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Miscible porous media displacements in
the quarter five-spot configuration. Part 3.

Non-monotonic viscosity profiles
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(Received 13 March 1998 and in revised form 10 December 1998)

The influence of a non-monotonic viscosity–concentration relationship on miscible
displacements in porous media is studied for radial source flows and the quarter five-
spot configuration. Based on linear stability results, a parametric study is presented
that demonstrates the dependence of the dispersion relations on both the Péclet
number and the parameters of the viscosity profile. The stability analysis suggests
that any displacement can become unstable provided only that the Péclet number
is sufficiently high. In contrast to rectilinear flows, for a given end-point viscosity
ratio an increase of the maximum viscosity generally has a destabilizing effect on the
flow. The physical mechanisms behind this behaviour are examined by inspecting the
eigensolutions to the linear stability problem. Nonlinear simulations of quarter five-
spot displacements, which for small times correspond to radial source flows, confirm
the linear stability results. Surprisingly, displacements characterized by the largest
instability growth rates, and consequently by vigorous viscous fingering, lead to the
highest breakthrough recoveries, which can even exceed that of a unit mobility ratio
flow. It can be concluded that, for non-monotonic viscosity profiles, the interaction
of viscous fingers with the base-flow vorticity can result in improved recovery rates.

1. Introduction
Parts 1 and 2 of the present investigation (Chen & Meiburg 1998a, b) focused on

miscible quarter five-spot flows in homogeneous and heterogeneous environments.
The evolution of the displacement process was described in detail as a function of
the mobility ratio R and the Péclet number Pe, along with the variance and spatial
correlation scales of the heterogeneities. Throughout the investigation, a monotonic
viscosity–concentration relationship of exponential type was assumed, which may
not always represent a close approximation of the miscible fluid combinations used
in practical applications. For example, exploratory investigations of enhanced oil
recovery processes have employed slugs of alcohol or alcohol mixtures that separate
the oil from the water, which is used as the driving fluid, see Latil (1980). These
studies demonstrate that it can be advantageous to sandwich a central alcohol slug
between layers of a different alcohol that readily absorbs water, so that the main
slug remains water-free for longer times. Since different kinds of alcohol are generally
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172 C. Pankiewitz and E. Meiburg

miscible with each other, as well as with water and oil, the dependence of the viscosity
of these mixtures on the respective concentrations will affect the overall dynamics of
the displacement process. As the examples provided by Manickam & Homsy (1993)
demonstrate, the relationship between viscosity and concentration of a mixture of
alcohols need not be monotonic, but can display a maximum viscosity at intermediate
concentration values. Other strategies aim to increase oil recovery by thermal means.
In these applications, the non-monotonic dependence of the viscosity of some crude
oils on temperature can lead to mobility non-monotonicities, see Farouq Ali (1970).
Finally, some enhanced oil recovery schemes have the potential to introduce mobility
non-monotonicities by exploiting the dependence of the oil’s mobility on the amount
of dissolved gas. An example is provided by the so-called ‘Water-alternating-gas’
schemes, see Christie, Muggeridge & Barley (1991), Blunt & Christie (1991), as well
as Latil (1980).

Hence, the stability and nonlinear evolution of miscible displacements for non-
monotonic viscosity–concentration relationships poses an interesting and relevant
problem, which has been the focus of several recent theoretical and numerical investi-
gations. Hickernell & Yortsos (1986) show that, in the absence of physical dispersion,
any rectilinear miscible displacement with a locally unfavourable viscosity profile is
unstable. This observation is further confirmed by Chikhliwala, Huang & Yortsos
(1988). Bacri, Salin & Yortsos (1992b), as well as Bacri et al. (1992a) extend these
investigations and account for dispersion. They demonstrate the existence of a long-
wave instability, a most dangerous mode, and a short-wave cutoff. For the step profile
associated with time t = 0, they identify a single stability parameter. As Manickam
& Homsy (1993) point out, this parameter depends only on the end-point derivatives
of the viscosity–concentration relationship, rather than on the end-point viscosities
themselves. This indicates that non-monotonic profiles can be stable at t = 0, even
when the end-point viscosities represent an overall unfavourable profile.

Based on a quasi-steady-state approximation, Manickam & Homsy (1993) also
investigate the stability behaviour at larger times, when diffusion has resulted in a
smooth profile. Overall, a strong influence of the viscosity profile on the dynamics
of the flow is demonstrated, which can best be understood in terms of the associ-
ated vorticity distributions and streamline patterns displayed by the eigenfunctions.
Manickam & Homsy find that displacements characterized by non-monotonic vis-
cosity profiles typically lead to quadrupole structures of the flow field, as opposed to
the dipoles observed for monotonic profiles. The convective effects generated by the
additional vortical structures are seen to be crucial for the overall stability behaviour.
In particular, Manickam & Homsy find that any profile, even if stable initially, will
eventually become unstable at a critical time due to the effects of diffusion. This
critical time can be seen as an overall measure of the stability of the flow. While the
instability growth rates generally increase as the end-point viscosity contrast becomes
more unfavourable, the maximum viscosity and the concentration value associated
with it strongly influence the stability behaviour as well. Specifically, the results
indicate that increasing the maximum viscosity stabilizes displacements with an un-
favourable end-point viscosity constrast, while destabilizing those with a favourable
one. It is not known how these findings translate to the stability of radial source
flows. The stability results for rectilinear flows are confirmed by spectral simulations
of the fully nonlinear problem, see Manickam & Homsy (1994). The authors point
out important differences to the fingering patterns observed for monotonic profiles,
see Tan & Homsy (1988). In particular, for non-monotonic displacements the stable
zone of the viscosity profiles acts as a barrier for the forward growth of fingers, which
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hence, when viewed in a reference frame moving with the front, tend to propagate
backwards. The authors refer to this phenomenon as reverse fingering.

Both rectilinear and radially symmetric displacement processes are characterized by
base flows that, due to their spatial uniformity, allow us to perform a linear stability
analysis. At the same time, these base flows approximate the actual geometries
encountered in many applications only to a limited extent. The quarter five-spot
configuration represents a case in point. As discussed by Chen & Meiburg (1998a),
the early stages of this flow are sufficiently similar to a radial displacement that results
from linear stability theory apply. During the later stages, however, discrepancies
become increasingly noticeable. Potential flow in the quarter five-spot geometry is
already subject to a strongly non-radially symmetric strain field. In the presence of
a monotonic viscosity-concentration relationship, this strain field and the resulting
misalignment of velocity and concentration gradients were seen to immediately result
in an elongated dipole-like vortical flow structure, even in the absence of viscous
fingering (Chen & Meiburg 1998a).

Different viscosity–concentration relationships may result in different vorticity con-
figurations. This is in contrast to radial or rectilinear flows, which, if stable, stay
irrotational. In spite of the fact that, in the strict sense of stability theoretical ter-
minology, this rotational flow field is not a ‘base flow’, we refer to its vorticity as
‘base flow vorticity’. Even with the presence of this additional vorticity, locally the
stability of the front and the emergence of viscous fingers may still be understood
on the basis of stability results for radial or rectilinear displacements, although the
effects of shear across the front will have to be taken into account (Rogerson &
Meiburg 1993a, b). However, the global dynamics of the front, and with it the long
time evolution of individual fingers and the entire displacement, will be strongly af-
fected by this base-flow vorticity. It is important to realize that the base-flow vorticity
is a function of the viscosity profile itself. Hence, when analysing displacements that
are neither rectilinear nor radially symmetric, the nature of the viscosity profile is
expected not just to affect the fingering process directly, but also indirectly through
the base-flow vorticity it establishes. To clarify these interaction mechanisms is the
goal of the present investigation.

In § 2 we will apply linear stability theory to radial source flows for non-monotonic
viscosity profiles. The results will be interpreted in terms of physical mechanisms.
Furthermore, they will aid in validating the direct numerical simulations of quarter
five-spot displacements to be discussed in detail in § 3. Section 4 will summarize the
findings and present some conclusions.

2. Radial source flow: linear stability analysis
The stability analysis closely follows that of Tan & Homsy (1987) for radial source

flows. The dimensionless governing equations expressing the conservation of mass,
momentum (Darcy’s law), and species in cylindrical coordinates read

∂

∂r
(ru) +

∂v

∂θ
= 0, (2.1a)

∂p

∂r
= −µu, (2.1b)

∂p

∂θ
= −µrv, (2.1c)
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∂c

∂t
+ u

∂c

∂r
+
v

r

∂c

∂θ
=

1

Pe

[
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2

∂2c

∂θ2

]
, (2.1d)

µ = µ(c) . (2.1e)

Here the Péclet number

Pe =
Q

D
(2.2)

denotes the relative magnitude of convective and diffusive effects. Both the stability
analysis and the direct numerical simulations to be described below account for
molecular diffusion only and neglect velocity-dependent dispersion. An overview of
the effects of dispersion is provided by Brady & Koch (1988). Yortsos & Zeybek (1988)
and Zimmerman & Homsy (1991) investigate the effects of dispersion on the stability
and nonlinear evolution of rectilinear miscible displacements in porous media flows.
Loggia, Salin & Yortsos (1998) specifically address the influence of dispersion on the
stability of non-monotonic mobility profiles in rectilinear displacements. Petitjeans et
al. (1998) discuss the role of flow-induced dispersion in miscible Hele-Shaw flows, on
the basis of experiments and numerical simulations.

In the absence of velocity-dependent dispersion, a self-similar and time-dependent
axisymmetric base state can be identified. Sinusoidal perturbations of the radial
velocity u′ and concentration c′,

(u′, c′)(r, θ, t) =

(
Φ

r
,Ψ

)
(r, t)einθ , (2.3)

imposed upon this base state give rise to solutions of the resulting stability equations
in terms of a similarity variable η,

(Φ,Ψ )(r, t) = (g, h)(η)f(t) . (2.4)

This yields a pair of coupled ordinary differential equations,

d2g

dη2
+

(
1

η
+

1

µ0

dµ

dc

dc0

dη

)
dg

dη
− n2

η2
g =

n2

η2

1

µ0

dµ

dc
h , (2.5a)

d2h

dη2
+ (1− Pe)

1

η

dh

dη
+ η

dh

dη
−
(
n2

η2
+ σ

)
h = Pe

1

η

dc0

dη
g (2.5b)

with boundary conditions

g, h→ 0 as η → 0 or η →∞ , (2.6)

where the eigenvalue σ,

σ = 2t
1

f

df

dt
, (2.7)

reflects the existence of an algebraically growing instability. Its growth rate σ/2 thus
is determined by Pe, as well as by the properties of the assumed relationship between
viscosity and concentration µ = µ(c). The exact nature of this relationship naturally
will depend on the particular combination of fluids under consideration. Hence,
the present investigation can only attempt to identify some generic features of the
displacement process that appear if this relationship is non-monotonic. In order to
do this, and to allow comparisons with earlier studies of rectilinear displacements,
we employ the same non-monotonic class of viscosity–concentration profiles used by
Manickam & Homsy (1993, 1994), which are well suited to represent, for example,
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the non-monotonic profiles of alcohol mixtures. They have the form of modified sine
functions defined by the expressions

µ(c) = µm sin (γ), γ = γ0(1− β) + γ1β, β =
(1 + a)c

1 + ac
,

γ0 = sin−1
(
α/µm

)
, γ1 = π− sin−1

(
1/µm

)
,

a =
cm − βm
cm(βm − 1)

, βm =
1
2
π− γ0

γ1 − γ0

,

 (2.8)

so that the viscosity-related parameter R(µ) in the stability equations takes the form

R(µ) = −1

µ

dµ

dc
= (γ1 − γ0)

1 + a

(1 + ac)2
cot(γ) . (2.9)

The coefficients are chosen such that the viscosities of the displacing (c = 1) and
displaced (c = 0) fluid become µ(1) = 1 and µ(0) = α, respectively. The viscosity has
a maximum µm > α at c = cm. Note that in the original definition of this profile
given by Manickam & Homsy (1993, 1994), the expression for a lacks the factor cm in
the denominator. Figures 1(a) and 1(b) schematically show the shape of the class of
viscosity profile considered, along with the ensuing spatial variation of viscosity for
both an unfavourable (α > 1) and a favourable (α < 1) end-point viscosity contrast.
Values of cm > 0.5 correspond to a viscosity maximum located closer to the displacing
fluid, which results in a smaller unstable zone in which the viscosity increases in the
direction of the base flow. The opposite holds for cm < 0.5.

2.1. Numerical solution of the stability problem

The stability equations (2.5) have to be solved numerically for the viscosity–concen-
tration relationship (2.9). In order to minimize stiffness problems for large Pe values,
we employ a finite difference approximation to (2.5), thereby obtaining an algebraic
eigenvalue problem that can be solved easily with standard methods. In the process,
an algebraic mapping is applied that enhances the numerical resolution of the small
region around the displacement front. The solution procedure was validated by
comparison with the linear stability results of Tan & Homsy (1987) for monotonic
profiles. Details can be found in Pankiewitz & Meiburg (1998).

2.2. Results

2.2.1. Dispersion relations

Dispersion relations are obtained by determining the largest eigenvalue σ as a
function of the wavenumber n, for given combinations of Pe and viscosity profile
parameters α, µm, and cm. Figure 2 provides representative results for this largest
eigenvalue, for Pe = 400 and 1200, respectively, and for various values of end-point
and maximum viscosities. The location of the viscosity maximum is chosen to be at
cm = 0.5 in all cases. Both the wavenumber and the growth rate are scaled with Pe1/2,
which renders the comparison between results for different Pe-values easier.

As the wavenumber increases from n = 0, there are at first no discrete eigen-
modes. Below this segment of the curve, only a continuous spectrum of solutions
to the stability equations exists. However, this regime usually is very short. At a
certain wavenumber, a discrete mode appears above the continuous spectrum, cf. also
Manickam & Homsy (1993). Depending on the parameters, the eigenvalue of this
mode can become positive and render the flow unstable. We observe a general trend
of higher Pe shifting the dispersion relations to higher wavenumbers and larger
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Figure 1. Schematic of the non-monotonic viscosity profile (left) and the resulting spactial variation
of viscosity for a diffused concentration profile (right) for (a) α > 1 and (b) α < 1, cf. Manickam &
Homsy (1994).

growth rates. Several properties of the dispersion relationships depicted in figure 2
can be interpreted on the basis of results obtained by Yortsos (1987). He showed
that, for large values of Pe, the problem of a radial miscible displacement can be
transformed into an equivalent rectilinear one, for a suitably modified base state.
Consequently, many features of the dispersion relationships for radial flows can be
derived in a straightforward fashion from the more extensively studied rectilinear
case. Yortsos exploited this fact to provide asymptotic results in the limit of small
scaled wavenumbers n1. From these, it follows directly that the maximum eigenvalue
for n1 = 0 is exactly −2, in agreement with figure 2. Furthermore, the slope of σ vs.
n at n = 0 is predicted to be (α− 1)/(α+ 1), and not to depend on Pe or µm. Again,
these features are confirmed by the above figures.

As a general point, our numerical results for a large variety of parameter combina-
tions suggest that for any viscosity profile a critical value Pec can be identified, above
which there exists an unstable mode. This observation is remarkable, as it implies
that even for favourable end-point viscosity contrasts, the unstable zone between the
viscosity maximum and the displacing fluid has the ability to trigger an overall insta-
bility, provided only that Pe is sufficiently large. This indicates that for non-monotonic
radial flows unconditionally stable viscosity profiles do not exist. This finding appears
to have a corresponding counterpart in rectilinear flows, which were investigated
theoretically in the limit of negligible diffusion and dispersion by Hickernell & Yort-
sos (1986). Based on an analysis of the infinite set of eigenvalues, these authors
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Figure 2. Dispersion relations of the largest eigenvalue σ scaled by Pe1/2 versus n1 = n/Pe1/2 for
cm = 0.5 with α and µm as parameters. The solid lines correspond to Pe = 400 whereas the dashed
lines correspond to Pe = 1200.

demonstrate that any rectilinear miscible displacement with a locally unfavourable
viscosity profile is unstable in the absence of diffusion and dispersion. In addition,
the results by Manickam & Homsy (1993) for rectilinear displacements show that,
even in the presence of diffusion, all rectilinear displacements with non-monotonic
viscosity–concentration relationships eventually become unstable for sufficiently long
times, even if they are initially stable. Loggia et al. (1998) extend these results to dis-
placements involving dispersion, and they establish the connection with the classical
case studied by Hickernell & Yortsos (1986). Physically, the existence of a critical
Péclet number results from differences in the way the respective length scales of
the base flow and the most dangerous perturbation depend on Pe. While the radial
extent of the base concentration profile scales with Pe−1/2, the wavelength of the most
dangerous mode exhibits a scaling in the range Pe−(0.7−0.8), see below. This indicates
a diminishing influence of the azimuthal diffusion with increasing Pe-values, so that
the scale of the most dangerous perturbation decreases relative to the size of the
unstable region of the viscosity profile. Hence, above a certain critical value, the
evolution of the perturbation mode will be dominated by this unstable region, and
the perturbation will grow.

All dispersion relations are found to have one mode for which the growth constant
reaches a maximum σm, at a corresponding wavenumber nm or scaled wavenumber
n1,m, respectively. The σ vs. n plots furthermore always show both a long-wave and a
short-wave cutoff. Of particular interest is the short-wave cutoff at wavenumber nc,
as it determines the shortest length scale on which instabilities can develop.
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Figure 3. (a) Wavenumber of the most dangerous mode and (b) short-wave cutoff wavenumber
versus Péclet number with cm as a parameter, α = 5.0, µm = 10.0. The numbers in the boxes show
the slope ∆ log(nmax)/∆ log(Pe) and ∆ log(ncut)/∆ log(Pe).
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2.2.2. Parametric study

In the following, we will summarize the results of systematic parameter variations,
in order to elucidate their influence on the overall stability features of the viscosity
profiles, as quantified by the most dangerous mode along with the short-wave cutoff.

For both globally favourable and unfavourable viscosity contrasts, we find the
growth rates at constant values of cm to increase monotonically with increasing
maximum viscosity µm. For α < 1, this corresponds to the declining critical times
observed for rectilinear displacements at α = 0.2 by Manickam & Homsy (1993). For
α > 1, however, this is in marked contrast to rectilinear displacements with α = 5,
which were stabilized (in terms of the critical time) by larger values of µm. This
observation raises the question as to whether a non-monotonic viscosity profile can
increase the efficiency of the overall displacement process, as it did for rectilinear
flows. This point will be addressed in § 3 by means of detailed nonlinear simulations.

For globally stable viscosity contrasts, the location cm of the viscosity maximum
has a distinct influence on the growth rate, as both large and small values of cm
are seen to reduce σm. While a small value of cm results in a milder unfavourable
gradient of the viscosity profile, large values lead to a progressively narrower unstable
zone. The overall stability properties are determined by a combination of these two
features, so that maximum growth rates are observed for an intermediate value of cm.
For globally unstable viscosity contrasts, on the other hand, there is no maximum of
σm at intermediate cm. The growth constants increase with increasing cm, even though
the unstable zone gets very small, indicating that the stronger unfavourable gradients
in the viscosity profile become the dominant destabilizing factor.

For α < 1, i.e. globally favourable mobility ratios, the most dangerous mode tends
to have a shorter wavelength for higher viscosity maxima, and generally also for
higher cm. The cutoff wavenumber, on the other hand, is lower for both narrow and
wide unstable zones, and it has a maximum in between. The location of this maximum
shifts to higher values for increasing maximum viscosity values. This indicates that, for
the present globally favourable mobility contrast, the preferred mode and the diffusive
short-wave cutoff are influenced differently by the parameters of the viscosity profile,
so that we cannot find a simple relation between nm and nc. This is in contrast to
unfavourable end-point viscosity ratios, for which the cutoff wavenumber is clearly
correlated to nm. We find an algebraic dependence of nc on nm,

nc = nκm, (2.10)

where κ varies slightly with cm and ranges between about 1.18 for cm = 0.05 and
1.20 for cm = 0.95. Interestingly, Tan & Homsy (1987) observe the same behaviour
for radial displacements with monotonic exponential viscosity profiles, with a value
for κ of approximately 1.2. The range of 1.18–1.20 is also fairly close to the value of
1.125 predicted by Yortsos (1987) in the limit of Pe � 1 for the equivalent rectilinear
problem, based on asymptotic expansions that assume n/Pe1/2 to be small.

For large unfavourable viscosity contrasts, we observe a decreasing influence of µm/α
on σm with increasing α. This can be explained by the strongly growing unfavourable
gradient in the viscosity profile at c = 1. Equations (2.8) and (2.9) show that, for α→∞
but µm/α bounded, γ1 → π and thus cot(γ1) → ∞, whereas cot(γ0) remains bounded.
Consequently, R(µ) becomes execessively large in the unstable zone independent of
α/µm, if only α is high enough.

Figures 3(a) and 3(b) demonstrate the scaling of the wavenumber of the most
dangerous mode as well as the cutoff wavenumber with Pe. As already observed by
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Tan & Homsy (1987) for the exponential viscosity profile, the two wavenumbers scale
with different powers of Pe. These powers both increase with cm. Interestingly, the
results for cm = 0.05, nm ∝ Pe0.71 and nc ∝ Pe0.80, agree closely with the values found
by Tan & Homsy. This may be attributed to the fact that for cm = 0.05 the unstable
zone has essentially the same width as for the exponential viscosity–concentration
relationship. The scaling of nm and nc with Pe thus seems to be independent of the
detailed shape of the viscosity profile and only to be a function of the width of the
unstable zone. The exponents given in figure 3 are also fairly close to the values of 2

3

and 3
4

obtained by Yortsos (1987) on the basis on the equivalent rectilinear problem.
This is particularly interesting since his results are based on asymptotic expansions
that assume n/Pe1/2 to be small, whereas the data presented in figure 3 lie outside
this range. This indicates that the scaling results of Yortsos are valid beyond this
asymptotic regime. More detailed quantitative results can be found in Pankiewitz &
Meiburg (1998).

2.2.3. Physical mechanisms

For an analysis of the governing physical mechanisms, detailed information about
the spatial distribution of the concentration and velocity perturbations is required.
Such information can be obtained in a straightforward fashion from the eigensolutions
of the stability problem. For α = 0.2 and µm = 2.0, figures 4(a)–4(c) depict the
concentration eigenfunction of the most dangerous modes for three locations of the
viscosity maximum at cm = 0.05, cm = 0.50 and cm = 0.95, respectively. Also shown
is the location of the mean interface at η = Pe1/2, where the concentration becomes
c = 0.5. The maximum perturbations of the concentration are observed at the mean
interface for cm = 0.05, and they drift towards the side of the displacing fluid for
higher cm. This indicates that in the unstable case, viscous fingers will grow inward
from the mean interface location. Thus we expect reverse fingering to be a feature
of radial displacements with nonomonotonic viscosity profiles, corresponding to the
findings for rectilinear displacements by Manickam & Homsy (1994).

Using the eigenfunction of the radial velocity component, along with the azimuthal
velocity component as determined from the continuity equation, we obtain for the
eigenfunction of the vorticity perturbation

ω′ =

(
1

n

∂2Φ

∂r2
+

1

n

1

r

∂Φ

∂r
− n 1

r2
Φ

)
ieinθ . (2.11)

Figure 5 displays the result for the second of the viscosity profiles discussed above,
cm = 0.50. In addition, a curve is included that shows the spatial variation of the
viscosity, so that the structure of the perturbations can be related to the shape of the
viscosity profile. The observed eigenmode has two concentric rings of vortical regions
of alternate signs. These rings touch each other exactly at the location of the viscosity
maximum. By combining the momentum equations with an alternative expression for
the vorticity perturbation

ω′ =
1

µ0

dµ

dc

(
1

r2

∂c′

∂θ
− v′ ∂c

∂r

)
, (2.12)

it becomes clear that this vortical structure is a consequence of the non-monotonicity
in the viscosity distribution. Consequently, the explanation of the stability mechanism
for rectilinear displacements as suggested by Manickam & Homsy (1993) promises
to be of relevance for the radial flow as well. The inner vortices are expected to
redistribute the viscosity in a way that increases mobility in regions where the velocity
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Figure 4. Eigenfunction of the concentration perturbation for the least stable mode. The viscosity
profile with α = 0.2, µm = 2.0 and at Pe = 400: (a) cm = 0.05 (yields nm = 25, σm = −0.43);
(b) cm = 0.50 (yields nm = 25, σm = 0.15); (c) cm = 0.95 (yields nm = 26, σm = −1.2). Positive
perturbations are plotted with solid lines, negative perturbations with dashed lines. The location of
the mean interface is also shown.

perturbations have the same direction as the base flow, and that decreases mobility
where perturbation and base flow have opposite directions, so that disturbances are
amplified. The outer vortices transport low-viscosity fluid in regions of high viscosity
against the base flow and vice versa, playing a stablilizing role. Manickam & Homsy
then argue that the flow will be unstable if the destabilizing vortices are stronger than
the stabilizing ones, and stable otherwise. However, inspection of figure 5 indicates
that this explanation might not be fully sufficient for the radial case. We find the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

47
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004735


182 C. Pankiewitz and E. Meiburg

7

6

5

4

3

2

1
15 25

Mean interface

l

g

Figure 5. Eigenfunction of the perturbation voriticity for the most unstable mode. The viscosity
profile with α = 0.2, µm = 2.0 and cm = 0.50 at Pe = 400 yields nm = 25 and σm = 0.15. Positive
perturbations are plotted with solid lines, negative perturbations with dashed lines. The spatial
variation of the viscosity and the location of the mean interfave are also shown.

inner ring of vortices to be considerably stronger than the outer one. Nevertheless,
the displacement is almost neutrally stable with σm = 0.15.

In trying to understand the physical mechanisms, we found the perturbation stream-
function ψ′ to be a more meaningful variable to analyse than the vorticity. In cylin-
drical coordinates, it can be obtained from the radial perturbation velocity by using
the definition

u′ =
1

r

∂ψ′

∂θ
, (2.13)

which yields

ψ′ = −1

n
Φieinθ + ψ′0 (2.14)

with an integration constant ψ′0. The perturbation streamfunctions for the three
examples mentioned above are presented in figure 6. It is instructive first to analyse
the case of cm = 0.95, figure 6(a). This displacement is stable with a maximum
eigenvalue σm = −1.2. But we do not find the outer ring of recirculating fluid to
which we attributed the stabilizing effect. This, in turn, means that the inner ring
must have taken the stabilizing role. This somewhat surprising result can be explained
as follows. The vorticity field always has to show two rows of vorticity patches
of opposite signs on opposite sides of the viscosity maximum. The corresponding
perturbation streamlines, on the other hand, may organize into one or two rows of
recirculating fluid. The former is the case in figure 6(a). The recirculating fluid regions
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Figure 6. Eigenfunction of the perturbation streamfunction for the least stable mode. The viscosity
profile with α = 0.2, µm = 2.0 at Pe = 400: (a) cm = 0.95 (yields nm = 26 and σm = −1.2); (b)
cm = 0.5 (yields nm = 25 and σm = 0.15); (c) cm = 0.05 (yields nm = 25 and σm = −0.43). The spatial
variation of the viscosity and the location of the mean interface are also shown.

in the single ring furthermore extend beyond the base-state location of the viscosity
maximum. Thus this flow field structure transports high-viscosity fluid into regions
that originally were occupied by low-viscosity fluid due to the globally favourable
viscosity ratio, and vice versa. This clearly must stabilize the flow.

For cm = 0.50, a weak outer ring of recirculating fluid becomes noticeable in
the perturbation streamfunction, figure 6(b). However, it is not yet strong enough
to stabilize the flow. Only as cm further decreases to 0.05 does the outer ring gain
enough strength to render the displacement stable, figure 6(c). The recirculating fluid
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rings are now located on opposite sides of the viscosity maximum. Only under these
circumstances does the original argument regarding their stabilizing and destabilizing
roles, respectively, apply. If the recirculating fluid regions extend beyond the viscosity
maximum, it is more instructive to analyse the streamfunction contours, as opposed to
the vorticity contours. We conclude that the strength of the recirculation regions, their
location, and their interaction with the gradients in the viscosity profile all influence
the stability of the radial flow. This explains the non-monotonic dependence of the
growth rate on the location of the viscosity maximum observed earlier.

For unfavourable end-point viscosity ratios we found that usually only the inner
recirculating fluid region exists, which at most extends a small distance beyond the
viscosity maximum, thereby stabilizing the displacement. More detailed information
for different values of cm can be found in Pankiewitz & Meiburg (1998).

It remains to explain the increase of the growth rates with µm even for unfavourable
end-point viscosity ratios in radial displacements, which contrasts with earlier findings
for rectilinear flows. In (2.12), the first term in the parentheses generally dominates
over the second one. Hence it is clear that the maximum vorticity decreases with
1/r2 in the radial direction. This will favour the destabilizing inner recirculating fluid
regions over the stabilizing outer ones, a mechanism that is absent in rectilinear flows.

3. Direct numerical simulations of quarter five-spot flows
It was straightforward to adapt the original code (Meiburg & Chen 1998) employed

for monotonic viscosity profiles (Chen & Meiburg 1998a, b) to the present non-
monotonic case. However, the locally very high absolute values of R for our class of
non-monotonic profiles forced us to consider relatively moderate end-point viscosity
contrasts, in order to avoid having to use excessively fine grids and small time steps.
We furthermore enlarged the core size of the Gaussian source term (Meiburg &
Chen 1998) from 0.05 to 0.1. Table 1 gives a summary of the physical and numerical
parameters of our calculations. The focus is on the two Pe-values of 200 and 800, while
α was held at 2.0 for all simulations. The influence of the degree of non-monotonicity
in the viscosity profile on the fingering and the overall efficiency of the displacement
was evaluated by employing two different maximum viscosities for Pe = 800. The
effect of a change in the location of the viscosity maximum was investigated for
both Péclet numbers. As in most of the calculations for the homogeneous monotonic
case (Chen & Meiburg 1998a), the base-state solution at t = 0.02 was taken as the
initial condition. The nonlinear computational code was validated by comparison
with linear stability results. For details, we refer to Pankiewitz & Meiburg (1998).

3.1. Pe = 200

Both of the parameter combinations for Pe = 200 result in a flow that is dominated
by a quadrupole structure in the vorticity distribution. Detailed time traces of the
flow evolution can be found in Pankiewitz & Meiburg (1998). At these low Pe-
values, this flow feature is merely a consequence of the overall flow geometry, and
it does not reflect the growth of similarly structured eigenfunctions associated with
linearly unstable perturbations. Nevertheless, the quadrupole structure contrasts with
the dipole-like features observed for the monotonic case. While the inner vortex pair
accelerates the flow along the diagonal, the outer pair counters this trend and tends to
generate a backflow. For cm = 0.63, this trend is more pronounced than for cm = 0.37,
and it delays the breakthrough considerably.
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Viscosity profile Pe α µm cm σm N δt Sweep efficiency in %

Non-monotonic 200 2.0 4.0 0.37 2.51 257 5.0× 10−5 72.54
Non-monotonic 200 2.0 4.0 0.63 2.63 257 2.0× 10−5 > 72.88
Non-monotonic 800 2.0 3.0 0.37 7.22 513 2.0× 10−5 69.64
Non-monotonic 800 2.0 4.0 0.25 10.0 513 2.0× 10−5 69.55
Non-monotonic 800 2.0 4.0 0.37 10.5 513 2.0× 10−5 73.69
Constant ∞ 1.0 71.78
Exponential 800 2.0 2.24 63.15
Exponential 800 0.5 94.56

Table 1. Parameters, growth rates predicted by linear stabilty theory and breakthrough recovery of
the quarter five-spot simulations. N is the number of grid-points in one direction, δt is the time-step
employed. For comparisons the value for the unit mobility ratio flow is provided, as are those for
exponential viscosity profiles with end-point ratios of 2 and 0.5, respectively.

3.2. Pe = 800

Linear stability analysis predicts positive growth rates for all of the parameter combi-
nations discussed in this section. However, vigorous fingering is not always observed.
For viscous fingers to become prominent, their growth will have to be sufficiently fast
to dominate over the base-flow vorticity, and to reach significant amplitudes before
breakthrough occurs. The simulation for Pe = 800, α = 2.0, µm = 3.0 and cm = 0.37,
shown in figure 7, illustrates these facts. Up until t = 0.35 it evolves similarly to the
lower-Pe cases. At t = 0.40, however, a new vortical structure can be found on the
diagonal, shown in detail in figure 8. There, between the original inner vortices of the
basic flow, we find two small vortices which tend to impede the flow along the diag-
onal. This is reflected by a small bump in the concentration contours, at the inside of
the front and pointing towards the source (figure 7). The appearance of this vortical
structure indicates the onset of viscous fingering. However, as breakthrough happens
shortly thereafter, the emerging fingers do not have time to reach large amplitudes.

The two cases of Pe = 800, α = 2.0, µm = 4.0, and cm = 0.25 and 0.37, respectively,
represent situations in which fingers grow to significant amplitudes, see figures 9 and
10. The concentration field develops a slight waviness around t = 0.20, which is trig-
gered by the evolution of vortex pairs. These structures grow in time, especially near
the diagonal. However, while the outer concentration contours are only marginally
affected, large distortions emerge on the side of the displacing fluid. This is a manifes-
tation of reverse fingering, which was anticipated on the basis of our linear stability
results, and which is known to dominate rectilinear displacements for non-monotonic
viscosity profiles (Manickam & Homsy 1994). Linear stability theory had further-
more shown that the development of fingers is related to the existence of two rings of
vortices of opposite sign, one ring on each side of the viscosity maximum. The repre-
sentative detail of the vorticity field shown by figure 11 confirms this structure, which
resides on top of the quadrupole structure of the base-flow vorticity. When the vortical
regions associated with fingering are of the opposite sign to the outer base-flow vortex,
they become clearly visible. We have marked two of these vortices A and B. Otherwise
they merge with the base-flow vortex and extend it inward, marked C. Nevertheless,
for the present parameter combination the outer vortices of the quadrupole structure
are fairly weak, as was to be expected from linear stability theory.

In the above flows, the spatial phase of the evolving vorticity and streamfunction
perturbations plays a crucial role. It takes a value that causes the perturbations to
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Figure 7. Contours of concentration (a), vorticity (b, negative values dashed), and perturbation
streamfunction (c) for Pe = 800, α = 2.0, µm = 3.0, cm = 0.37 at t = 0.40. All plots are scaled with
the instantaneous maxima.

induce a backflow along the diagonal, thereby stabilizing the flow. It is important to
realize that during the early stages of the flow, this phase is naturally determined by
the differences between the quarter five-spot base flow and the purely radial base flow.
If the base flow were strictly radial, the spatial phase could take arbitrary values.

3.2.1. Breakthrough recovery

Breakthrough recovery results, which were computed as described by Chen &
Meiburg (1998a), are summarized in table 1 for the simulations discussed above. For
the case of Pe = 200 and cm = 0.67 only a lower estimate is provided, as the simulation
became unstable shortly before breakthrough. The recovery values obtained for the
present non-monotonic viscosity profiles should be compared with the non-diffusive
potential unit mobility ratio flow considered by Morel-Seytoux (1965, 1966), as well
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Figure 8. Vorticity (detail) for Pe = 800, α = 2.0, µm = 3.0 and cm = 0.37 at t = 0.40. In order
to emphasize the extent of the vortices, the plot is scaled with a value much lower than the
instantaneous maximum. Dark indicate negative values, light areas positive values.

as with the results for exponential viscosity profiles for end-point viscosity contrasts
of 2 and 0.5, respectively (C.-Y. Chen 1997, personal communication). The monotonic
cases do not exhibit any fingering, whereas the non-monotonic cases at identical
Pe-values do. This agrees with our earlier linear stability results, which showed
non-monotonic viscosity profiles generally to have higher growth rates than their
exponential counterparts with the same end-point viscosity ratio. Table 1 provides
these growth rates predicted by linear theory.

Surprisingly, the tabulated results show that, even though the non-monotonic
viscosity cases are characterized by higher instability growth rates, they nevertheless
lead to significantly higher breakthrough recoveries than an exponential profile with
an identical end-point viscosity ratio. In fact, the profile showing the most vigorous
fingering also gives the highest recovery among the non-monotonic cases, which is even
larger than that of the potential flow. As a further comparison, a non-monotonic case
was simulated whose endpoint viscosities were identical to the maximum and displaced
fluid viscosities, respectively, of the non-monotonic case with the highest recovery.
This monotonic case showed an even better recovery. Viscous fingering generally has
been viewed as the cause of early breakthrough, and consequently of reduced recovery.
The above findings require us to re-evaluate the causal relationship between fingering
and early breakthrough for non-monotonic viscosity–concentration relationships. For
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Figure 9. For caption see facing page.
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Figure 9. Time trace of the contours of concentration (a), vorticity (b, negative values dashed), and
perturbation streamfunction (c) for Pe = 800, α = 2.0, µm = 4.0, cm = 0.25. All plots are scaled with
the instantaneous maxima. Breakthrough occurred at time tb.
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Figure 10. Time trace of the contours of concentration (a), vorticity (b, negative values dashed),
and perturbation streamfunction (c) for Pe = 800, α = 2.0, µm = 4.0, cm = 0.37. All plots are scaled
with the instantaneous maxima. Breakthrough occurred at time tb.
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Figure 11. Vorticity (detail) for Pe = 800, α = 2.0, µm = 4.0 and cm = 0.37 at t = 0.30. Dark areas
indicate negative values, light areas indicate positive values. The details A–C are mentioned in the
text.

these flows we find that fingering does not lead to early breakthrough, but rather
the spatio-temporal development of the base flow becomes much more dominant.
The concentration contours in figures 9 and 10 demonstrate the importance of the
reverse fingering mechanism. Shortly before and even at breakthrough, we find the
front to be smooth and almost without waves on the side of the displaced fluid. The
fingering more or less completely takes place inside the displacing fluid. Breakthrough
thus cannot be attributed to an outrunning finger, but rather to the base flow of the
concentration front along the diagonal. Consequently, the quadrupole structure of
the base flow generated by the non-monotonicity, i.e. the above-mentioned base-
flow vorticity, can act to delay the breakthrough. This behaviour is most clearly
visible in the displacement for Pe = 800, α = 2.0, µm = 4.0 and cm = 0.37, which
resulted in the highest efficiency. Figure 12 shows the perturbation streamfunction,
the concentration field, and the vorticity field near the sink at t = 0.45, which is
shortly before breakthrough. The concentration plot shows three viscous fingers of
high-viscosity fluid penetrating into the displacing fluid, one along the diagonal and
one on each side of it. The central finger already is nearly cut off from supply of
high-viscosity fluid, and has begun to fade. The low-viscosity fluid is bypassing this
finger on both sides. However, its breakthrough is delayed by two outer vortices,
which have their origin in the base-flow quadrupole and still at this late time create
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a counterflow along the diagonal. Simultaneously, they transport high-viscosity fluid
from the sides to the sink. A comparison of the concentration contours in the time
trace of figure 10 at t = 0.40 and at breakthrough demonstrates this behaviour.

To summarize our observations, we find that the outer pair of recirculating fluid
regions, which originates in the base-flow quadrupole, represents the main influence
on the breakthrough time, as it has the ability to impede the flow along the diagonal.
The stronger these regions, and the longer they exist, the higher the displacement
efficiency. The time over which these regions remain active strongly depends on the
parameters of the non-monotonic viscosity profile. While there does not seem to be
a straightforward way to predict recovery rates based on the growth rates obtained
from linear stability theory, a few general observations can nevertheless been made.
A lower viscosity maximum tends to weaken the recirculating fluid regions, as can be
seen in figure 7, where for the reduced µm = 3.0 the outer ones never become visible in
the perturbation streamfunction plot. The sweep efficiency therefore is considerably
lower than for the case of µ = 4.0. The location of the viscosity maximum plays an
interesting role as well. As pointed out in § 3.1, the larger zone of locally decreasing
viscosity related to a higher cm strengthens the outer recirculating fluid regions at
later times, which defers breakthrough. This effect becomes more prominent when
viscous fingering is present. At Pe = 800 and for µm = 4.0, the two displacements
with cm = 0.25 and cm = 0.37 result in efficiencies that differ by more than 4%. The
perturbation streamfunction plots for these cases at t = 0.40 in figures 9(c) and 10(c)
show that the deflection of low-viscosity fluid from the diagonal is much weaker for
the lower cm, as the counter-rotating fluid regions cannot act as effectively.

4. Summary and conclusions
The present investigation concerns the linear stability of miscible radial source

flows, as well as the related nonlinear evolution of quarter five-spot displacements,
in the presence of non-monotonic viscosity profiles. The viscosity–concentration re-
lationships, first proposed by Manickam & Homsy (1993, 1994) are characterized by
the three parameters of end-point viscosity contrast, maximum viscosity, and location
of this maximum. The linear stability analysis demonstrates the existence of a critical
value Pec for any combination of these parameters, above which the flow is unstable.
Each of the three parameters has a significant influence on the growth rate, the
wavenumber of the most dangerous mode, and the short-wave cutoff wavenumber.
It is found that, for a given end-point viscosity contrast, an increase in the maximum
viscosity generally leads to a more unstable flow, regardless of whether the overall
viscosity ratio is favourable or not. This is in marked contrast to rectilinear displace-
ments (Manickam & Homsy 1993), in which a higher maximum viscosity generally
stabilizes flows with an unfavourable end-point viscosity ratio. The stability results
are interpreted in detail, based on the eigensolutions of the linear problem. While
the vorticity field always shows a quadrupole structure, the perturbation streamlines
can organize in either one or two rings of counterrotating vortices. Depending on
their strength, their location, and their interaction with the gradients in the viscosity
profile, they can play either a destabilizing or a stabilizing role.

Quarter five-spot flows approximate radial source flows for small times, and very
close agreement is observed between the growth rates predicted by linear theory
for the latter, and those found in direct numerical simulations of the former. As
for rectilinear flows, we observe reverse fingering to be the main feature of non-
monotonic displacements. However, the base flow generated by the specific geometry
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Figure 12. (a) Overlay of perturbation streamfunction and concentration (detail). Light areas
correspond to high concencration of the displacing fluid. (b) Corresponding vorticity field, scaled
with the maxima at t = 0.10. The plots show the displacement with Pe = 800, α = 2.0, µm = 4.0
and cm = 0.37 at t = 0.45.
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of the quarter five-spot arrangement turns out to play a crucial role as well. It is
characterized by a quadrupole structure which enhances the flow along the diagonal
on the side of the displacing fluid, while impeding it on the side of the displaced
fluid. The interaction of reverse fingering and quadrupole-like base flow results in the
remarkable consequence that viscosity profiles characterized by a strong instability
and vigorous fingering at the same time may provide high breakthrough recoveries
that can even exceed the efficiency of the unit mobility ratio flow. These findings
suggest that the optimization of a displacement process should not focus exclusively
on minimizing or eliminating the fingering instability, but rather on stimulating an
optimal coupling between base flow and reverse fingering.
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