), as the liquid film separating the two bubbles gets squeezed.

For millimetre-size bubbles, this would require approximately ten additional grid levels
beyond the one corresponding to Δmin. Since the largest scales to be resolved in the present
context are of the order of 10 cm, i.e. seven orders of magnitude larger, the corresponding
computational cost would be prohibitive. At least, it is possible to track the first stages of
the drainage based on a suitable grid refinement technique. Then, referring to the available
knowledge summarized in Appendix B, one can reasonably predict which coalescence
scenario is taking place in the real system, although the grid resolution does not allow
all its details to be captured. The main shortcoming of this approach is that bubbles
usually merge too early in the computations, i.e. they would merge at a higher vertical
position in a real flow. Nevertheless, as we discuss in Appendix B, the theoretical and
experimental knowledge available on the coalescence of nearly spherical clean bubbles
allows the corresponding temporal shift to be estimated in a number of cases.

To track the first steps of the drainage, we developed a specific topology-based AMR
scheme to refine the grid within the gap (Zhang et al. 2019). The corresponding algorithm
checks whether or not any cell crossed by the gas–liquid interface has at least one
neighbouring cell filled with only liquid or gas. If not, the cell crossed by the interface is
automatically refined. This adaptive strategy is illustrated in figure 3. At t = t1 (panel a),
the two interfaces are separated by a ‘pure’ liquid cell, but this is no longer the case in (b)

where the cells standing in the yellow region all contain a non-zero gas fraction. Therefore,
these cells are refined by a factor of 2 in each direction, as shown in (c). Ultimately, for
the reasons discussed above, we let the two interfaces merge numerically if the number N
of successive refinements required to satisfy the above ‘pure liquid neighbouring cell’
criterion exceeds a prescribed value. In practice, this is achieved by merging the two
markers which identify each bubble in all previous steps. The three-dimensional results to
be discussed later were all obtained with N = 2, so that the minimum cell size in the gap
was δmin = Δmin/2N = R/272. For a 0.25 mm radius bubble, this implies δmin ≈ 1 μm,
which is still two orders of magnitude larger than the typical thickness at which the
interstitial film actually ruptures.

4. Fundamental mechanisms: role of fluid inertia, wake effects and bubble
deformation

Before analysing the computational results, a brief review of the main physical
mechanisms involved in the problem is in order. First of all, it is key to keep in mind
that finite-Reynolds-number interactions between two bubbles are controlled by two
antagonistic effects. The first of them is due to the outer flow past the bubble pair,
in which irrotational mechanisms prevail. In the potential flow approximation, exact
results for the fluid kinetic energy have been established for two spherical bubbles having
identical radii, from which the interaction force may be obtained (Voinov 1969; Voinov,
Voinov & Petrov 1973; Van Wijngaarden 1976; Miloh 1977; Bentwich & Miloh 1978;
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Biesheuvel & Van Wijngaarden 1982; Kok 1993a). These predictions indicate that the
interaction is repulsive when the two bubbles rise in line because the fluid velocity reaches
a minimum in the gap, inducing a pressure maximum there (Harper 1970). Conversely, the
interaction is attractive when the bubbles rise side by side, owing to the flow acceleration
(hence the pressure minimum) in the gap. The critical angle at which the interaction force
changes sign depends on the separation between the two bubbles, ranging from 35◦ when
they are in contact to a value close to 54◦ when they are far away from each other (Kok
1993a).

Finite-Reynolds-number effects manifest themselves in the generation of vorticity at
the bubble surface, owing to the shear-free condition obeyed by the carrying liquid when
the gas-to-liquid viscosity ratio is negligibly small and the interface is uncontaminated
by surfactants. Diffusion and advection of this vorticity in the surrounding fluid results
in a boundary layer and a wake past each bubble. Vortical effects at the bubble surface
lower the pressure at the rear stagnation point compared with that at the front (Kang &
Leal 1988), so that the pressure at a given position along the wake axis is lower than
it would be in the potential flow limit. When the bubbles rise in line, this pressure drop
makes the trailing bubble (hereinafter abbreviated as TB) sucked toward the leading bubble
(hereinafter abbreviated as LB). In contrast, when they rise side by side, the interaction of
the two wakes results in a pressure maximum in the gap, hence a force tending to move
the two bubbles away from each other.

In a given geometrical configuration of the tandem, the relative magnitude of the
above two antagonistic effects depends on the Reynolds number, assuming the bubbles
to keep a spherical shape. Vortical effects dominate when Re is low enough, while the
interaction is expected to become close to potential flow predictions for large enough Re.
For this reason, keeping the Reynolds number and the inclination of the line of centres
fixed, the overall interaction force vanishes when the separation between the two bubbles
takes a specific value, S̄e(Re, θ). The smaller Re is, the shorter (respectively larger) this
equilibrium separation is for θ = 0◦ (respectively θ = 90◦). The two bubbles collide if
S̄e is small enough, i.e. S̄e ≤ 2 for spherical bubbles. Then, assuming that the interface
is uncontaminated, they may either coalesce, bounce or stay in contact for a very long
time, depending on whether or not the net attractive force is large enough to achieve the
drainage of the interstitial film. Approximate models have been proposed to predict S̄e
in the in-line configuration for spherical bubbles. These models consider that the wake
of the LB, taken into account by using Oseen or high-Re far-wake velocity distributions,
decreases the fluid vertical velocity ‘felt’ by the TB at a given position by an amount equal
to the cross-sectional average of the velocity defect at that position (Katz & Meneveau
1996; Ramírez-Muñoz, Gama-Goicochea & Salinas-Rodríguez 2011; Ramírez-Muñoz
et al. 2013).

When the TB moves behind the LB with some offset from the wake axis it faces
a non-uniform, asymmetric flow which may locally be considered as a shear flow. A
spherical bubble rising in a linear shear flow is known to experience a shear-induced lift
force (Auton 1987; Legendre & Magnaudet 1998). If the bubble moves faster than the fluid
along the streamlines of the base flow, this sideways force deviates it toward the direction
of the descending fluid. In the in-line configuration, the relative flow faced by the TB
moves downwards and its velocity grows with the distance to the wake axis. Therefore
the sideways force tends to move the TB out of the wake of the LB, making the in-line
configuration unstable with respect to an infinitesimal lateral deviation (Harper 1970).
As will be seen later, this instability plays a crucial role in the evolution of a bubble
pair. The mechanisms reviewed so far still exist of course when bubble deformation
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becomes significant. However, their magnitude is deeply influenced by the bubble shape.
In particular, a key feature of vorticity generation on a curved shear-free interface is that
the resulting tangential vorticity, say ωs, is proportional to the product of the local surface
curvature and tangential velocity of the fluid (Batchelor 1967). This makes the magnitude
of ωs increase with bubble deformation. In contrast, for a given interface shape, ωs does
not depend on Re when the Reynolds number is large, unlike the more familiar case of a
no-slip surface. In the limit Re � 1, the maximum of ωs (normalized by the rise velocity
and equivalent bubble radius) at the surface of an oblate bubble with an aspect ratio χ

increases by a factor of 4 from χ = 1 (spherical bubble) to χ = 2, eventually growing as
χ8/3 when χ � 1 (Magnaudet & Mougin 2007). In the in-line configuration, this dramatic
increase implies that the attraction of the TB toward the LB becomes increasingly strong
as the latter deforms. Consequently, bubble deformation is expected to reduce significantly
the equilibrium separation, favouring coalescence. Another consequence of deformation
is its influence on the magnitude and even the sign of the sideways force acting on the TB
when the axial symmetry of the in-line configuration is broken by some lateral disturbance.
The corresponding mechanisms are discussed in Appendix C.

5. Axisymmetric configuration

Numerical simulations of the in-line configuration based on boundary-fitted grids were
reported by Yuan & Prosperetti (1994) and Hallez & Legendre (2011) for spherical
bubbles. Here, in contrast, the bubbles deform freely and continuously while rising, which
allows us to investigate the influence of their deformation on the interaction process. In
this section, we restrict the generality of the problem by constraining the bubbles to follow
a straight vertical path. For this purpose, instead of the cubic domain described earlier, we
use an axisymmetric domain whose radius and height are both 240R. Bubbles are released
on the symmetry axis and rise along it. Computations are carried out with gas/liquid
density and viscosity ratios set to 10−3 and 10−2, respectively.

Figure 4 displays the final bubble shapes and relative positions obtained through
32 computational runs covering the domain (10 ≤ Ga ≤ 30, 0.02 ≤ Bo ≤ 1.0), all with
S̄0 = 8. Red bubbles maintain an equilibrium distance which is finite in the computational
sense, i.e. the gap that separates them at steady state exceeds the minimum cell size δmin
allowed by the specific topology-based AMR treatment described in § 3.2. Conversely,
blue bubbles are such that the ‘final’ gap is thinner than δmin, implying that coalescence
is about to take place numerically. Consider a given row in the figure, i.e. a given Ga.
Increasing Bo increases the ability of the bubbles to deform. Hence, it reduces the final
equilibrium separation distance S̄e between their centroids, which makes coalescence more
likely to occur. For Ga = 10, increasing the Bond number from Bo = 0.02 to Bo = 0.1
makes the Weber number increase from We = 0.18 to We = 0.90. As a consequence, the
final deformation of the LB and that of the TB rise from χ = 1.02 to χ = 1.1 and from
χ = 1.01 to χ = 1.04, respectively. Although still modest, this deformation makes the
bottom region of the LB significantly flatter than the top region of the TB, allowing a
thin-gap region with a finite area to develop. However, this deformation is small enough for
the rise speed to remain virtually unaffected, which leaves the terminal Reynolds number
unchanged throughout this range of Bo (Re ≈ 21). That the LB deforms more than the TB
becomes clearer as Ga increases. This is directly due to the fact that the wake of the former
reduces the pressure at the front stagnation point of the latter, a mechanism often referred
to as the ‘sheltering’ effect. Hence, the pressure difference between the front stagnation
point and the bubble equatorial plane, which drives the deformation (Moore 1959, 1965), is
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Figure 4. Final bubble shapes and separations observed in the axisymmetric configuration. Red bubbles
maintain a finite separation, while blue bubbles are about to coalesce.

smaller on the TB. For Ga = 30, the final separation distance decreases from S̄e = 5.72 to
S̄e = 3.63 when the Bond number increases from 0.05 to 0.15. The Weber number is now
of O(1), increasing from 0.65 to 1.44. At the same time, the Reynolds number decreases
from 108 to 91, due to the drag increase associated with the increasing oblateness of the
two bubbles.

The variation of S̄e with Re and We may be obtained by considering the bubble pairs
of figure 4 once they have reached their final configuration. The result is displayed in
figure 5. Specific runs were carried out with Bo = 0.005 (hollow circles in figure 5a) to
maintain the interface shape very close to a sphere, in order to compare present predictions
with results available for spherical bubbles. For (Ga, Bo) = (30, 0.005), the final aspect
ratio of the LB (TB) is χ = 1.023 (χ = 1.017), and the deformation is even less for lower
Ga. Therefore, the corresponding equilibrium distance is expected to agree well with the
correlation proposed by Yuan & Prosperetti (1994), namely

S̄e(Re) = 4.40 log10 Re − 3.06. (5.1)

As figure 5(a) reveals, present low-Bo predictions are in excellent agreement with (5.1)
for Ga ≥ 20. For lower Ga, the numerical values of S̄e(Ga, Bo = 0.005) are found to lie
slightly below the prediction (5.1). This is in line with the results of Hallez & Legendre
(2011), which indicate for instance that S̄e(Re = 20) is approximately 5 % less than
predicted by (5.1). Figure 5(a) shows that the present results for Bo = 0.005 (open circles)
are in excellent agreement with those of the latter authors (open triangles) throughout
the range of Reynolds numbers considered here. This establishes the accuracy of present
computations in the in-line configuration.

As Bo increases, the equilibrium separation quickly falls below that predicted by (5.1)
and a correlation in the form S̄e = f (Re, We) must be sought. A first attempt aimed at
recovering (5.1) in the limit We → 0 was not successful. After several trials, we found that
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Figure 5. Variation of the final equilibrium distance S̄e against: (a) the Reynolds number; and (b) the Weber
number. Both Re and We are based on the final rise velocity of the bubble pair. Each series identified with a
given colour corresponds to the same Ga and different Bo (increasing from top to bottom). In (a), the open
circles correspond to Bo = 0.005, while the solid line and open triangles refer to the prediction (5.1) and the
numerical results of Hallez & Legendre (2011) for spherical bubbles, respectively. The dotted lines in (a, b)

correspond to the prediction (5.2), while the dash-dotted line in (a) represents this prediction evaluated for
We = 0.

the entire set of present results is best approached by the fit

S̄e(Re, We) = 2.025 log Re − 3.56 − 0.98We − 0.36We2. (5.2)

Figure 5(a) indicates that, once the Weber number has been properly eliminated (We =
(Re/Ga)2Bo), all numerical data collapse onto the corresponding curves (dotted lines).
Similarly, figure 5(b), in which Re has been eliminated for the benefit of Ga and Bo,
confirms that numerical data all follow the We-dependence defined by (5.2). Therefore
(5.2) is seen to provide a valid prediction of the equilibrium separation distance at
least in the range 20 � Re � 120 and 0 < We � 1.5. Actually, we also performed some
computations for Ga = 40 and Ga = 50 and found that the equilibrium separation
obtained in the range 0.02 ≤ Bo ≤ 0.2 is still correctly predicted by (5.2). Note that,
although (5.2) does not reduce to (5.1) in the limit We → 0, the corresponding fit (red
dash-dotted line in figure 5a) achieves a better agreement than (5.1) with present low-Bo
predictions, as well as with the results of Hallez & Legendre (2011). Nevertheless, it must
be kept in mind that neither (5.1) nor the low-We limit of (5.2) remains valid for Re � 15,
since both expressions predict S̄e < 2 at lower Re. In the low-but-finite-Reynolds-number
range, asymptotic results for rigid spheres (Happel & Brenner 1963) may readily be
transposed to bubbles using the scaling argument developed by Legendre & Magnaudet
(1997). By doing so, it is concluded that the two bubbles always collide for Re � 1,
since the LB experiences a larger drag than the TB. Actually, there are computational
indications that collision takes place as soon as Re ≤ 15.5 (Watanabe & Sanada 2006),
which corresponds well to the threshold predicted by (5.2) (S̄e(Re, We = 0) = 2 for
Re = 15.55).

6. Three-dimensional configurations

6.1. Overview of the results
As mentioned earlier, it has been known since Harper (1970) that the in-line configuration
of two clean spherical bubbles is unstable with respect to side disturbances when the
Reynolds number is large. Experimental investigations carried out under surfactant-free
conditions (silicone oils) in the range 10 � Re � 150 confirm this prediction (Kusuno &
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Sanada 2015; Kusuno et al. 2019). We performed fully three-dimensional time-dependent
simulations to assess this stability issue and explore its consequences. Similar to the
axisymmetric case, the gas/liquid density and viscosity ratios were set to 10−3 and
10−2, respectively. In agreement with the above experimental and theoretical findings,
we observed that the bubble pair never maintains a straight vertical path except when the
Bond number is large enough for coalescence to eventually happen. We actually identified
three drastically different evolutions, depending on the value of the Galilei and Bond
numbers. Beyond a critical Bond number, Boc(Ga) which increases approximately from
0.2 for Ga = 10 to 0.5 for Ga = 30, the two bubbles collide and eventually coalesce,
this ‘coalescence’ having to be interpreted in the light of the discussion of § 3.2 (see
below). Predictions of the three-dimensional and axisymmetric simulations superimpose
for Bo � 0.5 when Ga ≤ 20 (and for Bo � 1 when Ga = 30), indicating that the in-line
configuration is stable with respect to azimuthal disturbances for sufficiently deformed
bubbles. In contrast, for Bo < Boc(Ga), the TB escapes from the wake of the LB at
some point, and the two go on rising with their line of centres more or less inclined
with respect to the vertical and their centroids widely separated. In such cases, we found
that the interplay of the two bubbles after the three-dimensional effects set in may follow
two markedly different scenarios. One is clearly a DKT-type mechanism. In this case,
both bubbles deviate from their initial trajectory and eventually rise almost side by side
along two straight vertical lines distinct from the initial path. In contrast, in the other
scenario, which we refer to as asymmetric side escape (hereinafter abbreviated as ASE),
the lateral drift of the TB leaves the path of the LB almost unaffected. Hence, this bubble
goes on rising virtually along its initial path, while after the system has reorganized itself,
the TB follows a markedly distinct vertical path. The structural differences between the
configurations corresponding to the DKT and ASE scenarios are well visible in the recent
observations of Kusuno et al. (2019); see especially their figures 4 and 5.

Figure 6 displays the phase diagrams and typical paths corresponding to the above three
evolutions, still for S̄0 = 8. The influence of initial conditions, i.e. angular inclination and
separation, on the borders of the different subdomains will be discussed in §§ 7.3 and 7.4,
respectively. The influence of numerical parameters, among which the grid resolution, on
the coalescence threshold, i.e. on Boc(Ga), is estimated in Appendix A. These technical
aspects are found to barely change Boc(Ga) by a few per cent.

As the thin black lines indicate, coalescence only takes place in the present configuration
in liquids with a sufficiently high Morton number, from Mo ≈ 8 × 10−7 for Ga =
10 to Mo ≈ 1.5 × 10−7 for Ga = 30. This means in particular that bubbles rising
in pure water (Mo ≈ 2.6 × 10−11) never coalesce in the Ga-range considered here.
Interestingly, figure 6(a), (b) also reveals that, under some conditions, such as (Ga, Bo) =
(20, 0.2) or (30, 0.2), bubbles that would coalesce if the system were constrained to
remain axisymmetric actually escape from coalescence through the ASE scenario. From
figure 6(b), it may also be concluded that for Re ≈ 15, even an 8 % departure from
sphericity is sufficient to lead to coalescence. Actually, the discussion of Appendix B
indicates that, for such modest Reynolds numbers, viscous effects tremendously delay
the drainage of the interstitial film. This is why experiments performed in this regime
(Sanada, Watanabe & Fukano 2006; Watanabe & Sanada 2006) reveal that, after the two
bubbles collide, they merely stay ‘glued’ to each other and rise as a single ‘dumbbell’
bubble without coalescing during the time window of the observations. However,
since all forces involved in the physical system, including the London–van der Waals
force, are attractive, there is no doubt that such bubbles eventually coalesce.
Unfortunately, the spatial resolution of the present simulations is clearly insufficient to
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Figure 6. Set of configurations encountered in the three-dimensional simulations: (a) (Ga, Bo) phase diagram;
(b) (Re, χ) phase diagram (for each (Ga, Bo) pair, Re and χ are the steady-state values determined with the
corresponding isolated bubble); (c) typical trajectories illustrating each of the three configurations. Bullets:
DKT scenario; solid squares: ASE scenario; solid triangles: collision followed by coalescence. In (c), the three
images from left to right correspond to (Ga, Bo) = (10, 0.1), (30, 0.3) and (20, 0.5), respectively. The thin
solid lines in (a) are the iso-Mo lines corresponding to different liquids, with water at the very bottom, then
silicone oils T0-T11 of increasing viscosity from bottom to top (see e.g. Zenit & Magnaudet (2008) for the
corresponding physical properties). The dashed line in (a, b) separates the subdomain of weakly deformed
bubbles in which a finite equilibrium separation is reached in the axisymmetric case, from that in which the
bubbles eventually coalesce.

reproduce this slow coalescence process. That is, the computations correctly predict the
final state of the physical system but this state is reached too early. This underestimate
of the coalescence time still exists at larger Reynolds number (see § 6.4) but, for
reasons discussed in Appendix B, reduces as Re increases. In figure 6(b), the maximum
deformation below which the two bubbles do not coalesce is seen to increase significantly
with Re. For instance, bubbles with χ ≈ 1.5 follow an ASE scenario for Re ≈ 70, but
coalesce for Re ≈ 35 (in these estimates, χ and Re are evaluated from the steady-state
properties of the isolated bubble corresponding to the same (Ga, Bo) set).

Figure 7 depicts the bubble shapes and relative positions during the lateral escape of
the TB or the coalescence process. Considering the DKT (green) and ASE (red) regimes
at a fixed Ga, the figure indicates that the larger Bo the shorter the separation during the
escape stage. This may be interpreted as a stabilizing effect of the deformation, since the
bubble pair is able to maintain a vertical path during a longer time (i.e. down to a shorter
separation) when the Bond number increases. Then, coalescence takes place when Bo
exceeds the critical threshold Boc(Ga) which is seen to increase significantly with Ga, as
already noticed in figure 6(a). In most cases, coalescence is reached through a head-on
approach, i.e. without any prior escape of the TB, the axisymmetric film in the gap being
gradually squeezed. However, for Ga = 30 and Bo = 0.5, an intermediate configuration
corresponding to an oblique approach is noticed. These different regimes are examined in
more detail in the rest of this section.
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Figure 7. Snapshots of the bubble shapes and relative positions observed during the lateral escape of the TB or
the pre-coalescence process. Red, green and blue pairs correspond to the ASE, DKT and coalescence scenarios,
respectively. In the red and green regions, the snapshots are taken by the time the horizontal distance between
the two centroids is approximately equal to one bubble initial radius; in the blue region, each snapshot is the
last in a run before numerical coalescence occurs. Since successive snapshots are separated by a finite time
interval, the remaining time until coalescence may differ among the various blue pairs.

6.2. Drafting–kissing–tumbling
The DKT scenario followed by sedimenting particle pairs has been widely described
for spheres (Joseph et al. 1986; Fortes et al. 1987; Feng, Hu & Joseph 1994), thick
disks (Brosse & Ern 2014) and, under certain conditions, prolate spheroids (Ardekani
et al. 2016). In short, owing to the sheltering effect induced by the wake of the leading
body, the trailing body first catches up with it (drafting) until the two collide (kissing).
Then the resulting prolate compound body becomes unstable to transverse disturbances,
which makes it rotate (tumbling) in such a way that the line joining the centroids of
the two individual bodies tends to become horizontal, letting them eventually fall/rise
separately in a side-by-side configuration. A similar behaviour of bubbles rising in line
has been reported experimentally by Kusuno et al. (2019) in the range 10 � Re � 25,
0.3 � We � 1.1. Here, we identified it for bubble pairs corresponding to Ga � 12 and
Bo � 0.2. With (Ga, Bo) = (10, 0.02), i.e. Mo = 8 × 10−10, the final state corresponds to
Re ≈ 16 and χ ≈ 1.02, which indicates that the bubbles shape remains close to a sphere.
The corresponding evolution is displayed in figure 8.

As revealed in panel (a), the tumbling process starts at t � 37 when the two bubbles
reach the same rise velocity (see figure 9a). After this process is completed (say at t = 54
in figure 8a), both paths have experienced large lateral deviations. Their lateral separation
is approximately 2.3, the LB having been slightly more deviated. They stand virtually
side by side and keep on rising in this configuration, although the rise velocity of the
(formerly) TB is barely larger than that of the LB, inducing a tiny difference in the final
altitude reached by the two bubbles. During the side-by-side rise, the lateral separation S̄r
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Figure 8. Path of a bubble pair following a DKT scenario (Ga = 10, Bo = 0.02). (a) Side and top views, with
r the radial distance to the initial path and numbers referring to the dimensionless time at the corresponding
position; (b) three-dimensional streamlines past the bubbles at different instants of time, in the reference frame
of the LB. A zoom of the flow field in the gap is provided for t = 30 and t = 38, to highlight the inception of
the non-axisymmetric fluid motion.

evolves significantly, until an equilibrium value S̄re � 2.55 is reached. This is consistent
with the findings of Legendre et al. (2003), which indicate that, in this configuration, the
transverse force acting on a pair of spherical bubbles almost vanishes for S̄r = 2.5 when
Re = 25 (their figure 13). For Y > 175, the centre of inertia of the bubble tandem is seen
to drift slightly towards the left, a consequence of the tiny inclination of its line of centres.
The sign of this drift is consistent with the conclusions of Hallez & Legendre (2011) who
found (their figure 9b) that in the range 10 ≤ Re ≤ 25, the centre of inertia drifts laterally
toward the position of the higher bubble, provided 40◦ � θ < 90◦. The horizontal trace
of the TB and LB paths in figure 8(a) indicates that the entire motion remains planar and
takes place within a vertical plane. Hence, by breaking the initial axial symmetry of the
flow, the DKT mechanism changes the initial one-dimensional path into a two-dimensional
path, but the latter keeps track of the former since the preferential direction of the bubble
motion remains unchanged.

Some three-dimensional streamlines past the two bubbles are displayed in figure 8(b).
No standing eddy is observed at the back of the bubbles. This is in line with the generating
mechanism of vorticity on a curved shear-free surface discussed in § 4, which maintains
the flow past a shear-free sphere unseparated whatever the Reynolds number (Blanco
& Magnaudet 1995; Magnaudet & Mougin 2007). At t = 38, the separation has almost
reached its minimum (S̄ ≈ 2.3) and the flow is still almost axisymmetric, except within
the gap where a small left–right asymmetry is discernible in the enlarged view. In the
present case, the origin of the axial symmetry breaking stands in tiny numerical
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Figure 9. Evolution of several characteristics of a bubble pair with (Ga, Bo) = (10, 0.02) undergoing a DKT
interaction. (a) Vertical velocity component of the LB (solid red line) and TB (dashed blue line); (b) same
for the horizontal component; (c) vertical (red line, left axis) and horizontal (blue line, right axis) separations;
(d) inclination of the line of centres with respect to the vertical. Open squares and circles in (a,c) refer to the
axisymmetric prediction.

asymmetries, in the first place those resulting from the pressure field returned by the
multilevel Poisson solver (see Appendix A). Tumbling then starts. At t = 44 and t = 48,
the flow field exhibits strong left–right asymmetries, which result in transverse forces
that act to move the two bubbles in opposite directions. Later, say for t ≥ 54, the flow
field gradually rearranges towards a left–right symmetric configuration corresponding
to a side-by-side motion of the two bubbles, with an equilibrium horizontal separation
S̄re ≈ 2.55.

The evolution of the rise speed of the two bubbles is plotted in figure 9(a). The
three-dimensional prediction is seen to coincide with its axisymmetric counterpart up to
t ≈ 45, i.e. throughout the time period during which the bubble pair moves in straight line
and even during the early stage of the tumbling process. That the three-dimensional and
axisymmetric predictions virtually superimpose up to t = 37 proves the reliability of the
former. Note that the red and blue curves superimpose up to t = 4, which corresponds
to the very early stage during which the two bubbles rise independently. During the
next stage, say 4 < t < 20, the TB goes on accelerating while the rise speed of the LB
(hereinafter denoted as VLB) stays almost constant. This corresponds to the early stage
of the interaction during which the TB is sucked in the wake of the LB while the latter
remains unaffected. Then, from t = 20 to t = 37, the two bubbles get close enough for the
TB to modify the wake of the LB, the rise speed of which increases sharply until the two
bubbles rise with the same speed.

Tumbling starts at t ≈ 38, without any real ‘kiss’ since figure 9(c) indicates that S̄ never
fell below 2.3 at previous times. Up to t = 46, no change is noticed in the rise speed of the
two bubbles, nor in their vertical separation, although the tumbling process is going on, as
the sharp rise of their lateral velocities (figure 9b) and that of the inclination of their line
of centres (figure 9d) confirm. The situation significantly changes within the next short
stage 46 ≤ t ≤ 50, during which VLB and VTB (the rise speed of the TB) drop sharply
and the line of centres rotates by more than 30◦. Not surprisingly, this rotation forces the
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lateral separation to increase dramatically, from S̄r ≈ 1 at t = 46 to S̄r ≈ 2.5 at t = 50.
Conversely, the vertical separation is reduced to S̄ ≈ 2 at t = 50. The tumbling motion
is also responsible for the slowing down of the two bubbles, as it makes the flow around
them fully three-dimensional, which enhances the dissipation in the liquid, hence the drag
on each bubble.

Tumbling goes on more slowly until t ≈ 85, when the side-by-side configuration (θ =
90◦) and the equilibrium horizontal separation (S̄re ≈ 2.55) are reached. Ultimately, θ

slightly exceeds 90◦, in line with the tiny difference between the final positions of the two
bubbles noticed in figure 8(a).

6.3. Asymmetric side escape
Computations carried out with somewhat larger values of the Galilei number (15 ≤
Ga ≤ 30) but still fairly low Bond numbers reveal a drastically different evolution of
the bubble pair. In what follows, we select the case (Ga, Bo) = (30, 0.3), i.e. Mo =
3.3 × 10−8, as typical of this regime to discuss the corresponding dynamics. With these
parameters, an isolated bubble follows a rectilinear path (Cano-Lozano et al. 2016a,b)
and its characteristic rise Reynolds number and aspect ratio at steady state are Re = 66
and χ = 1.62, respectively. The corresponding paths, together with the streamlines past
the two bubbles, are shown in figure 10. No standing eddy is observed at the back of the
bubbles, in line with the flow structure past an isolated bubble with the same parameters
(Blanco & Magnaudet 1995). In panel (b), only streamlines emanating from the right
half-plane ahead of the LB are shown for 10 ≤ t ≤ 16 in order to help identify the onset
of the non-axisymmetric motion. While all streamlines get around the TB within the right
half-plane at t = 10, one of them deviates to the left half-plane at t = 11, indicating that
axial symmetry has just broken. At this stage, the separation between the two bubbles
is still large (S̄ ≈ 6.8), in contrast with the situation observed in the DKT scenario.
According to panel (a), the TB also departs from its original vertical path at t ≈ 11, but
the LB is left virtually unaffected by this departure until t ≈ 15. At this point, the TB still
stands in the wake of the LB but its equatorial plane has tilted clockwise, which distorts
the flow in the gap and makes it significantly asymmetric at the back of the LB. This
asymmetry induces a slight anticlockwise tilt of the LB path until t ≈ 20, whereas the TB
goes on drifting laterally and escapes completely from the wake of the LB. Then the TB
rotates anticlockwise in such a way that its equatorial plane becomes again horizontal,
and its drift stops at t ≈ 23, when the lateral separation between the two bubbles is
approximately S̄r ≈ 4. Due to this temporary anticlockwise rotation, the TB slightly drifts
back until t ≈ 28. The motion of the bubble pair has remained planar up to this point.
However, at t ≈ 28, they both start to drift slightly out of their previous plane of rise.
Then, each bubble goes on rising along a straight but slightly inclined path. Both paths
being tilted in the same direction but the angle being larger in the case of the LB, the lateral
separation weakly but consistently increases over time. As the TB spent part of its potential
energy to move out from the wake of the LB during the time period 11 � t � 23, it never
catches up, and the LB remains significantly ahead of the TB in the final configuration.

Figure 11 describes the evolution of the same four characteristics as in figure 9 for
the above bubble pair. According to the axisymmetric prediction reported in panel (c),
the vertical separation decreases monotonically and the two bubbles enter the initial
stage of coalescence at t ≈ 23. However, the three-dimensional evolution reveals a
totally different evolution beyond t ≈ 11, although the rise speed of both bubbles and
their vertical separation do not exhibit discernible differences with the axisymmetric
results up to t ≈ 16. At this time, VTB starts to drop sharply and equals VLB at t ≈ 18.
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Figure 10. Path of a bubble pair following an ASE scenario (Ga = 30, Bo = 0.3). (a) Side and top views
of the path with numbers referring to the dimensionless time at the corresponding position of the TB; (b)

three-dimensional streamlines past the bubbles at different instants of time, in the reference frame of the LB.

In the meantime, the horizontal velocity of the TB has grown tremendously. Its maximum
value, approximately 40 % of VTB, is reached at t ≈ 19. The horizontal velocity of the LB
reaches its maximum at the same time. However, the ratio of the two maxima is less than
4 %, which confirms that the LB is only marginally disturbed by the lateral drift of the
TB. This situation dramatically differs from that depicted in figure 9(b), where the two
Vr maxima have almost the same magnitude. Moreover, in the present ASE scenario, the
maximum of Vr for the TB is typically three times larger than the maxima encountered
during the DKT-type interaction. As figure 11(c) indicates, the horizontal separation has
already grown up to S̄r ≈ 2 by the time Vr reaches its maximum (i.e. the TB has left the
wake of the LB), and doubles during the next four time units at the end of which the
horizontal velocity of the TB vanishes (t ≈ 23). From t ≈ 18 to t ≈ 23, VTB has dropped
below VLB, which makes the vertical separation again increase, from S̄ ≈ 4.5 at t = 17.5 to
S̄ ≈ 5.3 at t = 23. The 25 % drop of VTB from t ≈ 16 to t ≈ 19.5 emphasizes the fact that a
substantial fraction of the kinetic energy of the liquid displaced by the TB has been spent
in the meantime to move it laterally and balance the rate of work of the corresponding
sideways force.

In the next stage (23 ≤ t ≤ 28), the horizontal velocity of the TB changes sign and
reaches a minimum of approximately −0.06VTB. This negative Vr results in the reversed
lateral drift already discussed in connection with figure 10. The horizontal velocity still
describes some damped oscillations before the vertical and horizontal separations stabilize
and reach values close to 5.6 and 4, respectively. Meanwhile, the inclination angle of
the bubble pair stabilizes at θ ≈ 36◦. As already pointed out, this configuration is not
entirely steady as the slight non-zero slopes of the curves in the right part of figure 11(c)
confirm. In other words, the vertical and transverse components of the interaction force
driving the relative position of the two bubbles have not completely vanished yet. However,
the remaining values of these components are very small, so that it takes an extremely
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Figure 11. Evolution of several characteristics of a bubble pair with (Ga, Bo) = (30, 0.3) undergoing an ASE
interaction. (a) Vertical velocity component of the LB (solid red line) and TB (dashed blue line); (b) same
for the horizontal component; (c) vertical (red line, left axis) and horizontal (blue line, right axis) separations;
(d) inclination of the line of centres with respect to the vertical. Open squares and circles in (a,c) refer to the
axisymmetric prediction.

long time for the system to reach a true steady state. This slow final evolution may
be connected to the findings of Hallez & Legendre (2011) for spherical bubbles. Their
figure 9(c) indicates that, provided Re > 25, the two bubbles repel each other whatever
their separation distance when the inclination of their line of centres is less than a critical
angle θc ≈ 53◦. However, for 30◦ < θ < θc, this repulsive separation-dependent effect is
very weak for S̄ � 5.0, which corresponds to the present situation. That the equilibrium
angle is close to 37◦ for Ga = 30, Bo = 0.3 instead of the above value for spherical
bubbles is likely an effect of the significant oblateness of the bubbles considered here.

6.4. Head-on collision and coalescence
As figures 6 and 7 revealed, increasing the Bond number beyond the Ga-dependent
threshold Boc(Ga) leads to the numerical coalescence of the two bubbles. Most of the
time, this coalescence is initiated by a head-on approach, but in some cases the bubbles
may also approach each other in an asymmetric manner; e.g. the case (Ga, Bo) = (30, 0.5)

in figure 7, which corresponds to near-threshold conditions. Actually, the approach
configuration depends on the time elapsed since the bubble pair was released. As discussed
in § 4, the attractive effect of the LB wake increases with the bubble deformation, owing to
the direct relation between the interface curvature and the strength of the surface vorticity.
This is why, for a given Ga, the time at which the two bubbles collide decreases as Bo
increases. This leaves less time for non-axisymmetric disturbances to grow before the
collision if Bo is significantly larger than Boc(Ga), favouring the head-on configuration.
In the case of strongly deformed bubbles, the lift reversal mechanisms discussed in
Appendix C also act to increase the stability of the in-line configuration. Here, we select
conditions (Ga, Bo) = (20, 0.5), i.e. Mo = 7.8 × 10−7, as an archetype of the head-on
coalescence scenario observed in the moderate-Reynolds-number range (Re ≈ 35). As
expected from the previous discussion, figure 12 shows that the two bubbles rise almost in
a straight line before they numerically coalesce (a tiny lateral deviation of the LB actually
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t = 10 t = 15 t = 20 t = 24.4

Figure 12. Pre-coalescence dynamics of a bubble pair with Ga = 20, Bo = 0.5; the streamlines in the
cross-sectional plane are defined in the reference frame of the LB.

takes place in the late stage of the approach, see figure 13b). As far as the bubbles evolve
independently, their deformation is quite large, characterized by aspect ratios χ ≈ 1.55
and χ ≈ 1.48 for the LB and TB, respectively. In both cases, the aspect ratio is smaller
than the critical value χc = 1.65 beyond which a standing eddy develops at the back of an
isolated bubble (Blanco & Magnaudet 1995). This is why no such structure is present in
figure 12(a). Beyond t ≈ 15, the shape of the two bubbles changes significantly. On the one
hand, the front part of the LB flattens, due to the proximity of the TB which makes its rise
speed increase (see figure 13a). On the other hand, the front part of the TB becomes more
rounded, owing to the suction induced by the wake of the LB. Finally, the TB catches
up with the LB, leaving only a thin liquid film in the gap and making the two bubbles
behave essentially as a bluff compound body. After coalescence takes place (see below),
figure 13(a) indicates that the resulting bubble first undergoes a series of large-amplitude
oscillations until it relaxes to an oblate shape with an aspect ratio close to 2.0 and a
significant fore–aft asymmetry. Due to volume conservation, the radius of this bubble
is 21/3 ≈ 1.26 times that of the initial bubbles, so that its characteristic parameters are
Ga = 21/2 × 20 ≈ 28.3 and Bo = 22/3 × 0.5 ≈ 0.8, respectively. Under such conditions,
the computations of Cano-Lozano et al. (2016a) predict that an isolated bubble still rises
vertically, although it is close to the transition to a non-straight path. Present observations
are in line with these earlier conclusions, since figure 13(a) indicates that the small
horizontal velocity component present at the time of coalescence subsequently decreases
over time.

Returning to the near-coalescence stage, figure 14 shows how the interface topology
evolves in the stages that just precede and follow numerical coalescence. In its late
stage, the film is almost flat. No dimple has formed at its periphery, unlike what is
customarily observed with coalescing drops (Hartland 1968, 1969; Jones & Wilson 1978).
This is because, for low-to-moderate Bo and fully mobile interfaces, a dimple forms only
when the film has thinned down by several orders of magnitude (Yiantsios & Davis
1990). Indeed, with the same grid resolution, we observed a clear dimple for Bond
numbers � 1. Numerical coalescence takes place at t ≈ 24.44. Considering that the film
starts to form when the gap is 0.5R-thick on the symmetry axis, one can estimate that
the computation tracks the drainage process during approximately 1.15 time units. The
arguments discussed in Appendix B may then be used to estimate the time by which
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Figure 13. Evolution of some characteristics of a bubble pair with Ga = 20, Bo = 0.5 undergoing
coalescence. (a) Vertical (solid lines, left axis) and horizontal (dash-dotted lines, right axis) components of the
bubble velocity, with the red, blue and black lines corresponding to the LB, TB and final bubble, respectively;
(b) vertical (red line, left axis) and horizontal (blue line, right axis) components of the separation. Open squares
and circles: axisymmetric prediction. In (a), the shape of the resulting bubble is shown at several successive
time instants during the transient 24.5 ≤ t ≤ 30 following coalescence.

24.2 24.3 24.4 24.45 24.5t =

(a)

(b)

Figure 14. Numerical coalescence process. (a) Cross-sectional bubble shapes; (b) zoom on the dashed
rectangle in the left image of (a), showing the successive grid refinements and the grid distribution in the
near-contact region just before coalescence (t = 24.4). In the first three images of (b), the thin black line
indicates the interface and the colour scale spans six grid levels, from Δ = R/8.5 (dark blue) to Δ = R/272
(brown).

the film would actually rupture under real conditions. Figure 13(a) indicates that the
dimensionless approach velocity V̄a = VTB − VLB of the two bubbles is approximately
0.5 during the early stage of the drainage. From this, the approach Weber number,
Wea = V̄2

a Bo, and the approach capillary number, Caa = V̄aBo/Ga = μVa/γ , are found
to be 0.125 and 0.0125, respectively. Then, for nearly spherical bubbles, the estimate
(B1) predicts a dimensionless inertial drainage time T̄di ≈ 0.27, while (B2) (once properly
transposed to the case of two identical bubbles) predicts a viscous drainage time T̄dv ≈ 2.5.
Hence, the drainage is controlled by viscous effects and the limited resolution would
shorten it by ≈ 1.35 time units, would the initial bubble oblateness be small. Given that
the tandem rises with the average velocity V̄m = 1

2 (VTB + VLB) ≈ 2.4, this implies that
the vertical position at which coalescence actually happens would be underestimated by
3.25 bubble radii in this limit. The non-negligible bubble oblateness certainly increases
the actual drainage time. For instance, the actual value of the parameter ki in (B1) is 2.05
for χ = 1.5 (Duineveld 1994), so that the correct estimate for the inertial drainage time
is T̄di ≈ 0.5. The quantitative influence of the bubble oblateness on the viscous drainage
time is unknown but presumably increases also significantly T̄dv .

As the last two snapshots in figure 14(a) show, the neck radius of the resulting bubble
grows very fast after coalescence happens. More specifically, the growth law (not shown)
is found to be (t − tcoal)

0.36 over the very first stage following the coalescence time instant
tcoal. This is somewhat slower than the (t − tcoal)

1/2 self-similar behaviour observed in the
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experiments of Paulsen et al. (2014) and confirmed theoretically and numerically by Munro
et al. (2015) and Anthony et al. (2017), respectively. However, Paulsen et al. (2014) noticed
that the growth rate reduces gradually once the neck radius is larger than 0.3R. Here, due to
the limitations inherent to minimum cell size δmin = R/272 and to the numerical procedure
used to let the initial two interfaces merge, we barely observe the neck before it reaches
this radius, which is certainly the reason for the above slower growth rate.

7. Influence of deformation and initial conditions

7.1. Influence of bubble deformation in the DKT and ASE regimes
Figure 15 shows how several characteristics of the path of bubble pairs with Ga = 10 vary
with the Bond number in the range 0.02 ≤ Bo ≤ 0.2, i.e. 8 × 10−10 ≤ Mo ≤ 8 × 10−7.
The DKT scenario is observed for the lower three values of Bo, while the pair with Bo =
0.2 eventually experiences head-on coalescence. For lower Bo, the interaction always leads
to the side-by-side configuration and the lateral separation stabilizes at a value close to 2.5.
While the Bond number does not have any noticeable influence on the final path in this
regime, it affects the critical time by which the tumbling process sets in. Owing to the
connection between the bubble oblateness and the amount of vorticity produced at its
surface, the more oblate the LB is the stronger the attractive wake effect is. Therefore,
at a given time, the larger Bo the shorter the separation between the two bubbles. From
figure 15(b−d), it may be inferred that the axial symmetry of the flow breaks down when
S̄ = S̄c ≈ 2.6, a critical value reached in a shorter time as Bo increases.

Figure 16 shows the same path characteristics for Ga = 30 and Bond numbers ranging
from 0.02 to 0.5, i.e. 9.9 × 10−12 ≤ Mo ≤ 1.5 × 10−7. Here, all cases with Bo ≤ 0.45
correspond to the ASE scenario, whereas the two bubbles coalesce in an asymmetric way
for Bo = 0.5 (see figure 7). In all non-coalescing cases, it is found that the larger Bo the
smaller the long-term lateral deviation of the TB (figure 16a). Hence, the long-term lateral
separation decreases with Bo (figure 16b), since the LB hardly deviates from its initial
vertical path except for Bo = 0.45. The vertical separation S̄ is also seen to decrease with
the Bond number. This is merely a geometrical consequence of the decrease of S̄r. Indeed,
the shorter the time spent by the TB in its lateral motion, the shorter the slowing down
of its vertical motion, hence the smaller the increase of the vertical separation during the
lateral escape stage.

The long-term inclination of the bubble pair exhibits more complex variations. First, it
increases with the Bond number up to Bo = 0.2. Then it slightly decreases for Bo = 0.3
until it experiences a sharp increase for Bo = 0.45. In the whole range Bo ≤ 0.3, the
long-term inclination angle stands in the range 30◦ < θ < 40◦, in agreement with the
experimental findings of Kusuno & Sanada (2015) obtained under similar conditions
(Re < 150). The situation corresponding to Bo = 0.45 is specific. Indeed, the two bubbles
are close to coalescing asymmetrically at some point (S̄ ≈ 2 at t = 22.5). This is why the
lateral motion of the TB significantly disturbs the subsequent motion of the LB which
is seen to experience a series of damped oscillations before rising along a rectilinear,
slightly inclined path. Moreover, since the vertical separation of the two bubbles is small
just before the TB starts to drift laterally (S̄ ≈ 3.8 at t = 18), the inclination of tandem
after this drift has been completed is significantly larger (θ ≈ 60◦) than those found with
smaller Bo. We shall come back to the long-term evolution of this bubble pair later.

Beyond these geometric features, the main information provided by figure 16 is that the
smaller Bo is the earlier the side escape of the TB starts. This is in stark contrast with
the observations made on figure 15 for the DKT regime, where bubble deformation is
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Figure 15. Variations with the Bond number of some path characteristics for Ga = 10. (a) Side view of
the path (the solid and dashed lines correspond to the LB and TB, respectively); (b) vertical separation;
(c) horizontal separation; (d) inclination of the line of centres. The square symbol denotes the position/time at
which coalescence takes place for Bo = 0.2.

found to promote the tumbling process. Moreover, considering the critical time at which
S̄r and θ depart from zero for the various Bo reveals that the corresponding vertical
separation does not keep a constant value (figure 16b–d). Rather it decreases from S̄c ≈ 8
for Bo = 0.02 to S̄c ≈ 5.8 for Bo = 0.3. These values are significantly larger than the
equilibrium separation predicted in the axisymmetric configuration which, according to
figure 5, ranges from S̄e ≈ 6.1 for Bo = 0.02 to S̄e ≈ 4.3 for Bo = 0.3. Moreover, in
all cases, this critical separation is much larger than that at which tumbling is found to
start in the DKT regime. This finding indicates that, unlike the breakdown of the axial
symmetry in the DKT scenario, the ASE mechanism is driven by a long-range interaction.
This is in line with the conclusion of Yin & Koch (2008) who simulated the motion of
buoyancy-driven suspensions of spherical non-coalescing bubbles at Re ≈ 10.

To get additional insight into the long-term behaviour of the bubble pair, figure 17
shows the evolution of the separation and inclination angle over longer times for the two
sets (Ga, Bo) = (30, 0.3) and (Ga, Bo) = (30, 0.45) , i.e. Mo = 3.3 × 10−8 and Mo =
1.1 × 10−7, respectively. In the former case, the two components of the separation are
seen to slightly increase until the end of the computation but the inclination angle changes
by less than 1◦ over the last forty time units, reaching the ‘asymptotic’ value θ ≈ 36◦.
Conversely, in the latter case, the two components of the separation exhibit significant
variations throughout the computation. The vertical separation gradually tends to zero
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Figure 16. Variations with Bo of some path characteristics for Ga = 30. (a) Side view of the path (the solid
and dashed lines correspond to the LB and TB, respectively); (b) vertical separation; (c) horizontal separation;
(d) inclination of the line of centres. In (a), the square symbol indicates the position/time at which coalescence
takes place for Bo = 0.5.

while S̄r goes on increasing even for t ≈ 100. At this final time, θ is close to 83◦ and is still
gently increasing, so that there is little doubt that the system eventually reaches a perfect
side-by-side configuration. To understand why the two bubble pairs behave so differently
on the long term, it must first be noticed that, at the end of the lateral drift of the TB
(t ≈ 40), the distance S = (S̄2 + S̄2

r )
1/2 between the two centroids is approximately 6.8

for Bo = 0.3 and 4.5 for Bo = 0.45, the Reynolds numbers being approximately 66 and
60, respectively. For spherical bubbles, the results of Hallez & Legendre (2011) indicate
that, for Re = 100, the torque acting on the tandem is negligibly small for θ � 25◦ when
S � 6 but has significant values whatever θ for S = 4.5. Although bubble deformation
is large in the two sets considered in figure 17, this is a strong indication that, after the
TB has drifted laterally, only the pair with Bo = 0.45 still experiences a noticeable torque.
Consequently only this pair may reach the side-by-side configuration in a reasonable time.
According to figure 16, S decreases with Bo. Hence, it may be concluded that in the
ASE scenario, the distance between the two centroids after the TB has completed its
drift is usually too large for the torque to remain significant. Therefore the inclination
of the tandem remains almost unchanged in the subsequent stages. Only bubbles whose
deformation is close to the coalescence threshold (here Bo ≈ 0.5) escape this rule,
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Figure 17. Evolution of some characteristics of a bubble pair with (Ga, Bo) = (30, 0.45). (a) Vertical (red
line) and horizontal (blue line) separation distances; (b) inclination of the line of centres.

since the vertical separation of the corresponding pairs is very small when the side escape
of the TB takes place.

Interestingly, for Bo = 0.45, S̄r goes on increasing at the end of the computation,
suggesting that the interaction force is still non-zero and repels the two bubbles. At
the same Re and S , the computational results of Legendre et al. (2003) indicate that
the interaction force between two spherical bubbles rising side by side is attractive. The
difference between the two situations may be understood by noting once again that wake
effects are much stronger for Bo = 0.45 than for Bo = 0. Since these effects are repulsive
in the side-by-side configuration, the critical Reynolds number at which the interaction
force switches from repulsive to attractive is significantly larger in the present case, which
explains the observed behaviour.

7.2. Role of the TB shape in near-critical conditions for coalescence
The global geometric indicators reported in figure 16 reveal how the two bubbles get closer
to coalescence as the Bond number increases. Nevertheless it is of interest to examine
also how the bubble shapes vary with Bo close to the corresponding threshold, especially
with respect to the potential influence of the bubble distortion on the magnitude and
even the direction of the sideways force acting on the TB through the two mechanisms
reviewed in Appendix C. Figure 18 displays the evolution of the shapes and relative
positions of the two bubbles for near-critical conditions at Ga = 30 and 15, respectively.
It is striking that, for both values, the TB shape exhibits almost no left/right asymmetry
until the late stage of the interaction. This is a strong indication that the A-mechanism
discussed in Appendix C cannot reduce significantly the sideways force. Similarly, the
flow characteristics are such that the S-mechanism cannot take place. For instance, with
Ga = 30 and Bo = 0.4, the aspect ratio of the TB at t = 14 is approximately 1.6 and its
Reynolds number is close to 80. For these parameters, the path of an isolated bubble rising
in a fluid at rest is stable and the numerical results of Adoua, Legendre & Magnaudet
(2009) (their figure 5) indicate that finite-Reynolds-number effects decrease the lift force
by only 15 % with respect to the inviscid prediction. So, it can be concluded that, within
the parameter range considered in the present study, the lateral migration of the TB is
merely driven by the standard shear-induced mechanism. Hence, close to the threshold,
what makes the difference between non-coalescing and coalescing situations is essentially
the enhancement of the attractive wake effect as the TB becomes increasingly oblate. For
a sufficiently large Bo, this attractive effect becomes so strong that it delays the occurrence
of the lateral instability of the TB to such an extent that, although this bubble subsequently
migrates ‘normally’, its migration lasts for a too short time to prevent it from hitting
the LB.
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Figure 18. Evolution of the bubble shapes and relative positions for near-critical conditions: (a) Ga = 30; (b)

Ga = 15.

7.3. Influence of an initial angular deviation
Despite sophisticated bubble release systems, tiny initial lateral deviations can hardly be
avoided in laboratory experiments, yielding small-but-non-zero angular deviations of the
tandem with respect to the perfect in-line configuration. This calls for the investigation
of the influence of an initial non-zero inclination on the subsequent dynamics. For this
purpose, we systematically examined the impact of an initial inclination 0◦ < θ0 ≤ 2◦
throughout the (Ga, Re)-range considered in §§ 5 and 6. Note that in all configurations
considered in this subsection, the initial horizontal separation between the bubble
centres is several times larger than the finest grid cells located on both sides of the
bubbles surface (4 times larger for the smallest inclination). This initial configuration
results in a ‘macroscopic’ asymmetry of the discretized solution, in which the tiny
numerical asymmetries of the pressure field returned by the Poisson solver (see § 6.2 and
Appendix A) play no role.

For Ga = 10, we observed that under such conditions, the DKT scenario no longer
takes place for Bo ≤ 0.1. Instead, the system follows a clear ASE evolution. For instance,
selecting (Ga, Bo) = (10, 0.1), the TB starts drifting laterally when S̄ ≈ 4 (respectively
S̄ ≈ 5) if θ0 is set to 1◦ (respectively 2◦), leaving the path of the LB almost unaffected in
both cases. Instead of ending up in the side-by-side configuration as it does when θ0 =
0◦, the tandem then reaches an approximate final inclination of 50◦ (respectively 40◦).
That θ0 has such a dramatic influence on the existence of the DKT regime and the late
geometry of the tandem is at variance with observations reported for rigid bodies falling in
tandem. Indeed, experiments performed with short cylinders (Brosse & Ern 2014) indicate
that the DKT regime is still observed when a small initial lateral offset is imposed to the
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Figure 19. Evolution of several characteristics of a bubble pair with (Ga, Bo) = (30, 0.3) undergoing initial
angular deviations θ0 from 0◦ to 2◦. (a) Vertical velocity of the LB (solid line) and TB (dashed line);
(b) horizontal velocity of the TB; (c) vertical (solid line, left axis) and horizontal (dashed line, right axis)
separations; (d) inclination of the line of centres. In (b), the bullets on the S̄r-curve indicate the location where
the maxima of Vr are reached.

trailing body. The key difference with a bubble pair is the relative magnitude of attractive
effects which is much stronger for rigid bodies, owing to the different vorticity generation
mode at the body surface. Moreover, for a given body shape, shear-induced lift effects are
significantly weaker for rigid bodies with Reynolds numbers of O(10) or larger, owing to
the presence of large separated regions (Kurose & Komori 1999). These two factors make
the DKT configuration much more sensitive to small lateral deviations in the case of nearly
spherical bubbles.

Figure 19 provides the evolution of the tandem geometry in the case (Ga, Bo) =
(30, 0.3) for initial inclinations θ0 ranging from 0◦ to 2◦. The system is found to follow
the ASE scenario in all cases. However, its final geometry strongly depends on θ0. In
particular, as figure 19(d) shows, the final inclination of the line of centres decreases from
36◦ for θ0 = 0◦ to 22◦ for θ0 = 2◦. This is because when θ0 is non-zero, the TB starts
drifting laterally soon after it is released from rest, which is not the case for θ0 = 0◦.
Indeed, with θ0 /= 0◦, the initial flow configuration is no longer axisymmetric and the
TB faces an asymmetric wake as soon as vorticity generated at the LB surface has been
advected downstream over an O(S̄)-distance. Consequently, the TB experiences a non-zero
sideways force much earlier than in the perfect in-line configuration, where this force
occurs only after the system has become unstable. A non-zero θ0 shortens the initial time
period after which S̄r starts to grow, as is made clear in figure 19(c). A direct consequence
of this shortening is the fact that the vertical separation at which the lateral drift starts
is larger for θ0 /= 0◦ (S̄ ≈ 8 for θ0 = 2◦ instead of S̄ ≈ 6.8 for θ0 = 0◦). For this reason,
weaker velocity gradients across the LB wake exist for θ0 /= 0◦ at the position of the TB
when it starts drifting, resulting in a weaker sideways force. This makes the maximum
of Vr smaller (figure 19b), yielding a shorter final lateral position, hence a smaller final
inclination of the tandem.

Figure 20 displays the influence of the Bond number on the evolution of bubble pairs
with Ga = 30 when θ0 is set to 2◦. This figure is the counterpart of figure 16 discussed
above for θ0 = 0◦. All pairs with Bo < 0.7, i.e. Mo < 4.2 × 10−7, are seen to follow
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Figure 20. Variations with Bo of some path characteristics for Ga = 30 in the presence of an initial angular
deviation θ0 = 2◦. (a) Front view of the path (the solid and dashed lines correspond to the LB and TB,
respectively); (b) horizontal separation; (c) inclination of the line of centres.
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Figure 21. Phase diagram showing whether a bubble pair released with an angular deviation θ0 = 2◦ evolves
in the ASE regime (squares) or eventually coalesces (triangles). (a) (Ga, Bo) map; (b) (Re, χ) representation
based on the steady-state values corresponding to the rise of the corresponding isolated bubble.

a clear ASE scenario. For the aforementioned reason, the final inclinations reported in
figure 20 are significantly smaller than those observed in figure 16. In addition, they exhibit
a marked and consistent decrease with the Bond number, a trend which is absent from
figure 16. For pairs with Bo ≥ 0.8, θ is found to decrease over time until the two bubbles
perfectly align vertically, which eventually forces them to coalesce. The near-critical case
Bo = 0.7 is quite specific, and in many instances similar to the situation encountered
for Bo = 0.45 in figure 16. In this case, the two bubbles are very close to coalescing at
Y ≈ 58 in figure 21(a). The corresponding gap is so thin that the flow at the back of
the LB is strongly disturbed, forcing the latter to deviate abruptly from its vertical path.
This allows the lateral separation to increase beyond the critical value S̄rc � 2 within a
short time lapse (not visible in figure 21(b) which is limited to shorter times), allowing
the tandem to avoid coalescence. Similar to the evolution displayed in figure 17(b), but

920 A16-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.429


J. Zhang, M.-J. Ni and J. Magnaudet

t = 12 t = 14 t = 16 t = 18 t = 20 t = 22

Bo = 0.7

Bo = 0.8

Figure 22. Evolution of the bubble shapes and relative positions at Ga = 30 under near-critical
Bo-conditions in the presence of an initial angular deviation θ0 = 2◦.

through a sharper transition, the inclination of the tandem grows until the side-by-side
configuration is reached. Given the small gap at which the transition takes place and the
quite symmetric final lateral positions of the two bubbles, this specific evolution is closer
to the DKT scenario than to a standard ASE evolution.

The critical Bond number beyond which the two bubbles coalesce stands in the range
0.45 − 0.5 in figure 16 (θ0 = 0◦), but is slightly larger than 0.7 for θ0 = 2◦. In line with
the discussion on figure 19, the reason for this marked increase stems directly from the
longer vertical distance over which the shear-induced lift force acts on the TB when
θ0 /= 0◦, and the slightly shorter lateral distance this bubble has to drift to avoid hitting
the LB. These two factors imply that, compared with the reference case, a weaker positive
lift force is sufficient to avoid coalescence when θ0 is non-zero. The two lift reversal
mechanisms discussed in Appendix C being directly linked to the ability of the TB to
deform, increasing the Bond number makes the lift force decrease and eventually change
sign, other things being equal. Hence, in the presence of an initial angular deviation,
coalescence can be avoided over a broader range of distortion of the TB, i.e. up to a larger
Bond number. The fate of all bubble pairs released with an initial inclination θ0 = 2◦
over the range 10 ≤ Ga ≤ 30, 0 < Bo ≤ 1.0 is summarized in figure 21. This figure is
the counterpart of figure 6 obtained with θ0 = 0◦. In line with the above discussion, the
ASE regime observed when θ0 = 2◦ exists over a significantly broader range of Bo, hence
for bubbles with a larger oblateness. For instance, bubbles with aspect ratios χ � 1.3
(respectively 1.7) are found to coalesce for Ga = 15 (respectively 30) in the absence of any
initial deviation. With θ0 = 2◦, the corresponding critical aspect ratios raise beyond 1.5
(respectively 2.0) and the critical Reynolds numbers are close to 50 and 120, respectively.
Figure 22 shows how the bubble shapes and relative positions evolve close to the transition
to coalescence for Ga = 30. Unlike those reported in figure 18, the TB shapes now
exhibit a marked left/right asymmetry (although less pronounced, this trend still exists
for lower Ga). The difference with the strict in-line configuration is that here the TB is
fully immersed in an asymmetric flow as soon as the wake of the LB has developed within
the gap. Consequently, its shape has to adapt to this asymmetric environment throughout
the interaction process. While the TB is seen to migrate toward the right for Bo = 0.7,
a tiny migration toward the left may be identified for Bo = 0.8, leading unavoidably to
coalescence. The discussion in Appendix C allows the origin of this reverse migration
to be readily identified. The aspect ratio of the TB being only 1.85 for Bo = 0.8, the
S-mechanism is not present, since it only takes place beyond a threshold χcS ≈ 2.2 ( we
observed a reversed migration due to this mechanism by increasing the Bond number
beyond unity). In contrast, the egg-like shapes of the TB point to the A-mechanism.
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Figure 23. Evolution of some characteristics of a bubble pair with (Ga, Bo) = (10, 0.02) for different initial
separations. (a) Rise speed of the LB (solid lines) and TB (dashed lines); (b) vertical (solid lines, left axis)
and horizontal (dashed lines, right axis) separations. Red, blue and green lines refer to S̄0 = 8, 10 and 12,
respectively. A time shift t0 = 11 (respectively t0 = 22) is applied for S̄0 = 10 (respectively S0 = 12) and
evolutions are plotted vs the modified time t∗ = t − t0.

The capillary number based on the rise velocity of this bubble at t = 14 only increases
from 0.051 for Bo = 0.7 to 0.058 for Bo = 0.8. However, this modest increase turns
out to be sufficient for the deformation-induced force directed to the left to exceed the
shear-induced lift directed to the right, preventing the lateral escape of the TB.

7.4. Influence of initial separation
All simulations considered up to now are based on an initial separation distance S̄0 = 8.
It is relevant to examine how this choice influences the upcoming evolution of the bubble
pair. Since the in-line configuration is stable in the head-on coalescence regime, S̄0 is not
expected to have an influence in this regime. This is why we consider the influence of S̄0
only in the DKT and ASE regimes.

Figure 23 displays the evolution of some characteristics of the bubble pair obtained
by increasing S̄0 from 8 to 12 in the case Ga = 10, Bo = 0.02. With S̄0 = 8, this set of
parameters yields the DKT configuration described in figures 8 and 9. Introducing an
appropriate S̄0-dependent time shift t0 and setting t∗ = t − t0(S̄0) allows the t∗-evolutions
of all quantities for the three initial separations to collapse on a single curve beyond t∗ ≈
10. Hence, a DKT scenario yielding the same final configuration is observed whatever
the initial separation. This is no real surprise since, for this set of parameters, the in-line
configuration becomes unstable only when the two bubbles get very close, which happens
only for t∗ ≈ 40.

Figure 24 shows how the evolution of the same characteristics varies with S̄0 for
Ga = 30, Bo = 0.3. In this case, the interaction process yields an ASE scenario whatever
S̄0. However, the final configuration now depends on the initial separation. In particular,
the shorter S̄0 the larger the final inclination of the tandem, with θ ≈ 47◦ and θ ≈ 22◦
for S̄0 = 6 and S̄0 = 12, respectively. Not unlikely, the larger S̄0 is the longer it takes for
the path of the TB to start bending. Examining the evolutions of the vertical separation
and those of the rise speed of each bubble reveals that none of these three quantities
exhibits a constant value by the time the TB starts drifting laterally. In contrast, it turns
out that the difference VTB − VLB is close to 0.35 whatever S̄0 when this lateral motion
sets in. Therefore we conclude that the in-line configuration becomes unstable when the
velocity difference between the two bubbles exceeds the above threshold, irrespective of
the separation distance at which this threshold is reached.

Closely related to the influence of the initial separation is that of the sequential release
of the two bubbles in actual laboratory experiments. Still with Ga = 30, Bo = 0.3, we
ran a computation in which the TB was allowed to start rising only after the LB reached
a dimensionless height S̄(t0) = 8 above the point of release. Figure 25(a) displays the
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Figure 24. Influence of the initial separation S̄0 on several characteristics of a bubble pair with (Ga, Bo) =
(30, 0.3). (a) Vertical velocity component of the LB (solid line) and TB (dashed line); (b) same for the
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Figure 25. Influence of the sequential release of the two bubbles. (a) Vertical separation; (b) lateral velocity;
(c) inclination angle. Solid line: bubbles are released simultaneously with S̄0 = 8; blue dash-dotted line: same
with S̄0 = 10 and a time shift t0 = 2.6; red dashed line: the TB is released from rest after the LB has travelled
a distance S̄(t0) = 8.

corresponding evolution of the vertical separation. Due to the time lapse the TB needs
to reach its final rise speed, S̄ reaches a maximum close to 10.2 before the attractive
interaction sets in and the separation starts to decrease. This is why we compare the
subsequent evolution with that obtained for S̄0 = 10 when the two bubbles released
simultaneously. For this purpose, we introduce an appropriate time shift t0 and define a
modified time t∗ = t + t0 to make the two evolutions coincide in the early stage of the
interaction. With this time shift, the two further evolutions of S̄ almost superimpose, as do
those of the lateral velocity of the TB (figure 25b) and the inclination angle (figure 25c).
Consequently, it can be concluded that the time elapsed in between the release of two
successive bubbles merely increases their ‘initial’ separation, defined as the distance that
separates them before the wake of the LB starts to influence the rise of the TB.

8. Summary and concluding remarks

We carried out a series of three-dimensional simulations in order to dissect the physical
mechanisms involved in the evolution of a pair of clean, deformable rising bubbles initially
released in line. In this first part of the investigation, we focused on the parameter
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range 10 ≤ Ga ≤ 30, 0.02 ≤ Bo ≤ 1.0 which corresponds to inertia-dominated regimes
in which the path of an isolated bubble remains straight and vertical. We made use of
the Basilisk open source code and improved on the original version by implementing a
specific AMR scheme (Zhang et al. 2019) allowing an automatic grid refinement in the
gap left between the two bubbles when they come almost in contact. Previous theoretical
and computational investigations of this configuration essentially considered spherical
bubbles and steady or quasi-steady configurations. By allowing the bubbles to move and
deform freely, the present study provides a more realistic description of the hydrodynamic
interactions governing the fate of the bubble pair.

To build on a reference case, we first ran axisymmetric time-dependent simulations.
Similar to the predictions of Yuan & Prosperetti (1994) and Hallez & Legendre (2011) for
spherical bubbles, we found that the two bubbles stabilize a finite distance apart, provided
their deformation remains moderate. Since the strength of the inertia-induced repulsive
interaction force increases with Ga, so does the critical Bond number beyond which the
bubbles come in contact and eventually coalesce. For this reason, the equilibrium distance
depends on both Ga and Bo, or equivalently, on the Reynolds and Weber numbers. The
empirical correlation (5.2) summarizes the corresponding findings.

We then turned to fully three-dimensional evolutions. The simulations revealed that,
under conditions for which an equilibrium separation distance exists in the axisymmetric
case, this configuration is never reached in the three-dimensional case because the in-line
arrangement is unstable with respect to non-axisymmetric disturbances. As rationalized
long ago (Harper 1970), this is because, provided bubble deformation is moderate, any
deviation of the TB from the axis of the LB wake is amplified, owing to the shear-induced
lift force that tends to drive it out of the wake. This lateral drift takes two markedly different
forms, depending on the strength of inertial and deformation effects. For Ga = O(10) and
Bo � 0.1, a DKT mechanism takes place. In this regime, the two bubbles deviate almost
symmetrically from their initial paths and this deviation happens while they get very close
to each other, the remaining gap being of the order of the bubble radius or even less.
After the tumbling stage is completed, the two bubbles rise virtually side by side in a
vertical plane, their horizontal centre-to-centre separation being approximately 3 bubble
radii. In more inertial regimes, say 12 � Ga ≤ 30, and low-to-moderate Bond numbers,
the bubble pair evolves in such a way that the TB escapes laterally from the wake without
significantly altering the path of the LB. In this ASE scenario, the lateral drift of the TB
takes place while the two bubbles are still widely separated. In the subsequent stage, the
tandem maintains a significant and almost constant inclination in the range 30◦ � θ �
40◦, except for near-coalescence conditions under which the side-by-side configuration
may eventually be reached. Whatever Ga, coalescence is avoided only up to a critical Bond
number, the value of which increases with Ga, from Boc ≈ 0.1 for Ga = 10 to Boc ≈ 0.5
for Ga = 30. Actually, bubble deformation influences the evolution of the system in a
number of ways. In particular, the fact that the vorticity generated on a bubble is directly
proportional to the curvature of its surface implies that the strength of the wake-induced
interaction acting on the TB increases sharply with the Bond number. This interaction
being attractive, deformation effects are found to promote the suction of the TB along the
centreline of the LB wake. This of course favours coalescence, but also tends to stabilize
the in-line configuration when Bo < Boc(Ga) by delaying the growth of non-axisymmetric
disturbances.

We performed a detailed examination of the influence of initial conditions, especially
of a possible misalignment of the two bubbles. Even a minimal initial deviation (θ0 ≤ 2◦)
was found to have a dramatic influence on the evolution of the bubble pair. In particular,
the DKT regime previously observed for Ga = O(10) and Bo � 0.1 no longer takes place.
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Instead, the system follows an ASE evolution. A non-zero initial inclination also promotes
the ASE configuration toward larger bubble deformations, making the critical Bond
number increase up to 0.8. The reason is that, for θ0 /= 0◦, the TB faces an asymmetric
flow from the very beginning of its rise, which makes it able to drift laterally over a longer
time than in the canonical θ0 = 0◦ case. This scenario is efficient to avoid coalescence
as long as the sideways force is dominated by the classical shear-induced lift mechanism.
However, mechanisms leading to a weakening or even a reversal of the overall transverse
force exist for non-spherical bubbles. In particular, bubbles rising in a shear flow exhibit
a non-axisymmetric shape, a feature known to produce a deformation-induced component
of the transverse force with opposite sign compared with that of the shear-induced inertial
lift. As the Bond number approaches its critical value, we observed that the asymmetry of
the carrying flow in which the TB is immersed for θ0 /= 0◦ yields a pronounced egg-like
shape of the latter. This goes hand in hand with a reduction of the transverse force which
eventually changes sign for Bo > Boc, forcing the two bubbles to coalesce.

The present study clarifies the respective roles of inertial, viscous and capillary effects,
as well as that of initial conditions, in the three-dimensional dynamics of the considered
system. From the standpoint of the microstructure of bubbly suspensions, the main
outcome is presumably the final geometry of the arrangement that emerges from the
evolution of bubble pairs initially released in line, possibly with some small angular
deviation. As we saw, only pairs made of nearly spherical bubbles with O(10)-Galilei
numbers end up in a side-by-side configuration and thereby tend to favour the formation
of horizontal clusters. However, in most non-coalescing situations, the interaction process
follows the ASE scenario, yielding final inclinations in the range 15◦–40◦ and horizontal
separations ranging from 2 to 5 radii, depending on Ga, Bo and θ0. Given the unavoidable
variations of initial bubble positions in real bubbly flows, this significant range of
near-equilibrium inclinations and separations guarantees a much more homogeneous
spatial bubble distribution on the long term than what can be expected from simplified
models assuming potential flow and/or spherical bubble shapes.

This study did not examine the influence of slight differences in the size of the two
bubbles. Nevertheless, the main consequences of such a difference may be inferred from
present findings. Suppose that the LB is slightly larger than the TB. In the (Ga, Bo)-range
considered here, the corresponding increase in the buoyancy force makes the rise speed
of the LB increase, lowering the positive velocity difference VTB − VLB during the
axisymmetric stages of the interaction process. Therefore, compared with the reference
case, the two bubbles maintain a larger separation at a given time, which favours the
occurrence of an ASE-type scenario. Consequently, this size difference tends to broaden
the subdomain corresponding to the ASE regime in the phase diagram of figure 6.
Conversely, if the TB is slightly larger than the LB, the two bubbles are more prone to
getting close to each other before the axial symmetry of the flow breaks down. Hence, if Ga
and Bo are such that the system stands close to the DKT–ASE transition, this configuration
favours the DKT scenario. Similarly, it lowers the critical Bond number Boc(Ga) if the
system is close to the coalescence threshold. The above predictions may be corroborated
with the experimental observations of Kusuno et al. (2019) who considered two bubble
pairs close to the DKT–ASE transition, with a LB corresponding to Ga = 13.5, Bo = 0.27
in both cases. With a TB 3.5 % larger than the LB, they found the system to follow a DKT
transition (their figures 4c and 5c). Conversely, they observed a clear ASE scenario when
the TB was 3.5 % smaller than the LB (figures 4d and 5d).

Another aspect that the present study leaves untouched is the fundamental question
of the mathematical nature of the bifurcation that takes place when the axisymmetric
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configuration becomes unstable. Similarly, although the DKT and ASE regimes exhibit
markedly different physical characteristics, whether or not they correspond to truly distinct
unstable modes of the system remains unknown at this stage. Tackling these issues
requires the development of an appropriate global linear stability approach. Numerical
tools allowing the threshold and nature of bifurcations involved in the wake of fixed
(Tchoufag, Magnaudet & Fabre 2013; Cano-Lozano et al. 2016b) or freely moving
(Tchoufag, Magnaudet & Fabre 2014) clean isolated bubbles with a prescribed shape have
become available during the past decade. More recently, the same approach was extended
to fully deformable isolated bubbles (Bonnefis 2019). Further extending this approach to
systems involving bubble pairs is certainly feasible and seems the natural next step capable
of bringing new insight into these fundamental issues.
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Appendix A. Numerical tests

To assess the accuracy of the three-dimensional computations, two series of tests were
performed, both with the parameters (Ga = 30, Bo = 0.3) corresponding to the ASE
configuration discussed in § 6.3. To properly interpret these tests, it must be kept in mind
that the initial configuration being axisymmetric, the transition to a non-axisymmetric
state is governed by the asymmetry of numerical disturbances. Two possibilities exist to
assess the influence of these disturbances. If one looks for a rigorous grid convergence
study, imposing a well-defined small asymmetry to the initial conditions and examining
how it changes the results as the grid is varied is the appropriate choice. However, a code
user has no other control on the disturbances unavoidably present in the discretization
procedure and the time-advancement algorithm than changing the user-defined numerical
parameters, which in Basilisk are the grid refinement level and the tolerance on the Poisson
solver (see below). Therefore, from a user point of view, it is more relevant to examine how
the ‘natural’ disturbances that arise in the numerical solution influence the results, while
the above two parameters are varied separately. This is the choice adopted in the tests
reported below.

The Poisson solver is the only part of the time-advancement algorithm used in Basilisk
that does not preserve spatial symmetry up to machine accuracy (Popinet 2003). For
this reason, we first examined how much the user-specified tolerance Tε applied to
this solver influences the evolution of the bubble pair. This tolerance is defined as the
maximum relative change during one time step of the fluid volume enclosed in a cell,
i.e. the maximum of |∇ · u|Δt over the computational domain. The standard tolerance
used throughout the computations is Tε = 1 × 10−4. In this test, we ran two additional
simulations, with Tε = 1 × 10−2 and 1 × 10−6, respectively. Figure 26 reveals that the
smaller Tε is, the longer it takes for the axial symmetry of the system to be broken (see
the evolution of S̄r in figure 26b). This was to be expected since reducing the tolerance
reduces the asymmetry of the solution, delaying the transition to three-dimensionality.
This of course has some impact on the final vertical separation of the two bubbles,
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Figure 26. Influence of the tolerance imposed on the Poisson solver on the evolution of a bubble pair with
Ga = 30, Bo = 0.3. (a) Vertical velocity component of the LB (red line) and TB (blue line); (b) vertical (red
line, left axis) and horizontal (blue line, right axis) components of the separation. Dotted, solid and dash-dotted
lines refer to simulations performed with a tolerance of 1 × 10−2, 1 × 10−4 and 1 × 10−6, respectively.

hence on the inclination of their line of centres. In contrast, the bubble velocities before
and after the lateral escape of the TB are left unchanged by the change in Tε , together with
the final horizontal separation.

Then we carried out a grid convergence study, setting Tε = 1 × 10−4 in all cases.
Starting from the reference grid with Δmin = R/68 used throughout the study, we ran
the same case on a grid twice coarser (Δmin = R/34) and another grid twice finer
(Δmin = R/136). Note that, since the time step decreases with Δmin, the computation
with Δmin = R/136 was extremely time consuming. This is why it was stopped at t = 25,
beyond which the dynamics of the flow is not expected to reveal any supplementary
influence of the grid resolution. The results of these tests are presented in figure 27. Again,
these results show that the only significant change in the velocities evolution is the time by
which the TB starts to escape laterally, and consequently the final vertical separation of the
two bubbles (although only evolutions for t ≤ 25 are displayed in the figure, the horizontal
separation was found to relax to the same value with the two grids on which the runs
were carried out over larger times). It is noticeable that the onset of three-dimensionality is
reached earlier on the reference grid than on both the finer and coarser ones. To understand
this surprising feature, it must be kept in mind that the time step limitation arises from
capillary effects, implying Δt ∝ Δ

3/2
min. Therefore, the maximum error on |∇ · u| resulting

from the Poisson solver is proportional to Δ
−3/2
min . Assuming that the cell size at the location

where this maximum is reached is Δ, the corresponding error on u is proportional to
Δ

−3/2
min Δ. Since the local cell volume is Δ3, the contribution of the error to the local fluid

momentum is proportional to Δ
−3/2
min Δ4. Indeed, what determines the influence of the error

on the onset of the lateral motion is the asymmetric component of the momentum over a
cell rather than that of the local velocity u itself. The position of the maximum error within
the computational domain is unknown a priori. It may vary from one grid to another,
and this variation is responsible for the non-monotonic behaviour observed in figure 27.
For instance, if the maximum is reached in the most refined subregion (i.e. very close
to one interface) on the coarsest grid (Δ = Δmin = R/34) while it is reached in the near
wake on the other two grids (Δ = 4Δmin = R/17 and R/34, respectively), the asymmetric
contribution to the momentum (normalized with (R/34)5/2) is of O(1) on the coarsest grid,
while it is of O(211/2) and O(23) on the intermediate and finest grids, respectively. In such
a case, the onset of the TB lateral escape is expected to happen first on the intermediate
grid, then on the finest one, and finally on the coarsest one, just as observed in the figure.

In summary, the above tests revealed that, as expected, the minimum cell size and
tolerance on the Poisson solver influence the time by which the axial symmetry of the
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Figure 27. Influence of grid resolution on the evolution of a bubble pair with Ga = 30, Bo = 0.3. (a) Vertical
velocity component of the LB (red line) and TB (blue line); (b) vertical (red line, left axis) and horizontal
(blue line, right axis) components of the separation. Dotted, solid and dash-dotted lines refer to simulations
performed with Δmin = R/34, R/68 and R/136, respectively.

initial configuration breaks down. The smaller the tolerance Tε , the longer it takes for the
bifurcation to take place on a given grid. The influence of the grid resolution is more
complex, owing to the variability of the position at which the maximum asymmetry on
the velocity field takes place. Because of this, the time by which the solution develops a
significant three-dimensional component depends on both Δmin and the local cell size Δ

at the location of this maximum. Obviously, a longer transition time being equivalent to a
shorter separation between the two bubbles, the sensitivity of the system to these numerical
parameters implies that the value of the critical Bond number Boc(Ga) has a non-zero
numerical ‘error bar’. For instance, although the bubble pair with (Ga = 30, Bo = 0.45)

is found to escape coalescence with Δmin = R/64 and Tε = 1 × 10−4, it is very likely that
it coalesces with a smaller Tε . The numerical uncertainty on Boc(Ga) may be estimated
by considering the time lag for the onset of the TB lateral escape resulting from the
sensitivity of the system to Tε and Δmin. Given the difference in the rise speed of the two
bubbles by the time this escape starts, figures 26 and 27 indicate that the vertical separation
between the two bubbles is approximately reduced by ΔS̄ = 0.3 when Tε is reduced by
two orders of magnitude or when the grid resolution is increased from Δmin = R/68 to
Δmin = R/136. Then, figure 16(b) indicates that the minimum vertical separation reached
during the lateral escape varies from 4.55 for Bo = 0.3 to 2.0 for Bo = 0.45, from which
a rule of three suggests that a reduction of the vertical separation by ΔS̄ = 0.3 implies a
reduction of the critical Bond number by 1.8 %.

Appendix B. Bubble coalescence in pure liquids

Coalescence of drops and bubbles in a suspending liquid has received considerable
attention in the literature owing to its many applications. From the fluid mechanics
viewpoint, most of the studies carried out during the second half of the past century
attempted to determine the characteristics of the drainage of the film that forms in between
two drops or bubbles when they approach each other (see Chesters (1991) and Chan et al.
(2011) for reviews). Assuming an axisymmetric geometry, asymptotic studies based on the
lubrication approximation and numerical studies based on the boundary integral method
(e.g. Chi & Leal 1989) revealed the critical role of the drop/bubble-to-external fluid
viscosity ratio in the drainage dynamics. Depending on how this ratio, λ say, compares
with the film aspect ratio ε (the typical radius-to-thickness ratio of the near-contact region),
four possible situations arise, corresponding to nearly immobile (λ� ε1/2), partially
mobile (λ ∼ ε1/2), mobile (ε−1/2 � λ� ε1/2) and fully mobile (λ� ε−1/2) interfaces,
respectively (Davis, Schonberg & Rallison 1989; Chesters 1991). In the first three cases,
provided the drainage takes place under the action of a constant external force and the
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drops are nearly spherical except in the near-contact region, the minimum film thickness
obeys a power law evolution (Hartland 1968; Jones & Wilson 1978; Yiantsios & Davis
1990; Nemer et al. 2013). The corresponding exponent depends on the flow and boundary
conditions, but stands in between 0 and −1 in all cases. A crucial consequence of this
algebraic thinning rate is that the drainage requires an infinite time to be completed. Hence,
non-hydrodynamic effects, in the first place the long-range London–van der Waals force,
are required for coalescence to be achieved in a finite amount of time.

Things differ drastically with fully mobile interfaces, which is the relevant situation
for bubbles in pure liquids (contamination by surfactants yields immobile or at least
partially mobile interfaces; e.g. Vakarelski et al. 2019; Vakarelski, Yang & Thoroddsen
2020). In this case, the flow in the gap is merely a plug flow (Davis et al. 1989),
as interfaces offer no resistance to the squeezing of the film. Under such conditions,
standard lubrication approximations do not hold unless the gap has become extremely
thin (Davis et al. 1989; Yiantsios & Davis 1990; Nemer et al. 2013). The film thickness
decreases exponentially over time during most of the drainage process, the decay rate
depending on whether the Reynolds number Rea = ρVaR/μ based on the relative
approach velocity Va of the bubbles is large or small (Chesters 1991). This exponential
thinning law was confirmed experimentally (Debrégeas, De Gennes & Brochard-Wyart
1998) and numerically (Pigeonneau & Sellier 2011) by considering buoyancy-driven
bubbles reaching a free surface. This law holds as far as the film thickness can be
considered uniform. However, similar to the case of immobile or partially mobile
interfaces, the minimum film thickness initially located on the line of centres shifts
gradually to the film periphery, giving rise to a ‘dimple’ corresponding to the transition
region between the film and the outer flow. To take the influence of this dimple into
account, Chesters & Hofman (1982) solved numerically the set of thinning equations with
appropriate boundary conditions for initially spherical bubbles, assuming Rea � 1, i.e.
considering that inertial and capillary effects are in balance. They observed that, when
the minimum film thickness has reduced sufficiently, the thinning velocity at the dimple
position levels off at a value close to 0.1Va. Under constant-force conditions, the crucial
consequence of this thinning evolution is that drainage is completed in a finite time without
the need for a non-hydrodynamic force to intervene. Defining the approach Weber number
Wea = ρV2

a R/γ , the dimensionless inertial drainage time is then

T̄di = kiWea/V̄a, (B1)

with ki ≈ 1.0 and V̄a = Va/(gR)1/2 in the buoyancy-driven case of interest here. The value
of ki was later slightly re-evaluated to ki ≈ 1.08 by Duineveld (1994, 1998). Within a
liquid film bounded by two clean gas–liquid interfaces, the London–van der Waals force
is attractive, thus shortening the coalescence time. However, this force is known to be
significant only when the distance between the two interfaces is less than 100 nm, which
made Chesters & Hofman conclude that it barely shortens the coalescence process.

Obviously, coalescence occurs only if the relative approach velocity remains positive
throughout the drainage. For this to be the case, only part of the kinetic energy resulting
from the relative motion of the two bubbles (moving with velocities ±Va/2) must be
converted into surface energy through the deformation of the bubble–fluid interface
in the near-contact region. Still in the limit Rea � 1, this criterion yields a critical
Weber number Weac beyond which the two bubbles bounce once or several times, until
eventually coalescing when the approach Weber number has decreased sufficiently. Under
potential flow assumptions, the kinetic energy associated with the bubble relative motion
is proportional to the virtual mass (or added-mass) coefficient CMa in the corresponding
direction, making Weac vary linearly with CMa. For nearly spherical bubbles, Chesters &
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Hofman (1982) established that the relative increase of the surface energy is at leading
order (kiWea/4)2, which yields Weac = 2

3 k−2
i CMa. For two spheres in contact after having

moved toward each other , CMa ≈ 0.80 (Voinov 1969; Miloh 1977), so that Weac ≈ 0.45
(Duineveld 1994, 1998).

In addition, Chesters & Hofman pointed out that previous results also apply to a single
bubble reaching a free surface, up to a simple geometric transformation. The outcome
is that in this configuration (B1) transforms into T̄di = 4kiWea/V̄a, while the above
criterion for the onset of bouncing becomes Weac = 1

3 k−2
i CMa. Assuming the bubble to

be spherical and the Froude number of the free surface, V̄2
a , to be large, the relevant virtual

mass coefficient is CMa ≈ 0.42 (Miloh 1977), so that Weac ≈ 0.12 (Duineveld 1994). By
tracking sub-millimetre-size bubbles rising up to a free surface in ultrapure water, the same
author determined the experimental threshold as Weac ≈ 0.105 (corresponding to a rise
Reynolds number Re ≈ 50). This agreement with the theoretical prediction is supported
by more recent experiments (Vakarelski et al. 2020) and provides an important support
to the approach of Chesters & Hofman (1982), although some of its aspects have been
questioned (Chan et al. 2011).

The above conclusions hold for nearly spherical bubbles provided effects of the liquid
viscosity are negligible. However, despite the uniform velocity profile in the film, viscous
effects arise through normal stresses. For a given film thickness, these effects tend to
increase the film radius, i.e. the area of the near-contact region. This results in a significant
decrease of the film thinning rate as soon as Rea � 10 (Chesters & Hofman 1982). In this
Rea-range, this thinning rate decreases continually as the drainage proceeds, making the
London–van der Waals force inescapable for coalescence to occur. For low enough Rea, the
film evolution is governed by a viscous–capillary balance, hence by the capillary number
Caa = Wea/Rea = μVa/γ . To the best of our knowledge, no theoretical model is available
to predict the drainage time in this viscosity-dominated regime for fully mobile interfaces.
However, recent experimental data may be used to obtain an empirical scaling law from
which realistic estimates may be inferred. The case of air bubbles coalescing at a clean free
surface after rising in a liquid 20 times more viscous than water was considered in detail by
Vakarelski et al. (2018). Small bubbles (R � 0.1 mm) were observed to coalesce almost
immediately on their arrival at the surface, while larger bubbles remained ‘glued’ there
during some time without bouncing, until coalescence eventually occurred. A single tiny
bounce was detected for bubbles larger than R ≈ 0.45 mm, corresponding to Wea � 0.135.
Overall, they found the residence (i.e. drainage) time Tdv of the bubble at the surface to be
proportional to R2. Their results may be used as a basis to derive a generic empirical
expression for the viscous drainage time, Tdv . Considering that T̄dv = (g/R)1/2Tdv is
primarily driven by the capillary number in this O(1)-Reynolds-number range and keeping
in mind that the rise speed also grows like R2 in this regime, it turns out that the simplest
admissible scaling law for T̄dv is

T̄dv = kvCa3/2
a /V̄a, (B2)

with kv = 1.8 × 103 according to the above experimental data. It is then a simple matter
to compare the inertial and viscous estimates for the drainage time in a given fluid
and for a given bubble size. For instance, in ultrapure water (Mo = 2.6 × 10−11), the
bounce/no bounce threshold for a bubble reaching a free surface is known to correspond
to 0.335 mm radius bubbles (Duineveld 1994). Under such conditions, (B1) (with the
appropriate transformation) and (B2) yield T̄di ≈ 0.32 and T̄dv ≈ 0.064, respectively.
Hence the drainage is controlled by inertial effects and coalescence takes place very
soon after the bubble collides with the free surface. Similarly, in the viscous liquid used
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by Vakarelski et al. (2018) (Mo = 6.6 × 10−5), the same two predictions for a bubble
with R = 0.45 mm (i.e. just below the bounce/no bounce threshold) yield T̄di ≈ 0.68 and
T̄dv ≈ 23.8, respectively. In this case, the drainage time estimated through the viscous law
(B2) is 35 times larger than that predicted by the inviscid approach, implying that the
latter is irrelevant. This corresponds to a situation in which the bubble stays ‘glued’ to
the free surface during a long time before coalescing. For a pair of bubbles rising in line
under similar conditions, the two bubbles form a compound ‘dumbbell’ bubble during the
drainage process, as observed by Sanada et al. (2006) and Watanabe & Sanada (2006). To
estimate Tdv in this case, (B2) must be modified according to the geometric transformation
of Chesters & Hofman, which yields T̄dv = 1

2 kvCa3/2
a /V̄a.

Most results reviewed above were obtained with nearly spherical bubbles (Bo � 1,
in practice Bo � 0.2). Influence of a significant distortion of the bubble shape on the
coalescence process is complex because it involves antagonistic effects. On the one hand,
the curvature of the near-pole region of an oblate bubble is smaller than that of a spherical
bubble, making the area of the near-contact region larger. Thus the radial position of the
dimple shifts outward, and a longer time is required to squeeze the film with a given
approach velocity. Duineveld (1994) solved the set of inviscid thinning equations for oblate
bubbles with various aspect ratios. Compared with the reference case, his results show
that the pre-factor ki involved in the prediction (B1) for the drainage time is increased
approximately by a factor of 2 (respectively 3) for χ = 1.5 (respectively χ = 2). On
the other hand, an oblate body moving along its short axis displaces more fluid than
a sphere, which translates into a larger virtual mass coefficient, hence a larger kinetic
energy available for the drainage. Moreover, as explained in § 4, the bubble oblateness
enhances wake effects, increasing the amount of fluid displaced by the bubble through
the entrainment process in the wake. Therefore, for a given approach velocity, the kinetic
energy of the fluid displaced by oblate bubbles may be significantly larger than the estimate
based on the simple irrotational added-mass concept. Unfortunately, no drainage time
prediction incorporating wake entrainment and/or viscous effects seems available for such
bubbles.

Appendix C. Lift reversal mechanisms on distorted bubbles

As is well known, the shear-induced lift mechanism mentioned in § 4, hereinafter called
the L-mechanism, stems from the bending of the vorticity of the carrying shear flow past
the bubble, a process that results in the formation of a pair of counter-rotating streamwise
vortices in its wake (Legendre & Magnaudet 1998). The vorticity produced at the bubble
surface plays no role in this mechanism which is inviscid by nature (Lighthill 1956; Auton
1987). However, for reasons discussed in § 4, the strength of the surface vorticity resulting
from finite-Re effects increases sharply with the bubble oblateness. When an oblate bubble
rises in a fluid at rest, the amount of vorticity produced at its surface becomes large enough
for the axisymmetric wake to become unstable within a finite range of Reynolds number,
ReS−(χ) ≤ Re ≤ ReS+(χ), provided the bubble aspect ratio exceeds a critical value χcS ≈
2.2 (Magnaudet & Mougin 2007). This mechanism is at the root of the path instability of
millimetre-size bubbles rising in water (Mougin & Magnaudet 2002). Similar to the above
L-mechanism, it gives rise to a wake dominated by a pair of counter-rotating streamwise
vortices, the sign of which is selected by some initial disturbance. This wake instability
mechanism, hereinafter called S-mechanism, still exists when a strongly oblate bubble
rises in a weak shear flow. The only difference is that the initial disturbance is now provided
by the outer shear, so that the sign of the streamwise vorticity in each trailing vortex is no
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longer random. Rather, a detailed analysis reveals that the contributions of the L- and
S-mechanisms to the vortex tilting term involved in the streamwise vorticity balance have
opposite signs (Adoua et al. 2009). For this reason, the sign of the overall sideways force
depends on the relative strength of the two mechanisms. If the outer shear is strong enough,
the L-mechanism dominates even for χ > χcS and the lift force keeps the sign it would
have for a spherical bubble. In contrast, if the shear is weak enough and Re and χ fall
in the range where the S-mechanism is active, the latter becomes dominant, yielding a
reversed lift force. The lower Reynolds number beyond which lift reversal governed by the
S-mechanism takes place in a weak shear flow is a sharply decreasing function of χ − χcS,
with ReS− ≈ 155 for χ = χcS and ReS− ≈ 55 for χ = 2.5 for instance. Conversely, the
upper Reynolds number beyond which the lift force recovers the sign predicted by the
L-mechanism dramatically increases with χ − χcS, from ReS+ = ReS− ≈ 155 for χ = χcS
to ReS+ ≈ 680 for χ = 2.5 for instance (Adoua et al. 2009). Because of this mechanism,
one can suspect that bubbles experiencing a sufficient deformation may render the in-line
configuration stable. Indeed, if the S-mechanism dominates, any deviation of the TB from
the wake axis is expected to be counteracted by the reversed lift force.

A distinct mechanism may also lead to the same effect on a non-axisymmetric bubble
(more generally a drop). This mechanism, hereinafter called the A-mechanism, is a
consequence of the asymmetric deformation experienced by a drop immersed in a shear
flow. In the zero-Re limit, the drop is known to deform in such a way that its major and
minor axes align with the eigen-directions of the associated strain rate (Taylor 1932). In
the case the drop has an additional translation with respect to the fluid, this deformation
induces a non-zero sideways force, even at Re = 0. When the Reynolds number is finite,
this deformation-induced transverse force combines with the inertial shear-induced lift.
However, theoretical predictions indicate that the two mechanisms result in sideways forces
of opposite signs, except for drops whose viscosity is close to that of the suspending fluid
(see (49) in Magnaudet, Takagi & Legendre 2003). The deformation-induced (respectively
inertia-induced) force being proportional to the Weber (respectively Reynolds) number, the
direction of the total lift force is governed by the capillary number Ca = We/Re. This force
changes sign for a critical value Ca = Cac which, for a bubble with negligible internal
viscosity, depends only on the relative shear rate βR/uT , β denoting the ambient shear
rate. While the total lift force keeps the sign corresponding to the inertial shear-induced
mechanism if Ca < Cac, it acts in the opposite direction for larger Ca. In the case of
a bubble, this mechanism results from the fact that the no-penetration condition and
the normal stress balance have to be jointly satisfied at the gas–liquid interface. This
requirement obviously also holds for Reynolds numbers larger than unity and so does the
above mechanism, although inertial effects tending to make the bubble oblate combine
with those of the outer shear to produce more complex asymmetric shapes compared
with the low-Re configuration. Lift reversal due to the A-mechanism has been observed
in computations (Ervin & Tryggvason 1997; Sankaranarayanan & Sundaresan 2002) and
experiments performed with isolated bubbles rising in viscous liquids sheared in a Couette
device (Tomiyama et al. 2002; Aoyama et al. 2017).
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