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Turbulence amplification and the large-scale coherent structures in shock wave/turbulent
boundary layer interaction flows have been studied at length in previous research, while
the direct association between these two flow features is still lacking. In the present
study, the transport equation of turbulent kinetic energy spectra is derived and utilized
to analyse the scale-by-scale energy budget across the interaction zone, enabling us to
reveal the association between the genesis of the large-scale motions and the turbulence
amplification. For the presently considered flow with incipient shock-induced separation,
we identified in turbulent kinetic energy spectra distribution that the most energetic
motions are converted from the near-wall small-scale motions to large-scale motions
consisting of velocity streaks and cross-stream circulations as they go through the
interaction zone. The amplification of streamwise velocity fluctuation is triggered first,
resulting in the emergence of large-scale velocity streaks, which is attributed to the
adverse pressure gradient, as indicated by the spectra of the production term. The energy
carried by large-scale velocity streaks is transferred to other velocity components by the
pressure-strain term, producing large-scale cross-stream circulations. When large-scale
motions are convected downstream, their energy is transferred via turbulent cascade to
smaller scales and dissipated by viscosity. The spanwise uniform fluctuations, reminiscent
of the unsteadiness of the separation bubble, are contributed primarily by the inter-scale
energy transfer from the finite spanwise scale motions.
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1. Introduction

Shock wave/turbulent boundary layer interaction (SBLI) has been investigated extensively
since the last century due to its significant importance in aerospace industries (Délery,
Marvin & Reshotko 1986; Dolling 2001; Babinsky & Harvey 2011; Ligrani et al.
2020; Liu et al. 2022). When a supersonic turbulent boundary layer flow encounters a
shock wave, the strong adverse pressure gradient induces abundant flow features, such
as low-frequency unsteadiness (Clemens & Narayanaswamy 2014), acoustic radiations
(Bernardini, Pirozzoli & Grasso 2011), local flow separation (Babinsky & Harvey 2011)
and vortex shedding (Andreopoulos, Agui & Briassulis 2000; Tong et al. 2017; Fang et al.
2020). Despite this active research field going on for decades, there remain many open
questions. For the oblique SBLI, supersonic flows over a compression corner and the
impinging oblique shock wave on the turbulent boundary layers are two widely studied
flow configurations. It has been proved that they share similar above-mentioned features
within the interaction zone (Babinsky & Harvey 2011), with the latter free from the effects
of the concave wall.

1.1. Turbulence amplification and coherent structures
One of the interesting phenomena in SBLI flows is ‘turbulence amplification’. Early
experimental studies (e.g. Smits & Muck 1987; Zheltovodov, Lebiga & Yakovlev 1989)
showed that in supersonic flows over compression corners, where an oblique shock
emerges due to the mean flow compression, the Reynolds stress is amplified. As the
turning angle of the corner increases, the stronger compression leads to the increment
of the pressure gradient, further resulting in higher amplification rates. Rose & Childs
(1974) pointed out that the turbulence amplification is similar to the incompressible
turbulent boundary layer flows under adverse pressure gradients. However, due to the
compressibility effects, the turbulence amplification was believed to be caused by more
than the adverse pressure gradient. Smits & Muck (1987) postulated that multiple plausible
flow features might be responsible, such as the low-frequency shock motions, the direct
shock wave/turbulence interaction (Zheltovodov et al. 1989), the generation of acoustic
and entropy waves (Anyiwo & Bushnell 1982), the shear layer induced by the flow
separation (Rose & Childs 1974; Selig et al. 1989), and the curvation of the streamlines
(Andreopoulos et al. 2000). The direct numerical simulations (DNS) by Wu & Martin
(2007, 2008) confirmed that the turbulence amplification can be attributed to the nonlinear
coupling of vorticity, entropy, and the ‘pumping’ of turbulent fluctuations from the mean
flow.

Owing to the advancement of experimental technologies and the enrichment of
computational resources, some of the less important factors have been excluded (Fang
et al. 2020). The shear layer related to the SBLI (referred to as the ‘mixing layer’ by some
studies), is attributed primarily to the turbulence amplification. Dupont and coworkers
have conducted a series of experiments on supersonic turbulent boundary layers impinged
by an oblique shock wave (OSBLI) (Dupont et al. 2005, 2008; Dupont, Haddad & Debieve
2006). It was identified that the large-scale structures are formed near the end of the
interaction zone where the shear layer reattaches, and are convected further downstream.
The shear layer within the interaction zone shares commonalities with the compressible
free shear layer, such as the spatial growth rate, entrainment velocity and turbulent
shear stress, and their variation with the Mach number (Dupont, Piponniau & Dussauge
2019). Pirozzoli & Grasso (2006) and Pirozzoli & Bernardini (2011a) investigated the
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OSBLI flows by DNS at the free-stream Mach number 2.3 and shock angle 33.2◦, where
the flow separation within the interaction zone is mild. The turbulence amplification
is reckoned to be related to the shear layer, which thickens downstream due to the
turbulent diffusion. The peaks of the Reynolds normal and shear stresses are located
away from the wall in the outer region. The turbulence in the inner region returns to
the equilibrium state quickly downstream, while the recovery to the equilibrium state
in the outer region is not achieved even at the end of the computational domain. The
vortex shedding adjacent to the separation zone induces the large-scale low-frequency
unsteadiness downstream of the interaction zone. Dupont et al. (2008) and Helm, Martin
& Dupont (2014) further confirmed this conclusion and stated that the existence of reverse
flow and inflexional velocity profiles causes the Kelvin–Helmholtz instability, further
leading to the development of large convective eddies. Pirozzoli, Bernardini & Grasso
(2010) studied the transonic SBLI flows, where the shock wave is close to normal. Similar
to OSBLI flows, when passing the impinging shock, the turbulence is amplified, the
shear layer is developed and the shedding vortical structures are observed. In contrast
to the OSBLI flows, they found that the streamwise velocity fluctuations are less affected
compared with the cross-stream velocity fluctuations.

The exact mechanisms of the turbulence amplification are hard to trace from the chaotic
turbulent fields. In this regard, the analysis of the turbulent kinetic energy (TKE) transport
equation has shed some interesting light on this complicated phenomenon. Li et al. (2010)
showed that in the supersonic turbulent flow over a compression ramp, the TKE production
term increases rapidly within the separation zone, while the dissipation is significant
only close to the wall. The energy transport is balanced by the mean flow convection
and turbulent diffusion. Pirozzoli & Bernardini (2011a) provided similar descriptions
for OSBLI flows. The maximum of the production term aligns with the mid-line of
the shear layer within the interaction zone, due to the lift-up of vortical structures.
Jammalamadaka, Li & Jaberi (2014) analysed the TKE and enstrophy transport equations
along the sonic line. They proposed that the TKE amplification is caused by the increment
of the TKE production and that the enstrophy amplification by the vortex stretching.
The terms related to the compressibility effects, on the other hand, are negligible. Tong
et al. (2017) conducted DNS for compression ramp flows at different turning angles, and
found that the TKE transport in SBLI flows differs slightly from canonical wall-bounded
turbulence in the small turning angle cases, while it is altered significantly by the shear
layer above the separation bubble in the large turning angle cases. They also observed
the destruction of low-speed streaks in the near-wall region and the emergence of the
large-scale eddies adjacent to the shear layer. Humble, Scarano & Van Oudheusden
(2007) and Fang et al. (2020) decomposed the TKE production term into the effects of
mean flow deceleration and shear, based on which a novel mechanism for turbulence
amplification was proposed. They attributed the turbulence amplification to the mean
flow deceleration in the early stage, and the shear layer when it is well-developed. For
the currently considered SBLI flows, the flows within the interaction zone are generally
in non-equilibrium states (Pirozzoli et al. 2010; Zuo et al. 2019), hence the TKE budget
would be effective in revealing the mechanism of turbulent amplification.

In another aspect, the physical counterparts of turbulence amplification are usually
visible in the instantaneous fields. For flows over compression ramps, the Görtler vortices,
the congenital secondary flows in turbulence over concave walls due to centrifugal
instability (Saric 1994), are partially responsible for the amplification of turbulence
(Loginov, Adams & Zheltovdov 2006). Priebe, Wu & Martin (2009) reported that the
amplification rates in OSBLI flows are lower than those in the compression corner
flows, which was attributed to the lack of the obvious streamline deflection. However, in

951 A2-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.826


M. Yu, M.X. Zhao, Z.G. Tang, X.X. Yuan and C.X. Xu

some recent numerical (Pasquariello, Hickel & Adams 2017) and experimental (Humble,
Scarano & Van Oudheusden 2009; Zhuang et al. 2018) studies, it was argued that the
large-scale quasi-streamwise vortices bear certain similarities to the Görtler vortices,
which are referred to as the ‘Görtler-like vortices’. Pasquariello et al. (2017) suggested the
centrifugal instability induced by the streamline curvation to be a plausible mechanism for
their generation. Zhuang et al. (2018) confirmed this idea by experiments. They further
ascribed the neglect of the Görtler-like vortices in previous experiments to the long time
period of oil-flow experiments such that those Görtler-like vortices are averaged out in the
spanwise direction. Fang et al. (2020) observed that the near-wall low-speed streaks of the
incoming turbulence are twisted within the interaction zone and regenerated downstream,
less organized. Large-scale velocity streaks start to evidence near the shear layer in the
outer region, and gradually decay downstream. Similar phenomena were also observed
in transonic SBLI flows (Pirozzoli et al. 2010), where the near-wall low-speed streaks
are suppressed near the interaction zone and regenerated downstream at approximately
five interaction length scales. Among the few research works that provided the spanwise
spectra, a recent experimental study by Baidya et al. (2020) found that the two energetic
motions are prominent at large spanwise scales, which persist for a long streamwise
extent.

As summarized previously, it is recognized that the turbulence amplification is caused
by the mean flow deceleration and the shear layer, that the peaks of velocity fluctuation
intensity are located with the shear layer downstream, and that the emergence of the
large-scale structures is more or less related to the turbulence amplification. However, the
association between turbulence amplification and the emergence of large-scale motions
remains unclear. To unveil the direct link between these two phenomena, we propose to
analyse the scale-by-scale TKE transport utilizing the TKE spectra transport equation.
This will enable us to separate some of the flow features at certain length scales and
investigate them individually, which will probably benefit our comprehension of this
matter.

1.2. Spectral analysis of TKE transport in wall-bounded turbulence
The TKE spectra transport equation can be obtained by performing Fourier transforms
on the transport equation of two-point correlation in the statistically homogeneous
directions. Both of these equations have been applied to investigate the energy cascade in
incompressible wall-bounded turbulence since the last century (Lumley 1964; Domaradzki
et al. 1994). In recent years, this topic has been brought up again to reveal the inter-scale
energy transfer in high-Reynolds-number channel flows. Lee & Moser (2015) analysed the
TKE transport with the streamwise and spanwise spectra. The turbulent transport term is
decomposed into turbulent diffusion in the wall-normal direction, and inter-scale energy
transfer, whose integration is zero in spectral space. Inverse energy transfer from small-
to large-scale motions in the buffer layer is observed in the spanwise TKE spectra. By
integrating the turbulent diffusion term, Mizuno (2016) found that the upward turbulent
transport provides energy to small-scale motions, while the large-scale downward energy
fluxes bring energy to the near-wall region. Considering the statistical homogeneity
in the streamwise and spanwise directions, Lee & Moser (2019) further analysed the
spectra of TKE transport under the polar coordinate for the turbulent channel flow at
Reτ = 5200. They found that the energy is transferred from the dominant streamwise
very-large-scale motions to other velocity components via nonlinear interactions, and
dissipated isotropically at small scales. Cho, Hwang & Choi (2018) performed triadic
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wave interaction analysis to investigate the nonlinear interaction. Two new types of highly
active inter-scale energy transfer processes in the near-wall region are found: from large
to small scale by the interaction of large-scale and the adjacent small-scale motions,
and from small to large scale by the downward energy transfer. Hamba (2019) further
related the inverse energy cascade to the tilting of the streamwise vortices via conditional
average.

On a more related subject, Auléry et al. (2015, 2017) derived the TKE spectra transport
equation for flows with mean temperature variation, which can be regarded as the
weakly compressible turbulence with negligible viscous dissipation. To incorporate the
mean property variations caused by the mean temperature gradient in the definition of
TKE spectra, the governing equation of the density-weighted velocity vi = √

ρ ui was
derived, based on which the TKE spectra transport equation of vi was obtained. The
turbulent, pressure and viscous transport terms were split into the in-plane and inter-plane
terms, consisting of only the derivatives in the wall-parallel and wall-normal directions,
respectively. For the channel flow between a hot wall and a cold wall, in which the
mean temperature gradient is significant, the total energy is transferred from the hot side
to the cold side in the wall-normal direction, and the wall-parallel inter-scale energy
transfer qualitatively resembles that in the canonical channel flows (Auléry et al. 2017).
Dupuy, Toutant & Bataille (2018a,b) derived the TKE spectra transport equation relying
on the insignificance of the density fluctuations in Morkovin’s hypothesis. Therefore,
the obtained equation is similar to that of the incompressible flows. However, in the
presently considered flow, the density fluctuation may contribute largely to the kinetic
energy near the shock wave. It is therefore inappropriate to adopt this method as well. Arun
et al. (2021) derived the scale-space energy density transport equation for compressible
inhomogeneous turbulent flows. They showed their work in detail on how to define the
two-point correlation and energy density, and how to derive their transport equations.
They further analysed the energy transfer in scale space for compressible mixing layer
flows, and identified the scaling of the energy density function related to the self-similar
evolution.

1.3. Outline of the present study
The primary goal of this paper is to explore the association between the turbulence
amplification and the genesis of large-scale structures within the interaction zone in
OSBLI flows. Considering the spanwise periodicity and homogeneity, we derive the TKE
spectra transport equation from the spanwise two-point correlation transport equation.
The scrutinization of the budget of the TKE spectra transport provides a scale-by-scale
depiction of the energy production and transfer, which will benefit our understanding of
the related physical processes.

The remainder of this paper is arranged as follows. The physical model, numerical
implements and validations are introduced in § 2. The transport equations of two-point
correlation and TKE spectra are derived in § 3 as the mathematical tools for analyses. The
coherent structures in the instantaneous fields and the TKE amplification are discussed
briefly in § 4 to compare with the conclusions in previous studies. The TKE spectra
distribution is presented in § 5 to relate the emergence of large-scale motions and
turbulence amplification. The energy transfer process for finite spanwise scale motions
and the spanwise uniform motions are revealed in §§ 6 and 7, respectively. Concluding
remarks are given in § 8.
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Figure 1. Sketch of physical model and computational domain.

2. Numerical settings and validation

2.1. Physical model and numerical settings
The sketch of the physical model and computational domain is depicted in figure 1.
We simulate the fully-developed supersonic turbulent boundary layer impinged by an
oblique shock wave. The mean velocity profile of the incoming turbulence is described
according to Musker (1979), and the velocity fluctuations are generated by the synthetic
digital filtering approach (Klein, Sadiki & Janicka 2003). The mean temperature and
temperature fluctuations are given according to the generalized Reynolds analogy (Zhang
et al. 2014). The oblique shock is generated at the top boundary by imposing the inviscid
Rankine–Hugoniot jump condition to simulate the effect of a wedge shock generator with
deflection angle 8◦. The generated shock angle is 33.2◦, and the impingement point is
ximp = 30δin (where δin is the nominal boundary layer thickness at the inlet). The upper
and outflow boundaries are enforced by non-reflecting conditions (Pirozzoli & Colonius
2013). At the lower wall, no-slip and no-penetration conditions are applied for velocity,
and the isothermal condition is applied for temperature, with the wall temperature set
as the recovery temperature Tw = 1.92T∞ to achieve a quasi-adiabatic thermal boundary
condition. Periodic conditions are applied in the spanwise direction.

We solve directly the three-dimensional Navier–Stokes equations for compressible
Newtonian gas with the finite difference method. The DNS are performed with the
open-source ‘STREAmS’ solver developed by Bernardini et al. (2021), which has been
validated widely for solving compressible channel, boundary layer, and especially OSBLI
flows (e.g. Bernardini et al. 2016; Volpiani, Bernardini & Larsson 2020). The convective
terms are approximated by the sixth-order kinetic-energy-preserving scheme (Pirozzoli
2010), and switched to the fifth-order WENO scheme (Jiang & Shu 1996) near strong flow
compression, which is identified by the criterion of Ducros et al. (1999). The viscous terms
are cast as Laplacian forms and approximated by the sixth-order central difference scheme.
Time advancement is achieved by Wray’s three-stage third-order scheme (Wray 1990).

The free-stream Mach number of the inflow is set as M∞ = 2.28, and the Reynolds
number is set as Rein = ρ∞U∞δin/μ∞ = 12 000, with ρ∞, U∞ and μ∞ denoting
the free-stream density, velocity and dynamic viscosity coefficients, and δin the
nominal thickness of the incoming boundary layer. The sizes of the computational
domain in the streamwise (x), wall-normal (y) and spanwise (z) directions are
(Lx, Ly, Lz) = (60δin, 12δin, 6.5δin), respectively. The computational domain is discretized
by (2000, 320, 240) grids in the three directions. The grids are uniformly distributed in
the x and z directions, with the mesh intervals under the viscous scales (defined below)
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M∞ Cf 0 δ∗
0/δ0 θ0/δ0 Reθ0 Reδ2,0 Reτ0 H0 Hi0

2.28 3.104 × 10−3 0.334 0.0902 982 567 201 3.70 1.54

Table 1. Statistical properties at the reference plane x = 15.0δin. Here, Cf = 2τw/(ρ∞U2∞),
Reθ0 = ρ∞U∞θ0/μ∞, Reδ2,0 = ρ∞U∞θ0/μw, H0 = δ∗

0/θ0 and Hi0 = δ∗
i0/θi0.

being �x+ ≈ 5.4 and �z+ ≈ 4.9. In the wall-normal direction, the grids are stretched
by a hyperbolic-sine function within y = 2.5δin, with the first off-wall grid located at
�y+

w ≈ 0.7, and uniformly distributed above it, with grid interval �y+ ≈ 7.0. According
to the DNS performed by Volpiani, Bernardini & Larsson (2018) under roughly the same
flow parameters and numerical conditions, the grid intervals in the present study are fine
enough to obtain accurate results.

The statistics are averaged in the spanwise direction with 900 instantaneous flow fields
over the period 600δin/U∞. To further obtain smoother statistics, the average in the
streamwise direction is also adopted across 11 grids, within which the streamwise variation
of the mean flow is insignificant, even inside the interaction zone. The ensemble average
of a generic variable ϕ is denoted as ϕ̄, and the corresponding fluctuation by ϕ′, the
density-weighted average (or Favre average) by ϕ̃, and the corresponding fluctuation ϕ′′.

2.2. Basic flow statistics and validation
We take the streamwise location at x = 15.0δin as the reference plane (denoted by x0),
where the turbulence is free from the impact of the impinging shock wave. The statistical
properties at x0 (hereinafter denoted by the subscript 0) are listed in table 1. The friction
Reynolds number Reτ is defined as

Reτ = ρwuτ δ0

μw
, (2.1)

with

uτ =
√

τw

ρw
, τw = μw

∂ ū
∂y

∣∣∣∣
w

, (2.2a,b)

where ρw and μw denote the mean density and dynamic viscosity on the wall, and τw
denotes the mean wall shear stress. The displacement and momentum thicknesses, denoted
as δ∗ and θ , are defined as

δ∗ =
∫ δ

0

(
1 − ρ̄ū

ρ∞U∞

)
dy, θ =

∫ δ

0

ρ̄ū
ρ∞U∞

(
1 − ū

U∞

)
dy. (2.3a,b)

The incompressible boundary layer thicknesses, denoted by δ∗
i and θi, along with the

incompressible shape factor Hi, are defined accordingly by setting the mean density ratio
as unity.

The van-Driest-transformed mean velocity and Reynolds stress under viscous scales in
(2.2a,b) are defined as

u+
VD =

∫ ū+

0

√
ρ̄

ρw
dū+, R∗

ij =
ρu′′

i u′′
j

τw
, (2.4a,b)

where the superscript + represents the normalization by uτ as incompressible flows. The
distributions at x0 are displayed in figure 2 against the wall-normal coordinate under
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Figure 2. Wall-normal distributions of (a) van-Driest-transformed mean velocity and (b) Reynolds stress.
Lines indicate results at x0 = 15δin; symbols indicate reference data in Pirozzoli & Bernardini (2011b) at
M0 = 2.0, Reτ ≈ 200.

viscous scale y+ = y Reτ /δ0, and compared with those of supersonic turbulent boundary
layers at M∞ = 2.0 and Reτ ≈ 200 reported by Pirozzoli & Bernardini (2011b). The
wall-normal distributions of both the mean velocity and Reynolds stress in the present
study agree reasonably well with the reference, indicating the validity of the current
results. It also suggests that the turbulence at the reference station x0 is fully developed.

We further report the skin friction coefficient Cf and mean wall pressure p̄w distribution
along the streamwise (x) direction, with the former defined as

Cf = 2τw

ρ∞U2∞
. (2.5)

The subsequent results will be reported under the scaled interaction coordinate, i.e. x∗ =
(x − ximp)/δ0 and y∗ = y/δ0, as usually adopted in SBLI flow analysis. The streamwise
distribution of Cf is presented in figure 3(a). It can be identified that the streamwise
locations of the flow separation and reattachment points are x∗

s ≈ −2.60 and x∗
r ≈ −0.73,

where Cf = 0. The extrapolated origin of the reflected shock in the mean velocity field
is located at x∗

i ≈ −3.27. Therefore, the lengths of the interaction and separation zones
are L∗

int = x∗
i ≈ 3.27 and L∗

sep = x∗
r − x∗

s ≈ 1.87, respectively. These values are consistent
with the results reported in Volpiani et al. (2018, figure 12). The mean wall pressure p̄w
distribution is presented in figure 3(b), along with the DNS results reported by Pirozzoli
& Bernardini (2011a) and the inviscid theory. The presently obtained result generally
collapses with the reference data. The wall pressure increases rapidly at the start of the
interaction zone and gradually reaches the theoretical inviscid solution. The preceding
results confirmed the accuracy of the present DNS statistics.

3. Derivation of TKE spectra transport equation

In this section, we first derive the transport equation of spanwise two-point correlation.
The equation for TKE spectra transport is further obtained via Fourier transform.

3.1. Two-point correlation transport equation
We first derive the transport equation of spanwise two-point correlation, considering the
statistical homogeneity and periodicity in that direction. According to Arun et al. (2021),
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Figure 3. Wall statistics: (a) skin friction Cf , (b) mean pressure p̄w. Red symbols indicate reference data from
Pirozzoli & Bernardini (2011a); blue dashed lines indicate the inviscid solution; xi, xs and xr are the locations
of the extrapolated origin of the reflected shock, the separation and the reattachment point, respectively.

the fluctuation of momentum equation can be cast as

∂ρu′′
i

∂t
+ ∂ρu′′

i (ũk + u′′
k )

∂xk
+ ρu′′

k
∂ ũi

∂xk

= −∂p′

∂xi
+ ∂τ ′

ik
∂xk

+
(

1 − ρ

ρ̄

)(
− ∂ p̄

∂xi
+ ∂τ̄ik

∂xk

)
+ ρ

ρ̄

∂ρ̄Rik

∂xk
. (3.1)

Note that this equation is obtained by combining the fluctuation of momentum equation
in non-conservative form and the continuity equation. The spanwise two-point correlation
tensor between velocity components u′′

i at x = (x, y, z) and u′′
j at (x + r) = (x, y, z + rz)

is defined as (Arun et al. 2021)

Qij(x, r) = 1
2

(ρ(x) + ρ(x + r)) u′′
i (x) u′′

j (x + r), (3.2)

which is a function of x, y and rz. The derivation of the Qij transport equation is similar to
that in the incompressible flows. The derivatives in the z direction at x and x̃ = x + r are
related by rz (Lee & Moser 2019):

∂

∂z
= − ∂

∂rz
,

∂

∂ z̃
= ∂

∂rz
. (3.3a,b)

Moreover, the averaged flow quantities are independent of rz, i.e.

ϕ̄(x) = ϕ̄(x + r), ϕ̃(x) = ϕ̃(x + r). (3.4a,b)

After a detailed derivation, we formulate the transport equation for two-point correlation
tensor as

∂Qij(x, r)
∂t

= Cij + Pij + Dij + Πij + εij + Tij + Bij. (3.5)

The terms on the right-hand side represent the contributions from the mean flow
convection, production, diffusion, pressure-strain, viscous dissipation, inter-scale transfer
and mass-diffusion, respectively. The convection and production terms are related to the
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variation of mean velocity:

Cij = − ∂

∂xk
Qij(x, r) ũk(x) (k = 1, 2), (3.6)

Pij = −Qkj(x, r)
∂ ũi(x)

∂xk
− Qik (x, r)

∂ ũj(x)

∂xk
(k = 1, 2). (3.7)

The diffusion term Dij involves the diffusion by turbulent transport DT
ij , pressure

fluctuation DP
ij , and viscous stress fluctuation DV

ij :

DT
ij = −1

4
∂

∂xk
(ρ(x) + ρ(x + r)) u′′

i (x) u′′
j (x + r) (u′′

k (x) + u′′
k (x + r)) (k = 1, 2),

(3.8)

DP
ij = −1

2

((
1 + ρ(x + r)

ρ(x)

)
∂p′(x) u′′

j (x + r)

∂xk
δik

+
(

1 + ρ(x)

ρ(x + r)

)
∂p′(x + r) u′′

i (x)

∂xk
δjk

)
, (3.9)

DV
ij = 1

2

((
1 + ρ(x + r)

ρ(x)

)
∂τ ′

ik(x) u′′
j (x + r)

∂xk

+
(

1 + ρ(x)

ρ(x + r)

)
∂τ ′

jk(x + r) u′′
i (x)

∂xk

)
(k = 1, 2). (3.10)

The pressure-strain term Πij reflects the inter-component energy transfer:

Πij = 1
2

((
1 + ρ(x + r)

ρ(x)

)
p′(x)

∂u′′
j (x + r)

∂xi
+
(

1 + ρ(x)

ρ(x + r)

)
p′(x + r)

∂u′′
i (x)

∂xj

)
.

(3.11)

The dissipation by viscosity εij is expressed as

εij = −1
2

((
1 + ρ(x + r)

ρ(x)

)
τ ′

ik(x)
∂u′′

j (x + r)

∂xk

+
(

1 + ρ(x)

ρ(x + r)

)
τ ′

jk(x + r)
∂u′′

i (x)

∂xk

)
(k = 1, 2, 3). (3.12)

The inter-scale energy transfer, corresponding to the nonlinear turbulent interactions in
incompressible flows (Domaradzki et al. 1994; Mizuno 2016; Lee & Moser 2019), can be
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split as Tij = Txy
ij + Tz

ij, where

Txy
ij = −1

2
u′′

j (x + r)
∂ρ(x) u′′

i (x) u′′
k (x)

∂xk
− 1

2
ρ(x + r) u′′

j (x + r) u′′
k (x)

∂u′′
i (x)

∂xk

− 1
2

u′′
i (x)

∂ρ(x + r) u′′
j (x + r) u′′

k (x + r)

∂xk
− 1

2
ρ(x) u′′

i (x) u′′
k (x + r)

∂u′′
j (x + r)

∂xk

− DT
ij (k = 1, 2), (3.13)

Tz
ij = −1

2
∂

∂rz
(ρ(x) + ρ(x + r)) u′′

i (x) u′′
j (x + r) (w′′(x + r) − w′′(x))

− 1
2

u′′
i (x) u′′

j (x + r)
∂

∂rz
(ρ(x) w′′(x + r) − ρ(x + r) w′′(x)). (3.14)

Complicated as it is, we can easily prove that Tij → 0 at the limit of rz → 0, indicating that
this term is responsible only for the inter-scale energy transfer. Finally, the mass-diffusion
Bij, caused by the density fluctuation, can be cast as

Bij = 1
2

(
u′′

j (x + r) −
ρ(x) u′′

j (x + r)

ρ̄(x)
+

ρ(x + r) u′′
j (x + r)

ρ(x)

)(
− ∂ p̄

∂xi
+ ∂τ̄ik

∂xk

)

+ 1
2

(
u′′

i (x) − ρ(x + r) u′′
i (x)

ρ̄(x)
+ ρ(x) u′′

i (x)

ρ(x + r)

)(
− ∂ p̄

∂xj
+ ∂τ̄jk

∂xk

)

− 1
2

(
ρ(x) u′′

j (x + r)

ρ̄(x)
+

ρ(x + r)u′′
j (x + r)

ρ(x)

)
∂ρ̄Rik

∂xk

− 1
2

(
ρ(x + r) u′′

i (x)

ρ̄(x)
+ ρ(x) u′′

i (x)

ρ(x + r)

)
∂ρ̄Rjk

∂xk
. (3.15)

The equations above degenerate to the TKE transport equation by taking rz = 0 and
contracting the indices i and j, and to the two-point correlation transport equation for
incompressible flows by taking the density as unity.

3.2. Spectra of Reynolds stress transport
As customarily performed in the incompressible turbulence (e.g. Lee & Moser 2015), the
transport equation of the Reynolds stress spectra can be obtained by performing a Fourier
transform on the two-point correlation transport equation. According to the definition in
(3.2), the spectra of the Reynolds stress tensor can be expressed as

Q̂ij = Re
[
ρ̂u′′

i û′′
j
� + û′′

i ρ̂u′′
j
�
]
, (3.16)

where the hat symbol denotes Fourier spectral coefficients, the superscript � indicates the
complex conjugate, and Re represents taking the averaged real part. The budget terms of
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(3.5) are transformed into spectral space accordingly. The convection and production terms
in (3.6) and (3.7) are therefore transformed as

Ĉij = − ∂

∂xk
Q̂ijũk, (3.17)

P̂ij = −Q̂kj
∂ ũi

∂xk
− Q̂ik

∂ ũj

∂xk
. (3.18)

The other budget terms are nonlinear, primarily due to the density variation. Taking the
turbulent diffusion term DT

ij in (3.8) as an example, we reformulate all of those terms
according to the independent variable

DT
ij = −1

4
∂

∂xk
(ρ(x) u′′

i (x) u′′
k (x) u′′

j (x + r) + u′′
i (x) u′′

k (x) ρ(x + r) u′′
j (x + r)

+ ρ(x) u′′
i (x) u′′

j (x + r) u′′
k (x + r) + u′′

i (x) ρ(x + r) u′′
j (x + r) u′′

k (x + r)), (3.19)

therefore its Fourier transform is expressed as

D̂T
ij = −1

4
∂

∂xk
Re
[
̂ρu′′

i u′′
k û′′

j
� + û′′

i u′′
k ρ̂u′′

j
� + ρ̂u′′

i û′′
j u′′

k
� + û′′

i
̂ρu′′

j u′′
k

�]
. (3.20)

The pressure diffusion, viscous diffusion, pressure-strain and viscous dissipation terms in
(3.9), (3.10), (3.11) and (3.12) are correspondingly transformed as

D̂P
ij = −1

2
Re

⎡⎣ ∂̂p′

∂xi
û′′

j
� + ∂̂p′

∂xj

�

û′′
i + p̂′ ∂̂u′′

j

∂xi

�

+ p̂′� ∂̂u′′
i

∂xj

⎤⎦
− 1

2
Re

⎡⎣̂1
ρ

∂p′

∂xi
ρ̂u′′

j
� +

̂1
ρ

∂p′

∂xj

�

ρ̂u′′
i + p̂′

ρ

̂

ρ
∂u′′

j

∂xi

�

+ p̂′

ρ

�
̂

ρ
∂u′′

i
∂xj

⎤⎦ , (3.21)

D̂V
ij = 1

2
Re

⎡⎣ ∂̂τ ′
ik

∂xk
û′′

j
� +

∂̂τ ′
jk

∂xk

�

û′′
i + τ̂ ′

ik

∂̂u′′
j

∂xk

�

+ τ̂ ′
jk

� ∂̂u′′
i

∂xk

⎤⎦
+ 1

2
Re

⎡⎣̂1
ρ

∂τ ′
ik

∂xk
ρ̂u′′

j
� +

̂1
ρ

∂τ ′
jk

∂xk

�

ρ̂u′′
i + τ̂ ′

ik
ρ

̂

ρ
∂u′′

j

∂xk

�

+
τ̂ ′

jk

ρ

�
̂

ρ
∂u′′

i
∂xk

⎤⎦ , (3.22)

Π̂ij = 1
2

Re

⎡⎣p̂′ ∂̂u′
j

∂xi

�

+ p̂′� ∂̂u′
i

∂xj
+ p̂′

ρ
ρ̂

∂u′
j

∂xi

�

+ p̂′

ρ

�

ρ̂
∂u′

i
∂xj

⎤⎦ , (3.23)

ε̂ij = −1
2

Re

⎡⎣τ̂ ′
ik

∂̂u′
j

∂xk

�

+ τ̂ ′
jk

� ∂̂u′
i

∂xk
+ τ̂ ′

ik
ρ

̂

ρ
∂u′

j

∂xk

�

+
τ̂ ′

jk

ρ

�
̂

ρ
∂u′

i
∂xk

⎤⎦ . (3.24)
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For the inter-scale energy transfer term, the Txy
ij component is transformed as

T̂xy
ij = −1

2
Re

⎡⎣ ̂∂ρu′′
i u′′

k
∂xk

û′′
j
� +

̂

u′′
k

∂u′′
i

∂xk
ρ̂u′′

j
� +

̂∂ρu′′
j u′′

k

∂xk

�

û′′
i

+
̂

u′′
k

∂u′′
j

∂xk

�

ρ̂u′′
i

⎤⎦− D̂T
ij (k = 1, 2), (3.25)

and Tz
ij as

T̂z
ij = 1

2
kz Im

[
ρ̂u′′

i
̂u′′

j w′′� − ̂ρu′′
i w′′ û′′

j
� + ̂ρu′′

j w′′� û′′
i − ρ̂u′′

j
�

̂u′′
i w′′

]
− 1

2
Re

⎡⎣ ̂

w′′ ∂u′′
i

∂z
ρ̂u′′

j
� + ρ̂u′′

i

̂

w′′ ∂u′′
j

∂z

�⎤⎦ , (3.26)

where Im denotes taking the averaged imaginary part, and kz represents the spanwise
wavenumber. Finally, the transformed mass-flux term is formulated as

B̂ij = 1
2

Re

⎡⎣û′′
j
� −

ρ̂ û′′
j
�

ρ̄
+ 1̂

ρ
ρ̂u′′

j
�

⎤⎦(− ∂ p̄
∂xi

+ ∂τ̄ik

∂xk

)

+ 1
2

Re

[
û′′

i − ρ̂� û′′
i

ρ̄
+ 1̂

ρ

�

ρ̂u′′
i

](
− ∂ p̄

∂xj
+ ∂τ̄jk

∂xk

)

+ 1
2

Re

⎡⎣ ρ̂ û′′
j
�

ρ̄
+ 1̂

ρ
ρ̂u′′

j
�

⎤⎦ ∂ρ̄Rik

∂xk
+ 1

2
Re

[
ρ̂� û′′

i
ρ̄

+ 1̂
ρ

�

ρ̂u′′
i

]
∂ρ̄Rjk

∂xk
. (3.27)

Contracting indices i and j of the tensor Q̂ij, the transport equation of TKE spectra Q̂kk
is obtained, which will be considered primarily in the subsequent discussions.

4. Coherent structures and turbulence amplification

As a first impression of the association between the turbulence amplification and
its physical counterparts, we present the instantaneous fields of low-speed streaks in
figure 4(a) and vortical structures in figure 4(b), the latter represented by the second
invariant Q of the velocity gradient. Upstream of the interaction zone, both the low-speed
streaks and vortical structures resemble those in the low-Reynolds-number turbulent
boundary layer flows. These structures go through rapid change across the interaction zone,
where the small-scale low-speed streaks are twisted and weakened, while the large-scale
structures emerge. Similar phenomena have been reported by previous studies, such as
Zhuang et al. (2018) and Fang et al. (2020). Although mean flow separation and spanwise
vortex shedding are barely noticeable, the abundant vortical structures are populated
within the interaction zone. This will be analysed further in the following discussions. In
the post-shock region, the turbulence relaxes gradually to the equilibrium state, where the
near-wall small-scale structures are regenerated, and the large-scale structures in the outer
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(b)

(a)

Figure 4. Instantaneous fields, isosurface of (a) velocity fluctuation u′/U∞ = −0.1, (b) the second invariant
of velocity gradient Q = 10.0, coloured by the wall-normal coordinate. Vertical slices are numerical schlieren,
flooded by NS = exp(−|∇ρ|/ρ).

region are weakened. As demonstrated by Pirozzoli & Grasso (2006), the relaxation to the
equilibrium state for large-scale motions in the outer region requires a long streamwise
extent. This process will be considered in our subsequent research.

The components of the Reynolds stress tensor near the interaction zone, normalized
by ρ∞U2∞, are displayed in figure 5. The Ruu component (figure 5a), representing the
density-weighted variance of u′′, increases remarkably as it approaches the interaction
zone. The peak location rises to detach from the wall along with the average sonic line. In
the streamwise direction, it reaches maxima at x∗ ≈ −1.5, where it starts to decay. In the
post-shock region, the wall-normal locations of the peaks lie at y∗ ≈ 0.4 and rise slightly
along x∗. A secondary peak near the wall emerges downstream of the interaction zone at
x∗ ≈ 3.5, indicating that the near-wall velocity streaks are regenerated. The Rvv and Rww
components, shown in figures 5(b,c), also increase within the interaction zone and attain
maxima at x∗ ≈ 0 and x∗ ≈ −1.5, respectively. Their evolutions downstream resemble
that of the Ruu component, except for the slower decay rates. Based on this scenario, the
emergence of the strong streamwise vortices or cross-stream circulations composed of
v′′ and w′′ is expected in the post-shock region. The amplification of the Reynolds shear
stress Ruv (figure 5d) occurs downstream of the impinging oblique shock. These are typical
features of SBLI flows, consistent with the results in previous numerical studies (Pirozzoli
& Grasso 2006; Pirozzoli & Bernardini 2011a; Volpiani et al. 2018).
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Figure 5. Reynolds stress near the interaction zone, normalized by ρ∞U2∞, for (a) Ruu, (b) Rvv , (c) Rww, and
(d) Ruv . Magenta dashed lines indicate the locations of the peak values; light-green solid lines indicate average
sonic lines; cyan dotted lines indicate approximate impinging and reflected shocks.

We further report the budget of the TKE (K = ρu′′
i u′′

i /2) transport equation, cast as
(Pirozzoli & Bernardini 2011a)

∂K
∂t

= − ∂ρ̄ũjK
∂xj︸ ︷︷ ︸
CK

− ρ̄ ũ′′
i u′′

j
∂ ũi

∂xj︸ ︷︷ ︸
PK

+ ∂

∂xj

[
−1

2
ρ̄ ˜u′′

i u′′
i u′′

j − p′u′′
j + τ ′

iju
′′
i

]
︸ ︷︷ ︸

DK

− τ ′
ij

∂u′′
i

∂xj︸ ︷︷ ︸
εK

+ p′ ∂u′′
i

∂xi︸ ︷︷ ︸
ΠK

+ u′′
i

(
∂τ̄ij

∂xj
− ∂ p̄

∂xi

)
︸ ︷︷ ︸

BK

. (4.1)

The TKE transport is balanced by the right-hand side of the equation, representing
the energy transfer by the mean flow convection CK , production PK , diffusion DK by
turbulence, pressure (p′) and viscous stress (τ ′

ij) fluctuations, viscous dissipation εK ,
pressure-dilatation Πk, and mass-diffusion BK , the last two of which are caused by the
genuine compressibility effects.

In figure 6(a), we present the contour of the production PK and the wall-normal
distribution of all transport terms at seven streamwise stations across the interaction zone.
The average sonic line and the TKE peak location along the streamwise (x) direction are
also displayed for comparison. Within the interaction zone, the production term PK is
amplified gradually, and its trend is similar to the amplification of Ruu in figure 5(a).
Its peak location aligns approximately with the average sonic line. The distribution of
the budget terms at x∗ = −3.28 generally resembles that of the canonical compressible
wall-bounded turbulence (e.g. Duan, Beekman & Martin 2011), except that the convection
term CK is non-zero, indicating the non-negligible influence of the upstream-travelling
sonic waves (Pirozzoli & Grasso 2006). As it approaches downstream, the TKE transport is
strongly modified by the impinging shock, where all the budget terms in the TKE transport

951 A2-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.826


M. Yu, M.X. Zhao, Z.G. Tang, X.X. Yuan and C.X. Xu

–0.2

0

0.2

0.4

0.6
PK

Px
11

Py
11

P22

–0.2

0

0.2

0.4

0.6

–0.2

0

0.2

0.4

0.6

210–1–2

2
0.6

0.600.550.500.450.400.350.300.250.200.150.100.05

0.50.40.30.20.1 0.60.50.40.30.20.1

1

0

2

1

0
–3–4

2

BK

DK
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Figure 6. Budget of the TKE transport equation, flooded by: (a) PK , (b) Px
11, (c) Py

11. Lines indicate: average
sonic line (light green solid), maximal TKE location (magenta dashed), approximate impinging and reflected
shocks (light blue dotted). Budget at: (d) x∗ = −3.28, (e) x∗ = −2.62, ( f ) x∗ = −1.97, (g) x∗ = −1.32,
(h) x∗ = −0.66, and (i) x∗ = 0.0.

equation are significant, except the Πk and BK terms. The Πk and BK terms, caused by
genuine compressibility effects, manifest their significance only near the strong impinging
shock wave, while their participation in TKE energy transfer in other regions is marginal
(Jammalamadaka et al. 2014). At the end of the interaction zone (x∗ = −0.66 and 0), the
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TKE transport terms are significant merely at y∗ = 0.4, while the near-wall turbulence is
not yet recovered. From the perspective of dynamic process, we can conclude from the
budget terms that the TKE is generated by the production term PK , convected/diffused
spatially by CK and DK , and mass-diffused or transferred to internal energy by BK , Πk and
εK .

Most early-year studies attributed the turbulence amplification to the vortex-shedding of
the separated flow and shear layer. The studies by Humble et al. (2007) and Fang et al.
(2020) proposed a novel mechanism. By splitting the production term PK as

PK = −ρ̄ ũ′′
i u′′

j
∂ ũi

∂xj
= − ρ̄ ũ′′u′′ ∂ ũ

∂x︸ ︷︷ ︸
Px

11

− ρ̄ ũ′′v′′ ∂ ũ
∂y︸ ︷︷ ︸

Py
11

− ρ̄ ũ′′v′′ ∂ṽ

∂x︸ ︷︷ ︸
Px

22

− ρ̄ ṽ′′v′′ ∂ṽ

∂y︸ ︷︷ ︸
Py

22

, (4.2)

the terms Px
11 and Py

22 are regarded as the TKE production by mean flow deceleration,
and Py

11 and Px
22 as by shear. It was pointed out that Px

11 is first increased, leading to the
amplification of TKE, and conversely resulting in the increment of Px

11, forming a positive
feedback loop until the end of the interaction zone.

The physical processes reflected in the present TKE production generally agree with
the above elucidation. The distributions of TKE production due to mean flow deceleration
Px

11 and shear layer Py
11 are presented in figures 6(b,c). The increment of Px

11 occurs even
upstream of the interaction zone. At x∗ = −3.28, Px

11 is increased to a level same as Py
11.

As it approaches downstream across the interaction zone, the Px
11 term becomes more

prominent than Py
11 above y∗ = 0.2. At the end of the interaction zone, the production term

PK is again dominated by Py
11. The production of Rvv , i.e. P22 = Px

22 + Py
22, on the other

hand, is much lower than Px
11 and Py

11. In general, the present results are consistent with
those reported by Humble et al. (2007) and Fang et al. (2020): the turbulence amplification
is first caused by the mean flow deceleration, then the shear layer when it is well-developed.

In this section, we have provided an observation on the evolution of coherent structures
across the interaction zone and analysed the budget of TKE transport. The results in
the present study are congruous with previous research. In the subsequent discussions,
we further inspect the scale-by-scale TKE transport utilizing the budget of TKE spectra
transport equation and by so doing relate the emergence of large-scale motions to the
turbulence amplification.

5. Spectra of TKE

The premultiplied spanwise energy spectra distributions along the x and y directions
near the interaction zone are presented in figure 7 by isosurfaces, along with the spectra
distribution at the spanwise scale λ∗z = 1 to identify the large-scale motions, and the
streamwise locations x∗ = −3.6, −2.4, −1.2 and 0.0 displayed by contour lines to
present the streamwise evolution. The premultiplied spectra of TKE, i.e. kzQ̂kk, are
shown in figure 7(a). Upstream of the interaction zone, the most energetic motions are
prominent only in the near-wall region at λ∗z ≈ 0.5, i.e. λ+z ≈ 100, corresponding to
the characteristic length scale of velocity streaks in canonical wall-bounded turbulence
(Pirozzoli & Bernardini 2011a). As it enters the interaction zone and approaches the
impinging shock, the distribution of the spectra gradually widens in both the λ∗z and
y∗ directions, indicating that the energetic motions are excited in wider spanwise-scale
and wall-normal ranges. Specifically, the extension of the spectra to the spanwise scales
greater than λ∗z = 1.0 suggests the emergence or amplification of large-scale motions.
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Figure 7. Isosurfaces of the premultiplied spanwise spectra: (a) TKE kzQ̂kk; (b) streamwise component kzQ̂11;
(c) wall-normal component kzQ̂22; (d) spanwise component kzQ̂33. Contour lines indicate spectra distribution at
the spanwise scale of λ∗z = 1.0 and the streamwise locations x∗ = −3.6, −2.4, −1.2, 0.0; grey-shaded planes
indicate approximate impinging and reflected shocks.

Inspecting the spectra of the Reynolds normal stresses individually, as displayed in
figures 7(b–d), we infer that these excited large-scale spectra are attributed primarily to
the wall-parallel components Q̂11 and Q̂33, while the contribution by the wall-normal
component Q̂22 is less prominent.

We further identify the amplification rate of the spectra, RQ, defined as

RQ(x∗) = maxy∗,λ∗z Q̂(x∗, y∗, λ∗z )

maxy∗,λ∗z Q̂(x∗
0, y∗, λ∗z )

. (5.1)

The results are displayed in figure 8(a). The spectra peak locations in the wall-normal
direction y∗

R and the corresponding spanwise scale λ∗z,R are displayed in figures 8(b) and
8(c), respectively. The amplification of the streamwise component Q̂11 is firstly triggered,
even upstream of the extrapolated origin of the reflected shock, as shown in figures 8(a)
and 7(b). The RQ11 ‘overshoots’ to a maximal value of 3.5 at x∗ ≈ −1.0 and y∗ ≈ 0.4,
where the energetic large- and small-scale motions are both excited. In this process, the
most energetic motions are converted from the small-scale motions with λ+z,R11

≈ 100
to the large-scale motions with λ∗z,R11

≈ 0.9 (figure 8c). At the end of the interaction
zone, downstream of x∗ ≈ −1.0, RQ11 starts to decay and retains the relatively low value
1.5, while the wall-normal location of the maximum remains at y∗ ≈ 0.4 (figure 8b).
We can also read from the spectra distribution in figure 7(b) that the energetic motions
spread widely in scale-space retain for a relatively long streamwise extent, especially for
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Figure 8. Streamwise distribution of (a) amplification rate RQ, and maximum locations (b) y∗
R and (c) λ∗z,R.

those large-scale motions wider than δ0. For the wall-normal and spanwise components
Q̂22 and Q̂33, the amplification is triggered within the interaction zone, later than Q̂11.
The maximal amplification rates RQ22 and RQ33 are attained at x∗ ≈ −0.5 and −1.5,
respectively, consistent with the previous observations of Rij in § 4. The RQ33 suffers an
‘overshooting’ to the value 5.5, then returns to 4.5 downstream of the interaction zone,
while RQ22 increases monotonically and reaches a plateau of 4.5. Downstream of the
interaction zone, the maximal spectra density is achieved at y∗ = 0.3 with the spanwise
scale λ∗z,R22

≈ 0.45 for Q̂22, and at y∗ = 0.4 with λ∗z,R33
≈ 0.9 for Q̂33. The relations

between characteristic scales and wall-normal locations are reminiscent of the streamwise
vortices in wall-bounded turbulence (e.g. Hwang & Cossu 2010; Hwang & Bengana
2016).

The above depiction is compatible with the evolution of coherent structures across
the impinging shock (recall figure 4). The amplification of RQ11 , the rise in y∗

R and the
increment of λ∗z,R11

correspond to the formulation of large-scale velocity streaks in the
outer region. The latter growth of RQ22 and RQ33 further suggests that the large-scale
cross-stream circulations are formed downstream of the large-scale velocity streaks.
With these spatial arrangements, we surmise that the streamwise vortical structures are
generated by the twisting of the large-scale velocity streaks, based on the previous
investigations on instability/transient growth of velocity streaks (Schoppa & Hussain
2002) in the process of flow transition and the self-sustaining cycle in canonical
wall-bounded turbulence (Hwang & Bengana 2016). Related proofs will be provided
subsequently.
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Figure 9. Isosurfaces of the premultiplied spectra of TKE production: (a) kzP̂kk, (b) kzP̂x
11, (c) kzP̂

y
11, (d)

kzP̂22. Contour lines indicate spectra distribution at the spanwise scale of λ∗z = 1.0; grey-shaded planes indicate
approximate impinging and reflected shocks.

6. Transport of TKE

6.1. Turbulent production
Similar to (4.2), the production of TKE spectra transport is split as

P̂kk = P̂x
11 + P̂y

11 + P̂22, (6.1)

where

P̂x
11 = −1

2
Q̂11

∂ ũ
∂x

, (6.2)

P̂y
11 = −1

2
Q̂12

∂ ũ
∂y

, (6.3)

P̂22 = −1
2

Q̂21
∂ṽ

∂x
− 1

2
Q̂22

∂ṽ

∂y
, (6.4)

are the production of Q̂11 by mean flow deceleration and shear, and that of Q̂22,
respectively. The spectra distributions of these production terms are presented in figure 9
by isosurfaces. The total TKE production P̂kk is amplified and spread to wider extents
in wall-normal directions and spanwise scales (see figure 9a) within the interaction zone,
similar to the evolution of TKE spectra (figure 7). As for the decomposed components, P̂x

11
in figure 9(b) is prominent merely within the interaction zone and constitutes substantially
to P̂KK for large-scale motions with λ∗z � 1.0. The P̂y

11 component is first amplified then
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Figure 10. Premultiplied spectra of the decomposed TKE production at (a,b) λ∗z = 1.0 and (c,d) λ+z = 100,
for (a,c) kzP̂x

11 and (b,d) kzP̂
y
11. Cyan lines indicate approximate impinging and reflected shocks.

diminished and returns to a moderate value, further dominating the turbulent production
downstream. It is significant only at small scale with λ∗z � 1.0. The P̂22 component in
figure 9(d) is trivial except near the shocks.

Considering their significance, the spectra P̂x
11 and P̂y

11 at the characteristic large and
small scales, i.e. λ∗z ≈ 1.0 and λ+z ≈ 100, are presented further in figure 10. For the
production at the large-scale λ∗z ≈ 1.0, as shown in figures 10(a,b), the P̂x

11 component is
dominant within the interaction zone. Its amplification starts to evidence at x∗ ≈ −3.0,
increases rapidly, and then drops to a negligible value at x∗ ≈ −1.0. A small region
of negative production is observed across the nominal impinging shock, due to the
acceleration of the mean flow. The P̂y

11 component, on the other hand, manifests itself
only at the end of the interaction zone x∗ ≈ −1.0, where the shear layer is fully developed.
In the post-shock region, P̂y

11 remains at the relatively low level 0.02, indicating its weak
contribution to the production of large-scale motions downstream of the interaction zone.
As for the production at the small-scale λ+z ≈ 100, as shown in figures 10(c,d), the P̂x

11
and P̂y

11 components are equivalently significant. They start to increase simultaneously
at x∗ ≈ −3.5, and attain local maxima at x∗ ≈ −2.0. At the end of the interaction zone,
the P̂x

11 component decays rapidly to zero, while P̂y
11 first decreases and then retains the

value 0.04. Notably, a second peak in the near-wall region arises at x ≈ 1.0, indicating the
reformulation of near-wall small-scale structures.

As we discussed previously, the amplification of turbulence should be attributed to first
the mean flow deceleration, and then the shear layer once it is well-developed (Humble
et al. 2007; Fang et al. 2020). Although the decomposed production term of TKE transport
reported in § 4 generally agrees with this depiction, the present spectral analysis provides
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a more detailed yet slightly different interpretation. Specifically, the amplification of
large-scale spectral intensity is attributed only to mean-flow deceleration, immediately
as it enters the interaction zone, while for the small-scale motions, both the mean-flow
deceleration and shear are prominent and increase synchronously within the interaction
zone. This should probably be ascribed to the low Reynolds number considered in the
present study. According to the definition of these terms in (6.2) and (6.3), the TKE
production related to the mean shear should be much more prominent than that by the
flow deceleration only when ∂ ũ/∂x is much smaller than ∂ ũ/∂y, at least by one decade,
considering that the variance of u′′ is approximately 8–10 times the magnitude of the
Reynolds shear stress. Such a circumstance could occur only when the Reynolds number is
sufficiently high. Nevertheless, the preceding observation in § 4 and by Fang et al. (2020)
that the increase of Px

11 occurs upstream of that of Py
11 is an integral effect, instead of a

scale-by-scale phenomenon.
In the aspect of coherent structures, we ascribe directly the genesis of the large-scale

velocity streaks to the mean flow deceleration, which can be related further to the
mean adverse pressure gradient (APG) (Babinsky & Harvey 2011, § 2.6). Rose & Childs
(1974) suggested that the amplification of the Reynolds stress is similar to that in
the incompressible turbulent boundary layers (ITBLs) under APG. Latter studies have
revealed further with the energy spectra that turbulence amplification in the outer region
in ITBLs under uniform APG is due to the emergence of large-scale motions (Harun et al.
2013; Kitsios et al. 2017; Yoon, Hwang & Sung 2018; Yoon et al. 2020). In supersonic
flows, Wang et al. (2019a,b) observed similar and more evident large-scale motions under
APG generated by either the small-angle concave walls or external successive compression
waves. Wu, Liang & Zhao (2019) linked the large-scale motions to the energy spectra peak
in the outer region, further validating the resemblance between compressible and ITBLs
under APG. These commonalities lead to an inference that the emergence of the large-scale
motions in the present OSBLI flow should be attributed to the APG within the interaction
zone.

The spectra of the TKE production merely suggest the formation of large-scale velocity
streaks constituted by u′′. The large-scale cross-stream circulations constituted by v′′
and w′′ should be stemmed from the inter-component energy transfer, considering the
insignificant P̂22 and the inherently zero-valued P̂33. This will be demonstrated in the
next subsection.

6.2. Pressure-dilatation and pressure-strain

The pressure-dilatation term Π̂kk exists merely for compressible flows. It transfers energy
between kinetic energy and internal energy. Although this term is expected to play a
significant role in TKE transfer, at least within the interaction zone, the spectra presented
in figure 11(a) suggest that genuine compressibility effects are still trivial except near the
impinging and reflected shocks. This is consistent with the conclusions in Jammalamadaka
et al. (2014). A small negative region can be observed at x∗ ≈ −1.5 in the vicinity of
the wall, where the genuine compressibility effects are the most obvious for canonical
compressible wall-bounded turbulence (Yu, Xu & Pirozzoli 2019, 2020; Yu & Xu 2021).

For the Reynolds normal stresses, the pressure-strain terms Π̂11, Π̂22 and Π̂33
are responsible for the inter-component energy transfer. The results are presented in
figures 11(b–d). As it goes downstream across the interaction zone, the trend of
inter-component TKE transfer is not altered. The TKE is redistributed from u′′ and v′′
to w′′ in the near-wall region, and from u′′ to v′′ and w′′ at higher wall-normal locations.
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Figure 11. Isosurfaces of the premultiplied spectra of pressure-dilatation and pressure-strain terms: (a) kzΠ̂kk,
(b) kzΠ̂11, (c) kzΠ̂22, (d) kzΠ̂33. Contour lines indicate spectra distribution at the spanwise scale of λ∗z = 1.0;
grey-shaded planes indicate approximate impinging and reflected shocks.

Note that in the post-shock region, the transfer of TKE from u′′ to v′′ is not strong enough
to be manifested by the isosurfaces.

In §§ 5 and 6.1, we observed that the formation of the large-scale velocity streaks
occurs upstream of the emergence of the large-scale cross-stream circulations. We also
showed that the large-scale velocity streaks are induced by the adverse pressure gradient.
The pressure-strain terms considered herein further explain the generation of large-scale
cross-stream circulations. Considering that the production terms P̂22 and P̂33 are either
insignificant or zero, we infer that the energetic large-scale cross-stream circulations
composed of v′′ and w′′ emerging at the end of the interaction zone are induced by the
inter-component energy transfer from u′′.

Intriguingly, in the self-sustaining cycles of wall-bounded turbulence, the instability
and/or transient growth leads to the meandering of the velocity streaks (Schoppa
& Hussain 2002), and further forming streamwise vortices via vortex stretching and
advection (Jiménez 2015). These processes proved to be related to the inter-component
energy transfer by pressure-strain terms as well (Cho, Choi & Hwang 2016; Cho et al. 2018;
Doohan, Willis & Hwang 2021; Kawata & Tsukahara 2021). This resemblance partially
substantiates our previous presumption that the large-scale cross-stream circulations are
prompted by the instability/transient growth of large-scale velocity streaks.
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Figure 12. (a) Isosurfaces of the premultiplied spectra of TKE spatial transport kz(B̂kk + Ĉkk + D̂kk); contour
lines indicate spectra at the spanwise scale of λ∗z = 1.0; grey-shaded planes indicate impinging and reflected
shocks. (b,c) Spectra distribution at λ∗z = 1.0 and λ+z = 100; cyan lines indicate approximate impinging and
reflected shocks.

6.3. Convection, diffusion and mass-diffusion

The convection term Ĉkk and the diffusion term D̂kk represent the spatial energy
transport by mean flow and fluctuations, respectively. The mass-diffusion term comes
from the difference between the ensemble and Favre averages of velocity fluctuations.
It reflects directly the genuine compressibility effects caused by density fluctuations.
Herein, we add these three terms together and regard the summation as the TKE spatial
transfer.

The spectra distribution of this budget term is displayed in figure 12(a). The contours
at the scales λ∗z = 1.0 and λ+z = 100 are displayed in figures 12(b) and 12(c), respectively.
The spatial energy transfer plays a significant role only within the interaction zone.
The amplified production term observed in figure 9 is essentially balanced by this
term, indicating that the amplified energy is transferred spatially downstream to the
post-shock region, or downwards to the near-wall region. This is similar to the TKE
budget analysis performed by Li et al. (2010) and Tong et al. (2017). Notably, inspecting
B̂kk, Ĉkk and D̂kk individually, we find that Ĉkk and D̂kk are much stronger than B̂kk,
indicating that the genuine compressibility effects caused by the density fluctuations are
insignificant.

6.4. Inter-scale energy transfer and dissipation

The inter-scale energy transfer T̂kk reflects the turbulent energy cascade. As presented in
figure 13(a), the energy is transferred from large- to small-scale motions, consistent with
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the classical energy cascade process depicted by Richardson (Pope 2000). The inverse
energy transfer from small- to large-scale motions is not evident. The spectra distributions
of T̂kk at x∗ = −4.0, −3.0, −2.0, −1.0 are presented in figures 13(c–f ), respectively.
Upstream of the interaction zone, the spectra of the inter-scale energy transfer share
resemble those in incompressible channel flows (Lee & Moser 2015; Cho et al. 2018).
The energy is transferred primarily from the scale λ+z ≈ 100 to λ+z ≈ 20. Inverse energy
transfer from small- to large-scale motions at λ∗z ≈ 1.0 is also evident, which has been
observed widely in the spanwise spectra of the TKE transport process (Lee & Moser
2015; Auléry et al. 2017; Cho et al. 2018). As it approaches downstream at x∗ = −3.0
and −2.0, this budget term is gradually intensified, with the negative peak location
remaining at λ+z ≈ 100 in the scale space, and moving outwards in the wall-normal
direction. The inverse energy transfer from λ+z ≈ 100 to λ∗z � 1.0 is still visible. The
corresponding local maxima are also moving outwards and to larger scales. At x∗ =
−1.0, where the amplification rate of TKE spectra reaches maxima, there is only energy
transfer from large-scale at λ∗z ≈ 1.0 to smaller-scale motions, while the inverse energy
transfer fades away. Although the net inverse energy transfer occurs in the process of
turbulence amplification at the start of the interaction zone, its contribution to the genesis
of large-scale motions is scanty due to its smallness in comparison with the production
term.

As expected, the dissipation term ε̂kk, presented in figure 13(b), is significant merely
close to the wall and concentrated at small scales.

7. Spanwise uniform oscillations

The preceding discussions focused on the motions with finite spanwise length scales, while
the turbulent fluctuations caused by the spanwise-uniform unsteadiness are not involved.
In this section, we discuss the energy transfer of these spanwise-uniform turbulent
fluctuations.

The energy of spanwise-uniform oscillations (SUOs) is extracted from the Fourier
mode at kz = 0. The spectra distribution of TKE in the x–y plane near the interaction
zone is presented in figure 14(a). The strong SUOs can be classified according to
the wall-normal coordinate and their physical counterparts. The strong spectra density
above the boundary layer (y∗ � 1.0) corresponds to the unsteady reflected shock wave
(Plotkin 1975; Clemens & Narayanaswamy 2014), hereinafter referred to as the ‘shock
unsteadiness’. That inside the boundary layer (y∗ � 1.0) within the interaction zone
corresponds to the low-frequency ‘breathing’ or intermittency of the flow separation
(Clemens & Narayanaswamy 2014) and the possibly existing quasi-two-dimensional
vortex shedding due to the Kelvin–Helmholtz instability (Dupont et al. 2008; Helm
et al. 2014), hereinafter referred to as the ‘inner unsteadiness’. Compared with the finite
spanwise length scales motions (FSMs), it is less energetic, with spectra maximum a
decade lower. The TKE of SUOs starts to magnify at x∗ ≈ −3, and reaches maximum
at x∗ ≈ −1.0 and y∗ ≈ 0.4, downstream of which it gradually decays, similar to FSMs.

The spectra of energy transfer budget terms are shown in figures 14(b–f ). For the
shock unsteadiness, although the budget terms are strong, they are prominent only
adjacent to the impinging and reflected shocks. The TKE is produced by the production
term, convected/diffused upstream/downstream, and transferred from/to the internal
energy by pressure-dilatation correlation. The inter-scale energy transfer for the shock
unsteadiness is negative, indicating that the shock unsteadiness is partially responsible for
its wrinkling. Although the above scenario seems plausible, we are obliged to stress that
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Figure 13. Isosurfaces of the premultiplied spectra of (a) inter-scale energy transfer kzT̂kk and (b) dissipation
kzε̂kk; contour lines indicate spectra at the spanwise scale of λ∗z = 1.0; grey-shaded planes indicate approximate
impinging and reflected shocks. (c–f ) The kzT̂kk distribution at x∗ = −4.0, −3.0, −2.0, −1.0, respectively.

these interpretations must be made with caution. For numerical stability, high numerical
dissipation is applied to resolve the shock wave, which reduces the accuracy of the results,
especially in spectral analysis.

As for the inner unsteadiness, the energy transfer is dominated by production P̂kk,
convection/diffusion/mass-diffusion B̂kk + Ĉkk + D̂kk, and inter-scale energy transfer T̂kk.
The dissipation ε̂kk is significant merely close to the wall. The production term P̂kk
manifests itself within the interaction zone from x∗ ≈ −3 to x∗ ≈ −1. It is weaker than
the contribution from the inter-scale energy transfer T̂kk, which is primarily responsible
for the SUO TKE amplification, even downstream of the interaction zone. Its positiveness
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Figure 14. The TKE spectra and the transport budget terms at kz = 0, for (a) Q̂kk, (b) P̂kk, (c)
B̂kk + Ĉkk + D̂kk, (d) ε̂kk, (e) Π̂kk, ( f ) T̂kk. The inset in (d) is stretched vertically from 0 to 0.04.

indicates that the TKE of SUOs is transferred from FSMs. We can comprehend this process
as the global instability induced by small-scale disturbances (Touber & Sandham 2009;
Nichols et al. 2017; Pasquariello et al. 2017).

8. Concluding remarks

Oblique shock wave/turbulent boundary layer interaction is a ubiquitous flow phenomenon
in aerospace engineering. In this paper, we present the scale-by-scale inspections of
turbulence amplification and the evolution of coherent structures within the interaction
zone. To do this, we derived the TKE spectra transport equation. The spectral analysis
enhances our comprehension of the association between turbulence amplification and the
genesis of large-scale structures.

For the presently considered case, with the free-stream Mach number being 2.28
and the angle of impinging shock wave being 33.2◦, the flow goes through a mild
separation with a small mean separation bubble in the interaction zone. The TKE budget
analysis confirms the preceding conclusion that the turbulence amplification is excited
by first mean flow deceleration, and then the shear layer once it is well-developed.
The spectra distribution shows that the most energetic motions are converted from the
near-wall small-scale motions with λ+z ≈ 100 at y+ ≈ 15 to large-scale motions with
λ∗z ≈ 0.9 at y∗ ≈ 0.4, which retain for a long extent downstream. It also suggests that the
turbulent amplification is associated directly with the emergence of large-scale motions.
Within the interaction zone, the spectra of the TKE production reveal the distinctive
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process of turbulence amplification between large-scale and small-scale motions: the
former primarily by the mean flow deceleration, while the latter by both the mean flow
deceleration and the mean shear. The seemingly first triggered production by mean flow
deceleration in TKE budget is an integral effect instead of a scale-by-scale phenomenon
for the presently considered low-Reynolds-number case. The production term engenders
primarily the energy of streamwise velocity fluctuation, which is redistributed to the other
two velocity components by the pressure-strain term. The energy within the interaction
zone is transported downstream, transferred to small scales, and dissipated by viscosity.
The inverse energy transfer from small scales (λ+z ≈ 100) to large scales (λ∗z � 1.0) is also
observed. However, its contribution is much less prominent compared with the production
term. The genuine compressibility effects are negligible, except near the shocks.

The TKE spectra transport analysis also sheds some light on the genesis of large-scale
motions within the interaction zone. Based on the commonalities between the presently
studied flow and the existing investigations on turbulent boundary layers under adverse
pressure gradient, we can elucidate that it is the mean adverse pressure gradient that
induces the generation of large-scale velocity streaks. That the pressure-strain term
transfers the energy from the streamwise velocity component to other components partially
substantiates that the formulation of the cross-stream circulations is probably induced by
the modal/non-modal instability of the velocity streaks, based on the scenarios of the
self-sustaining cycles in wall-bounded turbulence.

The spanwise uniform motions correspond to the unsteadiness of the reflected shock and
the flow separation or vortex shedding. The latter proves to be generated primarily by the
inter-scale energy transfer that transports the TKE from finite-scale motions to spanwise
uniform motions, possibly due to the global instability of the mean flow.

The present scale-by-scale energy transfer may benefit the improvement of subgrid
modelling for large-eddy simulations, which will be considered in our future study.
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