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We consider the following process for generating large random cubic graphs. Starting with

a given graph, repeatedly add edges that join the midpoints of two randomly chosen edges.

We show that the growing graph asymptotically almost surely has logarithmic diameter.

This process is motivated by a particular type of peer-to-peer network. Our method extends

to similar processes that generate regular graphs of higher degree.

1. The problem

Given a graph G = (V , E) on V = {1, . . . , n} and two distinct edges e = ab, f = cd ∈ E, the

edges e and f are pegged if they are subdivided and a new edge is introduced between the

two new vertices. That is, two vertices e′ = n + 1 and f′ = n + 2 are added to V , the edges

e and f are deleted, and the edges ae′, be′, cf′, df′ and e′f′ are added. Note that if any

two edges of a 3-regular graph are pegged, then another 3-regular graph results. In this

paper we consider the following (random) pegging process P(G0). Start with any fixed

graph G0 with at least two edges. At each step t � 1, choose a pair of edges uniformly at

random from the set of all pairs of distinct edges of Gt−1, and peg this pair of edges to

obtain Gt. Let nt denote the number of vertices of Gt, so that nt = n0 + 2t. We show that

asymptotically almost surely (a.a.s.), that is, with probability tending to one as t tends to

infinity, the diameter of Gt is at most D log t, where D is an absolute constant.
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The motivation for this process goes back to a peer-to-peer network introduced by

Bourassa and Holt [2], called the SWAN network. The basic feature of this network is

that it remains 4-regular, with any new node being added by inserting it at the midpoints

of two existing edges. The reverse operation was used to delete nodes. Cooper, Dyer

and Greenhill [3] showed under some mild simplifying assumptions that, restricted to

the times when the network has n nodes, the stationary distribution is uniform on the

set of 4-regular networks on n nodes. It then follows from results on uniformly random

regular graphs that, as n → ∞, these networks a.a.s. are 4-connected and have diameter

logarithmic in the number of nodes [3].

Gao and the third author [5] recently introduced processes with the aim of approx-

imating a rapidly growing SWAN peer-to-peer network. Processes were described there

that produce random d-regular graphs for any d � 3; in the case of the 4-regular graph

it merely consists of repeatedly adding nodes in the manner described above. For the

case d = 3, this is the process P(G0) described above. The short cycle distribution of the

graphs produced by this process was studied in [5], and in [4] it was shown that they are

a.a.s. d-connected. Probably the main outstanding unstudied parameter of these graphs,

from the communication network point of view, was the diameter.

For most of this paper, we study the process P(G0), which produces random cubic

graphs if G0 is cubic. In the final section we point out how our results extend to the

general pegging processes for graphs of higher degree. Recall that Gt is the graph after t

pegging steps in P(G0), and nt = |V (Gt)|.

Theorem 1.1. Let G0 be a fixed connected graph. Then the diameter of Gt in the pegging

process P(G0) is a.a.s. O(log t).

Notes. (1) The constant implicit in the O() notation is independent of G0; that is, ‘O(log t)’

may be replaced by ‘at most D log t for some absolute constant D’. The assumption that

G0 is connected is not necessary, as it was shown by Gao [4] that, starting with any G0,

the graph Gt is a.a.s. connected.

(2) It is immediate from the proof that the conclusion of the theorem holds even when

G0 is not fixed, provided only that it is connected and has at most Ct edges for some

constant C .

We note that our usage of a.a.s. in conjunction with other asymptotic notation conforms

to the conventions in [9]. With respect to a.a.s., if the parameter tending to infinity is not

t, it will be specified. The base of log is always e if not otherwise specified.

Before starting the formal proof, we give some intuition as to why the result should

be true. We will use the result of Bollobás and Chung [1], implying that the union of a

random perfect matching and a Hamilton cycle on the same set of n vertices a.a.s. gives

a (multi-) graph with diameter O(log n). To apply this for Theorem 1.1 we will first let

the process continue until some time t0 < t so that the graph Gt0 is large, then define a

cycle C that is closely related to Gt0 , then show that some of the subsequent pegging steps

essentially create a random matching M of some (though not all) of the vertices of C ,

arguing that the resulting graph has small diameter via the above-mentioned result. There
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will still remain the problem that some of the pegging steps insert extra new vertices in

the edges of C ∪ M, which may increase the diameter. We will show that such an increase

is not significant by showing that the extra vertices do not increase the lengths of paths

in C ∪ M by more than O(log t), and also that they all lie ‘close’ to vertices of C ∪ M.

2. The proof

We start our proof of Theorem 1.1 with a result that will help to treat the last-mentioned

issue above.

Lemma 2.1. Let G0 be a connected graph on n vertices and let Gt be the graph obtained

after t steps in the pegging process P(G0). Then with probability at least 1 − O(1/n2), for

all t � 1
50
n every vertex in V (Gt) \ V (G0) has distance at most 4 log2 n to some vertex in

V (G0).

Proof. Define a cover of E(Gt) by subsets St
i , i = 1, . . . , |E(G0)|, recursively as follows.

For t = 0 each edge of G0 is placed in a unique set S0
i . If a pegging step at time t involves

two edges e = ab and f = cd and two new vertices e′ and f′ are created, then ae′ and be′

are placed in the set that e belonged to, cf′ and df′ are placed in the set f belonged to,

and the edge e′f′ is placed in the set with the smaller index of the two sets that e and

f belonged to. (If e and f are in the same set St
i then the edge e′f′ is simply added to

this set.) The remaining sets stay the same, that is, St
i = St+1

i for all sets St
i that do not

contain any pegged edge. Note that the subsets St
i induce connected subgraphs of Gt and

that each such subgraph contains at least one vertex of V (G0). We only need to show that

for t∗ = 	n/50
, with probability 1 − O(1/n2) every set St∗
i has size at most 4 log2 n.

Fix the index i. Note that if we choose at most one edge from St−1
i at time t then

|St
i | � |St−1

i | + 2, and if we choose both edges from St
i then |St

i | � |St−1
i | + 3. In the tth

pegging step, conditional upon the history of the process, the probability that the first

edge is in St−1
i is at most |St−1

i |/(n + 3t − 4) since G0 is connected and hence Gt−1 has

at least n + 3t − 4 edges to choose from. For the second edge this probability is at most

|St−1
i |/(n + 3t − 5) (as we have to choose a different edge).

We divide each pegging step into two time steps, one for each choice of the edges to

be pegged. The event that at pegging step t∗ a set Si has size bigger than D = �4 log2 n�
is contained in the union of the events E(t1, . . . , tD/2) that the first D/2 times an edge of

Si is pegged are t1, . . . , tD/2, and tD/2 � 2t∗. From the above we know that each of the

events E(t1, . . . , tD/2) has probability at most (D/(n − 2))D/2. The number of choices of the

times ti is at most
(
2	n/50

D/2

)
. Hence, for sufficiently large n the probability that the size of

Si increases to at least D + 1 is at most(
2	n/50

D/2

)(
D

n − 2

)D/2

�
(

4e	n/50

D

)D/2(
D

n − 2

)D/2

�
(

1

4

)D/2

� 4n−4.

Hence, as |E(G0)| � n2 by the union bound, with probability at least 1 − 4/n2 none of the

sets Si, i = 1, . . . , |E(G0)|, has more than D elements when t = t∗.

By means of the next lemma we will associate a graph Gt0 with a 2-edge-coloured cycle

C , according to the proof outline given earlier.
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Lemma 2.2. Let G = (V , E) be a connected graph. We denote by G′ = (V , E ′) the graph

that is obtained from G by replacing each edge by a double edge and colouring one of these

edges blue and the other red. Then there exists a closed walk in G′ such that the edges along

the walk are alternately coloured red and blue and each edge in E ′ is used exactly once.

Proof. We prove the lemma by induction on the number m of edges of the graph. If

m = 0 then the only connected graph consists of a single vertex and the statement is true.

If e ∈ E then by induction (G − e)′ has one such walk W ′ if it is connected, and otherwise

it has two such walks, W1 and W2, in the two components that e connects. In the first

case, we may obtain a new walk by traversing W ′ starting from an endvertex of e, then

following it by the two versions of e, using the one of appropriate colour first. In the

second case, the desired walk is easily obtained by traversing W1, then one version of e

of appropriate colour, then W2, then the other version of e.

The next few lemmas show that the diameter of P(G0) is small if G0 is a Hamilton

cycle. To start with we define a slightly simpler process. Given a graph G and a set S of its

edges, the random insertion process applied to G with respect to S consists of repetitions

of the following step. Choose an edge uv in S uniformly at random, delete uv from G and

S , and add two new edges uw and wv to both G and S , where w is a new vertex of G. The

length of the process is the number of repetitions of this step. The final set S is a subset

of the edge set of the final G, which is a subdivision of the input version of G. Denote

the diameter of a graph G by diam(G).

Lemma 2.3. Given constants c > 0 and d � 2, there exists a constant D for which the

following holds. Let G be a connected graph with maximum vertex degree at most d, and

with n vertices. Obtain G′ from G by the random insertion process of length at most cn

with respect to some set S of edges of G with |S | � n. Then a.a.s. diam(G′) < D diam(G) as

n → ∞.

Proof. We first consider the case that c � 1/10. Let P be any path in G of length

k � diam(G), consider an integer D (to be determined later), and set j = (D − 1) diam(G).

The event that P expands to length at least D diam(G) during the insertions is contained

in the union of the events E(t1, . . . , tj) that the first j insertion steps occur in the path at

times t1, . . . , tj . Note that at time tj the path has length at most D diam(G) as t1, . . . , tj are

the first insertions into the path. Thus the probability of inserting the next vertex into P

at any of these times, is at most D diam(G)/n, since S contains at least n edges. It follows

that each of these events has probability at most (D diam(G)/n)j . The number of choices

of the times ti is at most
(
cn
j

)
. Hence, the probability that the length of P does increase to

at least D diam(G) is at most (since c � 1/10 and we may assume D � 2)(
cn

j

)(
D diam(G)

n

)j

�
(
ecn

j

)j(
2j

10cn

)j

=

(
e

5

)j

=

(
e

5

)(D−1) diam(G)

.

Since successive neighbourhoods of a vertex grow at rate at most d − 1, diam(G) is

necessarily at least (log n)/(log d) for n sufficiently large. As d is fixed, the above bound
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can be made o(n−2d−diam(G)) by taking D a sufficiently large constant (depending on d,

but not on c). The number of possible paths P of length k is at most ndk � nddiam(G) since

k � diam(G), and we are done by the union bound.

Now consider the case c > 1/10. Observe that if we apply the insertion process for t

steps to obtain the graph G′, then |S ′| = |S | + t � |V (G′)| = n + t. That is, regardless of

the value t, the new graph again satisfies the assumption of the lemma. Thus, we can

chain together a bounded number of such processes, with c replaced by 1/10, to create

the original process. As d does not change during these processes, the diameter goes up

by at most a factor D	10c
 overall, which implies the lemma by redefining D.

Our next aim is to use this lemma in order to show that it suffices to add c� edges to a

Hamilton cycle on � vertices in order to reduce the diameter to O(log �).

Lemma 2.4. Let C� be a cycle on � vertices and let 0 < c < 1/2 be a constant. Let M be

a random matching of V (C�) of size s = s(�) � c�. Then a.a.s. as � → ∞ the graph obtained

by adding M to C� has diameter at most c0 log � for some constant c0 depending only

upon c.

Proof. Let Gn be the union of a Hamilton cycle of even length n and a random perfect

matching of its vertices. A result of Bollobás and Chung [1] gives, with room to spare,

that Gn a.a.s has diameter at most 2 log n.

Now set n = 2s and take Gn as above. Then let S be the set of edges of the cycle, and

apply the random insertion process for � − 2s steps. It is easy to check that this produces

graphs in which the matched vertices form a uniformly random subset of all the vertices.

The lemma consequently follows from Lemma 2.3.

With respect to any pegging process under consideration, an edge of Gt is fresh if it is

also an edge of G0. This means that it is an edge of G0 that has not been pegged in the

first t pegging steps.

Lemma 2.5. Let G0 be any graph with at least � edges and let 0 < c < 1/8 be a constant.

Consider the pegging process P(G0) up to t = �c�� pegging steps. Then a.a.s. as � → ∞, at

least t/6 of these pegging steps involve two fresh edges being pegged.

Proof. Let Xi denote the indicator variable for the event that the ith edge joins two fresh

edges. Clearly, we have

P[Xi = 1 | X1, . . . , Xi−1] �
(�−2(i−1)

2

)
(�+3(i−1)

2

) � 2

7
for all 1 � i � �/8,

as after i − 1 steps the graph contains � + 3(i − 1) edges and at least � − 2(i − 1) of the

edges are still fresh.

Thus Yi := 2
7

− Xi forms a supermartingale difference sequence, and for Y =
∑t

i=1 Yi,

since |Yi| � 1, the one-sided version of Azuma’s inequality for supermartingales ([8,

https://doi.org/10.1017/S096354831000026X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831000026X


244 S. Gerke, A. Steger and N. Wormald

Lemma 4.2] for example) gives

P[Y � εt] � e−ε2t/2,

and hence

P

[
t∑

i=1

Xi � 2t/7 − εt

]
� e−ε2t/2,

from which the claim of the lemma follows immediately.

With these preliminaries in hand, we proceed to proving our main result. Several times

we will use without comment the fact that the graph Gt in a pegging process P(G0) has

|V (Gt)| = |V (G0)| + 2t vertices and |E(Gt)| = |E(G0)| + 3t > 3t edges.

Proof of Theorem 1.1. Let G0 be a connected graph. We may assume that t � 300 is large

enough such that t > |E(G0)|. We select an integer t0 satisfying 1
50
t � t − t0 � 1

60
t, and

define t′ = t − t0. We will prove the result by just analysing the graph process starting from

Gt0 . In other words, we let the process run for the first t0 steps, take whatever graph we

might have at that time, and then argue that the remaining t′ = t − t0 steps a.a.s. reduce

the diameter to O(log t), where the convergence in the ‘a.a.s.’ and the bound implicit in O()

are uniform over all the graphs possible for Gt0 . Note that by Lemma 2.1, it is sufficient

to show that a.a.s. each pair of vertices in Gt0 has distance O(log t) after t′ further pegging

steps. (Recall that by the above assumptions we have t′ � 1
50
t � 1

50
2t0 � 1

50
|V (Gt0 )| and

Lemma 2.1 can thus be applied.) This is what we will show in the remainder of the proof.

Let W be the walk in Gt0 obtained by Lemma 2.2. Consider the undirected cycle C

obtained from W by splitting each vertex of Gt0 into several parts, such that the edges of

W appear in the same order around C . We may define a process P(C), beginning with C ,

that ‘shadows’ the process P(Gt0 ) as follows. To begin with, each edge of Gt0 corresponds

to the red version of that edge in C . Whenever two edges are pegged in P(Gt0 ), the

corresponding edges in P(C) are pegged, and the new edges formed in the pegging step

are put into correspondence in the obvious way.

Since 2t � 3t0 < |E(Gt0 )| � 4t and 1
60
t � t′ � 1

50
t, Lemma 2.5 implies that a.a.s. for

t → ∞ at least �t′/6� of the first t′ pegging steps in P(Gt0 ) involve two fresh edges. Let

C∗ denote the graph produced from C by performing just the set S of the first �t′/6� of

these selected pegging steps. This corresponds to a matching of the fresh edges chosen

uniformly at random. We may apply Lemma 2.4 to the graph which is obtained by

contracting the red edges of C into vertices. Then a.a.s. the resulting graph has diameter

at most c0 log |E(Gt0 )| for an appropriately chosen constant c0. Because every path in C∗

has at most 2 edges in a row that are either red or are red edges subdivided by a pegging

step, a.a.s. the diameter of C∗ is at most 3c0 log(|E(Gt0 )|) + 2 < 4c0 log t.

Note that each vertex in V (Gt0 ) can be identified with vertices in V (C) and that each

edge x of C∗ corresponds to a path F(x) in Gt, the extra vertices in the path being those

vertices inserted during the pegging steps not included in S . In this way, every path P in

C∗ corresponds to a path F(P ) in Gt. So, to get the required bound on distances between

https://doi.org/10.1017/S096354831000026X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831000026X


Pegging Graphs Yields a Small Diameter 245

vertices in Gt0 , it suffices to show that a.a.s. for every path P of length at most 4c0 log t in

C∗, the length of F(P ) is at most (4c0 + c1) log t for some constant c1.

To show this, we first note that each path of length � � 4c0 log t in C∗ consists of

some number, k, of ‘diagonal’ edges in C∗ created when red edges are pegged, where

0 � k � �/2 � 2c0 log t, together with k + 1 sub-paths P1, . . . , Pk+1 of C (though actually

the end edges of each of these sub-paths are subdivided in C∗). For each k under

consideration, we consider all possible families S of such sub-paths of C that have

combined length � − k, with each sub-path starting and ending with a red edge.

We first give an upper bound on the probability of the event that (i) all diagonal edges

between paths Pi and Pi+1 indeed ‘materialize’ (by pegging the corresponding red edges on

Pi and Pi+1) and that additionally (ii) the paths P1, . . . , Pk+1, together with these diagonals,

are extended in length by more than c1 log t during the formation of Gt. Later we will

apply the union bound over all families S and all relevant � and k.

Let j = 	D log t
 where D = D(c0) � 4c0 is a constant chosen sufficiently large to

satisfy (2.1) below in all cases. Let ES (u1, . . . , uk; t1, . . . , tj) be the event that, in P(C), at

time ui the diagonal edge connecting Pi and Pi+1 is created, and at times t1, . . . , tj at least

one of the edges in the subpaths or diagonals is pegged. Note that, since each edge of Gt0

was replaced by a blue and a red edge, at each time ti up to four vertices may be inserted

into P1, . . . , Pk+1 or the red diagonals that are already present (or, more precisely, into the

corresponding subdivided paths). Hence, with j ‘insertion’ steps, the increase in length of

the paths is at most 4j.

The next part of the argument is similar to the proof of Lemma 2.3. At any time the

number of edges in the subdivision of P1, . . . , Pk+1 and the present diagonals is bounded by

� + 4j � 5j by choice of D. Let m0 denote |E(Gt0 )|. There are at least m0 edges present in

each step of P(Gt0 ), so the probability that the two paths Pi and Pi+1 are joined correctly

at time ui is at most
(
m0

2

)−1
. The probability that the first edge pegged at time ti lies in

the required set of paths and diagonals is at most 5j/m0, and for the second edge it is at

most 5j/(m0 − 1). At least one of these two events must happen. Thus, the probability of

any one event ES (u1, . . . , uk; t1, . . . , tj) is at most

(
m0

2

)−k(
10j

m0 − 1

)j

.

On the other hand, for fixed k the number of such events ES (u1, . . . , uk; t1, . . . , tj) to consider

is at most (recalling t′ = t − t0)

mk+1
0 2k+1

(
�

k

)
(t′)k

(
t′

j

)
� mk+1

0 2�+k+1(t′)k
(
et′

j

)j

,

where the first factor chooses the leading red edges of the k + 1 segments, the next decides

which direction along the cycle the segments are laid out, the next (binomial) factor

bounds the number of compositions of � − k which determine the numbers of red edges

in each of P1, . . . , Pk+1, the next factor gives a bound on the choices of the times ui, and

the final factor chooses the times tj .
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Thus the probability that at least one of these events holds is at most the product of

the two quantities above, which, using m0 − 1 � 3t0 (by the comment before this proof),

� � j and t′ = t − t0 � t/50, is at most

2m0

(
t′

t0

)k+j(
4

3

)k(
40e

3

)j

< 2m0

(
40t′

t0

)k+j

� 2m0

(
40

49

)k+j

< 1/t (2.1)

as m0 = O(t0), j � D log t, and we may choose D sufficiently large. It follows that a.a.s.

none of the events ES (u1, . . . , uk; t1, . . . , tj) hold, for any of the O(log2 t) choices for � and

k. When none of these events hold, it follows that for every path P of length at most

4c0 log t in C∗, the length of F(P ) is at most 4c0 log t + 	D log t
 as required.

3. Final remarks

Pegging processes generating regular graphs of any fixed degree d � 3 were defined in [5].

The proof of Theorem 1.1 is easily modified for other pegging processes. Here we outline

the ideas and necessary modifications only for 4-regular pegging processes. Pegging in this

case, which we call 4-pegging, is accomplished by picking two edges e = ab, f = cd ∈ E,

adding a new vertex e′ and new edges ae′, be′, ce′, de′, and deleting the edges e and f. Note

that in order to avoid multiple edges it is required that the edges e and f are non-adjacent.

In order to show that also in a 4-pegging process the diameter is O(log t) after t steps,

we only have to change the above proof at a few places. As only non-adjacent edges

may be pegged, we have to modify Lemma 2.4 so that the matching is edge-disjoint from

the cycle. (Here we may use [7, Corollary 4.21] for a random perfect matching plus a

cycle when multiple edges are excluded.) Also within the proof of Lemma 2.1, the fact

that the second edge has to be non-adjacent to first decreases the denominator of the

probability from n − 1 to n − 2d, which is asymptotically negligible, since we may assume

that d � log n if G0 is fixed (if this is not the case we run the process for n steps and call

the new graph G0). Thus, the diameter of the graph in the 3-pegging process in which

adjacent edges may not be chosen is again O(log n) a.a.s. It is then routine to modify

the proof so that it also remains valid if we forbid pegging of any edge joining two new

vertices in any pegging step. Finally, this process may be used to simulate the 4-pegging

process by counting the new edge as having zero length.

We claim that our method extends without any trouble to the pegging processes of

higher degree defined in [5]. Hence, in each case the diameter of Gt is O(log t).

Figure 1 shows the results of simulations involving thousands of random 4-regular

graphs with n vertices for each of 220 values of n from 10 to 8000, for each of three

models: the uniform model; the 4-regular pegging process beginning with G0 = K5 (the

complete graph); the 4-regular pegging process beginning with two disjoint copies of K5.

In each case, let fd(n) denote the probability that the random graph on n vertices has

diameter d. Each continuous line shows a graph of fd(n) for a fixed value of d � 3, plotted

against x = log3(n ln n), with the points for distinct n joined in a piecewise linear fashion.

In each case, the values of fd(n) drop close to 0 somewhat before x reaches d + 1. In the

third model, the plot for d = 4 has a very low peak and that for d = 5 has an unusual

shape (due to the fact that the first 4-pegging of two K5s often creates a graph of diameter
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Figure 1. (Colour online) Diameters of random 4-regular graphs by simulation. Upper: uniform. Middle:

4-pegging, starting with K5. Lower: 4-pegging, starting with 2K5.

5 on 11 vertices). The horizontal scale is specially chosen to obtain a repeating pattern, in

view of the formula for the diameter of a uniformly random 4-regular graph in [6], where

it is shown that the diameter is 2-point concentrated, and 1-point concentrated for almost

all n. (The dashed line in each diagram shows the theoretical asymptotic formula for

maxd�3 fd(n) from [6].) The data suggest something much more precise than the O(log n)

bound on diameter that we proved in this paper. From these results, we do not hesitate

to make the following conjecture, which says, loosely speaking, that the diameter of the

graph Gt in the pegging process is 2-point concentrated, and for almost all values of t

is it is 1-point concentrated. The form of x given in this conjecture is such that x = d is

the point at which the typical diameter jumps from d to d + 1 for the uniform model, as

determined by the formula proved in [6].

Conjecture 1. There exists a function s(n) → 0 such that the following holds. Let r � 3,

and let GP be a the random graph with n vertices in the pegging process beginning with any

fixed r-regular graph G0. Let x := logr−1((2(r − 2)/r)n ln n). Then a.a.s. either the diameter

of GP is equal to 	x
, or |x − k| < s(n) for some integer k and the diameter is k or k + 1.
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The results of [6] show that the corresponding statement for the uniform model is true

provided only that s(n) log n → ∞.
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