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We consider general, and possibly nonparametric, GARCH(1,1) processes. First
we give conditions for the existence and the uniqueness of stationary ergodic solu-
tions. Then we identify additional conditions for geometric ergodicity. These con-
ditions consist of mild restrictions on the distribution of the latent independent
process. No moment assumption is made on the generalized autoregressive con-
ditionally heteroskedastic (GARCH) process. Applications to the asymptotic behav-
ior of sample autocorrelations and to unit-root tests are proposed.

1. INTRODUCTION

With the increasing popularity of generalized autoregressive conditional hetero-
skedasticity (GARCH) modeling, there is also increased interest in general, even
nonparametric, models and in moving away from the particular specification of
the classical GARCH models, as introduced by Engle (1982) and Bollerslev
(1986). In this paper, we assume that (e,) belongs to the general class of
GARCH(1,1) processes, defined by

€ = 0,
. €Y
h, =: /’l(o‘,) = w(nt—l) + a(nz—l)ht—l,

where the sequence (7,) is independent and identically distributed (i.i.d.). For
statistical purposes the assumption that 7, has zero mean and unit variance is
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often required, but we do not need this assumption in this paper. The following
assumptions are made on the functions w, a, and A.

(i) w:R — R™ is such that its restrictions to R* and R~ are either constant
and strictly positive, or continuous and, respectively, strictly increasing
and strictly decreasing;

(ii) a:R — R™ is such that its restrictions to R* and R~ are continuous
and, respectively, strictly increasing and strictly decreasing;

(iii) h:R™ — R™ is 1-1, onto and increasing.

The standard GARCH(1,1) model is obtained for w(x) = w, h(x) = x2, and
a(x) = ax? + B with a = 0, 8 = 0. This specification has been found adequate
for a number of financial series and is arguably the most popular volatility model.
When £ has a form inspired by the Box—Cox transformation, and for some par-
ticular specifications of the functions w and a, we get the augmented GARCH
introduced by Duan (1997). For h(x) = x® we get the class of GARCH(1,1)
models defined by He and Terésvirta (1999), which includes a variety of other
first-order specifications.! See Ling and McAleer (2002) for strict stationarity
and moment conditions for such models. Note that with the preceding assump-
tions, the volatility o, increases with the magnitude of positive “shocks” 7,_;
as well as it increases with the magnitude of negative ones. Yet positive and
negative shocks may have different impacts on the volatility.

Nelson (1990) and Bougerol and Picard (1992) showed in the standard
GARCH case that if En, = 0 and Var(%,) = 1,

Eloga(n,) <0 (2)

is a necessary and sufficient condition for the existence of a unique strictly
stationary and nonanticipative solution to model (1). A nonanticipative solution
is a process (g,) such that €, is a measurable function of the variables 7,_,,
s = 0. The extension to model (1) will be given subsequently. For statistical
inference, however, strict stationarity is not a sufficient assumption, and it can
be crucial to know when the stationary solution possesses mixing properties.
Knowing that these properties hold may make it possible or easier to establish
other properties such as central limit theorems (CLTs).

Mixing properties of classes of models including GARCH-type processes have
been investigated by Ango Nze (1992, 1998), Lu (1996), Carrasco and Chen
(2002), Rahbek, Hansen, and Dennis (2002), Lee and Shin (2004), Hwang and
Kim (2004), and Meitz and Saikkonen (2004), among others. Unfortunately,
when applied to standard GARCH processes, their results require moment
assumptions that are much stronger than the strict stationarity assumption. Typ-
ically the condition @ + 8 < 1 is imposed for the standard GARCH(1,1), which
amounts to restricting the class of strictly stationary solutions to those admit-
ting a second-order moment. To our knowledge the most significant contribu-
tion, specifically devoted to the standard GARCH(p,q), is the dissertation by
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Boussama (1998), which establishes strong mixing under conditions we will
further discuss. However, the proof relies on heavy geometric algebra based
upon the Mokkadem (1990) result for polynomial autoregressive processes. See
also Kristensen (2006).

Our main contribution is to show that under (2), the B-mixing of the strictly
stationary solution holds without any additional restriction on the function a(-).
In particular we do not make any moment assumptions on the process (e,). We
provide simple sufficient conditions on the process 7, under which the strictly
stationary solution to model (1) is 8-mixing with exponential decay. We do not
impose a continuous distribution for 7,, contrary to the preceding references
dealing with mixing. This may have interest for financial applications because
prices, and hence returns, are not observed continuously but are multiples of a
monetary unit called the tick. A continuous distribution for the i.i.d. process
would typically imply a continuous distribution for €,. On the other hand, deal-
ing with the mixing properties of discrete-valued time-series models is in gen-
eral a difficult task. For these reasons, and for the sake of generality, we will
allow for both a discrete and a continuous part in the distribution of n,. We rely
on the results displayed in the book by Meyn and Tweedie (1996) so that the
proof can be easily followed.

The fact that requirements for the existence of second-order moments can be
ignored is particularly important for the statistical inference of GARCH(I,1)
models. Indeed, recent references establish asymptotic normality of the maxi-
mum likelihood estimator essentially under the assumption (2) using the mar-
tingale theory.? In this framework, the asymptotic distribution of other statistics
of interest (such as the autocorrelations of functions of €,) may be difficult, if
not impossible, to derive using limit theorems for martingale differences. In
such situations, the B-mixing property will be of invaluable help.

In the next section we give, for the reader’s convenience, the Markov chain
results we need. Section 3 is devoted to strict stationarity. In Section 4 we estab-
lish geometric ergodicity of the strictly stationary solution. Two statistical appli-
cations are proposed in Section 5.

2. BASIC MARKOV CHAIN THEORY

This section is drawn from the papers by Tjgstheim (1990) and Basrak, Davis,
and Mikosch (2002) and the book by Meyn and Tweedie (1996). All the ran-
dom variables considered in this paper are defined on some probability space
(Q, A,P). Let {X,,r = 0} be a homogeneous Markov chain on (E,&) where
E C R% and & is the Borel o-field on E. We denote the probability of moving
from x to the set B in ¢t steps by

P'(x,B) =P(X,EB|X,=x), xEE,  BEE
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The Markov chain (X,) is ¢-irreducible if, for some nontrivial measure ¢ on
(E, &),

VBEE $(B)>0= VYxE€E 3t>0,P(x,B)>0.

If (X,) is ¢-irreducible, there exists a maximal irreducibility measure M (see
Meyn and Tweedie, 1996, Prop. 4.2.2), and we set E¥ = {B € £ | M(B) > 0}.
We call the chain positive recurrent if
lim sup P'(x,B) >0, Vx€EE, VBEE™

1—co
For a ¢-irreducible Markov chain, positive recurrence is equivalent (see Meyn

and Tweedie, 1996, Thm. 18.2.2) to the existence of a (unique) invariant prob-
ability measure, that is, a probability 7 such that

VBe & 7(B) = JP(x, B)r(dx).

Let |-| denote the total variation norm. The Markov chain (X,) is said to be
geometrically ergodic if there exists a p, p € (0,1), such that

Vx€E€E, p'|P(x,)—7|—0 ast— +oo. 3

Recall that for a stationary process, the strong (a-) mixing coefficients are

defined by

ay(k) = Sf1;1£|C0V(f(-~-,X71,Xo),g(Xk,Xk+1,---))| 4
= iugUP’(A N B) — P(A)P(B)|, (5)

where the first supremum is taken over the set of measurable functions f and g
such that | f| =1, |g| =1, and the second supremum is taken over the sets A €
o(X,,s = 0) and B € o(X,,s = k), whereas the B-mixing coefficients are

defined by
Bx(k) =E sup [P(Blo(X,,s=0))—P(B) (6)
BEo(X,,s=k)
1 I J
=5 sup X X [P(4; N B) ~ P(A)P(B)], (7
i=1j=1
where in the last equality the sup is taken over all pairs of partitions {A,,...,A,}

and{B,...,B,} of Q suchthatA; € o(X,,s =0) foreachi and B; € o (X,,s = k)
for each j. The process is called a-mixing (resp. B-mixing) if lim;_,, ax(k) =0
(resp. lim;_,., Bx(k) = 0). We have ayx(k) = Bx(k), so that B8-mixing implies
a-mixing. If Y = (Y,) is a process such that ¥, = f(X,, ..., X,_,) for some mea-
surable function f and some integer r = 0, then o (¥,, t =< 5) C o (X,, t = s5) and
oY,t=s) Co(X,_,,t=ys). Thus
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ay(k) =ay(k—r) and Bylk)=pBxk—r) Vk=r. 8

Note that for a stationary Markov process we have ax (k) = sup; ,|Cov( f(Xy),
g(X))|, where f and g are as in the previous definition (see Bradley, 1986).
One consequence of the geometric ergodicity is that the Markov chain (X;) is
B-mixing, and hence strongly mixing, with geometric rate. Indeed, Davydov
(1973) showed that for an ergodic Markov chain (X,) with invariant probabil-
ity measure 7,

Btk = [ 146 ) = (e,

Thus Bx(k) = O(p*) if (3) holds.

To state the following criterion for the geometric ergodicity of a Markov
chain, we need the idea of a Feller chain. We call (X,) a Feller Markov chain
(or weak Feller chain) if the function

E(g(X)|X,-,=x), x€E

is continuous for every bounded and continuous function g on E.

THEOREM 1 (Feigin and Tweedie, 1985, Thm. 1). Assume that

(i) (X,) is a Feller Markov chain;
(ii) (X,) is ¢p-irreducible for some measure ¢ on (E,E);
(iii) there exists a compact set C C E such that ¢(C) > 0 and a nonnegative
continuous function (test function) V:E — R such that

Vix) =1, VxeC 9)
and for some ¢ > 0
E[VIX)IX,.,=x]=0—-¢c)V(x), Vxé&C. (10)

Then (X,) is geometrically ergodic.

3. STRICT STATIONARITY

The assumption that the sequence (7,) is i.i.d. with Elog*{a(n,)} < oo, where
log*x = max (log x,0) for x = 0, is maintained throughout. Our first result can
be deduced from results established by Bougerol and Picard (1992) for gener-
alized autoregressive vector equations. But we prefer to give a simple self-
contained proof of this theorem.

THEOREM 2. If (2) holds, then the series

h, = w(ntfl) + E0(77;71)---a(ntfi)w(nmfl) amn
i=1
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converges almost surely (a.s.), and the process (€,), defined by €, = h™'(h,)n,,
is a strictly stationary solution of (1). This solution is unique, nonanticipative,
and ergodic.

If (2) does not hold and P[m, = 0] # 1, there exists no strictly stationary
solution to model (1).

Proof. First note that y =: Eloga(m,) exists in [—oo0,+00). Now let

h, = lim h,(N) a.s. where

N—oo

h,(N)=w(n,_,)+ 2 a(m,—y)...a(n,_)w(n,_,_,), (12)

the limit being well defined in R™ in view of the positivity of the summands.
Because i,(N) = w(n,—) + a(n,_;)h,_ (N — 1) for all N, we have, letting N
go to infinity, i, = w(n,—;) + a(n,_;)h,_;. It remains to show that A, is a.s.
finite. Let w*(x) = w(x) + 71,,(1)—o for some constant 7 > 0 and x € R. Let
h}(N) be obtained by replacing w by w* in h,(N) and denote by A} its a.s.
limit. We have

la(n,—y)...a(n,_,)o*(n,_,—)]""

1 1 ,
= exp ;zlog{a(m_i)ﬂ;log{w*(n,_n_])} —e? as. (13)

as n — oo, by the strong law of large numbers applied to the i.i.d. sequence
(log{a(m,)}). It follows from the Cauchy rule that for any z, the sequence
{hf(N),N = 1} converges a.s. in R. Because i, = h; we thus have i, < oo a.s.
As a function of an i.i.d. sequence, the limit /4, is thus strictly stationary and
ergodic, in which case so is ;.

To prove uniqueness, let (72,) be another strictly stationary solution process
of (1). Suppose P(h, # h,) > 0 for some . Iterating the second equation in (1)
we have |h, — h,| = a(n,—,)...a(p,—,)|hi—n—1 — h,—,_1|. From the strong law
of large numbers and (2), we have a(n,_,)...a(n,_,) — 0 with probability 1
as n — oo. Thus P(|h,_,—y — hy—p—i| = o0) > 0, which entails |h,_,_,| — oo
or |h,_,_i| = co with nonzero probability. This is not possible because the
sequences (,), and (h,), are stationary. Therefore i, = h, for any ¢, a.s.

To prove the necessary part, suppose there exists a strictly stationary solu-
tion (h,) of (1). We have for n > 0,

hy=w(n_,) + Z a(m_y)...a(n_)on_,_),
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from which we deduce that a(n_;)...a(n_,)w(n_,_,) converges to zero, a.s.,
when n — oo, or, equivalently, that

> loga(n,) +logw(n_,_,) = —oo0 as. asn—>oo. (14)
i=1

First suppose Elog{a(n,)} > 0. Then by the strong law of large numbers,
> loga(n;) — +oo as., and it is necessary for (14) to hold that
logw(n_,_;) — —oo a.s. This convergence implies w(n,) = 0 a.s., which
is precluded because 7, is not identically equal to zero. Now suppose
Elog{a(n,)} = 0. By the Chung—Fuchs theorem (see, e.g., Chow and Teicher,
1997) we have lim X7, log a(n;) = +co with probability 1 and, using the ele-
mentary Lemma 1, which follows, the convergence (14) entails log w(1_,-;) —
—oo in probability. Thus, we are led to a contradiction as in the pre-
vious case. Thus, the assumption that a strictly stationary solution exists when
Elog{a(n,)} = 0 entails a contradiction. u

LEMMA 1. If (X,) and (Y,) are two independent sequences of random vari-
ables such that X,, + Y, > —oo and X,, + —oo in probability, then Y,, = —oo in
probability.

Remark 1. It can be seen from the proof that a solution (%,), as given by
(12), always exists in R* but that when (2) does not hold and P(n, = 0) # 1,
this solution satisfies P[h, = +oo] > 0 and P[|e,| = +oo] > 0. See Kliippel-
berg, Lindner, and Maller (2004) for more detailed results in the standard
GARCH(1,1) case.

4. GEOMETRIC ERGODICITY

To prove geometric ergodicity we require additional assumptions on the i.i.d.
process (7,), essentially to ensure that the transition kernel has a Lebesgue
component.

Assumption A. The distribution [P, of the variable 7, is a mixture of an ab-
solutely continuous component with respect to the Lebesgue measure A on
(R, B(R)) and Dirac masses at some points w; € R, i = 1...N. With standard
notation we then have

N N
dP, = E pidd, +(1—p)fd\, p, =0, 2 p:i=p€[0,1), (15)

where fis a density of the continuous component. Let 7% = inf{n|n > 0,
f(n) > 0} and n° = sup{n|n < 0, f(n) > 0}, when these sets are nonempty,
and assume that

M2 =7,7°)U(nl,n? +7)C{f>0}
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for some 7 > 0. By convention (% — 7,1%) = & (resp. (n%, 0% + 7) = &)
when 1n° (resp. n9) is not defined. Finally, E{w(n,)"} < co and E{a(n,)"} < oo
for some r > 0.

Remark 2. The standard case where P, is absolutely continuous with respect
to the Lebesgue measure is obtained by taking p = 0. Note however that the
case p = 1, that is, when the law of 7), has no continuous component, is excluded.
In such a case, criteria based on topological properties of the chain fail to prove
ergodic properties (see a similar example in Meyn and Tweedie, 1996, p. 127).
This does not mean that the process is not geometrically ergodic in those situ-
ations: for example, in the standard GARCH(1,1) case, if »7 = 1 with proba-
bility 1, then the strictly stationary solution process is an independent white
noise, which is obviously geometrically ergodic.

The main result of this paper is as follows.

THEOREM 3. Under Assumption A and if the strict stationarity condi-
tion (2) holds, then the strictly stationary and nonanticipative solution (€,) of
the GARCH(1,1) model (1) is B-mixing with exponential decay.

Remark 3. The proof of this theorem relies on showing that (2) entails the
geometric ergodicity of (%,). Moreover, geometric ergodicity implies strict sta-
tionarity. Under Assumption A, which entails P[7n, = 0] # 1, condition (2) is
therefore necessary and sufficient for the existence of a geometrically ergodic
solution (h,) and also for the existence of a strictly stationary and geometri-
cally B-mixing solution (e,).

Remark 4. To our knowledge, existing results on mixing conditions for non-
standard GARCH(1,1) processes (see references in the introduction) are demand-
ing in terms of moment assumptions. For instance, in Carrasco and Chen (2002),
the mixing properties are obtained for various GARCH(1,1) models under
moment conditions on the process (¢,) (see their Table 1). By contrast, we find
that the strictly stationary solution is S-mixing without any moment restriction.

Remark 5. When applied to standard GARCH(1,1) models, this theorem is
also more general than those already established. In Boussama (1998), the geo-
metric ergodicity of standard GARCH models is proved under the assumption
that n, has an absolutely continuous distribution with respect to the Lebesgue
measure (i.e., p = 0 in our framework), with a positive density in a neighbor-
hood of zero. In this case Assumption A holds with n° = % = 0. Note how-
ever that our assumption allows us to handle more general cases, where the
density is null on a neighborhood of zero or where the distribution of 7, does
not admit a density with respect to the Lebesgue measure.

Before proving the theorem, we start by establishing geometric ergodicity
of (h,).
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LEMMA 2. Under the assumptions of Theorem 3, the strictly stationary and
nonanticipative solution (h,) of model (1) is geometrically ergodic.

Proof. By the second equation in model (1), (k,) is obviously a homo-
geneous Markov chain on (R™, B(R™)). The proof consists in checking the three
conditions of Theorem 1.

Step (i): Feller property. For any bounded and continuous function g on R*,
the function

E[g(h)|h,- = x] = E[glw(n,) + a(n,)x}]

is continuous in x over R", by the Lebesgue dominated convergence theorem,
which shows that the Markov chain (4,) is Feller.

Step (ii): Irreducibility. Let 7" € (0, 7) be small enough so that the set D, =:
(% —7,1m%) U (9%, n% + 7') does not contain any mass u;.

(a) First assume that P[a(n,) = 0] > 0. Note that {a(x) = 0} C {x = 0} in
view of the assumptions made on the function a. Set H(x,y) = w(y) + a(y)w(x)
and remark that H is strictly increasing in |y| for fixed x. Let

1=H(0,D,) = (H(0,1%), HO,n° — 7")) U (H(0,1%), HO,n% + 7'))

and denote by A; the restriction of the Lebesgue measure to the (nonempty)
set I. For hy = x € R™, we have

hy, = H(no,m,) + a(n;)a(n,)x.

We have, for any Borel set B,

P(h, € B) = P(h, € Bla(ny) = 0,7, € D,») P(a(n,) = 0)P(n, € D,)
=P(H(0,7,) € B|n, € D)) P(a(n,) = 0)P(n, € D,").

Note that, conditional on the event {n; € D,}, the variable H(0,7,) admits a

density, fy, that is positive over /. Thus

A(B) > 0= By € B) = Pla(n) =0) Pl €D,) | fydh >0,

which proves that the Markov chain (,) is A;-irreducible.
(b) Now suppose P[a(7,) = 0] = 0. For ease of presentation we shall assume
that

N
p;>0, Vi=1,...N, and []a(u;) >0. (16)
i=1

The case where the distribution of 7 is absolutely continuous with respect to A,
that is, p = 0 in (15), can be handled by a straightforward adaptation of what
follows.
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We have, in view of (15),

N
Elog{a(n,)} = X p;loga(u;) + (1= p) log a(x)f(x) dA(x)
i=1 (—00,m2 1 U [1,+00)
N
= > piloga(p;) + qloga(n®) + rloga(n?), 17)
i=1
where
g=(1-p) f(x) dA(x), r=(1-p) f(x) dA(x).
(—o0,m?] [1%,+00)

By convention take a(n®) = 1 if {n|n < 0,f(n) > 0} = J and a(n?l) =1 if
{n|lm >0, f(n) > 0} = . Inequality (17) follows from the fact that a is monot-
onous over the positive and negative real semilines. It follows that, under (2),

N
a(n®)ta(n?)" [T a(pm)7 < 1.
i=1
Hence there exist some integers nq, mg, and n;, for i = 1,..., N, such that
N
p =a(n®)a(n?)™ [T a(u;)" <1. (18)
i=1
By continuity of g, it is not restrictive to assume that 7’ is small enough so that
N
pr =ta(n® —7")a(n? + 1) [[a(p)™ < 1. (19)
i=1

Now let iy = x € R*. We have, for all t > 0,

—1

ht = ﬁ’(’fhﬂ) + 2 0(77;71) . -a(’fhff)w(’fhfifl) + 0(77:71) .. -a(ﬂo)x- (20)

The inequalities (18) and (19) will allow us to control the products of this sum,
provided that we constrain the i.i.d. process to visit some states with appropri-
ate frequencies. To this aim we introduce, for K = 1,2, ..., the event

K—1n9—1 no+my—1
AK = ﬂ m {n,v+kn € (7’9 - T” 779)} m {n,v+kn € (779»’ 772 + T,)}
k=0 s=0 s=ng
not+myt+n;—1 n—1
X m {ns+kn = ,LLl} e m {7]:+kn = IU'N},
s=nop+mg s=n—ny
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where n = ny + my + >, n,. When 19 or 7° is not defined, the correspond-
ing terms can be withdrawn from the definition of Ag. Thus we have

P(Ag) > 0. (21)

Denote y; = (a(011,))o=s=ngtmy—1 E (RT)"™0 for k =0,...,K — 1. The
conditional distribution given Ay of the vector

YK = (yO’ oo ’yK—l)
has a density with respect to the Lebesgue measure on (R*)K(o+mo),
Now we wish to show that

conditional on A and (h, = x), the variable &, has a density 22)
with respect to the Lebesgue measure on R™,

First suppose that the function w is constant over R™ and R™. For any inte-
ger € and any vector u = (uy,...,u,) denote u = (uy,...,ue_;) and u™ = u,.
By convention let Hj'-":k u; =1 forn <k Letn= >N n,. We have, given Ag,

n J

hi, = 2 w(”’h(n—j—l) eli[ a(Mg,—¢)

Jj=0

+ {}Ilaww)}

Kn—1 j Kn
X { 2 w(”’h(n—j—l) H a(Mgy—¢) + H a(nl(n()x} a(TlKn—g—l)
Jj=n+l1 €=n+2 f=n+2
N
=w+ {H a(u,-)"f}S(Y;)Y,?,
i=1
where @ = w(u,...,y) is a constant and S(Y$ ) is an a.s. positive random

variable. In view of (16) it follows that given A the mapping

is a C! diffeomorphism between open sets of (R*)X(0*0) TIndeed, the deter-
minant of the Jacobian matrix of this mapping is given by {ITV, a(u;)"}
S(Y§) which is a.s. positive. Therefore the distribution of Zy conditional
on Ag has a density with respect to the Lebesgue measure on (R*)X0*mo),
Consequently (22) holds.

https://doi.org/10.1017/50266466606060373 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466606060373

826 CHRISTIAN FRANCQ AND JEAN-MICHEL ZAKOIAN

Now suppose that w is nonconstant over R™. Let 3, = (a(n,11,),
@ (N5 410))0=5=ng+mo—1 and let Y = (Fo, ..., ¥x—1). We have

n—1

hi, = 2 w(nkn—j 1) H a(Mgu—¢) T © (Mg, — n— 1)}1 a(Mgy—¢)

{ﬁ a(Mg, - e)}
{2

w(nkn—J l) H a(nKn (’)+ H a(nKn ())C}

{=n+2 {=n+2

‘QME

~ﬁ+{HMMV}ﬁ+T@ﬁ,
i=1

where @ is a constant and T(Y$) is a random variable. The conclusion fol-
lows from the same argument as before, noting that the mapping

YK:()’;I;_’ ?E)%ZK:(?K&’hKn)

is a C' diffeomorphism between open sets of (R*)2X("0*70) The case where w
is nonconstant over R~ can be handled similarly.

To determine the support /5 of the conditional distribution of Z,, first note
that, for t = Kn, the last term on the right-hand side of (20) writes, conditional
on Ag,

N }K K—1notmo—1

a(Mgy—1)...a(ng)x = {H a(p)" H H a(Myipn)X

i=1
and therefore belongs to the set [ pXx, pXx], in view of the assumptions made
on the function a. Products of the form a(nx,_1)...a(Mgn—1n), for k =1,...,

K — 1, can be handled similarly. To deal with the other products in (20) we
introduce the notation

o

M(3,2) = 3 a(yoazy [ a(e,) o) + 3 a7 [La(u)" o)

Jj=1

ny

+ D alp)" T a(p) () + -+ D alpuy)™ o (my).
j=1 i=2

Jj=1

If Ag holds true, using the assumptions (i) and (ii) on the functions a and w, we
have

K—1
hKn EIK = |:M(77277’9—) E pi +pk-x’ M(770— _T/97]9— +7-/) 2 pi +lex:|7

i=0 i=0
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and thus, for K sufficiently large, in view of (18) and (19),

M(n°,n%) M(n° —7,n% +T’)]
l=p 1-p, '

Indeed, 7 is the closure of the limit of the sets /x when K tends to infinity.
Because the lower and upper bounds of Ix are reached, by the intermediate
values theorem and in view of (22), we conclude that

conditional on A and (h, = x), the density of the variable /,,,

is positive over . (23)

Denoting by A; the restriction of the Lebesgue measure to the set /, it fol-
lows that A; is an irreducibility measure because, for any set B € B(R),

A(B)>0=3K, AMBNI)>0
—3r=Kn, P[h, € B]=P[h, € B|A,]P(A;) >0,

by (21) and (23).
Step (iii): First note that the assumptions E log a(n,) < 0 and E{a(n,)"} < co
for r > 0 imply the existence of a number s € (0,1) such that

pr=E{a(n,_,)’} <1

(see Nelson, 1990; Berkes, Horviath, and Kokoszka, 2003, Lem. 2.3).
Let the test function defined by V(x) =1 + x*,let 0 < ¢ < 1 — p,, and let
the compact set

C={xeR"; w,+c+(p,—1+c)x* =0},

where w, = E{w(n,_;)*} and s is chosen small enough so that w, < co. We
have, for x & C, using the elementary inequality (a + b)* = a® + b* for
a,b=0and s € [0,1],

E[V(h)|hy=x]=1+aw,+p,x*
< =0)V(x),

which proves (10). Moreover (9) holds true.
It remains to check that ¢»(C) > 0 where ¢ = A; is the irreducibility measure
obtained previously. Given the shape of the intervals / and C, it is clear that

M%) .
d(C)>0e # € C (interior of C)
—p

M(no,n‘i)}f
— >0.

<:>ws+c+(p2—l+c){
l=p
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If ¢ is chosen close enough to p, — 1 the latter inequality will be verified. For
such a ¢, the compact set C meets the assumptions of Theorem 1. It follows
that the Markov chain (/,) is geometrically ergodic. u

Proof of Theorem 3. We will show that the process (¢,) inherits the mixing
property established for (%,). We first show that the process Y, = (h,,n,)’ has
the mixing property. It is clear that (Y,) is a Markov chain on R™ X R endowed
with its Borel o-field. Moreover (Y,) is strictly stationary as a measurable func-
tion of n,,m,—,.... By independence between &, and 1, we can denote by Py =
P, ® P, the stationary distribution of Y,, where P, is that of 4, and PP, that of
7,. Denote by P'(y,-) the transition probabilities of the Markov chain (Y,). We
have, fory = (y,,y,) € R* X R, B, € B(R"),B, € B(R), and ¢t > 0,

F’()’, B, X B,) = P(h, € B, m, € By|hg = y1, Mo = ¥>)
= Pn(BZ)IP(ht € By|ho=y1, M =>)
= PU(BZ)IP(ht € Bi|h; = w(y,) + a(y,)y,)
= ]PE,(Bz)Pti1 (@(y,) +aly)y,, By).
Therefore, because PP, is a probability measure,
[P'(y, ) = By()] = [P (@(y,) + aly,)yy, -) = B ()]

The right-hand-side term converging to O at exponential rate, by the geometric
ergodicity of (h,), we can deduce that (V,) is geometrically ergodic and thus
geometrically B-mixing. Because €, = h~'(h,)n, is a measurable function
of Y,, we can conclude in view of (8) that the process (¢,) is geometrically
B-mixing. u

Remark 6. The theorem could be straightforwardly extended to the case where
N = oo, provided that a(u,;) < 1 for a finite number, say, N,, of indexes i.
Indeed, in this case the inequality (17) continues to hold with N replaced
by No.

Remark 7. In Pham (1986), irreducibility is established for a class of models
that is very similar to our model for (4,). However we cannot use Pham’s results
because he assumes a continuous distribution for the i.i.d. process with a pos-
itive density in a neighborhood of 0, and more importantly, he requires w(0) =0
(with our notations), which does not hold, in particular, for the standard GARCH
model.

Examples

1. Consider the standard ARCH(1) model and assume that 1, has a mass at
zero, with En; = 1. Thus (2) is met because

Eloga(n,) = Elogan} = (—o0) X P(n, = 0)
+ E(log an?|mn, # 0) X P(n, # 0) = —oo.
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It follows that geometric ergodicity holds, under Assumption A, without
any restriction on the parameter a.

2. Consider the threshold ARCH(1) model, introduced by Zakoian (1994),
where w(x) = w > 0, h(x) = x, and a(x) = max(0,—x)a_ + max(0,x)a,
with a_ > 0, a; > 0. Let P(n, < 0) = p_ and P(n, > 0) = p,. We have

Eloga(n,) =log(a_)p_ +log(a,)p, + Elog|n,|.

By Remark 3, under Assumption A, a necessary and sufficient condition for the
existence of a stationary and geometrically ergodic solution is

al’ al* < exp{—Elog|n,|}.

5. STATISTICAL APPLICATIONS

The time-series literature abounds in statistical results requiring mixing assump-
tions. Consequently, Theorem 3 has numerous direct applications. We only give
two of them. The first application concerns the asymptotic distribution of sam-
ple autocorrelations and is directly inspired from Romano and Thombs (1996).
The second application shows that the standard Dickey—Fuller unit-root tests
remain asymptotically valid when the error term follows the GARCH(1,1) model
that we consider in this paper.

5.1. Behavior of the Sample Autocorrelations

For a time series €,...€, the identification stage of a model of the form (1)
may involve the use of many statistics. Traditional estimators of the population
autocorrelations of the squares are given by

A(€) 1 n—{__
Y where for € =0, (€)=— > e’€2,

pl) = W >

and X, stands for the mean-corrected observations of a time series (X,,1 =
t = n). Such statistics are often used to get an insight into the fourth-order
structure of the process (¢,). For the model of Ding, Granger, and Engle (1993),
based on a Box—Cox power transformation of the conditional standard devia-
tion process, the squares can be replaced by powers & of the |¢,|. For nonpara-
metric GARCH models, such as model (1), general transformations of the data
lead to statistics of the form

?g(f) 1 n—~{

p(€) = ——, wherefor =0, 7,(£)=- > g(e)gle ),
')’g(o) n =1

for some measurable function g. The asymptotic distributions of such statistics
are easily deduced from Theorem 3.
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COROLLARY 1. Assume that E|g(€,)|*"" < co for some v > 0. Then, under
the assumptions of Theorem 3, and for any fixed h = 0, the vectors

7,(0) ¥,(0) p.(1) p(1)
\/Z : — : and \/; : — : ,

V() V() pg(h) pe(h)

where y,(€) = Covig(e,), g€, o)} and p,(£) = ,(0)/7,(0)., are asymptoti-
cally normally distributed.

Proof. The proof is similar to that of Theorems 3.1 and 3.2 in Romano and
Thombs (1996). Theorem 3 shows that (Y,) =: (g(e,) — Eg(e,)) is geometri-
cally B- (and a-) mixing. Let y;(€£) = n™' >t Y,Y,|¢. The Wold—Cramer
device and the CLT for strongly mixing processes, given in Ibragimov (1962)
and Herrndorf (1984), show that n'/2{$3(0) — v,(0),...,9:(h) — v,(h)}' is
asymptotically normally distributed with covariance matrix ¥ given by

3(i,j) = lim nCov{9:(i), ()} = X Cov(Y, Y, Y Yiies))-

{=—o0

The absolute convergence of the last sum follows from standard covariance in-
equalities for mixing processes. To show the asymptotic normality of the vector
involving the y,(i), i = 0,...,h, it remains to show that \/;{'9;(1') — Y, ()} =
op(1). This can be proved by the arguments given in the proof of Proposition 7.3.7
of Brockwell and Davis (1991). The vector of the sample autocorrelations,
because it is a differentiable function of the sample autocovariances vector, is
also asymptotically normally distributed. u

Remark 8. For g(x) = x, the result can be deduced from the Lindeberg CLT
for martingale differences. However, for autocovariances of general transfor-
mations of ¢, it may be difficult, if not impossible, to rely on asymptotic theo-
rems for martingales. In such cases, mixing results offer an alternative.

5.2. Unit-Root Tests for Autoregressive (AR) Models
with GARCH Errors

Many financial series, such as (logarithms of)) stock-market indices, are sus-
pected to behave roughly like random walks with conditionally heteroskedastic
increments. For such series, one could consider a model of the form

X,=0, X, =¢X,_,+e, t=12,..., (24)

where (€,) belongs to the general class of GARCH(1,1) models (1). Given the
consequences of the random walk hypothesis, especially in terms of persis-
tence of the economic shocks, it is important to consider tests for the unit-root
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hypothesis Hy: ¢ = 1 against the stationarity assumption H,:¢ € (—1,1). Let
G =21, X, X,_ (2", X2 )" be the least squares estimator (LSE) of ¢ and
let {W(z), t € [0,1]} be a standard Brownian motion. The following corollary
demonstrates the asymptotic validity of the standard Dickey—Fuller tests, in our
heteroskedastic framework.

COROLLARY 2. Suppose that (X,) satisfies (24) where (¢,) is a gen-
eral GARCH(1,1) process satisfying the assumptions of Theorem 3. Then if
Ele,|*™ < oo for some v > 0,

GHW(1) =1}

n(p,—1)= ——— underHy: ¢ =1, (25)
f W2(t)dt
0
and if E|e,|*™ < oo for some v > 0,
Vn($, — ¢) = V(EX?) ?Ee] X7, W(1) under H;: ¢ € (—1,1), (26)

Proof. Note that lim,,_,., Var{n /> X" | €,} = Ee? > 0. In view of Theo-
rem 3, the weak convergence (25) is deduced from Phillips (1987), and (26)
can be deduced, for instance, from Francq and Zakoian (1998). |

Remark 9. For the standard GARCH(1,1) errors, Ling, Li, and McAleer
(2003) derived the asymptotic distribution in (25) under the second moment
condition, namely, o + 8 < 1.

Remark 10. Consider model (1) with h, = o2, Assume that 7, has a sym-
metric distribution, that @ and a are even functions, and that the following
moments exist, for i = 1,2,

- E{w(n,)'n}}

Eotyy @ Hemh
= o) a = Efa(n)n;},

with a, < 1. Then tedious computations show that the asymptotic variance of
the LSE is, under H,,

BXE, (¢ —a)l & s
(Eth)z (1)12 = t St—i—1

_ (1—a)(1- ¢2){¢2(1 —ay))+(1- ¢2)}[w1(1 —a,) + a{wy(1 —a;) + 2c}]
a (1—a,)( _ald)z) -

It is interesting to note that in the unit-root case the asymptotic distribution of
the LSE is the same with i.i.d. or GARCH errors, whereas it depends on the
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GARCH parameters in the stationary case. Thus the Dickey—Fuller test statistic
can still be used when the errors satisfy a model of the form (1). A similar
finding was obtained by Rahbek et al. (2002) in a multivariate framework. They
showed that the trace test for the cointegration rank remains valid when the
standard i.i.d. Gaussian errors are replaced by ARCH-type innovations, with
appropriate moment conditions.

Remark 11. Corollaries 1 and 2 are just given for illustrative purposes and
can be straightforwardly extended. In particular, Corollary 2 could include more
general models with augmented variables and/or an intercept and/or a deter-
ministic trend, as in Phillips and Perron (1988). Similar convergences could
also be stated for #-statistics.

NOTES

1. Namely, the absolute value GARCH model (Taylor, 1986; Schwert, 1989) for w(x) = w,
h(x) = x, and a(x) = a|x| + B; the threshold GARCH model of Zakoian (1994) for w(x) = w,
h(x) = x, and a(x) = - max(0,—x) + a4 max(0,x) + B; the Glosten, Jagannathan, and Runkle
(1993) model for w(x) = w, h(x) = x2, and a(x) = a—{max(0,—x)}?> + a{max (0, x)}> + B; the
asymmetric power GARCH model of Ding et al. (1993) for w(x) = w, h(x) = x°, and a(x) =
a(]x| — yx)® + B; a moving average GARCH process, inspired by the moving average condition-
ally heteroskedastic (MACH) model of Yang and Bewley (1995), for h(x) = x2, a(x) = a, and, for
instance, w(x) = w; + wyx?; the sign-switching autoregressive conditional heteroskedasticity
(ARCH) model of Fornari and Mele (1997) for h(x) = x2, w(x) = w; + w,sign(x), and a(x) =
ax? + B. See also Biihlmann and McNeil (2000) and Yang and Tschernig (2006) for recent refer-
ences on nonparametric GARCH(1,1) modeling.

2. See, e.g., Lee and Hansen (1994), Lumsdaine (1996), Berkes, Horvath, and Kokoszka (2003),
and Francq and Zakoian (2004). See also Jensen and Rahbek (2004) for an extension to the non-
stationary case.
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