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Abstract. This paper investigates the implications and consequences of choosing
special gauges or gauge-invariant or non-gauge-invariant approximations in the
action integral for the variational formulation of theories involving electromagnetic
fields. After some interesting special gauges are considered, it is shown that
non-gauge-invariant approximations always lead to inconsistent Euler–Lagrange
equations. As a concrete example, Maxwell–Vlasov theory is investigated. The
special non-gauge-invariant case considered, which is sometimes used in the liter-
ature, is obtained by replacing the contribution of the electric field to the Maxwell
part of the Lagrangian density by the contribution of the gradient of the scalar
potential alone. The detailed investigation concerns the local energy conservation
law, and it is shown that the law thus derived is incorrect since it contains non-
physical, spurious terms. An improvement of this situation can be obtained by the
introduction of a Lagrange multiplier in the non-gauge-invariant theories in order
to avoid inconsistencies in the local charge conservation law. The results are also
valid for drift-kinetic and gyrokinetic theories, and for other theories, e.g. two-fluid
theories.

1. Introduction
The electromagnetic potentials Φ and A are related to the fields E and B by the
equations

E = −∇Φ − 1
c

∂A
∂t

and B = ∇ × A. (1.1)

The electric and magnetic fields are not modified when the potentials are changed
according to gauge transformations

Φ′ = Φ − 1
c

∂Ψ
∂t

, A′ = A+ ∇Ψ. (1.2)

A theory defined by a variational problem is gauge invariant if the action integral
is invariant under such gauge transformations or if the Lagrangian density only
changes by a time derivative. It is then obvious that all results concerning physical
quantities obtained from Hamilton’s principle do not depend on the gauge.
On the other hand, if a theory is not gauge invariant then the results have, in

principle, no physical meaning, since changing the gauge changes the results. It is, of
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course, allowed to use a special gauge with all the results being physically meaning-
ful, but Hamilton’s principle in this case must be supplemented by corresponding
constraints. However, these constraints must not be combined with non-gauge-
invariant approximations of the Maxwell fields, where the gauge transformations
are restricted to leave the constraint invariant.
Usually, one considers kinetic theories with gauge-invariant particle contribu-

tions to the action integral, which yield gauge-invariant charge and current densit-
ies satisfying the corresponding continuity equation. However, these particle contri-
butions are sometimes combined with Maxwell contributions containing non-gauge-
invariant approximations. An example is considered in Sec. 4.3.2. One problem
which immediately arises in this case is the appearance of an inconsistency within
the local conservation law for the electric charge, which is one of the possible
reasons for the appearance of incorrect, spurious terms in the local energy con-
servation law. However, even if local charge conservation is formally guaranteed
by the introduction of an appropriate Lagrange multiplier term, as done in [6], the
expression for the current density nevertheless remains incomplete and this, in turn,
is responsible for the appearance of a different spurious term in the local energy
conservation law. This deficiency does not occur if the approximations are gauge
invariant. The first feature is shown here in the introduction. Later we consider the
interesting particular example of Maxwell–Vlasov theory in detail. It will be seen
that the incorrect terms only concern the energy flux density; therefore, they do not
influence the total energy conservation. However, the dynamics behind this total
energy conservation law, which is reflected by the energy flux density, are wrong.
The results obtained are also typical of drift-kinetic and gyrokinetic theories, and
other theories, e.g. two-fluid theories.
As concerns the first feature, let the Maxwell contribution to the Lagrangian

density be any function of E and B:

LM = LM(E,B) = LM

(
E = −∇Φ − 1

c

∂A
∂t

, B = ∇ × A
)

. (1.3)

This of course, is, always gauge invariant. Variation of the total action integral with
respect to Φ and A yields

∇∂LM

∂∇Φ
= −∇∂LM

∂E
= −ρ (1.4)

and

∇ × ∂LM

∂B
= −1

c
j+

1
c

∂

∂t

∂LM

∂[(1/c)(∂A/∂t)]
= −1

c
j− 1

c

∂

∂t

∂LM

∂E
, (1.5)

which is obviously in agreement with

∂ρ

∂t
+ ∇ · j = 0. (1.6)

for all choices of LM(E,B) representing certain approximations. Similarly, one can
show that all Maxwell Lagrangian densities of the form LM(∇Φ, ∂A/∂t, ∇ × A) �=
LM(E,B) lead to inconsistencies.
In Sec. 2 we consider three examples with prescribed gauges. Section 3 treats an

example with a non-gauge-invariant choice forLM, which is later studied in detail in
Sec. 4 and, in particular, in Sec. 4.3.2. Two further examples with prescribed gauge-
invariant LM(E,B) are also treated in Sec. 3; they correspond to linearized theories
with purely electrostatic perturbations and to quasi-neutral theories, respectively.
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They are proposed as a way of replacing non-gauge-invariant expressions for LM.
These last two examples are again treated in Sec. 4 and, in particular, in Secs 4.3.4
and 4.3.5, respectively.

2. Special gauges used in the exact Maxwell Lagrangian density
In the investigation of kinetic plasma theories it is sometimes convenient to in-
troduce a special gauge for the electromagnetic potentials Φ and A in the exact
Maxwell Lagrangian density,

LM =
1
8π

[E2 − B2] =
1
8π

[∣∣∣∣∇Φ +
1
c

∂A
∂t

∣∣∣∣2 − B2

]
. (2.1)

Interesting examples of exact gauges are

∇ · A = 0,
1
c

∂Φ
∂t

+ ∇ · A = 0, Φ = 0. (2.2)

The first is the Coulomb gauge, the second is the Lorentz gauge, and the third is
obtained from any special gauge by a gauge transformation given by

A = A′ + ∇Ψ, Φ = Φ′ − 1
c

∂Ψ
∂t

, with
∂Ψ
∂t

= cΦ′. (2.3)

When any of these gauges is used in the variational problem, the allowed variations
are restricted. One can take care of this by introducing Lagrange multipliers.
The Coulomb gauge does not change the Lagrangian density. Therefore, only the

Euler–Lagrange equations are modified. Because of the term

µC∇ · A (2.4)

relating to the Lagrange multiplier µC, there is a contribution to the right-hand
side of the equation for ∇ × B, given by

∇µC. (2.5)

However, the equation for ∇ × B must remain unchanged. Hence,

∇µC = 0. (2.6)

In the case of the Lorentz gauge, one analogously has the additional expression

µL

[
1
c

∂Φ
∂t

+ ∇ · A
]

, (2.7)

from which the additional charge density

ρadd = −1
c

∂µL
∂t

(2.8)

follows. This must vanish and, therefore,

∂µL
∂t

= 0. (2.9)

There is also an additional current density

jadd = −∇µL, (2.10)

which must also vanish. Hence, also

∇µL = 0. (2.11)
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In the case of the gauge Φ = 0, there is the additional expression

µΦΦ (2.12)

relating to the Lagrange multiplier µΦ. This yields an additional charge density

ρadd = µφ. (2.13)

On the other hand, since in this case

E = −1
c

∂A
∂t

, (2.14)

there is now no term ∇ ·E resulting from the E2 contribution to LM. Therefore, one
must choose

4πµΦ = ∇ · E (2.15)

in order to obtain the correct Maxwell equations.
These choices of the various Lagrange multipliers, together with Maxwell’s equa-

tions, leave all conservation laws unchanged.

3. Non-gauge-invariant versus gauge-invariant approximations of the
Maxwell Lagrangian density

The situation is different with non-gauge-invariant Maxwell Lagrange densities ob-
tained from certain approximations. An example is the non-gauge-invariant choice

LM =
1
8π

[|∇Φ|2 − (∇ × A)2]. (3.1)

The usual argument for this choice is that one is interested in situations where the
condition ∣∣∣∣1c ∂A

∂t

∣∣∣∣ � |∇Φ| (3.2)

is satisfied. There is, of course, no exact gauge such that ∂A/∂t = 0, contrary to
∇Φ = 0. Moreover, it must be stressed that within the variational problem one
does not compare the contributions to the factors of δΦ with the contributions
to the factors of δA. The comparison is made separately within the factor of δΦ
and within the factor of δA. If (1/c)∂A/∂t is already neglected in the Lagrangian
density, incorrect and inconsistent Euler–Lagrange equations are obtained, not
only in the sense discussed in the introduction, but also inconsistent in the assumed
approximation (3.3.2) itself. This will be explained in detail further below in Sec. 4.
It can be illustrated by means of, for example, (4.16), where it is readily seen that
the contribution (1/4π)∂∇Φ/∂t to the displacement current density gets lost if
the term (1/c)∂A/∂t is already neglected in the Lagrangian density LM, with the
consequence that one obtains not only incorrect and inconsistent Euler–Lagrange
equations, but also wrong expressions for the conservation laws. The fundamental
inconsistency results from the variation of the action integral, with (3.1) taken
into account, with respect to Φ and A. This obviously leads to the following two
inhomogeneous Maxwell equations:

∆Φ = −4πρ and ∇ × B =
4π

c
j, (3.3)
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where ρ and j are calculated, for example, from the Vlasov distribution functions,
and are time dependent. Hence, (3.3) imply the inconsistency

∂ρ

∂t
�= 0 and ∇ · j = 0. (3.4)

It could be argued that one is essentially interested in quasi-neutral situations
with ∂ρ/∂t negligible. In this case, however, one should choose for LM the gauge-
invariant expression

LM = − 1
8π
B2, (3.5)

which directly yields the exact quasi-neutral equations

ρ = 0 and ∇ × B =
4π

c
j. (3.6)

This implies a Poynting vector with

E = −∇Φ − 1
c

∂A
∂t

, (3.7)

but the energy density only consists of the magnetic field density. This case is
further discussed in Sec. 4.3.5.
Another argument could be that one is only interested in electrostatic perturb-

ations within a linearized theory. In this case one should replace

L(2)
M =

1
8π

[(
E(1)

)2 −
(
B(1)

)2] → 1
8π

(
E(1)

)2
, (3.8)

but still with

E(1) = −∇Φ(1) − 1
c

∂A(1)

∂t
, (3.9)

which again means a gauge-invariant theory. There is then no longer a Poynting
vector, and the second-order energy density only contains an electric field energy.
This question is treated, basically, in Sec. 4.3.4.

4. Detailed investigation of the deficiencies resulting from different
non-gauge-invariant approximations of the Maxwell Lagrangian
density within Maxwell–Vlasov theory

Maxwell–Vlasov theory is studied here with techniques which are basically those
of [1] and references therein, using variational methods. To simplify matters, the
method is again briefly given here. The action functional for the theory is

A =
∫

dt d3x Ltot, (4.1)

where

Ltot = LM + LK (4.2)

is the total Lagrangian density consisting of Maxwell field and kinetic contributions,
LM and LK, respectively. Here we are only interested in deriving the local energy
conservation law and, in particular, comparing different theories characterized by
different approximations of the Maxwell Lagrangian density. This density, in the
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general case, is given by

LM(x, t) =
1
8π

(E2 − B2) =
1
8π

[∣∣∣∣
E1︷︸︸︷

∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

∣∣∣∣2 −

M︷︸︸︷
B2

]
. (4.3)

The overbraces characterizing the different terms are introduced here for easy
description of the different cases treated below, and are very convenient in tracking
the contribution of the different terms to the local energy conservation law. Later,
terms with the characterization E1,E2 above the overbrace will be encountered.
Such terms vanish when either ∇Φ or (1/c)∂A/∂t or both vanish in the Maxwell
Lagrangian density.
The kinetic Lagrangian density is given by

LK(x, t) = −
∑
p. s.

∫
d3α fp(x,α, t)

[
∂Sn(x,α, t)

∂t
+ H

(
x,

∂Sn

∂x
, t

)]
, (4.4)

where H(x, p, t) = eΦ(x, t) + Ĥ(p− (e/c)A(x, t)) is the particle Hamiltonian, with
Ĥ given by

Ĥ(x, p, t) =
1

2m

[
p− e

c
A(x, t)

]2

. (4.5)

As shown below, the functions S(x,α, t) satisfy the Hamilton–Jacobi equations,
∂S/∂t+H(x, ∂S/∂x, t) = 0, as a result of the variational principle. These functions
are only used as a tool. They will not appear in the final expressions and, therefore,
one does not have to solve the Hamilton–Jacobi equations; only certain general
properties of the functions S(x,α, t) will play a role. The α are constants of integ-
ration for the Hamilton–Jacobi equations. S(x,α, t) is a mixed-variable generating
function for a canonical transformation to new Hamiltonians equal to zero. The
new momenta α and coordinates β = ∂S(x,α, t)/∂α are therefore constants of
motion. The functions fp(x,α, t) are primary forms of the distribution functions
with the argument α instead of p or v. The quantities to be varied in Hamilton’s
principle are, in addition to Φ and A, the functions S(x,α, t) and fp(x,α, t). The
gauge transformation

Φ → Φ − 1
c

∂Ψ
∂t

, A → A+ ∇Ψ, S → S +
e

c
Ψ (4.6)

leaves both contributions to the total Lagrangian density invariant when the electric
field considered includes both ∇Φ and (1/c)∂A/∂t.

4.1. Variation of the Lagrangian density

The variation of the Lagrangian density is

δLtot = δLK + δLM. (4.7)

The variation of the kinetic Lagrangian density can be written as

δLK(x, t) = δδΦLK(x, t) + δδALK(x, t) + δδfpLK(x, t) + δδSLK(x, t), (4.8)
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with

δδΦLK(x, t) = −
∑
p. s.

∫
d3α fp(x,α, t)eδΦ(x, t), (4.9)

δδALK(x, t) = −
∑
p. s.

∫
d3α fp(x,α, t)

[
−e

c
δA(x, t)

]
· ∂H

∂p
, (4.10)

δδfpLK(x, t) = −
∑
p. s.

∫
d3α δfp(x,α, t)

[
∂S(x,α, t)

∂t
+ H

]
(4.11)

and

δδSLK(x, t) = −
∑
p. s.

∫
d3α fp(x,α, t)

[
∂δS(x,α, t)

∂t
+

∂δS

∂x
· ∂H

∂p

]

= −
∑
p. s.

∫
d3α

[
−δS(x,α, t)

[
∂fp
∂t

+
∂

∂x
·
(

fp
∂H

∂p

)]

+
∂

∂t
(fpδS) +

∂

∂x
·
(

fpδS
∂H

∂p

)]
, (4.12)

where
∂H

∂p
=

∂H(x, p, t)
∂p

∣∣∣∣
p=∂S(x,α,t)/∂x

= v
(
x, p =

∂S

∂x
, t

)
. (4.13)

The variation of the Maxwell Lagrangian density is

δLM(x, t)
1
4π

{
∇ ·

[ E1︷︸︸︷
δΦ

( E1︷︸︸︷
∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

)]
−

E1︷︸︸︷
δΦ

( E1︷︸︸︷
∆Φ +

E2︷ ︸︸ ︷
1
c

∂∇ · A
∂t

)

+
∂

∂t

[ E2︷︸︸︷
δA
c

·
( E1︷︸︸︷

∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

)]
−

E2︷︸︸︷
δA
c

· ∂

∂t

( E1︷︸︸︷
∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

)

−
M︷︸︸︷
δA ·

M︷ ︸︸ ︷
∇ × B − ∇ ·

( M︷︸︸︷
δA ×

M︷︸︸︷
B

)}
. (4.14)

4.2. Euler–Lagrange equations

The use of (4.7)–(4.14) in Hamilton’s principle yields the electric charge density
from the variation δΦ, the current density from δA, the Hamilton–Jacobi equations
from δfp and the Vlasov equations in the variables x,α, t from δS.

4.2.1. Equation for the potentials containing the charge density.We have

1
4π

E1︷︸︸︷
∆Φ +

1
4πc

E1,E2︷ ︸︸ ︷
∂∇ · A

∂t
= −

∑
p. s.

e

∫
d3α fp(x,α, t) = −ρ. (4.15)

As previously pointed out, the terms characterized by E1,E2 vanish when the
terms E1 or E2 or both are omitted in the Lagrangian density.

https://doi.org/10.1017/S0022377804003290 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377804003290


510 D. Correa-Restrepo and D. Pfirsch

4.2.2. Equation for the potentials containing the current density.We have

c

4π
∇ ×

M︷︸︸︷
B +

1
4π

∂

∂t

(E1,E2︷︸︸︷
∇Φ +

1
c

E2︷︸︸︷
∂A
∂t

)
=

∑
p. s.

e

∫
d3α fp(x,α, t)

∂H

∂p
= j, (4.16)

from which

∇ · j =
1
4π

∂

∂t

[E1,E2︷︸︸︷
∆Φ +

1
c

E2︷ ︸︸ ︷
∂∇ · A

∂t

]
(4.17)

follows.

4.2.3. Hamilton–Jacobi equations.We have

∂S(x,α, t)
∂t

+ H = 0. (4.18)

4.2.4. Kinetic equations.We have

∂fp
∂t

+
∂

∂x
·
(

fp
∂H

∂p

)
= 0. (4.19)

After taking the Euler–Lagrange equations into account, the variation δLtot

reduces to δELLtot, where the superscript EL means that the Euler–Lagrange
equations were used:

δELLtot (x, t) = δEL (LK + LM) = −
∑
p. s.

∫
d3α

[
∂

∂t

(
fpδS

)
+

∂

∂x
·
(

fpδS
∂H

∂p

)]

+ ∇ ·
[

1
4π

E1︷︸︸︷
δΦ

( E1︷︸︸︷
∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

)]
− ∇ ·

[
1
4π

M︷︸︸︷
δA ×

M︷︸︸︷
B

]

+
1

4πc

∂

∂t

[ E2︷︸︸︷
δA ·

( E1︷︸︸︷
∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

)]
. (4.20)

4.3. Local energy conservation

The local energy conservation law is obtained by means of the usual Noether
procedure. In contrast to [1], we consider here the usual shift variations and not the
otherwise very convenient gauge-invariant shift variations because, in addition to
gauge-invariant Lagrangians, we also want to investigate the non-gauge-invariant
case with LM = (1/8π)(|∇Φ|2 − B2).
Owing to a time shift εt, the Euler variation of the total Lagrangian density is

δLtot(x, t) = −εt
∂

∂t
Ltot(x, t). (4.21)

For the actual development of the system, the kinetic Lagrange density LK(x, t)
does not contribute, because it vanishes after the Euler–Lagrange equations are
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inserted for S, i.e. the Hamilton–Jacobi equations (4.18). One thus has

δLtot(x, t) = δELLtot(x, t) = δLM(x, t) = −εt
∂

∂t
LM(x, t)

= −εt
1
8π

∂

∂t

[∣∣∣∣
E1︷︸︸︷

∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

∣∣∣∣2 −

M︷︸︸︷
B2

]
, (4.22)

On the other hand, δELLtot(x, t) is also given by (4.20). Following a displacement
εt in time, the usual shift variations of Φ, A and S are

δΦ = −εt
∂Φ
∂t

, δA = −εt
∂A
∂t

(4.23)
and

δS = −εt
∂S

∂t
= εtH = εt

[
eΦ(x, t) + Ĥ

(
x,

∂S

∂t
, t

)]
, (4.24)

where (4.5) and (4.18) are used. By substituting these expressions in (4.20), with
(4.15) and (4.16) taken into account, one obtains

1
εt

δELLtot(x, t) = −
∑
p. s.

∫
d3α

[
∂

∂t

(
fpĤ

)
+

∂

∂x
·
(

fpĤ
∂Ĥ

∂p

)]
︸ ︷︷ ︸

(a)

+
∂

∂t

[
Φ

( E1︷︸︸︷
∆Φ
4π

+
1

4πc

E1,E2︷ ︸︸ ︷
∂

∂t
∇ · A

)
︸ ︷︷ ︸

from (4.15)

]

︸ ︷︷ ︸
(b)

− ∇ ·
(

Φ
c

4π
∇ ×

M︷︸︸︷
B︸ ︷︷ ︸

from (4.16)

)

︸ ︷︷ ︸
(h)

− Φ
c

4π

1
c

∂

∂t

(E1,E2︷︸︸︷
∆Φ +

1
c

E2︷ ︸︸ ︷
∂∇ · A

∂t

)
︸ ︷︷ ︸

from (4.16)︸ ︷︷ ︸
(c)

− ∇Φ · c

4π

1
c

∂

∂t

(E1,E2︷︸︸︷
∇Φ +

1
c

E2︷︸︸︷
∂A
∂t

)
︸ ︷︷ ︸

from (4.16)︸ ︷︷ ︸
(d)

− ∇ ·
[

1
4π

E1︷︸︸︷
∂Φ
∂t

E1︷︸︸︷
∇Φ

]
︸ ︷︷ ︸

(e)

− 1
4π

∇ ·
[ E1︷︸︸︷

∂Φ
∂t

1
c

E2︷︸︸︷
∂A
∂t

]
︸ ︷︷ ︸

(g)

+ ∇ ·
[

1
4π

M︷︸︸︷
∂A
∂t

×
M︷︸︸︷
B

]
︸ ︷︷ ︸

(i)

− 1
4πc

∂

∂t

[ E2︷︸︸︷
∂A
∂t

·
( E1︷︸︸︷

∇Φ +
1
c

E2︷︸︸︷
∂A
∂t

)]
︸ ︷︷ ︸

(f)

. (4.25)

The term (a) can be transformed by passing from the variable α to p, and from
the primary distribution function fp(x,α, t) to the distribution function proper,
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f(x, p, t), as explained in detail in [1, (5.22)–(5.30)]. In particular, this implies the
substitution ∂S(x,α, t)/∂x → p. One then obtains

(a) = −
∑
p. s.

∫
d3p

[
∂

∂t

(
fĤ (x, p, t)

)
+

∂

∂x
·
(

fĤ (x, p, t)
∂Ĥ

∂p

)]
. (4.26)

The term (h) can be written as +(c/4π)∇ · (∇Φ × B). Together with the term (i),
one obtains

(h) + (i) = ∇ ·
[

c

4π

(
∇Φ +

1
c

M︷︸︸︷
∂A
∂t

)
×

M︷︸︸︷
B

]
= −∇ ·

[
c

4π
E×

M︷︸︸︷
B

]
. (4.27)

Further, one finds

(b) + (c) = Φ
∂

∂t

[ E1︷︸︸︷
∆Φ
4π︸︷︷︸

from (4.15)

−

!!!E1,E2︷︸︸︷
∆Φ
4π︸ ︷︷ ︸

from displ.
current in (4.16)

]

+
1
4π

∂Φ
∂t

[
∇ ·

E1︷︸︸︷
∇Φ +

E1,E2︷ ︸︸ ︷
1
c

∂∇ · A
∂t︸ ︷︷ ︸

from (4.15)

]
+ Φ

1
4πc

∂

∂t

[ E1,E2︷ ︸︸ ︷
∂∇ · A

∂t︸ ︷︷ ︸
from (4.15)

−

E2︷ ︸︸ ︷
∂∇ · A

∂t︸ ︷︷ ︸
from (4.16)

]

= Φ
∂

∂t

[ E1︷︸︸︷
∆Φ
4π︸︷︷︸

from (4.15)

−

!!!E1,E2︷︸︸︷
∆Φ
4π︸ ︷︷ ︸

from displ.
current in (4.16)

]

+
1
4π

∇ ·
[

∂Φ
∂t

E1︷︸︸︷
∇Φ

]
︸ ︷︷ ︸

A

− 1
4π

∂∇Φ
∂t

·
E1︷︸︸︷

∇Φ︸ ︷︷ ︸
B

+
1
4π

∂Φ
∂t

E1,E2︷ ︸︸ ︷
1
c

∂∇ · A
∂t︸ ︷︷ ︸

C︸ ︷︷ ︸
from (4.15)

+ Φ
1

4πc

∂

∂t

[ E1,E2︷ ︸︸ ︷
∂∇ · A

∂t︸ ︷︷ ︸
from (4.15)

−

E2︷ ︸︸ ︷
∂∇ · A

∂t︸ ︷︷ ︸
from (4.16)

]
, (4.28)

(d) = − 1
4π

∂

∂t

[
∇Φ ·

(E1,E2︷︸︸︷
∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t

)
︸ ︷︷ ︸

from displ. current in (4.16)

]

︸ ︷︷ ︸
D
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+
1
4π

∂∇Φ
∂t︸ ︷︷ ︸

factor of B, E

·
( E1,E2︷︸︸︷

∇Φ︸︷︷︸
factor of B

E2

+

︷ ︸︸ ︷
1
c

∂A
∂t︸ ︷︷ ︸

factor of E

)
︸ ︷︷ ︸
from displ. current in (4.16)

, (4.29)

(e) = − 1
4π

∇ ·
[ E1︷︸︸︷

∂Φ
∂t

E1︷︸︸︷
∇Φ

]
︸ ︷︷ ︸

A

, (4.30)

(g) = − 1
4π

E1︷ ︸︸ ︷
∂∇Φ
∂t

·

E2︷ ︸︸ ︷
1
c

∂A
∂t︸ ︷︷ ︸

E

− 1
4π

E1︷︸︸︷
∂Φ
∂t

E2︷ ︸︸ ︷
1
c

∂∇ · A
∂t︸ ︷︷ ︸

C

. (4.31)

When all three contributions E1, E2 and M are present in the Maxwell part of the
Lagrangian density, it is clear that term A of (b)+(c) cancels term A of (e), term B
in (b) + (c) cancels the same term in (d), consisting of the two factors indicated in
(4.29). Term C in (b)+ (c) cancels the term C in (g), and terms E in (d), consisting
of the two factors indicated in (4.29), and (g) cancel each other.
In cancelling ∆Φ, the term marked with !!! in (b) + (c) in (4.28), plays a crucial

role, and term B in (d), consisting of the two factors indicated in (4.29), is crucial to
cancelling the same term in (b)+ (c). These terms are not present if the displacement
current is not taken into account in the Euler–Lagrange equation for the current density,
which is the case when |∇Φ|2/8π instead of |∇Φ + (1/c)∂A/∂t|2 is used in the
Maxwellian part of the Lagrangian.
The contribution D from (d) (4.29) and the term (f) (4.25) finally yield

D + (f) = − 1
4π

∂

∂t

[
∇Φ ·

(E1,E2︷︸︸︷
∇Φ +

E2︷ ︸︸ ︷
1
c

∂A
∂t︸ ︷︷ ︸

from displ.
current in (4.16)

)
+

E1︷︸︸︷
∇Φ ·

E2︷ ︸︸ ︷
1
c

∂A
∂t

+

E2︷ ︸︸ ︷(
1
c

∂A
∂t

)2
]

=

E2︷ ︸︸ ︷
− 1

4π

∂E2

∂t
=

E2︷ ︸︸ ︷
− 2

8π

∂E2

∂t
. (4.32)

The local energy conservation law is then obtained in the usual way by setting
δELLtot(x, t) from (4.22) equal to δELLtot(x, t) from (4.25), with (4.26)–(4.32) taken
into account. In the following, four different forms of the Lagrangian density are
considered.

4.3.1. Gauge-invariantLM = (1/8π)[|∇Φ+(1/c)∂A/∂t|2 −B2]. The result obtained
with the exact Maxwell Lagrangian is, therefore,

1
εt

δELLtot(x, t) = −∂εkin
∂t

− ∇ · ηkin − 2
8π
E2 − ∇ ·

[ c

4π
E× B

]
, (4.33)

https://doi.org/10.1017/S0022377804003290 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377804003290


514 D. Correa-Restrepo and D. Pfirsch

where

εkin =
∑
p. s.

∫
d3p fĤ (4.34)

and

ηkin =
∑
p. s.

∫
d3p fĤ

∂Ĥ

∂p
. (4.35)

In this case, one obtains the local energy conservation law

∂εkin
∂t

+ ∇ · ηkin +
∂

∂t

[
1
8π

(
E2 + B2

)]
+ ∇ ·

[ c

4π
E× B

]
= 0. (4.36)

It should be mentioned here as a side note that it is much easier to obtain this
result by using the gauge-invariant shift variations introduced in [1]. As shown
there, these yield

δS = εtĤ, δΦ = 0, δA = εtcE, (4.37)

which, when inserted in (4.20), immediately yield (4.33). Of course, this is not of
importance for the subject of the present paper.

4.3.2. Non-gauge-invariant approximation withLM = (1/8π)[|∇Φ|2 −B2]. This form
of the Lagrangian density is sometimes used in the literature for the case of slowly-
varying fluctuations. It is then said that the inductive part of the electric field can
be neglected in the Lagrangian density, as compared with the contribution from the
scalar gradient. A basic discussion of this argument is given in the introduction. It
is now shown that this choice of Lagrangian leads to incorrect results, as concerns
not only charge conservation but also, in particular, the local energy conservation
law.
If the contribution (1/c)∂A/∂t to the Maxwellian part LM of the Lagrangian is

not taken into account, there are several consequences.
• The Euler–Lagrange equations (4.15) and (4.16) become (3.3), implying a

violation of local charge conservation.
• Since there is no displacement current in the equation for the current density,

(4.16), there is, in particular, no term (1/4π)∂∇Φ/∂t, which would otherwise enter
the local energy conservation law. Several terms containing (1/c)∂A/∂t vanish. As
a result, the term −(2/8π)∂E2/∂t disappears from (4.25), as follows from (4.32).

• In (b) + (c) (4.28), the terms

Φ
∂

∂t

[ E1︷ ︸︸ ︷
1
4π

∆Φ

!!!E1,E2︷ ︸︸ ︷
− 1

4π
∆Φ︸ ︷︷ ︸

from displ.
current in (4.16)

]
(4.38)

cannot cancel since the term
!!!E1,E2︷︸︸︷. . . is discarded, and the term B,

− 1
4π

∂∇Φ
∂t

·
E1︷︸︸︷

∇Φ (4.39)

is not cancelled either since there is no corresponding term in (d) (4.29).
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For these now remaining terms one has

Φ
∂

∂t

[
1
4π

∆Φ
]

− 1
4π

∂∇Φ
∂t

· ∇Φ =
1
4π

∇ ·
[
Φ

∂∇Φ
∂t

]
− 1

4π
∇Φ · ∂∇Φ

∂t
− 1

4π

∂∇Φ
∂t

· ∇Φ

=
1
4π

∇ ·
[
Φ

∂∇Φ
∂t

]
− 1

4π

∂|∇Φ|2
∂t

. (4.40)

This introduces a wrong term into the local energy flux density, and also a term
−(1/4π)∂|∇Φ|2/∂t which, in spite of having a form apparently correct for the local
energy density, has not been correctly derived either.
In the present case one obtains, in a way similar to that of the previous case, the

(incorrect) local conservation law

∂εkin
∂t

+ ∇ · ηkin +
∂

∂t

[
1
8π

(|∇Φ|2 + B2)
]

+ ∇ ·
[ c

4π
E× B

]
− 1

4π
∇ ·

[
Φ

∂∇Φ
∂t

]
= 0.

(4.41)

The spurious term −(1/4π) [Φ(∂∇Φ/∂t)] in the energy flux density is also obtained
within the framework of non-gauge-invariant drift-kinetic and gyrokinetic theories,
e.g. as appears in [2, (49)], and [3, (21)], where it is incorrectly attributed to a current
density interpreted as a polarization current density. It is, of course, not present in
the gauge-invariant theories derived in [1,4,5].
As already mentioned, the spurious terms obviously do not contribute if only the

total energy of the system is considered, as done, for example, in [6]. There, the same
non-gauge-invariant Maxwell Lagrangian density of this section is supplemented by
a Lagrange multiplier term which formally guarantees local charge conservation.
Although the expression for the current density remains incomplete and a different
spurious termwould appear in the local energy conservation law if this were derived,
the spurious term is in this case related to the term ∂A/∂t (and not to Φ(∂∇Φ/∂t),
and is negligible according to the assumptions made in [6]. Nevertheless, it is not
possible to assess here whether such a term might be of significance on a longer
time scale, e.g. in connection with stability calculations.

4.3.3. Difference of neglecting (1/c)∂A/∂t in LM or in final results. It is easily seen
that it is not equivalent to set

E = −∇Φ − 1
c

∂A
∂t

⇒ −∇Φ (4.42)

right from the beginning in LM, or in the final results in the local energy conser-
vation law. Neglecting (1/c)∂A/∂t in LM leads to the (wrong) result of (4.41). By
neglecting it in the conservation law one obtains from (4.36) an expression different
from (4.41), namely

∂εkin
∂t

+ ∇ · ηkin +
∂

∂t

[
1
8π

(|∇Φ|2 + B2)
]

+ ∇ ·
[ c

4π
E× B

]
= 0, (4.43)

which is the approximate expression for the local energy conservation law (4.36) for
the case |(1/c)(∂A/∂t)|�|∇Φ|. Note that the contribution from the vector potential
is kept in the Poynting vector since only that contribution determines ∇ × E =
−(1/c)(∂B)(∂t). Obviously, (4.43) is not a formal result within the variational
principle with an approximate Lagrangian density, contrary to what it should in
fact be.

https://doi.org/10.1017/S0022377804003290 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377804003290


516 D. Correa-Restrepo and D. Pfirsch

4.3.4. Gauge-invariant approximation with LM = (1/8π)[|∇Φ + (1/c)∂A/∂t|2].
This approximation can be useful for describing electrostatic perturbations in the
context of linearized theory. In order to stay within the above investigation we do
that here for the nonlinear theory. This exhibits the same kind of features as can
be found with the linearized theory. Basically, the Maxwell Lagrangian density for
an electrostatic theory is given by

LM =
1
8π

[
∇Φ +

1
c

∂A
∂t

]2

=
1
8π
E2. (4.44)

The contributions
M︷︸︸︷. . . in (4.3) and following equations vanish. The Euler–Lagrange

equations (4.15) and (4.16) therefore become

1
4π

∇ · E =
∑
p. s.

e

∫
d3α fp(x,α, t) = ρ, (4.45)

1
4π

∂E
∂t

+ j =
1
4π

∂E
∂t

+
∑
p. s.

e

∫
d3α fp(x,α, t)

∂H

∂p
= 0. (4.46)

The local energy conservation law obtained from (4.22) and (4.25)–(4.32) becomes

∂εkin
∂t

+ ∇ · ηkin +
1
8π

∂

∂t
E2 = 0. (4.47)

There is no magnetic field energy and no Poynting flux.

4.3.5. Gauge-invariant approximation with LM = −(1/8π)B2. In an approximation
in which a plasma is considered as quasi-neutral, with displacement current neg-
lected, the Maxwell part of the Lagrange density is basically given by

LM = − 1
8π
B2. (4.48)

One still has, however,

E = −∇Φ − 1
c

∂A
∂t

. (4.49)

The contributions
E1,E2︷︸︸︷. . . in (4.3) and the following equations vanish. The Euler–

Lagrange equations (4.15) and (4.16) in this case become

0 = ρ =
∑
p. s.

e

∫
d3α fp(x,α, t), (4.50)

c

4π
∇ × B = j =

∑
p. s.

e

∫
d3α fp(x,α, t)

∂H

∂p
→ ∇ · j = 0. (4.51)

The local energy conservation law obtained from (4.22) and (4.25)–(4.32) becomes

∂εkin
∂t

+ ∇ · ηkin +
1
8π

∂

∂t
B2 +

c

4π
∇ · (E× B) = 0. (4.52)

There is no electric field energy in this case.
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5. Summary
It has been shown that the use of special gauges in the action integral for theor-
ies involving electromagnetic fields makes it necessary to supplement Hamilton’s
principle by a Lagrange multipliers formalism which guarantees the validity of
these gauges. Examples considered are the Coulomb and the Lorentz gauges and
the gauge Φ = 0, with the result that the Euler–Lagrange equations in each case
are the exact Maxwell equations together with the respective conservation laws.
Consistent sets of Euler–Lagrange equations also result when gauge-invariant

approximations, e.g. the quasi-neutral or the electrostatic linearized theories are
used in the action integral, with corresponding meaningful local conservation laws
(only the local energy conservation law is considered).
Non-gauge-invariant approximations, on the other hand, lead to inconsistent sets

of Euler–Lagrange equations. A detailed investigation of an example of such an
approximation, which is used in the literature, shows that certain approximations
which seem to be reasonable can, however, yield incorrect results. The deficiencies
of the non-gauge-invariant approximations lead to wrong terms in the local energy
conservation law. Although these terms do not influence the total energy conserva-
tion, they describe wrong underlying dynamics. An improvement of this is obtained
by introducing a Lagrange multiplier in the non-gauge-invariant theory [6], thus
eliminating the inconsistencies in the local charge conservation law.
In the present paper, only investigations concerning the Euler–Lagrange equa-

tions and the local energy conservation lawwere of interest. The aimwas to compare
different theories characterized by different Maxwell Lagrangian densities. An
important result was that it is not equivalent to neglect (1/c)∂A/∂t in the Maxwell
Lagrangian density or only in the final results obtained with Hamilton’s principle.
This is related to the fact that within the variational problem one does not compare
the contributions of the factors of δΦ with the contributions of the factors of δA.
In fact, the comparison is made separately within the factor of δΦ and within the
factor of δA. Results concerning the derivation of a symmetric energy–momentum
tensor for gauge-invariant drift-kinetic and gyrokinetic theories are found in [1,4,5].
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