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Abstract In the following note, we focus on the problem of existence of continuous solutions vanishing at
infinity to the equation div v = f for f ∈ Ln(Rn) and satisfying an estimate of the type ‖v‖∞ � C‖f‖n for
any f ∈ Ln(Rn), where C > 0 is related to the constant appearing in the Sobolev–Gagliardo–Nirenberg
inequality for functions with bounded variation (BV functions).
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1. Introduction

It has been well known since Bourgain and Brezis’ [1] that given a function f ∈ Ln
#(Tn)

(i.e. a function f ∈ Ln(Tn) satisfying
∫

Tn f = 0), there exists a bounded solution v ∈
L∞(Tn, Rn) to the equation:

div v = f in T
n, (1)

satisfying the estimate
‖v‖∞ � C‖f‖n, (2)

where C > 0 is independent of f . In fact, the authors even show that there exists a
continuous solution to (1) satisfying estimate (2). They also show, though, that there is
no bounded linear operator S : Ln

#(Tn) → L∞(Tn, Rn) yielding div(Sf) = f in the sense
of distributions for any f ∈ Ln

#(Tn); hence, (2) cannot be the consequence of any kind of
bounded linear representation formula for the solutions of (1).

In the sequel, we denote by Cb(Rn, Rn) the spaces of bounded continuous vector fields,
and by C0(Rn, Rn) the space of all continuous vector fields vanishing at infinity in R

n.
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In the whole Euclidean space R
n, it follows from De Pauw and Torres [3, Theorem 6.1]

that, given f ∈ Ln(Rn), there exists a continuous vector field vanishing at infinity v ∈
C0(Rn, Rn) satisfying div v = f in R

n in the sense of distributions. However, their result
does not provide an estimate of type (2) in this case. One of the objectives of this short
note is to show that, using the existence for each f ∈ Ln(Rn) of a continuous vector field
v ∈ C0(Rn, Rn) satisfying div v = f , Bourgain and Brezis’ proof of [1, Proposition 1] yields
the existence for each f ∈ Ln(Rn) of a vector field w ∈ C0(Rn, Rn) satisfying div w = f
in R

n as well as ‖w‖∞ � C‖f‖n, where C > 0 is independent of f and related to the
constant appearing in the Sobolev–Gagliardo–Nirenberg inequality for bounded variation
(BV) functions. This is our Theorem 3.1.

2. Solvability in Cb(Rn, R
n) vs C0(Rn, R

n)

Let n � 2 and 1∗ := n/(n − 1) be the Sobolev exponent when p = 1. Consider BV1∗(Rn)
the set of functions g ∈ L1∗

(Rn) such that

‖Dg‖ := sup
{∫

Rn

g div v : v ∈ D(Rn, Rn), ‖v‖∞ � 1
}

< ∞

and

BV1∗,c(Rn) := {g ∈ BV1∗(Rn) : {g �= 0} is relatively compact in R
n} .

Indeed, if g ∈ BV1∗(Rn), we may denote by Dg : C0(Rn, Rn) → R the (finite) vector-
valued Radon measure on R

n extending the distributional gradient of g.
Given a sequence (gk) ⊆ BV1∗(Rn), we can write gk � 0 when k → ∞ in cases where

the following conditions hold:

(i) gk ⇀ 0, k → ∞ weakly in L1∗
(Rn);

(ii) supk ‖Dgk‖ < +∞.

Next, we define charges vanishing at infinity according to De Pauw and Torres [3,
Definition 3.1].

Definition. A charge vanishing at infinity is a linear functional F : BV1∗(Rn) → R

having the property that F (gk) → 0, k → ∞ for any sequence (gk) ⊆ BV1∗(Rn) satisfying
gk � 0, k → ∞.

According to De Pauw and Torres [3, Theorem 6.1], charges vanishing at infinity are
precisely the (extensions to BV1∗(Rn) of) distributions for which the equation div v = F
has a continuous solution vanishing at infinity. We formulate their result as follows.

Theorem 2.1. Assume that F ∈ D ′(Rn) is a distribution. The equation div v = F has
a solution v ∈ C0(Rn, Rn) in the sense of distributions if and only if F extends to a charge
vanishing at infinity.

Remark 2.2. It is easy to observe that in the case where F ∈ D ′(Rn) extends to a
charge vanishing at infinity, this extension is unique (and still denoted by F in the sequel).
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The following example shows that there exist distributions F ∈ D ′(Rn) having the
property that div v = F is solvable in Cb(Rn, Rn) but not in C0(Rn, Rn).

Example. Define for each k ∈ N a function gk ∈ BV1∗(Rn) by gk := χ[2k,2k+1]n , where
χE denotes the characteristic function of E ⊆ R

n. It is clear that for k ∈ N, we have:

‖Dgk‖ = H n−1(∂[2k, 2k + 1]n) = 2n,

where H n−1 denotes the (n − 1)-dimensional Hausdorff outer measure in R
n (see, e.g. [4,

§ 2.1]). One also readily observes that gk ⇀ 0, k → ∞ weakly in L1∗
(Rn). Hence gk � 0,

k → ∞.

Now choose η : R
n → R, a bounded continuous function satisfying the following

properties:

(a) 0 � η � 1 on R
n;

(b) η = 1 on [2k + 1/3, 2k + 2/3]n−1 × {2k + 1} for each k ∈ N;

(c) η = 0 outside [2k + 1/4, 2k + 3/4]n−1 × [2k + 1/2, 2k + 3/2].

Let en := (0, . . . , 0, 1) ∈ R
n, define w ∈ Cb(Rn, Rn) by w = ηen and let the distribution

F ∈ D ′(Rn) be defined by:

F (ϕ) := −
∫

Rn

w · ∇ϕ dx,

for each ϕ ∈ D(Rn).
Since F is the distributional divergence of w, it is clear that on the one hand the

equation div v = F has w as a continuous solution. Yet, on the other hand, if the
equation div v = F admitted a solution w0 ∈ C0(Rn, Rn), one would be able to extend
the distribution F to a charge vanishing at infinity F̄ : BV1∗(Rn) → R according to
Theorem 2.1. However, in this case, a routine approximation argument shows that for
any g ∈ BV1∗,c(Rn), we would have:

F̄ (g) = −
∫

Rn

w · d[Dg].

This would yield, for any k ∈ N:

F̄ (gk) � 2
3 ,

and hence F̄ (gk) � 0, k → ∞ while gk � 0, k → ∞, which would be in contradiction to
the fact that F̄ is a charge vanishing at infinity.

We have thus shown that:

(I) div v = F is solvable in Cb(Rn, Rn);

(II) div v = F is not solvable in C0(Rn, Rn).
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3. A Bourgain–Brezis-like estimate for solving div v = F in C0(Rn, R
n)

In the present section, we would like to make the simple observation that in the case where
F ∈ Ln(Rn), De Pauw and Torres’ existence theorem (Theorem 2.1) in fact implies a more
precise result along the lines of Bourgain and Brezis’ paper [1, Proposition 1]. Before we
state our result, recall that the Sobolev–Gagliardo–Nirenberg inequality for BV functions
([4, Theorem 1, p. 189]) ensures the existence of a constant κ = κ(n) > 0 (depending only
on the dimension n) such that:

‖g‖1∗ � κ(n)‖Dg‖ for all g ∈ BV1∗(Rn). (3)

Theorem 3.1. Given F ∈ Ln(Rn), there exists v ∈ C0(Rn, Rn) satisfying div v = F in
R

n, together with the estimate:

‖v‖∞ � 2κ(n)‖F‖n, (4)

where κ(n) > 0 is the constant appearing in the Sobolev–Gagliardo–Nirenberg inequality
for BV functions stated above (3).

Remark 3.2. Given F ∈ Ln(Rn), De Pauw and Torres observed that the map BV1∗ →
R given by g 	→ ∫

Rn Fg defines a charge vanishing at infinity ([3, Proposition 3.4]). It
follows that there exists v ∈ C0(Rn, Rn) satisfying div v = F according to Theorem 2.1.
We improve this by showing that v can be chosen to verify (4).

Proof of Theorem 3.1. As in [1, Proof of Proposition 1], let

X := {v ∈ C0(Rn, Rn) : div v ∈ Ln(Rn)}, Y := Ln(Rn),

endow X with the usual norm ‖v‖∞ := sup{|v(x)| : x ∈ R
n}, Y with the Lebesgue norm

‖F‖n, and define an (unbounded) operator with domain D(A) := X ⊆ C0(Rn, Rn) by:

A : D(A) ⊆ C0(Rn, Rn) → Y, v 	→ A(v) := div v.

Recall also that we denote by G(A), N(A) and R(A), the graph, the null-set and the range
of A, respectively. Given Z ⊆ X, we also let Z⊥ := {μ ∈ X∗ : 〈μ, v〉 = 0 for all v ∈ Z}.

Claim 3.3. The operator A is densely defined and closed.

To show that A is densely defined, it suffices to observe that one has D(Rn, Rn) ⊆ D(A).
To show that A is closed, assume that ((vk, Fk)) ⊆ G(A) converges in C0(Rn, Rn) × Y to
some (v, F ) ∈ C0(Rn, Rn) × Y . We hence have div vk = Fk in the sense of distributions,
for each k ∈ N, from which it readily follows that one also has div v = F in the sense of
distributions. From the fact that F ∈ Ln(Rn), we infer that v ∈ X = D(A) and A(v) = F ;
it follows that (v, F ) ∈ G(A), and A has a closed graph.

Claim 3.4. The operator A is onto, i.e. R(A) = Y .

Observe indeed that Remark 3.2 implies that any F ∈ Y = Ln(Rn) defines a charge van-
ishing at infinity, from which Theorem 2.1 implies the existence of v ∈ C0(Rn, Rn) with
A(v) = div v = F ; this proves the claim.
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Claim 3.5. The domain D(A∗) of the adjoint operator A∗ satisfies D(A∗) ⊆ BV1∗ .

Assuming that g ∈ L1∗
(Rn) � Ln(Rn)∗ satisfies g ∈ D(A∗), we have a constant C > 0

such that: ∣∣∣∣
∫

Rn

g div v dx

∣∣∣∣ = |〈A(v), g〉| � C‖v‖∞ for all v ∈ D(A).

Using the inclusion D(Rn, Rn) ⊆ D(A), this yields, in particular:

‖Dg‖ := sup
{∫

Rn

g div v dx : v ∈ D(Rn, Rn), ‖v‖∞ � 1
}

� C,

which implies that g ∈ BV1∗(Rn).

In order to complete the proof of Theorem 3.1, let us proceed towards a contradiction.
Fix F ∈ Y with ‖F‖n = 1 and assume that the two following convex subsets of X,

K := {v ∈ X : div v = F} and L := {v ∈ X : ‖v‖∞ � 2κ(n)},

satisfy K ∩ L = ∅, where κ(n) > 0 is any constant such that inequality (3) holds for any
g ∈ BV1∗(Rn).

It then follows from the geometric form of the Hahn–Banach theorem [2, Theorem 1.6]
that there exists a non-zero μ ∈ X∗ together with a real number α ∈ R such that one
has:

〈μ, v〉 � α for each v ∈ K and 〈μ, v〉 � α for each v ∈ L.

Claim 3.6. One has μ ∈ N(A)⊥.

To prove this claim, fix v ∈ N(A). Choose v0 ∈ K (this is possible since K �= ∅ according
to Claim 3.4) and observe that for any λ ∈ R, one has v0 + λv ∈ K. Hence, for any λ ∈ R:

α � 〈μ, v0 + λv〉 = 〈μ, v0〉 + λ〈μ, v〉,

which is impossible unless 〈μ, v〉 = 0.

Claim 3.7. One has ‖μ‖ � (α/(2κ(n))) (yielding in particular that α > 0).

To show this, fix v ∈ X satisfying ‖v‖∞ � 1, observe that we have 2κ(n)v ∈ L and
compute:

2κ(n)〈μ, v〉 = 〈μ, 2κ(n)v〉 � α.

The desired inequality follows, as v is arbitrary.

Claim 3.8. There exists g ∈ BV1∗(Rn) such that μ = −Dg on X and ‖Dg‖ = ‖μ‖; in
particular μ is (or rather extends to) a vector-valued Radon measure.

Indeed, we have already shown (Claim 3.4) that R(A) = Y ; in particular, A has
closed range in Y . It follows from the Closed Range theorem [2, Theorem 2.19] that
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R(A∗) = N(A)⊥. Claim 3.6 thus ensures the existence of g ∈ D(A∗) ⊆ BV1∗(Rn), for
which μ = −A∗(g). Yet, we can compute for v ∈ D(Rn, Rn)⊆ X:

〈μ, v〉 = 〈A∗(g), v〉 = 〈g,A(v)〉 =
∫

Rn

g div v dx = −
∫

Rn

v · d[Dg] = 〈−Dg, v〉.

The claim follows since it is clear that ‖Dg‖ = sup{〈Dg, v〉 : v ∈ X, ‖v‖∞ � 1}.
Coming back to the proof of Theorem 3.1, observe now that it follows from the Sobolev–

Gagliardo–Nirenberg inequality for BV functions (3) that:

‖g‖1∗ � κ(n)‖Dg‖=κ(n)‖μ‖ � α

2
.

Now, we compute for any v ∈ K, using the equality div v = F and a standard smoothing
argument:

α � 〈μ, v〉 = −〈Dg, v〉 =
∫

Rn

gF dx � ‖F‖n‖g‖1∗ � α

2
,

which is impossible since α is positive. This concludes our proof. �

Remark 3.9. If one is solely interested in the existence of some constant C > 0 pro-
viding the inequality (4) in the statement of Theorem 3.1, the latter result becomes a
simple consequence of the open mapping theorem. Indeed, endowing the space X defined
above with the norm ‖v‖′ := ‖v‖∞ + ‖div v‖n, it is easy to see that (X, ‖ · ‖′) becomes
a complete space. The bounded linear operator A : (X, ‖ · ‖′) → Ln(Rn) defined by
A(v) := div v is then surjective according to De Pauw and Torres’ existence theorem (see
Theorem 2.1 above) and [3, Proposition 3.4]; the open mapping theorem [2, Theorem 2.6,
p. 35] then ensures the existence of a constant c > 0 such that A(BX(0, 1)) ⊇ BY (0, c).
We now let C := (1/c).

Fix a non-zero F ∈ Ln(Rn) and let G := cF/‖F‖n so that ‖G‖n = c. Hence, there
exists w ∈ X satisfying ‖w‖′ � 1 and G = A(w) = div w. Letting v := ‖F‖nw/c, we get
v ∈ C0(Rn, Rn), div v = F and:

‖v‖∞ � ‖v‖′ =
1
c
· ‖F‖n‖w‖′ � C‖F‖n,

thus yielding an estimate of type (4).
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