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Abstract

Consider a random vector U whose distribution function coincides in its upper tail with
that of an Archimedean copula. We report the fact that the conditional distribution of
U, conditional on one of its components, has under a mild condition on the generator
function independent upper tails, no matter what the unconditional tail behavior is. This
finding is extended to Archimax copulas.
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1. Introduction

Let U = (U1, . . . ,Ud) be a random vector (rv) whose distribution function (df) F is in the
domain of attraction of a multivariate extreme value df G, denoted by F ∈D(G), i.e. there are
constants an = (an1, . . . , and)> 0 ∈R

d, bn = (bn1, . . . , bnd) ∈R
d, n ∈N, such that for each

x = (x1, . . . , xd) ∈R
d,

Fn(anx + bn) →n→∞ G(x).

Note that all operations on vectors such as x + y, xy, etc. are always meant componentwise.
The rv U, or, equivalently, the df F, is said to have asymptotically independent (upper)

tails if

G(x) =
d∏

i=1

Gi(xi),

where Gi, 1 ≤ i ≤ d, denote the univariate margins of G.
We require in this paper that the df F of U coincides in its upper tail with a copula, say C,

i.e. there exists u0 = (u01, . . . , u0d) ∈ (0, 1)d such that

F(u) = C(u), u ∈ [u0, 1] ⊂R
d.
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Each univariate margin of a copula is the uniform distribution H(u) = u for 0 ≤ u ≤ 1 and, thus,
each univariate margin of F equals H(u) for u ∈ [v0, 1], where v0 := max1≤i≤d u0i.

The significance of copulas is due to Sklar’s theorem ([11, 12]), by which an arbitrary
multivariate df can be represented as a copula together with its univariate margins. The
dependence structure among the margins of an arbitrary rv is, therefore, determined by the
copula. For an introduction to copulas we refer to the book by Nelsen [10].

We require in this paper that the upper tail of C is that of an Archimedean copula Cϕ ,
i.e. there exists a convex and strictly decreasing function ϕ : (0, 1] → [0,∞), with ϕ(1) = 0,
such that

Cϕ(u) = ϕ−1(ϕ(u1) + · · · + ϕ(ud))

for u ∈ [u0, 1] ⊂R
d, where u0 = (u01, . . . , u0d) ∈ (0, 1)d.

A prominent example is ϕp(s) := (1 − s)p, s ∈ [0, 1], where p ≥ 1. In this case we obtain

Cϕp (u) = 1 −
( d∑

i=1

(1 − ui)
p
)1/p

, u ∈ [u0, 1]. (1.1)

Note that

Cϕp(u) := max

(
0, 1 −

( d∑
i=1

(1 − ui)
p
)1/p)

, u ∈ [0, 1]d,

defines a multivariate df only in dimension d = 2; see, e.g., [9, Examples 2.1, 2.2]. But one can
find, for arbitrary dimension d ≥ 2, an rv whose df satisfies equation (1.1); see, e.g., [4, (2.15)].
This is the reason why we require the Archimedean structure of Cϕ only on some upper interval
[u0, 1] and we do not speak of Cϕ as a copula, but rather as a distribution function.

The behavior of Cϕ(u) for u close to 1 ∈R
d determines the upper tail behavior of the

components of U. Precisely, suppose that Cϕ ∈D(G), i.e.[
Cϕ
(

1 + x
n

)]n →n→∞ G(x), x ≤ 0 ∈R
d,

where the norming constants are prescribed by the univariate margins of Cϕ , which is the df
H(u) = u, u ∈ [v0, 1]. We obviously have, for arbitrary x ≤ 0 and n large enough,[

H
(

1 + x

n

)]n =
(

1 + x

n

)n → exp (x).

The multivariate max-stable df G, consequently, has standard negative exponential margins
Gi(x) = exp (x), x ≤ 0.

Moreover, there exists a norm ‖ · ‖D on R
d such that G(x) = exp (− ‖x‖D) for x ≤ 0 ∈R

d;
see, e.g., [4]. This norm ‖ · ‖D describes the asymptotic tail dependence of the margins
of Cϕ ; the index D, therefore, means dependence. In particular, ‖ · ‖D = ‖ · ‖1 is the case
of (asymptotic) independence of the margins, whereas ‖ · ‖D = ‖ · ‖∞ yields their total
dependence. For the df Cϕp in (1.1) we obtain, for example, for n large,

[
Cϕp

(
1 + x

n

)]n =
(

1 − 1

n

( d∑
i=1

|xi|p
)1/p)n

→n→∞ exp (− ‖x‖p), x = (x1, . . . , xd) ≤ 0 ∈R
d,
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where ‖x‖p = (
∑d

i=1 |xi|p)1/p, p ≥ 1, is the logistic norm on R
d. In this case we have tail

independence only for p = 1.
In this paper we investigate the problem of whether conditioning on a margin Uj = u has an

influence on the tail dependence of the left margins U1, . . . ,Uj−1,Uj+1, . . . ,Ud. Actually,
we will show that the rv (U1, . . . ,Uj−1,Uj+1, . . . ,Ud), conditional on Uj = u, in general
has independent tails for each choice of j, no matter what the unconditional tail behavior is;
see Section 3. This is achieved under a mild condition on the generator function ϕ, which is
introduced in Section 2.

2. Condition on the generator function

Our results are achieved under the following condition on the generator function ϕ. There
exists a number p ≥ 1 such that

lim
s↓0

ϕ(1 − sx)

ϕ(1 − s)
= xp, x> 0. (C0)

Remark 2.1. The exponent p in condition (C0) is necessarily greater than one by the convexity
of ϕ, which can easily be seen as follows. We have for arbitrary λ, x, y ∈ (0, 1]

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y).

Setting x = 1 − s and y = 1, we obtain

ϕ(λ(1 − s) + 1 − λ) = ϕ(1 − λs) ≤ λϕ(1 − s),

and thus

lim
s↓0

ϕ(1 − λs)

ϕ(1 − s)
= λp ≤ λ.

But this requires p ≥ 1.

A df Cϕ whose generator satisfies condition (C0) is in the domain of attraction of a
multivariate extreme value distribution. Precisely, we have the following result.

Proposition 2.1. Suppose that the generator ϕ satisfies condition (C0). Then we have Cϕ ∈
D(G), where G(x) = exp (− ‖x‖p), x ≤ 0 ∈R

d.

Proof. First we show that condition (C0) implies, for x> 0,

lim
s↓0

1 − ϕ−1(sx)

1 − ϕ−1(s)
= x1/p. (2.1)

Choose δsx, δs ∈ (0, 1) such that

ϕ(1 − δsx) = sx, ϕ(1 − δs) = s,

i.e.
ϕ−1(sx) = 1 − δsx, ϕ−1(s) = 1 − δs.

Condition (C0) implies, for s ↓ 0,

x = ϕ(1 − δsx)

ϕ(1 − δs)
=
ϕ
(

1 − δs
δsx
δs

)
ϕ(1 − δs)

∼
(δsx

δs

)p
,
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where ∼ means that the ratio of the left-hand side and the right-hand side converges to one as
s converges to zero. But this is

lim
s↓0

1 − ϕ−1(sx)

1 − ϕ−1(s)
= x1/p.

Next, we show that, for x = (x1, . . . , xd) ≤ 0 ∈R
d,

lim
n→∞ Cn

ϕ

(
1 + x

n

)
= lim

n→∞

[
ϕ−1

( d∑
i=1

ϕ
(

1 + xi

n

))]n

= exp (− ‖x‖p).

Taking logarithms on both sides, this is equivalent to

lim
n→∞ n

[
1 − ϕ−1

( d∑
i=1

ϕ
(

1 + xi

n

))]
= ‖x‖p.

Write
1

n
= 1 − ϕ−1

(
ϕ
(

1 − 1

n

))
.

Then

n

[
1 − ϕ−1

( d∑
i=1

ϕ
(

1 + xi

n

))]
=

1 − ϕ−1
(∑d

i=1 ϕ
(
1 + xi

n

))
1 − ϕ−1

(
ϕ
(
1 − 1

n

))

=
1 − ϕ−1

(
ϕ
(
1 − 1

n

)∑d
i=1

ϕ
(

1+ xi
n

)
ϕ
(

1− 1
n

) )
1 − ϕ−1

(
ϕ
(
1 − 1

n

))
→n→∞

( d∑
i=1

(− xi)
p
)1/p

by condition (C0) and equation (2.1), which is the assertion. �
Condition (C0) on ϕ is, for example, implied by the condition

lim
s↓0

ϕ(1 − s)

sp
= A (C1)

for some constant A> 0 and p ≥ 1, which is obviously satisfied by the generator ϕp(s) =
(1 − s)p.

Condition (C1) is, by l’Hôpital’s rule, implied by

− lim
s↓0

ϕ′(1 − s)

sp−1
= pA. (C2)

As a consequence, (C2) implies the condition

− lim
s↓0

sϕ′(1 − s)

ϕ(1 − s)
= p. (C3)

Charpentier and Segers [2, Theorem 4.1] showed, among others, that a copula Cϕ whose
generator satisfies (C3) is in the domain of attraction of G(x) = exp (− ‖x‖p), x ≤ 0 ∈R

d; see
also [4, Corollary 3.1.15]. In this case we have tail independence only if p = 1.
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The Clayton family with generator ϕϑ (t) := (t−ϑ − 1)/ϑ and ϑ > 0 satisfies condition (C2)
with p = 1 and A = 1. As a consequence, we have independent tails for each ϑ > 0.

The Frank family has the generator

ϕϑ (t) := − log

(
e−ϑ t − 1

e−ϑ − 1

)
, ϑ > 0.

It satisfies condition (C0) with p = 1, i.e. we again have independent tails for each ϑ > 0.
Consider, on the other hand, the generator ϕϑ (t) := (− log (t))ϑ , ϑ ≥ 1, of the Gumbel–

Hougaard family of Archimedean copulas. This generator satisfies condition (C0) with p = ϑ ,
and thus we have tail independence only for ϑ = 1.

3. Main theorem

In this section we establish conditional tail independence of the margins of Cϕ
if the generator ϕ satisfies condition (C0). First, we compute the conditional df of
(U1, . . . ,Uj−1,Uj+1, . . . ,Ud) given that Uj = u.

Lemma 3.1. We have, for j ∈ {1, . . . , d} and u = (u1, . . . , uj−1, u, uj+1, . . . , ud) ∈ [u0, 1),

Hj,u(u1, . . . , uj−1, uj+1, . . . , ud) := P(Ui ≤ ui, 1 ≤ i ≤ d, i = j | Uj = u)

= ϕ′(u)

ϕ′(Cϕ(u))

= ϕ′(u)

ϕ′(ϕ−1(ϕ(u) +∑
1≤i≤d, i =j ϕ(ui)))

,

provided the derivative ϕ′(v) exists in a neighborhood of u, that ϕ′ is continuous at u with
ϕ′(u) = 0, and that Cϕ(u) = 0 as well.

Proof. For notational simplicity we establish the result for the choice j = d. We have, for
u = (u1, . . . , ud) ∈ [u0, 1),

P(Ui ≤ ui, 1 ≤ i ≤ d − 1 | Ud = ud)

= lim
ε↓0

P(Ui ≤ ui, 1 ≤ i ≤ d − 1, Ud ∈ [ud, ud + ε])

P(Ud ∈ [ud, ud + ε])

= lim
ε↓0

P(Ui ≤ ui, 1 ≤ i ≤ d − 1, Ud ≤ ud + ε) − P(Ui ≤ ui, 1 ≤ i ≤ d − 1, Ud ≤ ud)

ε

= lim
ε↓0

ϕ−1(
∑d−1

i=1 ϕ(ui) + ϕ(ud + ε)) − ϕ−1(
∑d

i=1 ϕ(ui))

ε

= (ϕ−1)′
( d∑

i=1

ϕ(ui)

)
ϕ′(ud)

= ϕ′(ud)

ϕ′(ϕ−1(
∑d

i=1 ϕ(ui)))

= ϕ′(ud)

ϕ′(Cϕ(u))
,

which is the assertion. �
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Note that the univariate margins of the df Hj,u, 1 ≤ j ≤ d, coincide in their upper tails, where
they are equal to

Hu(v) := ϕ′(u)

ϕ′(ϕ−1(ϕ(u) + ϕ(v)))
, v0 ≤ v ≤ 1,

with v0 = max1≤i≤d u0i.
The upper endpoint of Hu is one, and therefore if the df Hu is in the domain of attraction

of a univariate extreme value df G, then the family of negative Weibull distributions Gα(x) :=
exp (− |x|α), x ≤ 0, with α > 0, is the first choice. Note that α= 1 yields the standard negative
exponential distribution.

The univariate df Hu is in the domain of attraction of Gα for some α > 0 if and only if

lim
s↓0

1 − Hu(1 − sx)

1 − Hu(1 − s)
= xα, x> 0;

see, e.g., [6, Theorem 2.1.2].

Lemma 3.2. Suppose that the second derivative of ϕ exists in a neighborhood of u> v0, and
that it is continuous in u with ϕ′′(u) = 0 = ϕ′(u). The univariate df Hu satisfies Hu ∈D(Gp) for
some p ≥ 1 if and only if ϕ satisfies condition (C0).

Proof. Applying Taylor’s formula twice shows that

1 − Hu(1 − s) = ϕ′(ϕ−1(ϕ(u) + ϕ(1 − s))) − ϕ′(u)

ϕ′(ϕ−1(ϕ(u) + ϕ(1 − s)))

∼ ϕ′′(u)

ϕ′(u)2
ϕ(1 − s)

as s ↓ 0, which is the assertion. �

The next result is our main theorem.

Theorem 3.1. Suppose the generator ϕ of Cϕ satisfies condition (C0). Then, if u> u0j and ϕ
satisfies the differentiability conditions in Lemma 3.2, we obtain, for x = (x1, . . . , xd−1) ≤ 0
∈R

d−1,

[Hj,u(1 + canx)]n →n→∞ exp

(
−

d−1∑
i=1

(− xi)
p
)
,

with c := (ϕ′(u)2/ϕ′′(u))1/p and an := 1 − ϕ−1(1/n), n ≥ n0.

Proof. For notational simplicity we establish this result for j = d. It is sufficient to establish
that, for x = (x1, . . . , xd−1) ≤ 0 ∈R

d−1,

n(1 − Hd,u(1 + canx)) →n→∞
d−1∑
i=1

(− xi)
p. (3.1)

We know from Lemma 3.1 that, for (u1, . . . , ud−1, u) ∈ [u0, 1],

Hd,u(u1, . . . , ud−1) = ϕ′(u)

ϕ′(ϕ−1(ϕ(u) +∑d−1
i=1 ϕ(ui)))

. (3.2)
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As a consequence we obtain, with (u1, . . . , ud−1) = 1 + canx,

n(1 − Hd,u(1 + canx))

= n

(
1 − ϕ′(u)

ϕ′(ϕ−1(ϕ(u) +∑d−1
i=1 ϕ(1 + canxi)))

)

= n
ϕ′(ϕ−1(ϕ(u) +∑d−1

i=1 ϕ(1 + canxi))) − ϕ′(u)

ϕ′(ϕ−1(ϕ(u) +∑d−1
i=1 ϕ(1 + canxi)))

,

where the denominator converges to ϕ′(u) as n increases because an ↓ 0.
Taylor’s formula yields that the numerator equals

ϕ′′(ϑn)

(
ϕ−1

(
ϕ(u) +

d−1∑
i=1

ϕ(1 + canxi)

)
− u

)
,

where ϕ′′(ϑn) converges to ϕ′′(u) as n increases. Applying Taylor’s formula again yields

ϕ−1
(
ϕ(u) +

d−1∑
i=1

ϕ(1 + canxi)

)
− u = 1

ϕ′(ϕ−1(ξn))

d−1∑
i=1

ϕ(1 + canxi),

where ξn converges to ϕ(u) as n increases. But

n
d−1∑
i=1

ϕ(1 + canxi) =
d−1∑
i=1

ϕ(1 + canxi)

ϕ(1 − an)
→n→∞

d−1∑
i=1

(− cxi)
p

by condition (C0). This yields the assertion. �
Remark 3.1. The preceding result shows tail independence of Hj,u, as the limiting df is the
product of its margins.

Lemma 3.2 implies, moreover, that the reverse implication in the previous result also holds,
i.e. if Hj,u is in the domain of attraction of a multivariate max-stable df G with negative Weibull
margins having parameter at least one, then condition (C0) is satisfied by Lemma 3.2, and G
has, by the preceding result, identical independent margins.

Finally, by the preceding arguments we have Hj,u ∈D(G), where G has negative Weibull
margins, if and only if just one univariate margin of Hj,u is in the domain of attraction of a
univariate extreme value distribution, and in this case G has identical and independent margins.

Remark 3.2. As suggested by one of the reviewers, Theorem 3.1 enables the simulation of
an Archimedean copula from an extreme area. In particular, from equation (3.1) we have the
approximation

(1 − Hd,u(1 + canx)) ≈
d−1∑
i=1

(− xi/n
1/p)p, n → ∞.

A random vector of dimension d − 1 that has the survival probability on the right-hand side
above, together with an independent rv uniformly distributed on (0, 1), then provides the
simulation of an Archimedean copula in its extreme region. Whether this is an efficient way of
simulation, however, requires further work.
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4. Archimax copulas

Let ϕ : (0, 1] → [0,∞) be the generator of an Archimedean copula Cϕ(u) =
ϕ−1(

∑d
i=1 ϕ(ui)), u = (u1, . . . , ud) ∈ (0, 1]d, and let ‖ · ‖D be an arbitrary D-norm. Put

C(u) := ϕ−1(‖(ϕ(u1), . . . , ϕ(ud))‖D), u ∈ (0, 1]d. (4.1)

It was established by Charpentier et al. [1] that C actually defines a copula on R
d, called

an Archimax copula. Choosing ‖ · ‖D = ‖ · ‖1 yields C(u) = Cϕ(u), and thus the concept of
Archimax copulas generalizes that of Archimedean copulas considerably.

To also include the generator family ϕp(s) = (1 − s)p, s ∈ [0, 1], p ≥ 1, we require the
representation of C in equation (4.1) only for u ∈ [u0, 1] ⊂ (0, 1]d. There actually exists an
rv whose copula satisfies

C(u) = ϕ−1(‖(ϕ(u1), . . . , ϕ(ud))‖p), u ∈ [u0, 1],

with some u0 ∈ (0, 1)d. This follows from the fact that ‖(|x1|p, . . . , |xd|p)‖1/p
D is again a D-

norm, with an arbitrary D-norm ‖ · ‖D and p ≥ 1; see Proposition 2.6.1 and equations (2.14)
and (2.15) in [4].

An Archimax copula is in the domain of attraction of a multivariate extreme value
distribution if the generator satisfies condition (C0). Precisely, we have the following result.

Proposition 4.1. Suppose the generator ϕ satisfies condition (C0). Then the corresponding
Archimax copula C with arbitrary D-norm ‖ · ‖D satisfies C ∈D(G), where G(x) = exp (−
‖(|x1|p, . . . , |xd|p)‖1/p

D ), x ≤ 0 ∈R
d.

Proof. We have, for x = (x1, . . . , xd) ≤ 0 ∈R
d,

n
[
1 − ϕ−1

(∥∥∥(ϕ(1 + x1

n

)
, . . . , ϕ

(
1 + xd

n

))∥∥∥
D

)]

=
1 − ϕ−1

(
ϕ
(

1 − 1
n

)∥∥∥∥(ϕ(1+ x1
n

)
ϕ
(

1− 1
n

) , . . . , ϕ(1+ xd
n

)
ϕ
(

1− 1
n

) )∥∥∥∥
D

)
1 − ϕ−1

(
ϕ
(

1 − 1
n

))
→n→∞ ‖(|x1|p, . . . , |xd|p)‖1/p

D

by condition (C0) and equation (2.1). Repeating the arguments in the proof of Proposition 2.1
yields the assertion. �

Let the rv U = (U1, . . . ,Ud) follow an Archimax copula with generator function ϕ and
D-norm ‖ · ‖D. Does it also have independent tails, conditional on one of its components? We
give a partial answer to this question.

Suppose the underlying ‖ · ‖D is a logistic one, ‖ · ‖q, with q ≥ 1. Then

ϕ−1(‖(ϕ(u1), . . . , ϕ(ud))‖q) = ϕ−1
(( d∑

i=1

ϕ(ui)
q
)1/q)

=ψ−1
( d∑

i=1

ψ(ui)

)
,
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where

ψ(s) := ϕ(s)q, s ∈ [0, 1].

If the generator ϕ satisfies condition (C0), then the generator ψ clearly satisfies condition (C0)
as well:

lim
s↓0

ψ(1 − sx)

ψ(1 − s)
= xpq, x> 0.

If ϕ satisfies the differentiability conditions in Lemma 3.2 then the conclusion of Theorem 3.1
applies, i.e. with the choice ‖ · ‖D = ‖ · ‖q, q ≥ 1, the rv U again has independent tails,
conditional on one of its components.

On the other hand, set U = (U, . . . ,U), where U is an rv that follows the uniform
distribution on (0, 1). Choose ‖ · ‖D = ‖ · ‖∞ with ‖x‖∞ = max1≤i≤d (|xi|). Then we have, for
every function ϕ : (0, 1] → [0,∞) that is continuous and strictly decreasing,

C(u) = P(U ≤ u1, . . . ,U ≤ ud)

= min
1≤i≤d

ui

= ϕ−1(‖(ϕ(u1), . . . , ϕ(ud))‖∞), u ∈ (0, 1]d.

The copula C is, therefore, an Archimax copula, but it has completely dependent conditional
margins.

5. Simulation study

We illustrate through a simulation study the conditional tail independence of the
Archimedean Gumbel–Hougaard copula family with dimension d> 2 and dependence pa-
rameter ϑ > 1. The latter condition on the parameter ϑ implies that the copula’s tails are
asymptotically dependent.

There are several statistical tests to verify whether the tails of a multivariate distribution
are asymptotically independent, provided that the latter is in the domain of attraction of a
multivariate extreme value df. In the bivariate case some tests have been suggested by Draisma
et al. [3], Hüsler and Li [8], and Falk et al. [5, Chapter 6.5]. However, to extend them to
dimensions higher than two is not straightforward. We therefore rely on the hypothesis testing
proposed by Guillou et al. [7], which is based on the componentwise maximum approach and
is meant for an arbitrary dimension d ≥ 2.

Such a test is grounded on a system of hypotheses where under the null hypothesis it is
assumed that A(t) = 1 for all t ∈ Sd, i.e. the tails are asymptotically independent, while under
the alternative hypothesis it is assumed that A(t)< 1 for at least one t ∈ Sd, i.e. some tails
are asymptotically dependent. Here, A is the Pickands dependence function and Sd is the
d-dimensional unit simplex (see, e.g., [5, Chapter 4]). Guillou et al. [7] proposed using the
test statistic Ŝn = supt∈Sd

√
n|̂An(t) − 1| to decide whether or not to reject the null hypothesis,

where Ân is an appropriate estimator of the Pickands dependence function and n is the sample
size of the componentwise maxima. Under the null hypothesis the test statistic converges to a
suitable random variable S for large samples. Large values of the observed test statistic provide
evidence against the null hypothesis, and the quantiles of the distribution of S used for rejecting
(or not) the null hypothesis are reported in Table 1 of their article.
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TABLE 1: Rejection rate (in percentage) of the null hypothesis (asymptotic independent tails) based on
M = 1000 simulations.

Dimension Dependence parameter ϑ

d 2 3 4 5 6

3 5.414 4.877 5.438 5.352 5.725
4 5.216 5.783 5.491 4.841 4.591
5 5.353 4.396 5.791 4.685 4.454

We performed the following simulation experiment. In the first step we simulate a sample
of size n = 110 000 of independent observations from a Gumbel–Hougaard copula with d = 3
and ϑ = 3. Then, we compute the vector of normalized componentwise maxima mn,j =
maxi=1,...,n (ui,j − bn,j)/an,j with an,j = n, bn,j = 1, and j = 1, . . . , d. In the second step, for
u = 0.99 and ε= 0.0005 we select the observations (ui,1, . . . , ui,j−1, ui,j+1, . . . , ui,d) such that
ui,j ∈ [u − ε, u + ε], i = 1, . . . , n. To work with a sample with fixed size we consider only k =
1000 such observations. Then, we compute the vector of normalized componentwise maxima
m∗

k,s = maxi=1,...,k ui,s/(cak,s), where c = (ϕ′(u)2/ϕ′′(u))1/ϑ and ak,s := 1 − ϕ−1(1/k) with

ϕ(t) := (− log (t))ϑ and s = 1, . . . , j − 1, j − 1, . . . , d. We repeat the first and second steps
N = 100 times obtaining two samples of componentwise maxima, one from the d-dimensional
copula and one from the relative d − 1 conditional distribution.

The top-left and top-right panels of Figure 1 display an example of maxima obtained
from the Gumbel–Hougaard copula and the associated estimate of the Pickands dependence
function, respectively. A strong dependence among the variables is evident. To see this better,
in the middle panels the maxima of a pair of variables and the relative estimate of the Pickands
dependence function are reported. Indeed, the latter is close to the lower bound max (1 − t, t),
i.e. the case of complete dependence.

The bottom panels of Figure 1 display the maxima obtained with the second step of the
simulation experiment and the associated estimate of the Pickands dependence function. These
maxima, in contrast to the previous one, seem to be independent, and indeed the estimated
Pickands dependence function is close to the upper bound (i.e. the case of independence).

Then, we applied the above hypothesis test to the sample of maxima obtained in the first
and second steps of the simulation experiment, leading to observed values of 3.843 and 0.348,
respectively, for the test statistic. Since the 0.95-quantiles of the distribution of S are 1.300 and
0.960 for d = 3 and d = 2, respectively (see [7]), we conclude that we reject the hypothesis of
tails independence with the first sample of maxima, whereas we do not reject it with the second
sample. These results are consistent with our theoretical findings.

We repeated this simulation experiment M = 1000 times, and with the maxima obtained
with the second step of the simulation experiment we computed the rejection rate of the null
hypothesis. Since we simulated data under the null hypothesis we expect that the rejection rate
is close to the nominal value of a type I error, i.e. 5%. We did this for different dimensions
d and values of the parameter ϑ . The results are collected in Table 1. Again, the simulation
results show that our theoretical findings are correct.

Notice that the rejection rates in Table 1 are sensitive to the level of unconditional copula
dependence and dimension, as expected.
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FIGURE 1: The top-left panel displays the maxima obtain with the data simulated from a trivariate
Gumbel–Hougaard copula with ϑ = 4. The middle-left panel shows the maxima corresponding to two
components. Finally, the lower-left panel shows the maxima obtain with the simulated data where one
component is set to be a high value. The right column reports the relative estimated Pickands dependence

function.
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