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Abstract

An important task in the initial stages of most architectural design processes is the design of
planar floor plans, that are composed of non-overlapping rooms divided from each other by
walls while satisfying given topological and dimensional constraints. The work described in
this paper is part of a larger research aimed at developing the mathematical theory for exam-
ining the feasibility of given topological constraints and providing a generic floor plan solution
for all possible design briefs.

In this paper, we mathematically describe universal (or generic) rectangular floor plans
with n rooms, that is, the floor plans that topologically contain all possible rectangular
floor plans with n rooms. Then, we present a graph-theoretical approach for enumerating
generic rectangular floor plans upto nine rooms. At the end, we demonstrate the transforma-
tion of generic floor plans into a floor plan corresponding to a given graph.

Aims and significance

Introduction and related terminologies

In the context of this work, a floor plan is a polygon, the plan boundary, divided by straight
lines into component polygons called rooms. The edges forming the perimeter of each room
are termed walls. The region not enclosed by the boundary is called the exterior.

The topological constraints are usually given in terms of adjacencies between rooms. Two
rooms in the floor plan are adjacent if they share a wall or a section of wall. It is not sufficient
for them to touch at a point only. Interconnections between rooms and with the exterior, and
natural lighting or ventilation into the rooms are often reasons for such constraints. The
dimensional constraints involve the shapes and sizes of each room and the actual floor plan.

A rectangular floor plan is a floor plan in which the plan’s boundary and each room are
rectangles. From Steadman (2006), we know that rectangular packings offer the best flexibility
of dimensioning (flexibility allows for any configurations of rectangles irrespective of their
sizes; further it allows for the assignment of different dimensions to those configurations
while preserving their rectangularity). Hence, this work is concerned with rectangular floor
plans only.

It has been seen that for the enumeration of rectangular floor plans, it is possible first to
satisfy topological constraints and then dimensional constraints can be worked out (Baybars
& Eastman, 1980). It is also possible to proceed by satisfying both topological and dimensional
constraints at each step (Roth et al., 1982), but separating them helps to exhaust the study of
each constraint and its impact on the design. Therefore, in this work, we take the first approach
and deal with dimensionless rectangular floor plans. In future work, we will consider the
dimensional constraints. From here on, a dimensionless rectangular floor plan with n
rooms is denoted by RF (n).

The graph theoretical terminologies that are frequently used in this paper are as follows:
An unlabeled graph is a graph in which individual nodes have no distinct identifications

except through their interconnectivity; graphs in which labels are assigned to nodes are called
labeled graphs. A sub-graph, H, of a graph, G, is a graph whose vertices are a subset of the
vertex set of G, and whose edges are a subset of the edge set of G. In reverse, a super-graph
of a graph G is a graph of which G is a sub-graph. A complete graph Kn is a graph in
which every pair of distinct vertices is connected by a unique edge. Corresponding to Kn,
we have the following result:

m = n(n− 1)
2

(1)

Here, n and m stand for the number of vertices and the number of edges in a graph and
graph shall mean a connected simple graph, that is, no loops and no multiple edges or
directionality.

From Euler’s formula we know that a planar graph has 3n− 6 edges only if all the faces are
triangles but for any dual graph GD

n , all faces cannot be triangles. And, the G
D
n where all faces
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are triangle except outer face, which is a quadrangle, has 3n− 7
edges. This discussion leads us to the following inequality corre-
sponding to a dual graph GD

n , provided that n > 3.

m ≤ 3n− 7 (2)

Definition 1. A n−vertex graph Gn is maximal if:

(i) there exists a rectangular floor plan RF
n corresponding to it, and

(ii) there does not exist a supergraph of Gn for which a RF
n exist.

Definition 2. A rectangular floor plan corresponding to a max-
imal graph Gn is called a maximal rectangular floor plan denoted
by RM

n .
Definition 3. Generic graphs corresponding to n vertices is rep-

resented by a set formed by all n−vertex maximal graphs.
Clearly, any graph Gn for which a rectangular floor plan exists

should be the sub-graph of at least one of the maximal graphs that
form the generic graphs.

Definition 4. Generic rectangular floor plans with n rooms,
denoted by RG

n , is a minimal set of maximal rectangular floor
plans such that for every rectangular floor plan of a graph Gn,
there is a maximal rectangular floor plan in the set whose dual
graph is a supergraph of the Gn.

The notion of maximal and generic rectangular floor plans is
illustrated in Figure 1. It should be noted that a maximal rectan-
gular floor plan may have some extra connections that are not
asked by the given adjacency graph. For better understanding,
refer to Figure 2 where the rectangular floor plan in Figure 2b
is maximal corresponding to the graph in Figure 2a with an
extra connection between rooms B and E (for a proof, refer to
Proposition 3).

For a large number of rooms, mathematically, it is not easy to:

(i) check the existence of a rectangular floor plan corresponding
to a given graph (corresponding to a given graph, there may
be several plans or else possibly no plans),

(ii) construct the rectangular floor plan corresponding to a given
graph.

Therefore, in this paper, we describe universal (or generic) rec-
tangular floor plans that topologically contain all rectangular floor
plans.

Remark 1. It is interesting to note that maximal graphs are
unique but corresponding floor plans are not unique, that is,
there may exist more than one maximal floor plans for the

same adjacency graph. In other words, a rectangular floor plan
has only one topological graph, but for any topological graph,
we can have many rectangular floor plans. As an example, in
Figure 2, two topologically different maximal floor plans are illus-
trated for the given graph.

Literature review and work done

For a given (adjacency) graph, the problem is to construct the cor-
responding rectangular floor plan(s), if exists. In the past, many
researchers have presented graph theoretical techniques for the
generation of rectangular floor plans while satisfying given topo-
logical requirements. A brief literature review is as follows:

This approach was first presented by Levin (1964) in 1964
where a method was proposed for converting the graph into a
spatial layout. Then in 1970, Cousin (1970) talked about the con-
struction of a rectangular dual (adimensional rectangular floor
plan) of a given graph. In both approaches, the problem of realiz-
ing the adjacency structure as a floor plan was not presented very
clearly. In the same year, Grason (1970) proposed a dual graph
representation of a planar graph for generating a rectangular
floor plan where a floor plan is obtained from its dual graph1

by representing each region by a vertex and drawing an edge
between two adjacent regions. In this direction, Steadman
(1973, 1983) exhaustively generates all topologically distinct rec-
tangular arrangements (illustrating all possibilities up to six com-
ponent rectangles). In this way, the problem of producing a plan
to given specifications of adjacency becomes simply one of selec-
tion, rather than one of construction as in the approach of pre-
vious workers. These packings were produced by hand. In 1975,
Sauda (1975) designed a computer algorithm for generating pack-
ings automatically, with which all possibilities up to eight rectan-
gles can be produced. To systematically arrange these packings
throughout a solution space, Combes (1976) presented mathemat-
ical covariants and their relationships, used to define and categor-
ize different kinds of packings. In 1977, March and Earl (1977)
established the one-to-one correspondence between trivalent
3-polytopes2 and fundamental architectural schemes. In 1979,
Earl and March (1979) investigated the possible realizations of
floor plan arrangements representation by the non-separable tri-
valent plane maps3. Then in 1980, Baybars and Eastman (1980)
demonstrated a systematic procedure for obtaining an architec-
tural arrangement (not necessarily rectangular) from a given
underlying maximal planar graph. It has been shown that a

Fig. 1. The notion of maximal and generic rectangular floor plans

Fig. 2. A given graph and corresponding maximal rectangular floor plans

1Corresponding to every floor plan, there also exist a graph where vertices represent
rooms, and two vertices are joined by an edge whenever corresponding rooms are adja-
cent. This graph is called dual graph.

2Trivalent 3-polytopes belongs to a class of polyhedra in which three polygonal faces
are incident at each vertex.

3A plane map is a planar map with a labeled region, embedded in the plane, with all of
its regions finite except for the labeled region.
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given maximal planar graph4 G with p vertices could be
embedded in the plane in 2p− 4 different ways. In 1982, Roth
et al. (1982) presented a method for constructing a dimensioned
plan from a given graph. In this method, the given graph is first
split into two sub-graphs by a coluring technique (Roth &
Wachman, 1978); each of these graphs is then converted into a
dimensioned graph; the final product of the model is a set of
alternative plans where the determination of the envelope’s overall
size is done by using the Program Evaluation and Review
Technique algorithm (Radcliffe et al., 1967). In 1985, Robinson
and Janjic (1985) showed that, if areas are specified for rooms
with a given maximal outer-planar graph, then any convex poly-
gon with the correct area can be divided into convex rooms to sat-
isfy both area and adjacency requirements. In 1987, Rinsma
(1987) showed that, for any given maximal outerplanar graph
with at most four vertices of degree 2, it is not always possible
to find a rectangular floorplan satisfying adjacency and area con-
ditions. In the same year, Rinsma (1988) provided conditions for
the existence of rectangular and orthogonal floorplans for a given
tree5, representing the required adjacencies between rooms and
areas for each room. In 1994, Schwarz et al. (1994) presented a
graph-theoretical model for automated building design. Here,
the proposed solutions are not restricted in any shape, that is,
on the basis of given constraints, the shape of layout gets evolved.
In 2000, Recuero et al. (2000) presented a heuristic method using
the concepts of graph theory for mapping a graph into rectangles
so that they cover a rectangular plan.

As a recent work, in 2007, Del Rio-Cidoncha et al. (2007)
develop a method for solving floorplan design problem which
involves three main steps. In the first one, the relationships
between different modules, their distribution or location, are
established using slicing trees. In the second step, the corridors
are found. In the last step, the spaces are geographically oriented.
In 2010, Marson and Musse (2010) proposed a technique for the
generation of floor plans based on the squarified treemaps algo-
rithm. Treemaps subdivide an area into small pieces to represent
the importance of each part in the hierarchy whereas squarified
treemaps are treemaps that are used to generate rooms with aspect
ratios close to one. In 2011, Jokar and Sangchooli (2011) intro-
duced face area as a new concept for constructing a rectangular
floor plan with some non-rectangular rooms corresponding to a
particular class of MPG. In 2014, Shekhawat (2014) proposed
the enumeration of a particular class of best connected rectangu-
lar floor plans, that is, the floor plans having 3n− 7 edges in their
dual graphs. In 2017, Ham and Lee (2017) presented an algorith-
mic approach for quantitatively evaluating structural similarities
between architectural plans and creating a phylogenetic tree of
the analyzed architectural plans.

Mathematically, the problem of construction of a rectangular
floor plan corresponding to a given graph is known as rectangular
dualization problem which was first studied by (Bhasker & Sahni,
1987, and Koźmiński & Kinnen, 1985). The following theorem
was proved in (Koźmiński & Kinnen, 1985):

Theorem 1. A planar graph G has a rectangular dual R with
four rectangles on the boundary of R if and only if

(i) every interior face is a triangle and the exterior face is a quad-
rangle, and

(ii) G has no separating triangles, where a separating triangle is a
triangle whose removal separates the graph.

It can be seen that most of the work done related to the exis-
tence and construction of a rectangular floor plan falls into any of
these categories:

(i) Construction of a rectangular floor plan corresponding to:
(a) properly triangulated planar (PTP) graphs6 (Shekhawat,

2014; Bhasker & Sahni, 1987),
(b) maximal outer planar (MOP) graphs7 (Robinson &

Janjic, 1985),
(c) maximal planar graphs (MPG) (Jokar & Sangchooli,

2011),
(ii) Transform a given graph into a MPG (Baybars & Eastman,

1980; Rinsma, 1988) or PTP (Roth et al., 1982) and then con-
struct a rectangular floor plan corresponding to it (in case of
a MPG, the rectangular floor plans may have some non-
rectangular rooms)

In all the above cases, first we need to check that there exists a
rectangular floor plan, corresponding to the given graph or to the
transformed graph, and then we need to construct it if it exists.

In this paper, we only need to check that the given graph G is a
sub-graph of any of the maximal graphs or not. If G is a sub-
graph of a maximal graph, then we consider the corresponding
maximal rectangular floor plan. If G is not a sub-graph of any
of the maximal graphs, it implies that there does not exist a rec-
tangular floor plan corresponding to G (refer to Proposition 10).
Clearly, considering a maximal rectangular floor plan, instead of a
rectangular floor plan, corresponding to a given graph, assures
that the topological constraints set by the architect are satisfied.
Also, this idea reduces the amount of computation involved in
producing a rectangular floor plan, that is, each time, we do not
need to transform the given graph into a MPG or a PTP and
we do not need to check that there exists a rectangular floor
plan corresponding to the given graph or transformed graph.

Hence, our goal is to describe and enumerate generic rectangu-
lar floor plans that topologically contain all rectangular floor
plans. Evidently, the concept of generic rectangular floor plans
would make the process of construction of rectangular floor
plan independent of topological constraints.

Architecturally, the concept of generic rectangular floor plans
can serve as a very important tool for the designing of rectangular
floor plans because of the following reasons:

Sometimes it may happen that the adjacency graph given by
the architects is over constrained, that is, there does not exist a
rectangular floor plan for the given adjacency graph because of
some extra connections. Also, for a given n, there exists a large
number of graphs and it is not always easy to construct a rectan-
gular floor plan individually corresponding to a given graph.

4A planar graph G is maximal if no edges can be added to G without losing planarity.
5Any connected graph without cycles is a tree.

6A properly triangulated planar PTP graph, G, is a connected planar graph that satis-
fies the following properties:

i. Every face (except the exterior) is a triangle (i.e., bounded by three edges),
ii. All internal vertices have degree ≥4,
iii. All cycles that are not faces have length ≥4.

7An outerplanar graph is a graph that has a planar drawing for which all vertices
belong to the outer face of the drawing.
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Considering generic rectangular floor plans directly implies that
the topological constraints set by the architects are satisfied.

In this paper, answers will be given to the following questions
when 4 < n < 10:

(i) What is the necessary condition for the existence of a rectan-
gular floor plan for the given graph Gn (refer to Proposition
10).

(ii) What is the necessary and sufficient condition for the exis-
tence of a maximal rectangular floor plan (refer to
Proposition 9).

(iii) How to construct a maximal rectangular floor plan (refer to
the section “Methodology”, where maximal rectangular floor
plans with less than eight rooms are constructed, and refer to
the section “Maximal rectangular floor plan with eight and
nine rooms”, where maximal rectangular floor plans with
eight and nine rooms are constructed) and how to transform
the maximal floor plan into a floor plan corresponding to the
given graph (refer to the section “Discussion and future
work” and Fig. 21).

The flow of the paper is as follows:
In the section “Methodology”, first we will prove that the max-

imal graphs only belong to any one of the groups:

(i) graph with 3n− 7 edges for which a rectangular floor plan
exists,

(ii) graph with degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸
n−1 times

}.

Then it would be demonstrated that there exists only one
graph with degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸

n−1 times

} but there may exists

more than one distinct graphs with 3n− 7 edges. To derive max-
imal graphs with 3n− 7 edges for n = 5, 6, 7, we present the fol-
lowing method.

(i) derive all distinct graphs with 3n− 7 edges,
(ii) Among all these graphs, pick those graphs for which a rectan-

gular floor plan exists.

But from Table 2, we can see that, for n = 7, there are 66 dis-
tinct graphs with 3n− 7 edges out of which there are only two
graphs for which a rectangular floor plan exists. To reduce the
amount of computation involved in the section “Methodology”,
we move to a new method in the section “Best connected rectan-
gular floor plans” for deriving the maximal graphs with 3n− 7
edges for n = 8, 9, whose steps are as follows:

(i) Construct all possible topologically distinct rectangular floor
plans whose dual graph has 3n− 7 edges,

(ii) Compute dual graphs of each of the rectangular floor plans,
(iii) Look for the distinct graphs among the obtained dual graphs.

For smooth reading of the remaining text, here is the list of
notations that are frequently used in the paper:

Rn
F: a (dimensionless) rectangular floor plan with n rooms,

Gn
D: a dual graph of the Rn

F,
Rn
M: a (dimensionless) maximal rectangular floor plan with n

rooms,
Rn
G: (dimensionless) generic rectangular floor plans with n rooms,

Gn: n-vertex simple connected graph,
n: the number of rooms in a Rn

F as well as the number of vertices
in a Gn,

Kn: a complete graph with n vertices,
m: the number of edges in a Gn,
Gn
M: a maximal graph with n vertices.

Methodology

In this section, we are going to show that the maximal graphs only
belong to any one of the groups:

• graph with 3n - 7 edges for which a rectangular floor plan exists,
• graph with degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸

n−1 times

}.

Maximal rectangular floor plans with four rooms

Given an undirected graph, a degree sequence is a monotonic non-
increasing sequence of the vertex degrees (valencies) of its graph
vertices.

Definition 5. A degree sequence {a1, a2, …, an} is less than a
degree sequence {b1, b2, …, bn} if and only if ai ≤ bi ∀ i = 1, 2,
…, n.

For example, the degree sequence of G5 in Figure 2a is less
than the degree sequence of G5 in Figure 4c.

Proposition 1. There exists only one maximal graph for n = 4,
that is, GM

4 .
Proof. From Equation 1, for the complete graph K4, m = 4 × 3/

2 = 6 and from Equation 2, for a GD
4 , we have m≤ 3 × 4− 7 = 5.

Clearly, there exists only one graph G4 with m = 5 that can be
derived from K4 by deleting any one of its edges. A G4 with m
= 5 and corresponding RF

4 are illustrated in Figure 3. Hence,
this graph is a maximal graph denoted by GM

4 .
It is obvious to verify that the degree sequence of a graph G1 is

less than the degree sequence of a graph G2 if G1 is a spanning
sub-graph G2 (the converse is not always true). Now, for n = 4,
the maximum degree of any vertex is three and the maximum
degree of G4 in Figure 3 is also three and it has m = 3 × 4− 7 =
5. Hence, there does not exist any graph with four vertices for
which a rectangular floor plan exists and whose degree sequence
is not less than the degree sequence of GM

4 . Hence, GM
4 is the only

maximal graph for n = 4. □

Maximal rectangular floor plan with five rooms

From Equation 1, for the complete graph K5, m = 5 × 4/2 = 10 and
from Equation 2, for a GD

5 , we have m≤ 3 × 5− 7 = 8. Clearly, all
possible graphs with n = 5, m = 8 can be derived from the com-
plete graph K5 by deleting two of its edges, as shown in
Figure 4 where the numbers next to each vertex represent its
degree.

Fig. 3. A graph G4 with 5 edges and corresponding rectangular floor plan (the number
next to each vertex represents its degree and the number mentioned inside a room is
its degree)
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It can be seen from Figure 4 that there exist only two distinct
unlabeled graphs with 3n− 7 = 3 × 5− 7 = 8 edges and for both
graphs, there does not exist a super-graph for which a rectangular
floor plan exists because they are the only graphs with 3n− 7 =
3 × 5− 7 = 8 edges. A rectangular floor plan RF

5 corresponding
to the graph G5 in Figure 4c is illustrated in Figure 5 but there
does not exist a rectangular floor plan corresponding to the
graph G5 in Figure 4d (because of the presence of K4, refer to
Proposition 2). This suggests that the graph G5 in Figure 4c is
maximal while the graph G5 in Figure 4d is not.

Proposition 2. There does not exist a rectangular floor plan cor-
responding to a graph containing the complete graph K4.

Proof. From Theorem 1, we can easily conclude that there does
not exist a rectangular floor plan corresponding to the complete
graph K4 because its outer face is not quadrangle. This implies
that there does not exist a rectangular floor plan corresponding
to a graph containing K4. □

Let the maximal G5 in Figure 4c be denoted by GM
5 .

Proposition 3. There exists only one maximal graph for n = 5,
that is, GM

5 .
Proof. For n = 5 there exists only one graph with degree

sequence {4, 4, 3, 3, 2} (see Fig. 4d) whose degree sequence is
not less than the degree sequence of GM

5 but from Proposition
2, there does not exist a rectangular floor plan corresponding to
Figure 4d. Hence, GM

5 is the only maximal graph for n = 5. □

Maximal rectangular floor plans with six rooms

From Equation 1, for a complete graph K6, m = 6 × 5/2 = 15 and
from Equation 2, for a dual graph of any rectangular floor plan
RF
6 , we have m≤ 3 × 6− 7 = 11. To proceed further, all possible

graphs with n = 6, m = 11 are derived from the complete graph
K6 in Figure 6. Now, we will show that there is only one maximal
graph among the nine graphs with m = 11 as illustrated in
Figure 6i (see Proposition 4).

Proposition 4. The graph G6 in Figure 6i is a maximal G6.
Proof. Using Theorem 28, it can be easily verified that the fol-

lowing graphs in Figure 6 are non-planar:

• Figure 6c (because of the presence of K5)
• Figure 6g (because of the presence of a subdivision of K5)

• Figures 6e and h (because of the presence of K3,3)

From Proposition 2, there does not exist a rectangular floor
plan corresponding to the graphs in Figures 6a, b, d and f because
of the presence of K4.

From the above discussion, there exists only one graph, that is,
Figure 6i with 6 vertices and 11 edges for which a rectangular
floor plan exists (see Fig. 7a). This concludes the proof.

Above, we have seen that there exists only one maximal graph
with 6 vertices and 11 edges but it is interesting to note that, for n
= 6, the degree sequence of a graph having at least one vertex of
degree 5 cannot be less than the degree sequence {4,4,4,4,3,3}.
To look for a maximal graph G6 having at least one vertex of
degree 5, let us consider the following results.

Proposition 5. If any room in a rectangular floor plan RF
n , n > 5,

has degree n− 1, then there does not exist any other room with
degree >3.

Proof. Let RA be a room with degree n− 1 in a rectangular
floor plan RF

n and RB be another room that is adjacent to RA.
Now, it is easy to verify that it is not possible to draw three
rooms (other than RA and RB) that are adjacent to both RA and
RB or if all the three rooms are adjacent to RA, then at most
two of the rooms can be adjacent to RB. This implies that if degree
of RA is n− 1 then the degree of any other room cannot be >3.

For further explanation of result of Proposition 5, consider
Figure 8a with 12 rooms where room A is adjacent to all other
11 rooms and each of the 11 rooms has degree 3. Now, we can
verify manually that it is not possible to increase the degree of
any of the 11 rooms while keeping the degree of room A equal
to 11. For example, in Figure 8b, the degree of room B is increased
from 3 to 4 but then room C is not adjacent to room A.

Proposition 6. It is always possible to construct a rectangular
floor plan RF

n , n > 5, with degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸
n−1 times

}.

Proof. It can be verified by drawing a rectangular floor plan with
a room, say RA, in the center and n− 1 rooms adjacent to RA such

Fig. 4. Reduction of complete graph K5 to graphs with n = 5 and m = 8, where the number next to each vertex represents its degree (to move from m = 10 to m = 9,
any one of the edges can be deleted because the degree of each vertex in Figure A is same; but to move from m = 9 to m = 8, there are two options for deletion of an
edge, that is, delete an edge joining the vertices with degree 4, see Fig. c, or delete an edge joining the vertices with degree 3 and degree 4, see Fig. d)

Fig. 5. A rectangular floor plan corresponding to the graph in Figure 4c with degree
sequence {4,3,3,3,3}

8Theorem 2 (Kuratowski’s theorem [Kuratowski, 1930]) A finite graph is planar if and
only if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five
vertices) or of K3,3 (complete bipartite graph on six vertices).

A subdivision of a graph G is a graph resulting from the subdivision of edges in G.
The subdivision of some edge e with endpoints {u,v} yields a graph containing one new
vertex w, and with an edge set replacing e by two new edges, u,w and {w,v}.
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Fig. 6. Deriving all possible unlabeled graphs with six vertices and 3n− 7 = 11 edges from the complete graph K6
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that there should be at least one room adjacent to each wall of RA. As
an example, a RF

6 with degree sequence {5,3,3,3,3,3} and the corre-
sponding dual graph are illustrated in Figures 7c and d respectively.

Proposition 7. For n > 4, the graph with degree sequence
{n− 1, 3, . . . , 3︸���︷︷���︸

n−1 times

} is a maximal Gn.

Proof. The graph with degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸
n−1 times

} is a

wheel graph, denoted byWn, formed by connecting a single vertex
to all vertices of a cycle. Clearly, there does not exist a super-graph
of a wheel graph with a same number of vertices for which a rec-
tangular floor plan exists and from Proposition 6 there exists a
rectangular floor plan corresponding to each wheel graph,
hence, it is a maximal graph. □

Maximal rectangular floor plan with seven rooms

By using the procedure adopted in the section “Maximal rectan-
gular floor plans with six rooms”, we found that there exist 66 dis-
tinct graphs with 7 vertices and 3n− 7 = 14 edges, as illustrated in
Figure 9. Among these 66 graphs, 49 graphs are non-planar and
17 graphs are planar. Using Theorem 2, the non-planar graphs
in Figure 9 are as follows:

(i) 1, 3, 4, 5, 6, 14, 21, 47 (because of the presence of K5)
(ii) 28, 62, 64, 65 (because of the presence of a subdivision of K5)
(iii) 2, 8, 13, 15, 17, 18, 19, 22, 27, 29, 30, 31, 32, 35, 39, 41, 44, 48,

49, 50, 53, 55, 59, 60, 63 (because of the presence of K3,3)
(iv) 11, 16, 24, 25, 33, 43, 46, 51, 54, 56, 57, 66 (because of the

presence of a subdivision of K3,3)

The planar drawings of remaining 17 graphs in Figure 9 are
illustrated in Figure 10. In Figure 10, there are 14 graphs

containing K4 as illustrated in Figure 11, where a number close
to a vertex represents its degree.

Now, there remain three graphs, that is, the graphs numbered
26, 52, and 58 in Figure 9, for which we need to check the exis-
tence of rectangular floor plans. For graph 26, after deletion of
the vertex with degree 2, remaining graph has 6 vertices and 13
> (3n− 7 = 11) edges. Hence, there does exist a rectangular floor
plan corresponding to the graph 26 in Figure 9. The rectangular
floor plans corresponding to the graphs 52 and 58 in Figure 9
are illustrated in Figures 12b and d. This implies that there exist
two maximal graphs corresponding to n = 7.

Proposition 8. For n > 3, the maximal graphs only belong to any
one of the groups:

(i) graph with 3n− 7 edges for which a rectangular floor plan
exists,

(ii) graph with degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸
n−1 times

} (Wn).

Proof. From the sections “Maximal rectangular floor plans
with six rooms” and “Maximal rectangular floor plan with
seven rooms”, for n > 4, we can conclude the following:

(i) it is always possible to construct a rectangular floor plan with
3n− 7 edges in its dual graph (starting with Fig. 12b, keep
adding a room in a clockwise direction such that the room
must be adjacent to three existing rooms; for further details
refer to (Shekhawat, 2014)) where the maximum degree of
any room can be at most n− 2,

(ii) it is not possible to construct a rectangular floor plan with
3n− 7 edges in its dual graph if the maximum degree of at
least one room is n− 1 (refer to Proposition 5),

(iii) it is always possible to construct a rectangular floor plan
whose dual graph has degree sequence {n− 1, 3, . . . , 3︸���︷︷���︸

n−1 times

}
(refer to Proposition 6).

The above three points imply that the degree sequence of any
graph Gn for which a rectangular floor plan exists is always less
than the degree sequence of one of the maximal graphs with
3n− 7 edges or the maximal graph with degree sequence
{n− 1, 3, . . . , 3︸���︷︷���︸

n−1 times

}. □

Best Connected Rectangular Floor Plans

Definition 6. A rectangular floor plan RF (n), represented by
RF
BC(n), is called best connected if its dual graph has 3n− 7 edges.

Fig. 7. All distinct maximal rectangular floor plans and their dual graphs when n = 6

Fig. 8. Example showing that the dual graph of a rectangular floor plan with degree
sequence {11,3,3,3,3,3,3,3,3,3,3,3} is a maximal graph
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Fig. 9. All possible unlabeled graphs with seven vertices and 3n− 7 = 14 edges (the sequence shown above a graph or a group of graphs is its degree sequence)
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Fig. 10. All possible planar graphs with seven vertices and 3n− 7 = 14 edges (the numbering used for the graphs is taken from Fig. 9)

Fig. 11. Graph K4 that is present in the planar graphs shown in Figure 10 (the numbers associated with each vertex is its degree)

Fig. 12. All distinct maximal graphs and corresponding rectangular floor plans when n = 7 (the number present in each room is its degree, from which the degree
sequence of corresponding floor plan can be derived)
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From Proposition 8 we can see that to have generic rectangular
floor plans for given number of rooms, we must compute all max-
imal graphs with 3n− 7 edges (the maximal graph with degree
sequence {n− 1, 3, . . . , 3︸���︷︷���︸

n−1 times

} is a well-known wheal graph). But

the procedure used in the section “Methodology” to compute
maximal graphs with 3n− 7 edges involves a lot of computation
(refer to Table 1) and there may be a chance of an error. To cross-
check the results presented in the section “Methodology”, and to
derive generic rectangular floor plans with eight and nine rooms,
we introduce a new methodology in this section as follows:

First, we construct all possible best connected rectangular floor
plans for 4 < n < 10. Then, among all possible floor plans, we pick
the ones having distinct dual graphs. Interestingly, this procedure
serves two purposes. First, it leads to the computation of generic rec-
tangular floor plans. At the same time, it covers all possible plans
corresponding to maximal graphs with 3n− 7 edges. For better
understanding, refer to Figure 13 where best connected rectangular
floor plans with five, six and seven rooms respectively, have been
demonstrated. In this figure, k represents the first k rooms arranged
one above the other such that each drawn room shares a full wall
with the last drawn room. It can be verified easily that, for best con-
nected rectangular floor plans, 1 < k < n− 1. Therefore, for the

construction of these floor plans, we start with k = n− 2 and go
till k = 2 while decreasing k by one at each step. For a better under-
standing, the construction of best connected rectangular floor plans
with different values of k, refer to (Shekhawat & Duarte, 2017).

In Figure 13, a numbering has been assigned to each floor plan
to show that all generated floor plans are topologically distinct.
For the details about this numbering, refer to the section
“Rectangular floor plans labeling”.

For a comparison of the method for computing maximal
graphs with 3n− 7 edges presented in the section “Maximal rec-
tangular floor plan with eight and nine rooms” with the method
presented in the section “Methodology”, refer to Table 2.

Maximal rectangular floor plan with eight and nine rooms

Definition 7. Two rectangular floor plans with a same number of
rooms are said to be distinct if their dual graphs are distinct.

For n = 8, there exists 44 topologically distinct best connected
rectangular floor plans (refer to Fig. 14), out of which there are
only five distinct maximal rectangular floor plans, as shown in
Figure 15(a–e). This implies that for n = 8 there exists five maxi-
mal graphs with 3n− 7 edges.

For n = 9, there exists 125 topologically distinct best connected
rectangular floor plans (refer to Figs. 16–18), out of which there are
only 13 distinct maximal rectangular floor plans, as shown in
Figure 19(a–m). This implies that for n = 9 there exists 13 distinct
maximal graphs with 3n− 7 edges (in the labeling of rectangular
floor plans in Figs. 14, 16–18, each labeling must have 1k as its first
term but due to a shortage of space, it has not been displayed in
the corresponding Figures. Here, 1k represents 1, 1,…, 1 (k times)).

Rectangular Floor Plans Labeling

In the section “Best connected rectangular floor plans”, we pre-
sented all possible topologically distinct best connected rectangu-
lar floor plans for 4 < n < 10.

Table 1. Total number of possible unlabeled graphs, derived from Kn, with less than or equal to 3n − 7 edges when n = 5, 6, 7 respectively (here,
n
k

( )
= n!

k!(n− k)!)

Number of graphs for Number of non-isomorphic graphs for

Number of edges n = 5 n = 6 n = 7 n = 5 n = 6 n = 7

n
2

( )
1 1 1 1 1 1

n
2

( )
− 1 1 1 1 1 1 1

n
2

( )
− 2 2 2 2 2 2 2

n
2

( )
− 3 – 7 7 – 5 5

n
2

( )
− 4 – 17 19 – 9 10

n
2

( )
− 5 – – 47 – – 21

n
2

( )
− 6 – – 108 – – 38

n
2

( )
− 7 – – 240 – – 66

Table 2. Comparing the two methods presented in the sections “Methodology”
and “Best connected rectangular floor plans” respectively for computing
maximal graphs with 3n− 7 edges

n

Number of
distinct

graphs with 3n
− 7 edges

Number of best
connected

rectangular floor
plans

Number of
maximal

graphs with 3n
− 7 edges

n = 5 2 3 1

n = 6 6 6 1

n = 7 66 15 2
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Fig. 13. All topologically distinct best connected rectangular floor plans with five, six, and seven rooms respectively (corresponding to each floor plan, a labeling is
assigned where 1k represents 1, 1, …, 1 (k times)). In this figure and in Figures 14, 16–18, the first room to be placed for obtaining the compositional schema of a
rectangular floor plan is the one with number “1” written in its centre. Then, k − 1 rooms are drawn where k is the number of rooms arranged one above the other
such that each drawn room shares a full wall with the last drawn room. After drawing k rooms, the next room is the one sharing its full wall with all the k rooms. In
the same fashion, remaining rooms in the compositional schema can be identified by looking for the next room that is sharing its full wall with some of the existing
rooms. The compositional schema can also be identified from the labeling assigned to each floor plan whose details are given in the next section
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Fig. 14. All topologically distinct best connected rectangular floor plans with eight rooms (here, there are five distinct boxes with floor plans, where the dual graphs
of all floor plans inside a box are the same and duals graphs of any two floor plans present in two different boxes are distinct)
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Definition 8. Two rectangular floor plans with a same number
of rooms are said to be topologically distinct (or non-isomorphic) if
one cannot be derived from the other using the following transfor-
mations (Stiny, 1980):

(i) Translation
(ii) Rotation
(iii) Reflection
(iv) Scaling
(v) Any composition of the above

Now, it can be verified visually that the rectangular floor plans
presented in Figures 14, 16–18, are topologically distinct but in
the literature, we did not find a procedure for checking the iso-
morphism or non-isomorphism of given rectangular floor plans.
In this section, the idea is to associate a unique representation or
labeling to a rectangular floor plan which can be easily used to
check the non-isomorphism of given rectangular floor plans.

The steps used for deriving a labeling for a rectangular floor
plan are as follows (here we are considering the rectangular
floor plans in which each room is arranged in such a way that
the composition of drawn rooms is always rectangular):

(i) Assign number “1” to first k rooms arranged one above the
other (see Fig. 20a).

(ii) The number assigned to a room (other than the first k
rooms), that is adjacent to more than one existing rooms,
is equal to the sum of the numbers corresponding to the
rooms adjacent to it (see Figs. 20b and d).

(iii) The number assigned to a room (other than the first k
rooms), that is adjacent to only one of the existing rooms,
is equal to one plus the number corresponding to the
room adjacent to it (see Fig. 20c).

(iv) A monotonic non-increasing sequence of the numbers
associated with the rooms is a labeling associated with the floor
plan. If two-floor plans have different labeling, then they are non-
isomorphic (e.g. Figures 20d and e are non-isomorphic).

(v) If two-floor plans have the same labeling then we redefine
the labeling by associating a subscript with each of the num-
bers, that is equivalent to the degree of the corresponding
room. Again, if two-floor plans have different labeling,
then, they are non-isomorphic. For example, initially,

Figures 20f and g have the same labeling but after adding
subscripts, we can see that they are non-isomorphic.

Results

The detailed description of the generic graphs for n = 4, 5, …, 9
are as follows:

• For n = 4, 5, the generic graphs consist of a set with only one
maximal graph as illustrated in Figures 3a and 4c respectively.

• For n = 6, the generic graphs consist of a set of two maximal
graphs as illustrated in Figures 7b and d.

• For n = 7, the generic graphs consist of a set of three maximal
graphs as illustrated in Figures 12a, c and e.

• For n = 8, the generic graphs consist of a set of six maximal
graphs as illustrated in Figures 15a–f.

• For n = 9, the generic graphs consist of a set of 14 maximal
graphs as illustrated in Figures 19a–n.

Here are three important results that can be concluded from
the theory presented in the sections “Methodology”and “Best
connected rectangular floor plans”.

Proposition 9. There exists a maximal rectangular floor plan
corresponding to any given graph Gn if and only if its underlying
unlabeled graph is a sub-graph of any one of the maximal graphs
corresponding to n.

Proof. For a given n, it is easy to see that any unlabeled graph
say Ga, which is a sub-graph of a maximal graph GM

a can be
derived from GM

a by deleting some of its edges, and a rectangular
floor plan RF

a corresponding to the GM
a guarantees the existence

of a maximal rectangular floor plan corresponding to the
graph Ga.

Clearly, if the underlying unlabeled graph of the given labeled
Ga is the sub-graph of the GM

a , then a maximal rectangular floor
plan can be constructed corresponding to the underlying unla-
beled graph. Once we have the required floor plan, it can be
labeled according to the given Ga to have the desired result. □

Proposition 10. There does not exist a rectangular floor plan RF
n

for a given graph Gn if its underlying unlabeled graph is not a sub-
graph of any of the maximal graphs corresponding to n.

Proof. Its proof directly follows from Proposition 8.

Fig. 15. All distinct maximal graphs with eight vertices and corresponding rectangular floor plans
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Fig. 16. All topologically distinct best connected rectangular floor plans with nine rooms when 2 < k < 8 ((In Figs. 16–18, there is a total of 13 different boxes with
distinct numbering, where the dual graphs of all floor plans inside the boxes with the same numbering are the same and the dual graphs of any two floor plans
present in two different boxes with different numbering are distinct))
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Fig. 17. Forty-two topologically distinct best connected rectangular floor plans with nine rooms when k = 2

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 345

https://doi.org/10.1017/S0890060417000671 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000671


Fig. 18. Thirty-nine topologically distinct best connected rectangular floor plans with nine rooms when k = 2
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Fig. 19. All distinct maximal graphs with nine vertices and corresponding rectangular floor plans

Fig. 20. Labeling of rectangular floor plans
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Fig. 21. Example demonstrating the results of this paper
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Proposition 11. For any n, the minimal set of rectangular floor
plans corresponding to all maximal graphs form the generic rectan-
gular floor plans RG

n .

Discussion and Future Work

In this paper, we have presented a necessary and sufficient condi-
tion for the existence of maximal rectangular floor plans, that is,
we looked for the set of maximal graphs such that any other graph
for which a rectangular floor plan exists should be the sub-graph
of at least one of the maximal graphs. This result leads to a neces-
sary condition for the existence of a rectangular floor plan RF (n)
for a given graph Gn, that is, if the underlying unlabeled graph of
any given Gn is not a sub-graph of any of the maximal graphs,
then there does not exist a RF (n) corresponding to the Gn.
Once the conditions for the existence of maximal rectangular
floor plans are satisfied, we can construct a maximal rectangular
floor plan for the underlying unlabeled graph of a given graph
which can, therefore, be converted into a maximal rectangular
floor plan for the given graph. The obtained maximal floor
plans will be further transformed into the floor plans correspond-
ing to the given graphs.

For a better understanding of the results, let us consider that we
have been given four graphs as shown in Figures 21a–d and the aim
is to construct a rectangular floor plan corresponding to them. To
construct the required floor plans, the steps are as follows:

(i) From Proposition 10 and Figure 7, for n = 6, there exist max-
imal rectangular floor plans for the given graphs if their
underlying unlabelled graphs, illustrated in Figures 21e–h,
are sub-graphs of any of the maximal graphs shown in
Figures 21i and j. Clearly, the graph in Figure 21e is not a
sub-graph of any of the maximal graphs because two of its
vertices have degree 5 which is not possible for the graphs
in Figures 21i and j. It can be verified that the graphs in
Figures 21f and g are the sub-graphs of Figure 21i whereas
the graph in Figure 21h is a sub-graph of Figure 21j. This
implies that there exist maximal rectangular floor plans for
the graphs in Figures 21b to d but there does not exist a rec-
tangular floor plan for the graph in Figure 21a.

(ii) The rectangular floor plans corresponding to Figures 21i and
j are illustrated in Figures 21k and l respectively. The rectan-
gular floor plan RF (6) in Figure 21k is a maximal rectangu-
lar floor plan for the graphs in Figures 21f and g while the RF

(6) in Figure 21l is a maximal rectangular floor plan for the
graph in Figure 21h.

(iii) Once we have constructed a maximal rectangular floor plan
RF
M(n) for the underlying unlabelled graph of the given graph

Gn, the next step is to convert this RF
M(n) into a RF

M(n) cor-
responding to the given Gn. For example, the RF

M(6) corre-
sponding to the graphs in Figures 21b–d are demonstrated
in Figures 21m–o respectively. Clearly, these are derived
from the RF

M(6) in Figures 21k and l.
(iv) The maximal floor plans can be transformed into the floor

plans corresponding to the given graphs by inserting a
door between the rooms whose corresponding vertices
are adjacent in the given graph. For example, Figures
21p–21r are the required floor plans corresponding to
the graphs in Figures 21b–d. It should be noted that if
there is no door between two rooms then they are not
connected; for example in Figure 21p, rooms two and
five are not connected.

This work leads to a considerable number of relevant open
problems which we would like to cover in the near future.

(i) In this paper, we proposed a method to compute generic rec-
tangular floor plans and enumerate them for 4 < n < 10. This
method can be used to compute generic rectangular floor
plans for any n but it involves a lot of computation and it
is not an easy approach to generalize. Actually, it will be dif-
ficult for hand enumeration beyond n = 9 and a proof tech-
nique that is not based on exhaustive enumeration is not
obvious. In the future, we intend to look for such a proof
technique.

(ii) How to compute that the underlying unlabeled graph of a
given graph is a sub-graph of any other unlabeled graph.

(iii) Here we have presented a composition schema of a maximal
rectangular floor plan corresponding to the underlying unla-
beled graph of a given graph; it remains to develop a method
for converting it into a labeled maximal rectangular floor
plan for the given labeled graph.

(iv) If there does not exist a rectangular floor plan for a given
graph, then how to convert the given graph into a graph
for which a rectangular floor plan can be constructed.

(v) How to consider the dimensional constraints while satisfying
the given topological constraints.

(vi) How to identify and introduce the circulation spaces.

Conclusion

In this paper, we introduced a concept of generic rectangular floor
plans and construct them upto nine rooms.

Architecturally and mathematically, the idea is to reduce a
large and complex problem, that is, designing of a rectangular
floor plan for a given adjacency graph, into a simple problem,
that is, look for a maximal graph corresponding to the given adja-
cency graph. Clearly, the generic rectangular floor plans lead to a
class of floor plans that is independent of topological constraints
and any rectangular floor plan can be topologically derived from
them, as demonstrated in Figure 21.

The next important result of this paper is to construct all pos-
sible composition schema of best connected rectangular floor
plans (floor plans corresponding to maximal graphs with 3n−
7 edges). Clearly, it provides all possible choices to the architects
for the construction of maximal rectangular floor plans.

Last but not least important result is to develop a mathematical
theory for examining the isomorphism of given rectangular floor
plans. This could a very important tool for avoiding the similar
and repeated solutions and to verify the topological equivalence
of any two-floor plans with a same number of rooms.
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