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We consider general, and possibly nonparametric, GARCH~1,1! processes+ First
we give conditions for the existence and the uniqueness of stationary ergodic solu-
tions+ Then we identify additional conditions for geometric ergodicity+ These con-
ditions consist of mild restrictions on the distribution of the latent independent
process+ No moment assumption is made on the generalized autoregressive con-
ditionally heteroskedastic ~GARCH! process+Applications to the asymptotic behav-
ior of sample autocorrelations and to unit-root tests are proposed+

1. INTRODUCTION

With the increasing popularity of generalized autoregressive conditional hetero-
skedasticity ~GARCH! modeling, there is also increased interest in general, even
nonparametric, models and in moving away from the particular specification of
the classical GARCH models, as introduced by Engle ~1982! and Bollerslev
~1986!+ In this paper, we assume that ~et ! belongs to the general class of
GARCH~1,1! processes, defined by

�et � st ht

ht �: h~st !� v~ht�1!� a~ht�1!ht�1,
(1)

where the sequence ~ht ! is independent and identically distributed ~i+i+d+!+ For
statistical purposes the assumption that ht has zero mean and unit variance is
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often required, but we do not need this assumption in this paper+ The following
assumptions are made on the functions v, a, and h+

~i! v :Rr R
� is such that its restrictions to R

� and R
� are either constant

and strictly positive, or continuous and, respectively, strictly increasing
and strictly decreasing;

~ii! a :R r R
� is such that its restrictions to R

� and R
� are continuous

and, respectively, strictly increasing and strictly decreasing;
~iii! h :R�r R

� is 1-1, onto and increasing+

The standard GARCH~1,1! model is obtained for v~x!� v, h~x!� x 2 , and
a~x!� ax 2 � b with a� 0,b� 0+ This specification has been found adequate
for a number of financial series and is arguably the most popular volatility model+
When h has a form inspired by the Box–Cox transformation, and for some par-
ticular specifications of the functions v and a, we get the augmented GARCH
introduced by Duan ~1997!+ For h~x! � x d we get the class of GARCH~1,1!
models defined by He and Teräsvirta ~1999!, which includes a variety of other
first-order specifications+1 See Ling and McAleer ~2002! for strict stationarity
and moment conditions for such models+ Note that with the preceding assump-
tions, the volatility st increases with the magnitude of positive “shocks” ht�1

as well as it increases with the magnitude of negative ones+ Yet positive and
negative shocks may have different impacts on the volatility+

Nelson ~1990! and Bougerol and Picard ~1992! showed in the standard
GARCH case that if Eht � 0 and Var~ht ! � 1,

E log a~ht ! � 0 (2)

is a necessary and sufficient condition for the existence of a unique strictly
stationary and nonanticipative solution to model ~1!+ A nonanticipative solution
is a process ~et ! such that et is a measurable function of the variables ht�s,
s � 0+ The extension to model ~1! will be given subsequently+ For statistical
inference, however, strict stationarity is not a sufficient assumption, and it can
be crucial to know when the stationary solution possesses mixing properties+
Knowing that these properties hold may make it possible or easier to establish
other properties such as central limit theorems ~CLTs!+

Mixing properties of classes of models including GARCH-type processes have
been investigated by Ango Nze ~1992, 1998!, Lu ~1996!, Carrasco and Chen
~2002!, Rahbek, Hansen, and Dennis ~2002!, Lee and Shin ~2004!, Hwang and
Kim ~2004!, and Meitz and Saikkonen ~2004!, among others+ Unfortunately,
when applied to standard GARCH processes, their results require moment
assumptions that are much stronger than the strict stationarity assumption+ Typ-
ically the condition a� b � 1 is imposed for the standard GARCH~1,1!, which
amounts to restricting the class of strictly stationary solutions to those admit-
ting a second-order moment+ To our knowledge the most significant contribu-
tion, specifically devoted to the standard GARCH~ p,q!, is the dissertation by
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Boussama ~1998!, which establishes strong mixing under conditions we will
further discuss+ However, the proof relies on heavy geometric algebra based
upon the Mokkadem ~1990! result for polynomial autoregressive processes+ See
also Kristensen ~2006!+

Our main contribution is to show that under ~2!, the b-mixing of the strictly
stationary solution holds without any additional restriction on the function a~{!+
In particular we do not make any moment assumptions on the process ~et !+We
provide simple sufficient conditions on the process ht under which the strictly
stationary solution to model ~1! is b-mixing with exponential decay+We do not
impose a continuous distribution for ht , contrary to the preceding references
dealing with mixing+ This may have interest for financial applications because
prices, and hence returns, are not observed continuously but are multiples of a
monetary unit called the tick+ A continuous distribution for the i+i+d+ process
would typically imply a continuous distribution for et + On the other hand, deal-
ing with the mixing properties of discrete-valued time-series models is in gen-
eral a difficult task+ For these reasons, and for the sake of generality, we will
allow for both a discrete and a continuous part in the distribution of ht +We rely
on the results displayed in the book by Meyn and Tweedie ~1996! so that the
proof can be easily followed+

The fact that requirements for the existence of second-order moments can be
ignored is particularly important for the statistical inference of GARCH~1,1!
models+ Indeed, recent references establish asymptotic normality of the maxi-
mum likelihood estimator essentially under the assumption ~2! using the mar-
tingale theory+2 In this framework, the asymptotic distribution of other statistics
of interest ~such as the autocorrelations of functions of et ! may be difficult, if
not impossible, to derive using limit theorems for martingale differences+ In
such situations, the b-mixing property will be of invaluable help+

In the next section we give, for the reader’s convenience, the Markov chain
results we need+ Section 3 is devoted to strict stationarity+ In Section 4 we estab-
lish geometric ergodicity of the strictly stationary solution+ Two statistical appli-
cations are proposed in Section 5+

2. BASIC MARKOV CHAIN THEORY

This section is drawn from the papers by Tjøstheim ~1990! and Basrak, Davis,
and Mikosch ~2002! and the book by Meyn and Tweedie ~1996!+ All the ran-
dom variables considered in this paper are defined on some probability space
~V,A, P !+ Let $Xt , t � 0% be a homogeneous Markov chain on ~E,E! where
E � R

d and E is the Borel s-field on E+ We denote the probability of moving
from x to the set B in t steps by

P t~x,B! � P~Xt � B 6X0 � x!, x � E, B � E+
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The Markov chain ~Xt ! is f-irreducible if, for some nontrivial measure f on
~E,E!,

∀B � E, f~B! � 0n ∀x � E, ∃t � 0, P t~x,B! � 0+

If ~Xt ! is f-irreducible, there exists a maximal irreducibility measure M ~see
Meyn and Tweedie, 1996, Prop+ 4+2+2!, and we set E� � $B � E 6 M~B! � 0%+
We call the chain positive recurrent if

lim sup
tr`

P t~x,B! � 0, ∀x � E, ∀B � E�+

For a f-irreducible Markov chain, positive recurrence is equivalent ~see Meyn
and Tweedie, 1996, Thm+ 18+2+2! to the existence of a ~unique! invariant prob-
ability measure, that is, a probability p such that

∀B � E, p~B! ��P~x,B!p~dx!+

Let 7{7 denote the total variation norm+ The Markov chain ~Xt ! is said to be
geometrically ergodic if there exists a r, r � ~0,1!, such that

∀x � E, r�t 7P t~x, +!�p7r 0 as tr �`+ (3)

Recall that for a stationary process, the strong ~a-! mixing coefficients are
defined by

aX ~k! � sup
f, g
6Cov~ f ~+ + + , X�1, X0 !, g~Xk , Xk�1, + + +!!6 (4)

� sup
A,B
6P~A � B!� P~A!P~B!6, (5)

where the first supremum is taken over the set of measurable functions f and g
such that 6 f 6� 1, 6g 6� 1, and the second supremum is taken over the sets A �
s~Xs, s � 0! and B � s~Xs, s � k!, whereas the b-mixing coefficients are
defined by

bX ~k! � E sup
B�s~Xs , s�k!

6P~B 6s~Xs , s � 0!!� P~B!6 (6)

�
1

2
sup (

i�1

I

(
j�1

J

6P~Ai � Bj !� P~Ai !P~Bj !6, (7)

where in the last equality the sup is taken over all pairs of partitions $A1, + + + ,AI %
and $B1, + + + ,BJ % ofV such that Ai � s~Xs, s � 0! for each i and Bj � s~Xs, s � k!
for each j+ The process is called a-mixing ~resp+ b-mixing! if limkr`aX~k!� 0
~resp+ limkr`bX~k! � 0!+ We have aX~k! � bX~k!, so that b-mixing implies
a-mixing+ If Y � ~Yt ! is a process such that Yt � f ~Xt , + + + , Xt�r ! for some mea-
surable function f and some integer r � 0, then s~Yt , t � s! � s~Xt , t � s! and
s~Yt , t � s! � s~Xt�r , t � s!+ Thus
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aY ~k! � aX ~k � r! and bY ~k!� bX ~k � r! ∀k � r+ (8)

Note that for a stationary Markov process we have aX~k!� supf, g6Cov~ f ~X0!,
g~Xk!!6, where f and g are as in the previous definition ~see Bradley, 1986!+
One consequence of the geometric ergodicity is that the Markov chain ~Xt ! is
b-mixing, and hence strongly mixing, with geometric rate+ Indeed, Davydov
~1973! showed that for an ergodic Markov chain ~Xt ! with invariant probabil-
ity measure p,

bX ~k! ��7P k~x,{!�p7p~dx!+

Thus bX~k! � O~rk! if ~3! holds+
To state the following criterion for the geometric ergodicity of a Markov

chain, we need the idea of a Feller chain+ We call ~Xt ! a Feller Markov chain
~or weak Feller chain! if the function

E~g~Xt !6Xt�1 � x!, x � E

is continuous for every bounded and continuous function g on E+

THEOREM 1 ~Feigin and Tweedie, 1985, Thm+ 1!+ Assume that

(i) ~Xt ! is a Feller Markov chain;
(ii) ~Xt ! is f-irreducible for some measure f on ~E,E!;

(iii) there exists a compact set C � E such that f~C! � 0 and a nonnegative
continuous function (test function) V : E r R such that

V~x! � 1, ∀x � C (9)

and for some c � 0

E @V~Xt !6Xt�1 � x#� ~1 � c!V~x!, ∀x � C+ (10)

Then ~Xt ! is geometrically ergodic.

3. STRICT STATIONARITY

The assumption that the sequence ~ht ! is i+i+d+ with E log�$a~ht !% � `, where
log�x � max~ log x,0! for x � 0, is maintained throughout+ Our first result can
be deduced from results established by Bougerol and Picard ~1992! for gener-
alized autoregressive vector equations+ But we prefer to give a simple self-
contained proof of this theorem+

THEOREM 2+ If (2) holds, then the series

ht � v~ht�1!�(
i�1

`

a~ht�1! + + +a~ht�i !v~ht�i�1! (11)
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converges almost surely (a.s.), and the process ~et ! , defined by et � h�1~ht !ht ,
is a strictly stationary solution of (1). This solution is unique, nonanticipative,
and ergodic.

If (2) does not hold and P @ht � 0# � 1, there exists no strictly stationary
solution to model (1).

Proof+ First note that g �: E log a~ht ! exists in @�`,�`!+ Now let

ht � lim
Nr`

ht ~N ! a+s+ where

ht ~N !� v~ht�1!�(
i�1

N

a~ht�1! + + +a~ht�i !v~ht�i�1!, (12)

the limit being well defined in OR� in view of the positivity of the summands+
Because ht~N ! � v~ht�1! � a~ht�1!ht�1~N � 1! for all N, we have, letting N
go to infinity, ht � v~ht�1! � a~ht�1!ht�1+ It remains to show that ht is a+s+
finite+ Let v*~x! � v~x! � t1lv~x!�0 for some constant t � 0 and x � R+ Let
ht
*~N ! be obtained by replacing v by v* in ht~N ! and denote by ht

* its a+s+
limit+ We have

@a~ht�1! + + +a~ht�n !v
*~ht�n�1!#

10n

� exp� 1

n (i�1

n

log$a~ht�i !%�
1

n
log$v*~ht�n�1!%�r eg a+s+ (13)

as n r `, by the strong law of large numbers applied to the i+i+d+ sequence
~ log$a~ht !%!+ It follows from the Cauchy rule that for any t, the sequence
$ht
*~N !,N � 1% converges a+s+ in R+ Because ht � ht

* we thus have ht � ` a+s+
As a function of an i+i+d+ sequence, the limit ht is thus strictly stationary and
ergodic, in which case so is et +

To prove uniqueness, let ~ Dht ! be another strictly stationary solution process
of ~1!+ Suppose P~ht � Dht ! � 0 for some t+ Iterating the second equation in ~1!
we have 6ht � Dht 6� a~ht�1! + + +a~ht�n!6ht�n�1 � Dht�n�16+ From the strong law
of large numbers and ~2!, we have a~ht�1! + + +a~ht�n! r 0 with probability 1
as n r `+ Thus P~6ht�n�1 � Dht�n�16 r `! � 0, which entails 6ht�n�16 r `
or 6 Dht�n�16 r ` with nonzero probability+ This is not possible because the
sequences ~ht !t and ~ Dht !t are stationary+ Therefore ht � Dht for any t, a+s+

To prove the necessary part, suppose there exists a strictly stationary solu-
tion ~ht ! of ~1!+ We have for n � 0,

h0 � v~h�1!�(
i�1

n

a~h�1! + + +a~h�i !v~h�i�1!,
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from which we deduce that a~h�1! + + +a~h�n!v~h�n�1! converges to zero, a+s+,
when n r `, or, equivalently, that

(
i�1

n

log a~hi !� log v~h�n�1!r �` a+s+ as nr `+ (14)

First suppose E log$a~ht !% � 0+ Then by the strong law of large numbers,
(i�1

n log a~hi ! r �` a+s+, and it is necessary for ~14! to hold that
log v~h�n�1! r �` a+s+ This convergence implies v~h0! � 0 a+s+, which
is precluded because ht is not identically equal to zero+ Now suppose
E log$a~ht !% � 0+ By the Chung–Fuchs theorem ~see, e+g+, Chow and Teicher,
1997! we have lim(i�1

n log a~hi !� �` with probability 1 and, using the ele-
mentary Lemma 1, which follows, the convergence ~14! entails log v~h�n�1!r
�` in probability+ Thus, we are led to a contradiction as in the pre-
vious case+ Thus, the assumption that a strictly stationary solution exists when
E log$a~ht !% � 0 entails a contradiction+ �

LEMMA 1+ If ~Xn! and ~Yn! are two independent sequences of random vari-
ables such that Xn � Ynr �` and Xnr0 �` in probability, then Ynr �` in
probability.

Remark 1+ It can be seen from the proof that a solution ~ht !, as given by
~12!, always exists in OR� but that when ~2! does not hold and P~ht � 0! � 1,
this solution satisfies P @ht � �`# � 0 and P @6et 6 � �`# � 0+ See Klüppel-
berg, Lindner, and Maller ~2004! for more detailed results in the standard
GARCH~1,1! case+

4. GEOMETRIC ERGODICITY

To prove geometric ergodicity we require additional assumptions on the i+i+d+
process ~ht !, essentially to ensure that the transition kernel has a Lebesgue
component+

Assumption A+ The distribution Ph of the variable ht is a mixture of an ab-
solutely continuous component with respect to the Lebesgue measure l on
~R,B~R!! and Dirac masses at some points m i � R, i � 1 + + +N+ With standard
notation we then have

dPh � (
i�1

N

pi ddm i
� ~1 � p! f dl, pi � 0, (

i�1

N

pi � p � @0,1!, (15)

where f is a density of the continuous component+ Let h�
0 � inf $h6h � 0,

f ~h! � 0% and h�
0 � sup $h6h � 0, f ~h! � 0%, when these sets are nonempty,

and assume that

~h�
0 � t,h�

0 ! � ~h�
0 , h�

0 � t! � $ f � 0%
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for some t � 0+ By convention ~h�
0 � t,h�

0 ! � � ~resp+ ~h�
0 , h�

0 � t! � �!
when h�

0 ~resp+ h�
0 ! is not defined+ Finally, E $v~ht !

r% � ` and E $a~ht !
r% � `

for some r � 0+

Remark 2+ The standard case where Ph is absolutely continuous with respect
to the Lebesgue measure is obtained by taking p � 0+ Note however that the
case p �1, that is, when the law of ht has no continuous component, is excluded+
In such a case, criteria based on topological properties of the chain fail to prove
ergodic properties ~see a similar example in Meyn and Tweedie, 1996, p+ 127!+
This does not mean that the process is not geometrically ergodic in those situ-
ations: for example, in the standard GARCH~1,1! case, if ht

2 � 1 with proba-
bility 1, then the strictly stationary solution process is an independent white
noise, which is obviously geometrically ergodic+

The main result of this paper is as follows+

THEOREM 3+ Under Assumption A and if the strict stationarity condi-
tion (2) holds, then the strictly stationary and nonanticipative solution ~et ! of
the GARCH(1,1) model (1) is b-mixing with exponential decay.

Remark 3+ The proof of this theorem relies on showing that ~2! entails the
geometric ergodicity of ~ht !+ Moreover, geometric ergodicity implies strict sta-
tionarity+ Under Assumption A, which entails P @ht � 0# � 1, condition ~2! is
therefore necessary and sufficient for the existence of a geometrically ergodic
solution ~ht ! and also for the existence of a strictly stationary and geometri-
cally b-mixing solution ~et !+

Remark 4+ To our knowledge, existing results on mixing conditions for non-
standard GARCH~1,1! processes ~see references in the introduction! are demand-
ing in terms of moment assumptions+ For instance, in Carrasco and Chen ~2002!,
the mixing properties are obtained for various GARCH~1,1! models under
moment conditions on the process ~et ! ~see their Table 1!+ By contrast, we find
that the strictly stationary solution is b-mixing without any moment restriction+

Remark 5+ When applied to standard GARCH~1,1! models, this theorem is
also more general than those already established+ In Boussama ~1998!, the geo-
metric ergodicity of standard GARCH models is proved under the assumption
that ht has an absolutely continuous distribution with respect to the Lebesgue
measure ~i+e+, p � 0 in our framework!, with a positive density in a neighbor-
hood of zero+ In this case Assumption A holds with h�

0 � h�
0 � 0+ Note how-

ever that our assumption allows us to handle more general cases, where the
density is null on a neighborhood of zero or where the distribution of ht does
not admit a density with respect to the Lebesgue measure+

Before proving the theorem, we start by establishing geometric ergodicity
of ~ht !+
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LEMMA 2+ Under the assumptions of Theorem 3, the strictly stationary and
nonanticipative solution ~ht ! of model (1) is geometrically ergodic.

Proof+ By the second equation in model ~1!, ~ht ! is obviously a homo-
geneous Markov chain on ~R�,B~R�!!+ The proof consists in checking the three
conditions of Theorem 1+

Step ~i!: Feller property+ For any bounded and continuous function g on R
�,

the function

E @g~ht !6ht�1 � x#� E @g$v~ht !� a~ht !x%#

is continuous in x over R
�, by the Lebesgue dominated convergence theorem,

which shows that the Markov chain ~ht ! is Feller+
Step ~ii!: Irreducibility+ Let t ' � ~0,t! be small enough so that the set Dt ' �:

~h�
0 � t ',h�

0 ! � ~h�
0 , h�

0 � t '! does not contain any mass m i +
~a! First assume that P @a~ht ! � 0# � 0+ Note that $a~x! � 0% � $x � 0% in

view of the assumptions made on the function a+ Set H~x, y!�v~ y!� a~ y!v~x!
and remark that H is strictly increasing in 6y 6 for fixed x+ Let

I � H~0,Dt ' !� ~H~0,h�
0 !, H~0,h�

0 � t ' !! � ~H~0,h�
0 !, H~0,h�

0 � t ' !!

and denote by lI the restriction of the Lebesgue measure to the ~nonempty!
set I+ For h0 � x � R

�, we have

h2 � H~h0 ,h1!� a~h1!a~h0 !x+

We have, for any Borel set B,

P~h2 � B! � P~h2 � B 6a~h0 !� 0,h1 � Dt ' ! P~a~h0 !� 0!P~h1 � Dt ' !

� P~H~0,h1! � B 6h1 � Dt ' ! P~a~h0 !� 0!P~h1 � Dt ' !+

Note that, conditional on the event $h1 � Dt ' % , the variable H~0,h1! admits a
density, fH , that is positive over I+ Thus

lI ~B! � 0n P~h2 � B!� P~a~h0 !� 0! P~h1 � Dt ' ! �
I�B

fH dl � 0,

which proves that the Markov chain ~ht ! is lI -irreducible+
~b! Now suppose P @a~ht !� 0#� 0+ For ease of presentation we shall assume

that

pi � 0, ∀ i � 1, + + +N, and )
i�1

N

a~m i ! � 0+ (16)

The case where the distribution of h is absolutely continuous with respect to l,
that is, p � 0 in ~15!, can be handled by a straightforward adaptation of what
follows+
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We have, in view of ~15!,

E log$a~ht !% � (
i�1

N

pi log a~m i !� ~1 � p!�
~�`,h�

0 # � @h�
0 ,�`!

log a~x! f ~x! dl~x!

� (
i�1

N

pi log a~m i !� q log a~h�
0 !� r log a~h�

0 !, (17)

where

q � ~1 � p!�
~�`,h�

0 #

f ~x! dl~x!, r � ~1 � p!�
@h�

0 ,�`!
f ~x! dl~x!+

By convention take a~h�
0 ! � 1 if $h6h � 0, f ~h! � 0% � � and a~h�

0 ! � 1 if
$h6h � 0, f ~h! � 0%� �+ Inequality ~17! follows from the fact that a is monot-
onous over the positive and negative real semilines+ It follows that, under ~2!,

a~h�
0 !qa~h�

0 !r)
i�1

N

a~m i !
pi � 1+

Hence there exist some integers n0, m0, and ni , for i � 1, + + + ,N, such that

r �: a~h�
0 !n0a~h�

0 !m0)
i�1

N

a~m i !
ni � 1+ (18)

By continuity of a, it is not restrictive to assume that t ' is small enough so that

r1 �: a~h�
0 � t ' !n0a~h�

0 � t ' !m0)
i�1

N

a~m i !
ni � 1+ (19)

Now let h0 � x � R
�+ We have, for all t � 0,

ht � v~ht�1!�(
i�1

t�1

a~ht�1! + + +a~ht�i !v~ht�i�1!� a~ht�1! + + +a~h0 !x+ (20)

The inequalities ~18! and ~19! will allow us to control the products of this sum,
provided that we constrain the i+i+d+ process to visit some states with appropri-
ate frequencies+ To this aim we introduce, for K � 1,2, + + + , the event

AK � �
k�0

K�1

�
s�0

n0�1

$hs�kn � ~h�
0 � t ', h�

0 !% �
s�n0

n0�m0�1

$hs�kn � ~h�
0 , h�

0 � t ' !%

� �
s�n0�m0

n0�m0�n1�1

$hs�kn �m1% + + + �
s�n�nN

n�1

$hs�kn � mN %,
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where n � n0 � m0 � (i�1
N ni + When h�

0 or h�
0 is not defined, the correspond-

ing terms can be withdrawn from the definition of AK + Thus we have

P~AK ! � 0+ (21)

Denote yk � ~a~hs�kn !!0�s�n0�m0�1 � ~R�!n0�m0 , for k � 0, + + + ,K � 1+ The
conditional distribution given AK of the vector

YK � ~ y0 , + + + , yK�1!

has a density with respect to the Lebesgue measure on ~R�!K~n0�m0 ! +
Now we wish to show that

conditional on AK and ~h0 � x!, the variable hKn has a density
with respect to the Lebesgue measure on R

�+ (22)

First suppose that the function v is constant over R
� and R

�+ For any inte-
ger � and any vector u � ~u1, + + + ,u�! denote uR � ~u1, + + + ,u��1! and u� � u�+
By convention let ) j�k

n uj � 1 for n � k+ Let tn �(i�1
N ni + We have, given AK ,

hKn � (
j�0

tn

v~hKn�j�1! )
��1

j

a~hKn�� !

� �)
��1

tn

a~hKn�� !�
� � (

j� tn�1

Kn�1

v~hKn�j�1! )
�� tn�2

j

a~hKn�� !� )
�� tn�2

Kn

a~hKn�� !x� a~hKn� tn�1!

�: Ã� �)
i�1

N

a~m i !
ni� S~YK

R!YK
� ,

where Ã�Ã~m1, + + + ,mN ! is a constant and S~YK
R! is an a+s+ positive random

variable+ In view of ~16! it follows that given AK the mapping

YK � ~YK
R , YK

�!r ZK �: ~YK
R , hKn !

is a C 1 diffeomorphism between open sets of ~R�!K~n0�m0 ! + Indeed, the deter-
minant of the Jacobian matrix of this mapping is given by $) i�1

N a~m i !
ni %

S~YK
R! which is a+s+ positive+ Therefore the distribution of ZK conditional

on AK has a density with respect to the Lebesgue measure on ~R�!K~n0�m0 ! +
Consequently ~22! holds+
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Now suppose that v is nonconstant over R
�+ Let Iyk � ~a~hs�kn !,

v~hs�kn !!0�s�n0�m0�1 and let EYK � ~ Iy0, + + + , IyK�1!+ We have

hKn � (
j�0

tn�1

v~hKn�j�1! )
��1

j

a~hKn�� !� v~hKn� tn�1! )
��1

tn

a~hKn�� !

� �)
��1

tn�1

a~hKn�� !�
� � (

j� tn�1

Kn�1

v~hKn�j�1! )
�� tn�2

j

a~hKn�� !� )
�� tn�2

Kn

a~hKn�� !x�
�: JÃ� �)

i�1

N

a~m i !
ni� EYK

� � T ~ EYK
R!,

where JÃ is a constant and T ~ EYK
R! is a random variable+ The conclusion fol-

lows from the same argument as before, noting that the mapping

YK � ~ EYK
R , EYK

�!r EZK � ~ EYK
R , hKn !

is a C 1 diffeomorphism between open sets of ~R�!2K~n0�m0 ! + The case where v
is nonconstant over R

� can be handled similarly+
To determine the support IK of the conditional distribution of hKn, first note

that, for t � Kn, the last term on the right-hand side of ~20! writes, conditional
on AK ,

a~hKn�1! + + +a~h0 !x � �)
i�1

N

a~m i !
ni�K

)
k�0

K�1

)
s�0

n0�m0�1

a~hs�kn !x

and therefore belongs to the set @ rKx,r1
K x# , in view of the assumptions made

on the function a+ Products of the form a~hKn�1! + + +a~hKn�kn!, for k � 1, + + + ,
K � 1, can be handled similarly+ To deal with the other products in ~20! we
introduce the notation

M~ y, z! � (
j�1

n0

a~ y!n0�ja~z!m0)
i�1

N

a~m i !
niv~ y!�(

j�1

m0

a~z!m0�j)
i�1

N

a~m i !
niv~z!

� (
j�1

n1

a~m1!
n1�j)

i�2

N

a~m i !
niv~m1!� {{{�(

j�1

nN

a~mN !
nN�jv~mN !+

If AK holds true, using the assumptions ~i! and ~ii! on the functions a and v, we
have

hKn � IK �: �M~h�
0 ,h�

0 ! (
i�0

K�1

r i � rKx, M~h�
0 � t ',h�

0 � t ' ! (
i�0

K�1

r1
i � r1

K x� ,
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and thus, for K sufficiently large, in view of ~18! and ~19!,

hKn � I � �M~h�
0 ,h�

0 !

1 � r
,

M~h�
0 � t ',h�

0 � t ' !

1 � r1
� +

Indeed, I is the closure of the limit of the sets IK when K tends to infinity+
Because the lower and upper bounds of IK are reached, by the intermediate
values theorem and in view of ~22!, we conclude that

conditional on AK and ~h0 � x!, the density of the variable hKn

is positive over IK +
(23)

Denoting by lI the restriction of the Lebesgue measure to the set I, it fol-
lows that lI is an irreducibility measure because, for any set B � B~R!,

lI ~B! � 0n ∃K, l~B � IK ! � 0

n ∃t � Kn, P @ht � B#� P @ht � B 6AK # P~AK ! � 0,

by ~21! and ~23!+
Step ~iii!: First note that the assumptions E log a~ht ! � 0 and E $a~ht !

r% � `
for r � 0 imply the existence of a number s � ~0,1! such that

r2 �: E $a~ht�1!
s % � 1

~see Nelson, 1990; Berkes, Horváth, and Kokoszka, 2003, Lem+ 2+3!+
Let the test function defined by V~x! � 1 � x s , let 0 � c � 1 � r2, and let

the compact set

C � $x � R
�; vs � c � ~r2 � 1 � c!x s � 0%,

where vs � E $v~ht�1!
s% and s is chosen small enough so that vs � `+ We

have, for x � C, using the elementary inequality ~a � b!s � as � bs for
a,b � 0 and s � @0,1# ,

E @V~ht !6ht�1 � x# � 1 � vs � r2 x s

� ~1 � c!V~x!,

which proves ~10!+ Moreover ~9! holds true+
It remains to check that f~C! � 0 where f� lI is the irreducibility measure

obtained previously+ Given the shape of the intervals I and C, it is clear that

f~C!� 0m
M~h�

0 ,h�
0 !

1 � r
� Ĉ ~ interior of C!

m vs � c � ~r2 � 1 � c! � M~h�
0 ,h�

0 !

1 � r
�s

� 0+
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If c is chosen close enough to r2 � 1 the latter inequality will be verified+ For
such a c, the compact set C meets the assumptions of Theorem 1+ It follows
that the Markov chain ~ht ! is geometrically ergodic+ �

Proof of Theorem 3+ We will show that the process ~et ! inherits the mixing
property established for ~ht !+ We first show that the process Yt � ~ht ,ht !

' has
the mixing property+ It is clear that ~Yt ! is a Markov chain on R

� � R endowed
with its Borel s-field+Moreover ~Yt ! is strictly stationary as a measurable func-
tion of ht ,ht�1, + + + + By independence between ht and ht we can denote by PY �
Ph � Ph the stationary distribution of Yt , where Ph is that of ht and Ph that of
ht + Denote by EP t~ y,{! the transition probabilities of the Markov chain ~Yt !+We
have, for y � ~ y1, y2! � R

� � R, B1 � B~R�!,B2 � B~R!, and t � 0,

EP t~ y, B1 � B2 ! � P~ht � B1, ht � B2 6h0 � y1, h0 � y2 !

� Ph~B2 !P~ht � B16h0 � y1, h0 � y2 !

� Ph~B2 !P~ht � B16h1 � v~ y2 !� a~ y2 !y1!

� Ph~B2 !P
t�1~v~ y2 !� a~ y2 !y1, B1!+

Therefore, because Ph is a probability measure,

7 EP t~ y, {!� PY ~{!7 � 7 EP t�1~v~ y2 !� a~ y2 !y1, {!� Ph~{!7+

The right-hand-side term converging to 0 at exponential rate, by the geometric
ergodicity of ~ht !, we can deduce that ~Yt ! is geometrically ergodic and thus
geometrically b-mixing+ Because et � h�1~ht !ht is a measurable function
of Yt , we can conclude in view of ~8! that the process ~et ! is geometrically
b-mixing+ �

Remark 6+ The theorem could be straightforwardly extended to the case where
N � `, provided that a~m i ! � 1 for a finite number, say, N0, of indexes i +
Indeed, in this case the inequality ~17! continues to hold with N replaced
by N0+

Remark 7+ In Pham ~1986!, irreducibility is established for a class of models
that is very similar to our model for ~ht !+ However we cannot use Pham’s results
because he assumes a continuous distribution for the i+i+d+ process with a pos-
itive density in a neighborhood of 0, and more importantly, he requires v~0!� 0
~with our notations!, which does not hold, in particular, for the standard GARCH
model+

Examples

1+ Consider the standard ARCH~1! model and assume that ht has a mass at
zero, with Eht

2 � 1+ Thus ~2! is met because

E log a~ht ! � E log aht
2 � ~�`!� P~ht � 0!

� E~ log aht
2 6ht � 0!� P~ht � 0!� �`+
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It follows that geometric ergodicity holds, under Assumption A, without
any restriction on the parameter a+

2+ Consider the threshold ARCH~1! model, introduced by Zakoïan ~1994!,
where v~x!�v� 0, h~x!� x, and a~x!� max~0,�x!a� � max~0, x!a�,
with a� � 0, a� � 0+ Let P~ht � 0!� p� and P~ht � 0!� p�+We have

E log a~ht ! � log~a� !p� � log~a� !p� � E log6ht 6+

By Remark 3, under Assumption A, a necessary and sufficient condition for the
existence of a stationary and geometrically ergodic solution is

a�
p�a�

p� � exp $�E log6ht 6%+

5. STATISTICAL APPLICATIONS

The time-series literature abounds in statistical results requiring mixing assump-
tions+ Consequently, Theorem 3 has numerous direct applications+We only give
two of them+ The first application concerns the asymptotic distribution of sam-
ple autocorrelations and is directly inspired from Romano and Thombs ~1996!+
The second application shows that the standard Dickey–Fuller unit-root tests
remain asymptotically valid when the error term follows the GARCH~1,1! model
that we consider in this paper+

5.1. Behavior of the Sample Autocorrelations

For a time series e1, + + +en the identification stage of a model of the form ~1!
may involve the use of many statistics+ Traditional estimators of the population
autocorrelations of the squares are given by

[r~�! �
[g~�!

[g~0!
, where for � � 0, [g~�!�

1

n (t�1

n��

et
2 et��

2

and Xt stands for the mean-corrected observations of a time series ~Xt ,1 �
t � n!+ Such statistics are often used to get an insight into the fourth-order
structure of the process ~et !+ For the model of Ding, Granger, and Engle ~1993!,
based on a Box–Cox power transformation of the conditional standard devia-
tion process, the squares can be replaced by powers d of the 6et 6+ For nonpara-
metric GARCH models, such as model ~1!, general transformations of the data
lead to statistics of the form

[rg~�! �
[gg~�!

[gg~0!
, where for � � 0, [gg~�!�

1

n (t�1

n��

g~et ! g~et�� !,

for some measurable function g+ The asymptotic distributions of such statistics
are easily deduced from Theorem 3+
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COROLLARY 1+ Assume that E6g~et !64�n � ` for some n � 0. Then, under
the assumptions of Theorem 3, and for any fixed h � 0, the vectors

Mn ��
[gg~0!

I

[gg~h!
� � �

gg~0!

I

gg~h!
�	 and Mn ��

[rg~1!

I

[rg~h!
� � �

rg~1!

I

rg~h!
�	 ,

where gg~�! � Cov$g~et !, g~et��!% and rg~�! � gg~�!0gg~0! , are asymptoti-
cally normally distributed.

Proof+ The proof is similar to that of Theorems 3+1 and 3+2 in Romano and
Thombs ~1996!+ Theorem 3 shows that ~Yt ! �: ~g~et ! � Eg~et !! is geometri-
cally b- ~and a-! mixing+ Let [gg

*~�! � n�1(t�1
n�6�6 Yt Yt�6�6 + The Wold–Cramer

device and the CLT for strongly mixing processes, given in Ibragimov ~1962!
and Herrndorf ~1984!, show that n102$ [gg

*~0! � gg~0!, + + + , [gg
*~h! � gg~h!%

' is
asymptotically normally distributed with covariance matrix S given by

S~i, j ! � lim
nr`

nCov$ [gg
*~i !, [gg

*~ j !%� (
���`

`

Cov~Yt Yt�i ,Yt��Yt���j !+

The absolute convergence of the last sum follows from standard covariance in-
equalities for mixing processes+ To show the asymptotic normality of the vector
involving the [gg~i !, i � 0, + + + , h, it remains to show that Mn $ [gg

*~i ! � [gg~i !% �
oP~1!+ This can be proved by the arguments given in the proof of Proposition 7+3+7
of Brockwell and Davis ~1991!+ The vector of the sample autocorrelations,
because it is a differentiable function of the sample autocovariances vector, is
also asymptotically normally distributed+ �

Remark 8+ For g~x!� x, the result can be deduced from the Lindeberg CLT
for martingale differences+ However, for autocovariances of general transfor-
mations of et , it may be difficult, if not impossible, to rely on asymptotic theo-
rems for martingales+ In such cases, mixing results offer an alternative+

5.2. Unit-Root Tests for Autoregressive (AR) Models
with GARCH Errors

Many financial series, such as ~logarithms of ! stock-market indices, are sus-
pected to behave roughly like random walks with conditionally heteroskedastic
increments+ For such series, one could consider a model of the form

X0 � 0, Xt � fXt�1 � et , t � 1,2, + + + , (24)

where ~et ! belongs to the general class of GARCH~1,1! models ~1!+ Given the
consequences of the random walk hypothesis, especially in terms of persis-
tence of the economic shocks, it is important to consider tests for the unit-root
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hypothesis H0 :f � 1 against the stationarity assumption H1 :f � ~�1,1!+ Let
Zfn �: (t�2

n Xt Xt�1~(t�2
n Xt�1

2 !�1 be the least squares estimator ~LSE! of f and
let $W~t !, t � @0,1#% be a standard Brownian motion+ The following corollary
demonstrates the asymptotic validity of the standard Dickey–Fuller tests, in our
heteroskedastic framework+

COROLLARY 2+ Suppose that ~Xt ! satisfies (24) where ~et ! is a gen-
eral GARCH(1,1) process satisfying the assumptions of Theorem 3. Then if
E6et 62�n � ` for some n � 0,

n~ Zfn � 1!n
~ 2

1
�!$W 2~1!� 1%

�
0

1

W 2~t ! dt

under H0 :f� 1, (25)

and if E6et 64�n � ` for some n � 0,

Mn ~ Zfn � f!n M~EXt
2!�2Eet

2 Xt�1
2 W~1! under H1 :f � ~�1,1!+ (26)

Proof+ Note that limnr` Var $n�102(t�1
n et % � Eet

2 � 0+ In view of Theo-
rem 3, the weak convergence ~25! is deduced from Phillips ~1987!, and ~26!
can be deduced, for instance, from Francq and Zakoïan ~1998!+ �

Remark 9+ For the standard GARCH~1,1! errors, Ling, Li, and McAleer
~2003! derived the asymptotic distribution in ~25! under the second moment
condition, namely, a � b � 1+

Remark 10+ Consider model ~1! with ht � st
2+ Assume that ht has a sym-

metric distribution, that v and a are even functions, and that the following
moments exist, for i � 1,2,

vi �
E $v~ht !

iht
2%

E $v~ht !
i %
, ai � E $a~ht !

i %,

c �
E $v~ht !a~ht !%

E $v~ht !%
, Ia � E $a~ht !ht

2%,

with a2 � 1+ Then tedious computations show that the asymptotic variance of
the LSE is, under H1,

Eet
2 Xt�1

2

~EXt
2!2

�
~1 � f2 !2~1 � a1!

2

v1
2 (

i�0

`

f2iEet
2 et�i�1

2

�
~1 � a1!~1 � f2 !$f2~1 � a2 !� ~1 � f2 !%@v1~1 � a2 !� Ia$v2~1 � a1!� 2c%#

~1 � a2 !~1 � a1f
2 !

+

It is interesting to note that in the unit-root case the asymptotic distribution of
the LSE is the same with i+i+d+ or GARCH errors, whereas it depends on the
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GARCH parameters in the stationary case+ Thus the Dickey–Fuller test statistic
can still be used when the errors satisfy a model of the form ~1!+ A similar
finding was obtained by Rahbek et al+ ~2002! in a multivariate framework+ They
showed that the trace test for the cointegration rank remains valid when the
standard i+i+d+ Gaussian errors are replaced by ARCH-type innovations, with
appropriate moment conditions+

Remark 11+ Corollaries 1 and 2 are just given for illustrative purposes and
can be straightforwardly extended+ In particular, Corollary 2 could include more
general models with augmented variables and0or an intercept and0or a deter-
ministic trend, as in Phillips and Perron ~1988!+ Similar convergences could
also be stated for t-statistics+

NOTES

1+ Namely, the absolute value GARCH model ~Taylor, 1986; Schwert, 1989! for v~x! � v,
h~x! � x, and a~x! � a6x 6 � b; the threshold GARCH model of Zakoïan ~1994! for v~x! � v,
h~x! � x, and a~x! � a� max~0,�x! � a� max~0, x! � b; the Glosten, Jagannathan, and Runkle
~1993! model for v~x! � v, h~x! � x 2, and a~x! � a�$max~0,�x!%2 � a�$max~0, x!%2 � b; the
asymmetric power GARCH model of Ding et al+ ~1993! for v~x! � v, h~x! � x d, and a~x! �
a~6x 6� gx!d � b; a moving average GARCH process, inspired by the moving average condition-
ally heteroskedastic ~MACH! model of Yang and Bewley ~1995!, for h~x!� x 2, a~x!� a, and, for
instance, v~x! � v1 � v2 x 2 ; the sign-switching autoregressive conditional heteroskedasticity
~ARCH! model of Fornari and Mele ~1997! for h~x! � x 2, v~x! � v1 � v2 sign~x!, and a~x! �
ax 2 � b+ See also Bühlmann and McNeil ~2000! and Yang and Tschernig ~2006! for recent refer-
ences on nonparametric GARCH~1,1! modeling+

2+ See, e+g+, Lee and Hansen ~1994!, Lumsdaine ~1996!, Berkes, Horváth, and Kokoszka ~2003!,
and Francq and Zakoïan ~2004!+ See also Jensen and Rahbek ~2004! for an extension to the non-
stationary case+
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