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Rayleigh Matroids
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Motivated by a property of linear resistive electrical networks, we introduce the class of

Rayleigh matroids. These form a subclass of the balanced matroids defined by Feder and

Mihail [9] in 1992. We prove a variety of results relating Rayleigh matroids to other

well-known classes – in particular, we show that a binary matroid is Rayleigh if and only

if it does not contain S8 as a minor. This has the consequence that a binary matroid is

balanced if and only if it is Rayleigh, and provides the first complete proof in print that

S8 is the only minor-minimal binary non-balanced matroid, as claimed in [9]. We also give

an example of a balanced matroid which is not Rayleigh.

1. Introduction

For explanation of any undefined terms, we refer the reader to Oxley’s book [18].

In 1992, Feder and Mihail [9] introduced the concept of a balanced matroid in relation

to a conjecture of Mihail and Vazirani [17] regarding expansion properties of one-skeletons

of {0, 1}-polytopes. (Unfortunately, the term ‘balanced’ has also been used for matroids

with at least three other meanings [3, 8, 12].) Let M be a matroid with ground set E. For

our purposes we can assume that all matroids are loopless, and regard M as its set of

bases. For disjoint subsets I, J of E, let

MJ
I := {B � I : B ∈ M and I ⊆ B ⊆ E � J}

denote the minor of M obtained by contracting I and deleting J , and let MJ
I denote the

the number of bases of MJ
I . (This convention is slightly nonstandard since MJ

I = ∅ if I

is dependent – but this is convenient here.) Feder and Mihail say that M is negatively
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correlated provided that, for every e, f ∈ E with e not a loop,

Mf

M
� Mef

Me

,

and that M is balanced provided that every minor of M is negatively correlated. Since

Me = Mef + Mf
e , Mf = Mef + Me

f , and M = Mef + Mf
e + Me

f + Mef , the inequality above

is equivalent to

∆M{e, f} := Mf
eM

e
f − MefM

ef � 0.

We briefly review the literature on balanced matroids in Section 2.

Stemming from a collaboration with James Oxley and Alan Sokal [7], we were motivated

to consider the following similar condition on a matroid M with ground set E. Fix

indeterminates y := {ye : e ∈ E} indexed by E, and for disjoint subsets I, J ⊆ E let

MJ
I (y) :=

∑
B yB , with the sum over all bases B of MJ

I and with yB :=
∏

e∈B ye. We say

that M is a Rayleigh matroid provided that whenever yc > 0 for all c ∈ E, then for every

pair of distinct e, f ∈ E,

∆M{e, f}(y) := Mf
e (y)Me

f(y) − Mef(y)Mef(y) � 0.

We call the polynomial ∆M{e, f}(y) the Rayleigh difference of {e, f} in M. This termin-

ology is motivated by the Rayleigh monotonicity property of linear resistive electrical

networks, as explained in Section 3. The main results of Section 3 are as follows:

• The class of Rayleigh matroids is closed by taking duals and minors.

• Every Rayleigh matroid is balanced.

• The class of Rayleigh matroids is closed by taking 2-sums.

• The class of balanced matroids is closed by taking 2-sums if and only if every balanced

matroid is Rayleigh.

• A binary matroid is Rayleigh if and only if it does not contain S8 as a minor.

• A binary matroid is balanced if and only if it is Rayleigh.

These results were motivated by similar claims for balanced matroids for which complete

published proofs are not available.

In Section 4 we discuss another class of matroids: the ‘half-plane property’ matroids, or

HPP matroids for short. This class was, in part, the object of study in our collaboration

with Oxley and Sokal [7]. We extend a theorem of Godsil [11] (itself a refinement of a

theorem of Stanley [22]) from the class of regular matroids to the more general class of

HPP matroids. The following consequence of this is the main result of Section 4:

• Every HPP matroid is a Rayleigh matroid.

In proving this we identify a spectrum of conditions between these two extremes.

In Section 5 we discuss some more specific examples. On the positive side:

• Every sixth-root of unity matroid is an HPP matroid.

(This is from [7].) In particular, all regular matroids (hence all graphs) are HPP matroids,

and hence Rayleigh. Recent work of Choe [5, 6] shows that:

• All sixth-root of unity matroids are in fact ‘strongly Rayleigh’ in a sense distinct from

the spectrum of conditions in Section 4.
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Also:

• A binary matroid is strongly Rayleigh if and only if it is regular.

• Every matroid with a 2-transitive automorphism group is negatively correlated.

• Every matroid of rank at most three is Rayleigh (this is proved in [23]).

On the negative side:

• There is a rank 4 transversal matroid which is not balanced.

In particular, such matroids need not be HPP, which settles negatively a question left

open in [7].

• Every finite projective geometry fails to be HPP.

• There is a balanced matroid which is not Rayleigh.

Combined with the results in Section 3, this shows that the class of balanced matroids is

not closed by taking 2-sums.

We conclude in Section 6 with a few open problems.

2. Balanced matroids

Feder and Mihail [9] prove two main results about balanced matroids. First:

• Every regular matroid is balanced.

This establishes a large class of examples including, of course, all graphic or cographic

matroids. (See Proposition 5.1 and Corollary 4.7 below.) Second:

• The basis-exchange graph of a balanced matroid has cutset expansion at least one.

To explain this, the basis-exchange graph of a matroid M is the simple graph with the set

of bases of M as its vertex set, and with an edge B1 ∼ B2 if and only if |B1�B2| = 2 (in

which � denotes the symmetric difference of sets). A simple graph G = (V , E) has cutset

expansion at least ρ provided that, for every ∅ �= S ⊂ V ,

|{e ∈ E : e ∩ S �= ∅ and e ∩ (V � S) �= ∅}|
min{|S |, |V � S |} � ρ.

Such isoperimetric inequalities imply that a natural random walk on the graph converges

rapidly to the uniform distribution on the vertices. This leads to an efficient algorithm for

generating a random basis of a balanced matroid approximately uniformly. See [9] for

details.

The matroid S8 is represented over GF(2) by the matrix⎡
⎢⎢⎣

1 1 1 1 1 1 1 b

0 1 0 0 0 1 1 1

0 0 1 0 1 0 1 1

0 0 0 1 1 1 0 1

⎤
⎥⎥⎦

with b = 0, and the matroid A8 = AG(3, 2) is represented over GF(2) by this matrix

with b = 1. Feder and Mihail refer to unpublished work showing that S8 is the only

minor-minimal binary non-balanced matroid. To our knowledge, the only argument in

print for this claim is in Chapter 5 and Appendix D of Merino’s thesis [16], but it contains

an error. Specifically, the argument rests on five points.
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• The matroid S8 is not negatively correlated. This was observed by Seymour and Welsh

[21] and is not hard to verify. (Labelling the ground set {1, . . . , 8} corresponding to the

columns of the above matrix, we have (S8)1 = 28, (S8)8 = 20, (S8)1,8 = 12, and S8 = 48,

so that ∆S8{1, 8} = 28 · 20 − 12 · 48 = −16 < 0.)

• The matroid A8 is a ‘splitter’ for the class of binary matroids which do not contain an

S8 minor. More explicitly, if a connected binary matroid M with no S8 minor has A8

as a proper minor, then M can be expressed as a 2-sum with A8 as one of the factors.

This is an unpublished result of Seymour and is explained in Appendix D of [16].

• Every binary matroid which does not contain S8 or A8 as a minor can be constructed

from regular matroids, the Fano matroid F7, and its dual F∗
7 by taking direct sums

and 2-sums. This is due to Seymour [20].

• The matroids A8, F7, and F∗
7 are balanced. This too is not difficult to verify and

appears in Appendix D of [16].

• The class of balanced matroids is closed by taking 2-sums. This appears as Lemma 5.4.4

in [16], but the argument in support of it contains an error on the first part of p. 113.

In fact, this claim is false (Theorem 5.12).

To explain the difficulty, consider a matroid M and distinct elements e, f, g of E(M).

Then, since M = Mg + Mg , etc., a short calculation shows that

∆M{e, f} = ∆Mg{e, f} + ΘM{e, f|g} + ∆Mg{e, f}, (2.1)

in which

∆Mg{e, f} := Mf
egM

e
fg − MefgM

ef
g ,

∆Mg{e, f} := Mfg
e M

eg
f − M

g
efM

efg,

and the central term for {e, f} and g in M is given by

ΘM{e, f|g} := Mfg
e Me

fg + M
eg
f Mf

eg − Mef
g M

g
ef − MefgM

efg.

Now let Q be another matroid, with E(Q) ∩ E(M) = {g}, and consider the 2-sum N =

M ⊕g Q of M and Q along g. The set of bases of N is

N := {B1 ∪ B2 : (B1, B2) ∈ (Mg × Qg) ∪ (Mg × Qg)}

by definition, so that N = MgQ
g + MgQg . Again, a short calculation shows that

∆N{e, f} = (Qg)2∆Mg{e, f} + QgQgΘM{e, f|g} + (Qg)
2∆Mg{e, f}. (2.2)

Now assume that M is balanced. If the class of balanced matroids is closed by taking

2-sums then ∆N{e, f} � 0 for any balanced choice of Q. That is, the quadratic polynomial

p(y) := y2∆Mg{e, f} + yΘM{e, f|g} + ∆Mg{e, f}

is such that p(λ) � 0 for any rational number of the form λ = Qg/Qg with Q balanced

and g ∈ E(Q).

For positive integers a and b, let G(a, b) be the graph obtained from a path with b edges

by replacing each edge by a parallel edges, then joining the end-vertices by a new ‘root’

edge. Label the root edge of G(a, b) by g. The graphic (cycle) matroid Q(a, b) of G(a, b)
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is balanced by the result of Feder and Mihail. Now, since Q(a, b)g/Q(a, b)g = a/b, every

positive rational number is of the form λ above.

Therefore, the polynomial p(y) above must satisfy p(λ) � 0 for all λ � 0, and since both

∆Mg{e, f} and ∆Mg{e, f} are nonnegative, the zeros of p(y) are either nonreal complex

conjugates or are real and of the same sign. This implies that

ΘM{e, f|g} � −2
√

∆Mg{e, f}∆Mg{e, f}.

This ‘triple condition’ on the balanced matroid M is necessary for all {e, f} and g in

E(M) if the class of balanced matroids is closed by taking 2-sums. However, it is unclear

whether or not this can be deduced from the hypothesis that M is balanced. The Rayleigh

hypothesis, on the other hand, includes these triple conditions and can be carried through

the 2-sum construction with ease, as we see in the next section.

3. Rayleigh matroids

The term ‘Rayleigh matroid’ is motivated by analogy with a property of electrical networks.

Consider a (multi)graph G = (V , E) together with a set y = {ye : e ∈ E} of positive real

numbers indexed by the edges of G. Thinking of each ye as the electrical conductance of

the edge e ∈ E, for any two vertices a, b ∈ V we may ask for the value of the effective

conductance Yab(G; y) of the graph as a whole, considered as a network joining the poles

a and b. In 1847, Kirchhoff [14] proved that

Yab(G; y) =
T (G; y)

T (G/ab; y)
,

in which T (G; y) :=
∑

T yT with the sum over all spanning trees of G, and T (G/ab; y) is

defined similarly except that G/ab is the graph obtained from G by merging a and b into

a single vertex.

It is physically intuitive that if yc > 0 for all c ∈ E and ye is increased, then Yab(G; y)

does not decrease – this property is called Rayleigh monotonicity. (This will be proved

below when we show that sixth-root of unity matroids – in particular, graphs – are

Rayleigh matroids.) Nonnegativity of ∂Yab(G; y)/∂ye is equivalent to the inequality

∂T (G; y)

∂ye
T (G/ab; y) � T (G; y)

∂T (G/ab; y)

∂ye
.

Rephrasing this in terms of the graph H obtained from G by adjoining a new edge f with

ends a and b, the inequality is

Tf
e (H; y)Tf(H; y) � Tf(H; y)Tef(H; y),

in which Tf
e (H; y) is the sum of yT over all spanning trees T of the graph obtained by

contracting e and deleting f from H , etc. A little cancellation shows that this is equivalent

to the inequality

Tf
e (H; y)Te

f (H; y) − Tef(H; y)Tef(H; y) � 0.

Replacing T (H; y) by the basis-generating polynomial M(y) of a more general matroid

M, we arrive at the condition ∆M{e, f}(y) � 0 defining Rayleigh matroids.
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To simplify notation, when calculating with Rayleigh matroids we will henceforth

usually omit reference to the variables y – writing MJ
I instead of MJ

I (y), etc. – unless

a particular substitution of variables requires emphasis. We will also write ‘y > 0’ as

shorthand for ‘yc > 0 for all c ∈ E’, and ‘y ≡ 1’ as shorthand for ‘yc = 1 for all c ∈ E’.

Proposition 3.1. A matroid M is Rayleigh if and only if the dual matroid M∗ is Rayleigh.

Proof. For disjoint subsets I, J ⊆ E we have M∗J
I (y) = yEMI

J(1/y), in which 1/y :=

{1/yc : c ∈ E}. Therefore, the inequality ∆M∗{e, f}(y) � 0 is equivalent to the inequality

∆M{e, f}(1/y) � 0. From this the result follows.

Proposition 3.2. If M is a Rayleigh matroid and N is a minor of M, then N is a Rayleigh

matroid.

Proof. Since M is Rayleigh, for distinct e, f, g ∈ E and y > 0,

∆M{e, f} = y2
g∆Mg{e, f} + ygΘM{e, f|g} + ∆Mg{e, f} (3.1)

is nonnegative. Take the limit of this as yg → 0 to see that ∆Mg{e, f} � 0. Since e, f ∈
E(Mg) and y > 0 are arbitrary, this shows that Mg is Rayleigh. Similarly, by considering

the limit of y−2
g ∆M{e, f} as yg → ∞ we see that Mg is Rayleigh. The case of a general

minor is obtained by iteration of the above two cases.

Corollary 3.3. Every Rayleigh matroid M is balanced and satisfies the triple condition

ΘM{e, f|g} � −2
√

∆Mg{e, f}∆Mg{e, f}

for distinct e, f, g ∈ E(M) when y > 0.

Proof. If M is a Rayleigh matroid, then by setting y ≡ 1 we see that M is negatively

correlated. Since every minor of M is also Rayleigh, it follows that M is balanced.

For distinct e, f, g ∈ E(M), when yc > 0 for all c �= g, the polynomial (in the variable

yg) displayed in (3.1) above is nonnegative for all yg > 0. As in Section 2, this implies the

desired inequality.

Proposition 3.4. Let M be a matroid with ground set E, and let I, J be disjoint subsets of

E. If M is Rayleigh and y > 0 then

MIMJ � MIJM.

Proof. The inequality is trivial if either I or J is dependent, so assume that both I and

J are independent in M.

We first prove the result for I = {e1} and J = {f1, . . . , fk}. Notice that the Rayleigh

difference of {e, f} in M may also be expressed as ∆M{e, f} = MeMf − MefM. Thus, the

Rayleigh condition is that if y > 0 then MeMf � MefM. Since every (contraction) minor
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of M is also Rayleigh, we see that if y > 0 then

Me1

M
� Me1f1

Mf1

� Me1f1f2

Mf1f2

� · · · � Me1J

MJ

.

That is, MIMJ � MIJM in this case.

Viewed another way, we have shown that if M is Rayleigh and y > 0 then for any

non-loop e1 ∈ E and J ⊆ E, MJ/M � Me1J/Me1
. If now I = {e1, e2, . . . , em} is independent

then, since each (contraction) minor of M is Rayleigh,

MJ

M
� Me1J

Me1

� Me1e2J

Me1e2

� · · · � MIJ

MI

.

This implies the desired inequality.

The probability space associated with M and y > 0 assigns to each basis B of M the

probability yB/M(y). As in [9, 15, 19], Proposition 3.4 leads to the fact that any two

increasing events with disjoint support in this space are negatively correlated, provided

that M is Rayleigh.

Theorem 3.5. Let M and Q be matroids with E(M) ∩ E(Q) = {g}, and let N = M ⊕g Q
be the 2-sum of M and Q along g. If M and Q are Rayleigh matroids then N is a Rayleigh

matroid.

Proof. Fix yc > 0 for all c ∈ E(N), and consider any e, f ∈ E(N). We must show that

∆N{e, f} � 0. Up to symmetry of the hypotheses there are essentially two cases:

(i) e ∈ E(M) � {g} and f ∈ E(Q) � {g},
(ii) {e, f} ⊆ E(M) � {g}.

For case (i) a short calculation using N = MgQ
g + MgQg , etc., shows that

∆N{e, f} = ∆M{e, g}∆Q{f, g}.

Since M and Q are Rayleigh and y > 0, both factors on the right are nonnegative, so that

∆N{e, f} � 0 as well.

For case (ii) we use the formula (2.2) above, which now refers to polynomials in y.

If Qg(y) = 0 or Qg(y) = 0 then ∆N{e, f} � 0 because both Mg and Mg are Rayleigh.

Otherwise, by defining wc := yc for all c ∈ E(M) � {g} and wg := Qg(y)/Qg(y), we see

that

∆N{e, f}(y) = Qg(y)2∆M{e, f}(w) � 0,

since w > 0 and M is Rayleigh.

This proves that N = M ⊕g Q is Rayleigh.

For a matroid M and a set m := {me : e ∈ E(M)} of positive integers indexed by

E(M), let M[m] be the matroid obtained from M by replacing each element e ∈ E(M)

by a parallel class of me elements. Equivalently, M[m] is obtained from M by attaching

the uniform matroid U1,1+me
to M by a 2-sum along e, for each e ∈ E(M).
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Theorem 3.6. For a matroid M, the following conditions are equivalent:

(a) the matroid M is Rayleigh,

(b) every matroid of the form M[m] is Rayleigh,

(c) every matroid of the form M[m] is balanced,

(d) every matroid of the form M[m] is negatively correlated.

Proof. To see that (a) implies (b), we note that a matroid Q of rank one is Rayleigh

since for any e, f ∈ E(Q) we have Qef ≡ 0. Thus, since M[m] is expressed as a 2-sum of

Rayleigh matroids, it is also Rayleigh, by Theorem 3.5.

That (b) implies (c) is immediate from Corollary 3.3, and that (c) implies (d) is immediate

from the definitions.

To see that (d) implies (a) assume that M is not Rayleigh. Thus, there exist distinct

e, f ∈ E(M) and positive real numbers y > 0 such that ∆M{e, f}(y) < 0. Since the rational

numbers are dense in the real numbers, there are positive rationals q = {qc : c ∈ E} such

that ∆M{e, f}(q) < 0. Let D be the smallest positive common denominator of all the

numbers {qc : c ∈ �{e, f}}, and for c ∈ E � {e, f} let mc := Dqc, a positive integer. Since

∆M{e, f}(y) is independent of ye and yf we may put me := mf := 1. Since ∆M{e, f}(y) is

homogeneous of degree 2r − 2 (where r is the rank of M) we have

∆M{e, f}(m) = D2r−2∆M{e, f}(q) < 0.

However, we also have ∆M[m]{e, f}(1) = ∆M{e, f}(m) < 0, so that M[m] is not negatively

correlated.

Corollary 3.7. The following statements are equivalent:

(a) every balanced matroid is Rayleigh,

(b) the class of balanced matroids is closed by taking 2-sums.

Proof. To show that (a) implies (b), let M and Q be balanced matroids such that

E(M) ∩ E(Q) = {g}. By (a) both M and Q are Rayleigh, so that M ⊕g Q is Rayleigh by

Theorem 3.5, and hence balanced by Corollary 3.3.

To show that (b) implies (a), consider a balanced matroid M. Since uniform matroids

of rank one are balanced, the hypothesis (b) implies that every matroid of the form M[m]

is balanced. By Theorem 3.6, it follows that M is Rayleigh.

In Theorem 5.12 we will see that the two statements of Corollary 3.7 are in fact false.

Theorem 3.8. A binary matroid is Rayleigh if and only if it does not contain S8 as a minor.

Proof. The outline of the argument has been sketched in Section 2 (for balanced matroids

in place of Rayleigh matroids). For the first point, since S8 is not negatively correlated it

is not balanced, hence not Rayleigh. The second and third points need no revision, and

the fifth point is substantiated for Rayleigh matroids by Theorem 3.5.

It remains to show that the matroids A8, F7, and F∗
7 are Rayleigh. Since F7 is obtained

from A8 by contracting any element, Propositions 3.1 and 3.2 imply that it is enough to
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show that A8 is Rayleigh. Let the ground set of A8 be E = {1, . . . , 8} corresponding to

the columns of the representing matrix in Section 2. The automorphism group of A8 is

2-transitive on E, so in order to check that this matroid is Rayleigh it suffices to show

that ∆A8{7, 8} � 0 when y > 0. A direct computation with the aid of Maple 6.01 shows

that ∆A8{7, 8} is a positive sum of monomials and squares of binomials such as

(
y1y5y6 − y3y4y5

)2
.

Since this is clearly nonnegative for y > 0 we see that A8 is Rayleigh. This completes the

proof.

Corollary 3.9. A binary matroid is balanced if and only if it is Rayleigh.

Proof. By Corollary 3.3, every Rayleigh matroid is balanced. If M is a balanced matroid

then M does not contain S8 as a minor, since S8 is not negatively correlated. If M is

also binary then M is Rayleigh, by Theorem 3.8.

4. Half-plane property matroids

A polynomial P (y) =
∑

α cαy
α in several complex variables y = {ye : e ∈ E} has the

half-plane property provided that, whenever Re(ye) > 0 for all e ∈ E, then P (y) �= 0. We

say that a matroid M is a half-plane property matroid (HPP matroid, for short) if its

basis-generating polynomial M(y) has the half-plane property. This class of polynomials

is investigated thoroughly in [7], from which we take the following facts without proof.

Lemma 4.1. ([10], Theorem 18, or [7], Proposition 3.4.) Let P (y) be a polynomial in the

variables y = {ye : e ∈ E}, fix e ∈ E, and let P (y) =
∑n

j=0 Pj(yc : c �= e})yje . If P has the

half-plane property then each Pj has the half-plane property.

Lemma 4.2. ([7], Proposition 5.2) Let P (y) be a homogeneous polynomial in the variables

y = {ye : e ∈ E}. For nonnegative real numbers a = {ae : e ∈ E} and b = {be : e ∈ E},
let P (ax + b) be the polynomial obtained by substituting ye = aex + be for each e ∈ E. The

following are equivalent:

(a) P (y) has the half-plane property,

(b) for all sets of nonnegative real numbers a and b, P (ax + b) has only real zeros.

Proposition 4.3. ([7], Propositions 3.1, 4.1, 4.2, and Corollary 4.9) The class of HPP

matroids is closed by taking duals, minors, and 2-sums.

Theorem 4.4 was proved for regular matroids and y ≡ 1 by Godsil [11].

Theorem 4.4. Let M be a matroid on a set E. Let (S, T , C1, . . . , Ck) be an ordered partition

of E into pairwise disjoint nonempty subsets, and fix nonnegative integers c1, . . . , ck . For each

0 � j � |S |, let Mj(y) :=
∑

B yB , with the sum over all bases B of M such that |B ∩ S | = j
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and |B ∩ Ci| = ci for all 1 � i � k. If M is an HPP matroid and y > 0, then the polynomial∑|S |
j=0 Mj(y)xj in the variable x has only real zeros.

Proof. Let M be an HPP matroid and fix y > 0. Let s, t, and z1, . . . , zk be indeterminates,

and for e ∈ E put

ue :=

⎧⎪⎪⎨
⎪⎪⎩
yes if e ∈ S,

yet if e ∈ T ,

yezi if e ∈ Ci.

Then M(u) is a homogeneous polynomial with the half-plane property in the variables

s, t, z1, . . . , zk . By repeated application of Lemma 4.1, the coefficient Mc(s, t) of zc1

1 · · · zckk in

M(u) also has the half-plane property, and is homogeneous. In fact,

Mc(s, t) =

|S |∑
j=0

Mj(y)sjtd−j ,

in which d = rank(M) − (c1 + · · · + ck). Upon substituting s = x and t = 1 in Mc(s, t),

Lemma 4.2 implies that
∑|S |

j=0 Mj(y)xj has only real zeros, as claimed.

Newton’s inequalities (item (51) of [13]) state that if a polynomial
∑n

j=0 ajx
j with real

coefficients has only real zeros then
(
n
j

)−2
a2
j �

(
n

j−1

)−1( n
j+1

)−1
aj−1aj+1 for all 1 � j � n − 1.

That is, the sequence {
(
n
j

)−1
aj} is logarithmically concave. Thus, Theorem 4.4 implies the

following corollary, first proved for regular matroids and y ≡ 1 by Stanley [22].

Corollary 4.5. With the hypothesis and notation of Theorem 4.4, for each 1 � j � |S | − 1,

Mj(y)2(|S |
j

)2
� Mj−1(y)( |S |

j−1

) · Mj+1(y)( |S |
j+1

) .

Corollary 4.5 can be viewed as a quantitative strengthening of the basis exchange axiom

for HPP matroids, as requested in Question 13.9 of [7].

For a subset S ⊆ E(M) and natural number j, let M(S, j; y) =
∑

B yB , with the sum

over all bases B of M such that |B ∩ S | = j. For each positive integer m, consider the

following conditions on a matroid M.

RZ[m]. If y > 0, then for all S ⊆ E with |S | � m the polynomial
∑|S |

j=0 M(S, j; y)xj has

only real zeros.

LC[m]. If y > 0, then for all S ⊆ E with |S | � m the sequence {
(|S |

j

)−1
M(S, j; y)} is

logarithmically concave.

The k = 0 case of Theorem 4.4 implies that an HPP matroid is RZ[m] for all m,

and Newton’s Inequalities show that RZ[m] implies LC[m] for every m. The implications
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RZ[m] =⇒ RZ[m − 1] and LC[m] =⇒ LC[m − 1] are trivial, as are the conditions RZ[1]

and LC[1]. Thus, the weakest nontrivial condition among these is LC[2].

Theorem 4.6. The following conditions are equivalent:

(a) the matroid M is LC[2],

(b) the matroid M is RZ[2],

(c) the matroid M is Rayleigh,

(d) the matroid M is LC[3].

Proof. Conditions (a) and (b) are equivalent because a quadratic polynomial has only

real zeros if and only if its discriminant is nonnegative.

To show that (a) implies (c) assume that M is LC[2], and choose distinct e, f ∈ E. Since

M is LC[2], if wc > 0 for all c ∈ E then(
weM

f
e (w) + wfM

e
f(w)

)2 � 4wewfMef(w)Mef(w).

In particular, if y > 0 then let

wc :=

⎧⎪⎪⎨
⎪⎪⎩
yc if c �∈ {e, f},
Me

f(y) if c = e,

Mf
e (y) if c = f.

The inequality above becomes(
2Mf

e (y)Me
f(y)

)2 � 4Mf
e (y)Me

f(y)Mef(y)Mef(y).

After some cancellation, this shows that

Mf
e (y)Me

f(y) � Mef(y)Mef(y).

Hence, M is Rayleigh.

To show that (c) implies (d) assume that M is Rayleigh, and let y > 0. We use the

elementary inequality, for m � 2 real numbers R1, . . . , Rm:

(R1 + · · · + Rm)2 � 2m

m − 1

∑
{i,j}⊆{1,... ,m}

RiRj.

Apply this inequality when S = {e1, . . . , em} ⊆ E(M) and Ri := yeiM
S�ei
ei

(y) for 1 � i � m,

with the result that

M(S, 1; y)2 � 2|S |
|S | − 1

∑
{e,f}⊆S

yeyfM
S�e
e (y)MS�f

f (y)

� 2|S |
|S | − 1

∑
{e,f}⊆S

yeyfM
S�ef
ef (y)MS (y) (4.1)

=
2|S |

|S | − 1
M(S, 0; y)M(S, 2; y).

The second inequality uses the fact that each of the deletion minors MS�ef of M is

Rayleigh, by Proposition 4.3.
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This implies that M is LC[2] and verifies one of the inequalities of the condition LC[3]

when |S | = 3. It remains to show that if |S | = 3 then M(S, 2; y)2 � 3M(S, 1; y)M(S, 3; y).

To do this we apply the above inequality to the dual matroid M∗, which is also Rayleigh.

Since

M∗(S, j; y) = yEM(S, 3 − j; 1/y)

for 0 � j � 3, the inequalities (4.1) imply the required result, showing that M is LC[3].

That (d) implies (a) is trivial. This completes the proof.

The ideas in the proof of Theorem 4.6 are carried further in Section 4 of [24].

Corollary 4.7. Every HPP matroid is a Rayleigh matroid.

5. Examples

A matrix A of complex numbers is a sixth-root of unity matrix provided that every nonzero

minor of A is a sixth-root of unity. A matroid M is a sixth-root of unity matroid provided

that it can be represented over the complex numbers by a sixth-root of unity matrix. For

example, every regular matroid is a sixth-root of unity matroid. Whittle [25] has shown

that a matroid is a sixth-root of unity matroid if and only if it is representable over

both GF(3) and GF(4). For graphs, Proposition 5.1 is part of the ‘folklore’ of electrical

engineering. We take it from Corollary 8.2(a) and Theorem 8.9 of [7], but repeat the short

and interesting proof for completeness.

Proposition 5.1. Every sixth-root of unity matroid is an HPP matroid.

Proof. Let A be a sixth-root of unity matrix of full row-rank r, representing the matroid

M, and let A∗ denote the conjugate transpose of A. Index the columns of A by the set E,

and let Y := diag(ye : e ∈ E) be a diagonal matrix of indeterminates. For an r-element

subset S ⊆ E, let A[S] denote the square submatrix of A supported on the set S of

columns. By the Binet–Cauchy formula,

det(AYA∗) =
∑

S⊆E: |S |=r

| detA[S]|2yS = M(y)

is the basis-generating polynomial of M, since | detA[S]|2 is 1 or 0 according to whether

or not S is a basis of M.

Now we claim that if Re(ye) > 0 for all e ∈ E, then AYA∗ is nonsingular. This suffices

to prove the result. Consider any nonzero vector v ∈ C
r . Then A∗v �= 0 since the columns

of A∗ are linearly independent. Therefore

v∗AYA∗v =
∑
e∈E

ye|(A∗v)e|2

has strictly positive real part, since for all e ∈ E the numbers |(A∗v)e|2 are nonnegative

reals and at least one of these is positive. In particular, for any nonzero v ∈ Cr , the vector

AYA∗v is nonzero. It follows that AYA∗ is nonsingular, completing the proof.
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Proposition 5.1 and Corollary 4.7 show that every sixth-root of unity matroid is

Rayleigh. This implies the result of Feder and Mihail [9] that every regular matroid is

balanced. In fact, even more is true. Enhancing Feder and Mihail’s proof, Choe [5, 6] has

recently shown the following.

Theorem 5.2. (Choe [5, 6]) Let M be a sixth-root of unity matroid, and let e, f ∈ E(M)

be distinct. There are sixth-roots of unity Cef(S) for each S ⊂ E � {e, f} such that both

S ∪ {e} and S ∪ {f} are bases of M, such that

∆M{e, f}(y) =

(∑
S

Cef(S)yS
)(∑

S

Cef(S)yS
)
.

Since the factors on the right-hand side are complex conjugates when all the ye are real,

Theorem 5.2 shows that for a sixth-root of unity matroid M and distinct e, f ∈ E(M),

the Rayleigh difference ∆M{e, f}(y) is nonnegative for any real values of the variables y:

positive, negative, or zero. We shall call such matroids strongly Rayleigh.

Proposition 5.3. Let M be a strongly Rayleigh matroid on the set E. Then, for all distinct

e, f, g ∈ E and y ∈ RE ,

|ΘM{e, f|g}| � 2
√

∆Mg{e, f}∆Mg{e, f}.

Proof. For a strongly Rayleigh matroid M and real numbers y ∈ R
E we have ∆M{e, f} �

0. Considered as a quadratic polynomial in yg , this does not change sign for yg ∈ R, and

therefore it has a nonpositive discriminant. This gives the stated inequality.

Arguments directly analogous to those in Section 3 suffice to prove the following, and

the details are omitted.

Proposition 5.4. The class of strongly Rayleigh matroids is closed by taking duals, minors,

and 2-sums.

Theorem 5.5. A binary matroid is strongly Rayleigh if and only if it is regular.

Proof. It is a theorem of Tutte that a binary matroid is regular if and only if it does not

contain F7 or F∗
7 as a minor (Theorems 13.1.1 and 13.1.2 of Oxley [18], for example).

Regular matroids are strongly Rayleigh by Theorem 5.2. By Proposition 5.4, to prove the

converse it suffices to show that F7 is not strongly Rayleigh. Label the elements of E(F7)

by {1, . . . , 7} corresponding to the columns of the representing matrix⎡
⎣1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

⎤
⎦

over GF(2). To simplify notation we will write F26
1 instead of (F7)

2,6
1 , etc. With the sub-

stitutions y3 = y5 = 2 and y4 = y7 = −1, we have F126 = 0, F6
12 = F2

16 = F1
26 = 2, F26

1 = −8,
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F16
2 = F12

6 = 1, and F126 = −4. Therefore, with y6 = t we have

∆F{1, 2} = F2
1F

1
2 − F12F

12

= (2t − 8)(2t + 1) − (2)(t − 4) = 4t(t − 4).

For any 0 < t < 4 we have ∆F{1, 2} < 0, so that F7 is not strongly Rayleigh.

In the case of graphs, Theorem 5.2 specializes to the following combinatorial identity:

see also equation (2.34) of Brooks, Smith, Stone, and Tutte [2], Theorem 2.1 of Feder and

Mihail [9], and several of the identities in Section 3.8 of Balabanian and Bickart [1].

Theorem 5.6. Let G = (V , E) be a connected (multi )graph, and let G be the graphic matroid

of G. For distinct e, f ∈ E, fix arbitrary orientations of e and f, and for each S ⊂ E � {e, f}
such that both S ∪ {e} and S ∪ {f} are spanning trees of G, let Cef(S) := ±1 according to

whether or not e and f are directed consistently around the unique cycle of S ∪ {e} ∪ {f}.
Then

Gf
e (y)Ge

f(y) − Gef(y)Gef(y) =

(∑
S

Cef(S)yS
)2

.

A combinatorial proof of this fact is greatly to be desired.

Chavez [4] has shown that every finite projective geometry is negatively correlated.

More generally, we have the following proposition.

Proposition 5.7. If a matroid admits a 2-transitive group of automorphisms then it is neg-

atively correlated.

Proof. Let M be a matroid of rank r on m � 2 elements which has a 2-transitive

automorphism group, and let M = M(1), etc. Let e, f ∈ E be distinct. By transitivity

of the automorphism group, mMe = mMf = rM. By 2-transitivity of the automorphism

group, m(m − 1)Mef = r(r − 1)M. Thus

∆M{e, f} = MeMf − MefM =
M2r(m − r)

m2(m − 1)
� 0

since r � m.

The next result goes in the other direction.

Proposition 5.8. Every finite projective geometry is not an HPP matroid.

Proof. Every finite projective geometry contains a finite projective plane as a minor, so

it suffices to prove that finite projective planes are not HPP matroids. In fact, a projective

plane of order q fails the condition RZ[q + 1], as can be seen by taking S ⊆ E to be a

https://doi.org/10.1017/S0963548306007541 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007541


Rayleigh Matroids 779

line of the plane and y ≡ 1. Then the relevant polynomial is Ax2 + Bx + C with

A = q2

(
q + 1

2

)
=

(q + 1)q3

2
,

B = (q + 1)

[(
q2

2

)
− q

(
q

2

)]
=

(q + 1)q3(q − 1)

2
,

C =

(
q2

3

)
− (q + 1)q

(
q

3

)
=

(q + 1)q3(q − 1)2

6
,

which has discriminant −(q + 1)2q6(q − 1)2/12, and thus has non-real zeros. Theorem 4.4

thus implies that a projective plane of order q is not an HPP matroid.

In Section 10.5 of [7], the question is raised whether or not every transversal matroid

is an HPP matroid. Numerical experiments support this idea for transversal matroids of

rank three, but we can no longer hope for much more than this, as we now see.

Proposition 5.9. There is a transversal matroid of rank 4 which is not balanced.

Proof. Let L be the matroid on the set E = {1, 2, . . . , 10, e, f} for which the bases are the

transversals to the four sets {1, 2, 3, 4, f}, {5, 6, 7, f}, {8, 9, 10, f}, and {1, 2, 3, 5, 6, 8, 9, e, f}.
A direct computation shows that Le = 80, Lf = 168, Lef = 33, and L = 436, so that

∆L{e, f} = −948 < 0.

Theorem 5.10 is proved in [23].

Theorem 5.10. Every matroid of rank (or corank ) at most 3 is Rayleigh.

Corollary 5.11. Every matroid with at most 7 elements is Rayleigh.

Alternatively, Corollary 5.11 can be proved by directly checking the Rayleigh property

for the nine matroids with rank three and seven elements that are not known to be HPP

(Table 2 and Appendix A.2 of [7]). This was the original proof.

Theorem 5.12. The class of balanced matroids is not closed by taking 2-sums.

Proof. By Corollary 3.7 it suffices to give an example of a matroid which is balanced

but not Rayleigh. The matroid J′ represented over R by the matrix
⎡
⎢⎢⎢⎣

1 1 1 1 1 1 1 3

0 1 0 0 2 0 0 1

0 0 1 0 0 2 0 1

0 0 0 1 0 0 2 3

⎤
⎥⎥⎥⎦

is such an example. Let E(J′) = {1, . . . , 8} corresponding to the columns of the above

matrix. By Corollary 5.11, every proper minor of J′ is Rayleigh, so it suffices to show that
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J′ is negatively correlated but not Rayleigh. Straightforward Maple-aided calculations

show that J′ is negatively correlated. However, if the elements are assigned weights

y2 = y3 = y4 = t and y5 = y6 = y7 = 1, then

∆J ′{1, 8}(y) = (t + 1)3(t − 1)(t2 + t − 1)

and therefore ∆J ′{1, 8} < 0 if (
√

5 − 1)/2 < t < 1. Therefore, J′ is not Rayleigh.

(The matroid J′ in the proof of Theorem 5.12 is similar in structure to the sixth-root of

unity matroid called J by Oxley [18].)

6. Open problems

The class of Rayleigh matroids is naturally motivated by generalization of a physically

intuitive property, and it has some useful structure and relevance to other interesting

classes of matroids. There are still many unsolved problems concerning these ideas,

among them the following.

With regard to finding more examples of Rayleigh matroids, Theorems 3.8, 5.12, and

Proposition 5.9 show that we can not hope for all matroids of rank 4 to be Rayleigh:

• Characterize the class of rank 4 Rayleigh matroids by means of excluded (deletion)

minors.

With Theorem 3.8 in mind:

• Characterize the class of ternary Rayleigh matroids by means of excluded minors.

• Characterize the class of GF(4)-representable Rayleigh matroids by means of excluded

minors.

Proposition 5.1 provides a starting point for these problems, from which the method of

proof of Theorem 3.8 could be launched. Completing either of these projects will require

a substantial amount of work, but should be well worth it.

Concerning the spectrum of conditions between the HPP and Rayleigh property:

• Is there a Rayleigh matroid which is not LC[4]?

Regarding Theorem 5.2:

• Are there strongly Rayleigh matroids which are not HPP, or not sixth-root of unity?

• Is every HPP matroid strongly Rayleigh?

Finally, in order to better understand the enumerative combinatorics of graphs:

• Find a combinatorial (bijective) proof of Theorem 5.6.
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