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In this article, mixture representations of survival functions of residual lifetimes of
k-out-of-n systems are obtained when the components are independent but not neces-
sarily identically distributed. Then we stochastically compare the residual lifetimes of
k-out-of-n systems in one- and two-sample problems. In particular, the results extend
some results in Li and Zhao [14], Khaledi and Shaked [13], Sadegh [17], Gurler and
Bairamov [7] and Navarro, Balakrishnan, and Samaniego [16]. Applications in the
proportional hazard rates model are presented as well.

1. INTRODUCTION

Let X1, X2, . . . , Xn be independent nonnegative continuous random variables. In the
reliability theory context, order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n are used to denote
lifetimes of systems. For example, Xn−k+1:n represents the lifetime of a k-out-of-n
system. In particular, the parallel and series systems are 1-out-of-n and n-out-of-n
systems. The residual life of a unit with lifetime X at time t is denoted by

(X)t = [X − t|X > t],

and it describes the residual time of the unit given that it is working at time t > 0.
Recently, the residual life of a k-out-of-n system given the information that at most
r components have failed but the system is still working has received great attention.
Bairamov, Ahsanullah, and Akhundov [3] investigated the mean residual life of a
parallel system under the condition that none of the components of the system has

© Cambridge University Press, 2009 0269-9648/10 $25.00 109

https://doi.org/10.1017/S0269964809990167 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990167


110 S. Kochar and M. Xu

failed at time t; that is,

[Xn:n − t|X1:n > t].
Subsequently, Asadi and Bairamov [1] studied the mean residual life of a parallel
system under the condition that at least (n − k + 1) components of the system are
working at time t:

[Xn:n − t|Xk:n > t].
Asadi and Bairamov [2] investigated the mean residual life of an (n − k + 1)-out-of-
n system under the condition that at time t, all of the components of the system are
working: [Xk:n − t|X1:n > t]. Recently, Li and Zhao [14] considered this problem in
more generality. They considered the residual life of an (n − k + 1)-out-of-n system
given the condition that at least (n − i + 1) components of the system are working:
for 1 ≤ i ≤ k ≤ n,

[Xk:n − t|Xi:n > t].
Hu, Jin, and Khaledi [8] studied the conditional distributions of generalized order
statistics, which include the residual lifetimes of k-out-of-n systems as a special case.
Khaledi and Shaked [13] considered the residual life of a coherent system given at
least (n − i + 1) components of the system are working and gave the motivation for
this research. Consider a situation where a system is equipped with an alarm system
that gets activated when a certain number of components in the system fail. It is of
interest for the engineer to know the behavior of the residual life of the system for
the maintenance purpose. This problem has also potential applications in medical
research. For example, a doctor might like to know the residual life of a patient after
one of his/her kidneys has failed.

Most of the results obtained in the literatures are restricted to the case when
the components are independent and identically (i.i.d.) distributed. In many practi-
cal situations, however, systems might be composed of independent but nonidentical
components. To the best of our knowledge, this general case has been considered
by Sadegh [17] for the first time. He considered the mean residual life of a parallel
system with independent but nonidentical components, which successfully extends
some results in Asadi and Bairamov [1]. Recently, Gurler and Bairamov [7] inves-
tigated the mean residual life functions of parallel systems and k-out-n systems
under the condition that all components are alive at time t. Zhao, Li, and Bala-
krishnan [19] considered the residual life of an (n − k + 1)-out-of-n system given
that the lth component has failed but the (l + 1)st component is working at time
t ≥ 0; that is,

[Xk:n − t|Xl:n ≤ t < Xl+1:n],
where 1 ≤ l < k ≤ n. In this article, we pursue this topic further and study the resid-
ual lifetime of an (n − k + 1)-out-of-n system with independent but nonidentical
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components under very general conditions. More precisely, we will study the residual
lifetime of an (n − k + 1)-out-of-n system given the condition that at least (n − l + 1)

components of the system are working at time t:

Xk,l,n,t = [Xk:n − t|Xl:n > t] for 1 ≤ l ≤ k ≤ n.

We also consider the other realistic and interesting situation: the residual lifetime of
an (n − k + 1)-out-of-n system given the condition that at least l components of the
system have failed but the system is working at time t:

X̃k,l,n,t = [Xk:n − t|Xl:n ≤ t, Xk:n > t] for 1 ≤ l < k ≤ n.

This situation often occurs in practice. For example, a four-engine plane in which two
engines must work for the plane to fly is equipped with a device that alerts the failure
time of engines. It is extremely important for the engineer to know the properties of
the residual life of the four-engine system in order to make a good system’s design. It
is interesting to note that Navarro, Balakrishnan, and Samaniego [16] considered the
residual lifetime of a coherent system T with i.i.d. components under the same scenario
(i.e., [T − t|Xl:n ≤ t, T > t]), where they obtained a mixture representation for the
survival function of the system’s residual life. They also posed one interesting question
of whether one could obtain useful representation results in cases when systems have
components that are independent but not necessarily identically distributed. In this
article, we will answer the question by providing a mixture expression for the survival
function of X̃k,l,n,t , the residual lifetime of an (n − k + 1)-out-of-n system given the
condition that at least l components of the system have failed but the system is working
at time t.

We will also stochastically compare the residual lifetimes of (n − k + 1)-out-of-
n systems in one-sample and two-sample problems with nonidentical components.
This work extends the corresponding results in Li and Zhao [14], Khaledi and Shaked
[13], Sadegh [17], and Gurler and Bairamov [7].

The article is organized as follows. In Section 2 we review some concepts. The
mixture representations of survival functions of residual lifetimes of (n − k + 1)-
out-of-n systems are given in Section 3. The mean residual lifetime functions of
(n − k + 1)-out-of-n systems are also obtained there. In Section 4 we will stochasti-
cally compare the residual lifetimes of (n − k + 1)-out-of-n systems with nonidentical
components from one sample and two samples. In the last section, some examples
and applications are given for the proportional hazard rates model.

2. PRELIMINARIES

The joint distribution functions of order statistics can be conveniently represented
as permanents when the underlying random variables are not identical. One can
refer to Bapat and Kochar [5], Hu, Zhu, and Wei [11], Hu, Wang, and Zhu [10],
and Balakrishnan [4] for related topics.
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If A = (ai, j) is an n × n matrix, then the permanent of A is defined as

Per A =
∑

σ

n∏
i=1

ai,σ(i),

where the summation is taken over all permutations σ = (σ (1), . . . , σ(n)) of
(1, . . . , n). If a1, a2, . . ., are column vectors, then the permanent

Per A =
⎡
⎣ a1︸︷︷︸

r1

, a2︸︷︷︸
r2

, · · · ,

⎤
⎦

is obtained by taking r1 copies of a1, r2 copies of a2, and so on, and⎡
⎣ a1︸︷︷︸

r1

, a2︸︷︷︸
r2

, · · · ,

⎤
⎦

C

means that the permanent has those rows only in C.
Similar to the determinant, one could use Laplace expansion for the permutation

along any row or column. For example, if A(i, j) denotes the matrix A by deleting row
i and column j, then

Per A =
n∑

j=1

aij Per A(i, j) for i = 1, . . . , n,

Per A =
n∑

i=1

aij Per A(i, j) for j = 1, . . . , n.

For mutually independent random variables X1, . . . , Xn, let Fi and F̄i be the dis-
tribution and survival functions of Xi, i = 1, . . . , n, respectively. The column vector
(F1(x), . . . , Fn(x))′ will be denoted by F(x). F̄(x) is similarly defined for the vec-
tor of survival functions. The distribution and survival functions of the residual life
of Xi at time t are denoted by Fi,t(x) and F̄i,t(x), respectively. The column vector(
F1,t(x), . . . , Fn,t(x)

)′
will be denoted simply by Ft(x), and F̄t(x) is defined similarly.

Note that the survival function of an (n − r + 1)-out-of-n system has the following
permanent expression (cf. Balakrishnan, [4]). For 1 ≤ r ≤ n, x ≥ 0,

F̄r,n(x) = P(Xr:n > x)

=
r−1∑
i=0

P(exactly i of X’s are ≤ x)

=
r−1∑
i=0

1

i!(n − i)!

⎡
⎣F(x)︸︷︷︸

i

, F̄(x)︸︷︷︸
n−i

⎤
⎦ . (2.1)
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Now, let us review some stochastic orders that will be used in the sequel. Let X and
Y be two nonnegative random variables with survival functions F̄ and Ḡ, respectively.

Definition 2.1 (Shaked and Shanthikumar, [18]): X is said to be smaller than Y in
the following:

(i) hazard rate order (denoted by X ≤hr Y) if Ḡ(x)/F̄(x) is increasing in x;

(ii) stochastic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x.

It is known that

X ≤hr Y ⇒ X ≤st Y (2.2)

and, for t ≥ 0,

X ≤hr Y ⇔ (X)t ≤st (Y)t . (2.3)

3. MIXTURE REPRESENTATIONS OF RESIDUAL LIFE FUNCTIONS

3.1. Survival Function of Xk, l, n, t

The survival function of the residual life of an (n − k + 1)-out-of-n system given at
least (n − l + 1) components of the system are working at time t ≥ 0, for 1 ≤ l ≤
k ≤ n,

Xk,l,n,t = [Xk:n − t|Xl:n > t] ,

could be represented as the following mixture form.

Theorem 3.1: For 1 ≤ l ≤ k ≤ n and t, x ≥ 0,

F̄k,l,n,t(x) = P(Xk,l,n,t > x)

=
∑l−1

i=0

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x)∑l−1
i=0

∑
Ci

φi(t)
,

where the summation Ci with cardinality i extends over all subsets of {1, 2, . . . , n} and
C0 ≡ ∅ and Cc

i is the corresponding complement. Here,

φi(t) =
∏
s∈Ci

Fs(t)

F̄s(t)
;

for i = 1, . . . , l − 1 and φ0(t) = 1,

F̄
(Cc

i )

k−i,n−i,t(x) =
k−i−1∑

j=0

1

j!(n − i − j)!

⎡
⎢⎣Ft(x)︸ ︷︷ ︸

j

, F̄t(X)︸ ︷︷ ︸
n−i−j

⎤
⎥⎦

Cc
i

,

which denotes the survival function of Xk−i,n−i,t , where Xk−i,n−i,t is the (k − i)th-order
statistic from (Xj)t , j ∈ Cc

i .
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Proof: Note that, for 1 ≤ l ≤ k ≤ n, t, x ≥ 0,

P(Xk:n > t + x, Xl:n > t)

=
l−1∑
i=0

k−i−1∑
j=0

P(exactly i of X’s are ≤ t, t < exactly j of X’s are ≤ t + x)

=
l−1∑
i=0

k−i−1∑
j=0

1

i!j!(n − i − j)!

⎡
⎢⎣F(t)︸︷︷︸

i

, F(t + x) − F(t)︸ ︷︷ ︸
j

, F̄(t+x)︸ ︷︷ ︸
n−i−j

⎤
⎥⎦

=
l−1∑
i=0

k−i−1∑
j=0

1

i!j!(n − i − j)!
∑

Ci

⎡
⎣F(t)︸︷︷︸

i

⎤
⎦

Ci

⎡
⎢⎣F(t + x) − F(t)︸ ︷︷ ︸

j

, F̄(t + x)︸ ︷︷ ︸
n−i−j

⎤
⎥⎦

Cc
i

=
n∏

i=1

F̄i(t)
l−1∑
i=0

k−i−1∑
j=0

∑
Ci

∏
s∈Ci

Fs(t)

F̄s(t)

1

j!(n − i − j)!

⎡
⎢⎣1 − F̄t(x)︸ ︷︷ ︸

j

, F̄t(x)︸ ︷︷ ︸
n−i−j

⎤
⎥⎦

Cc
i

=
n∏

i=1

F̄i(t)
l−1∑
i=0

∑
Ci

∏
s∈Ci

Fs(t)

F̄s(t)

k−i−1∑
j=0

1

j!(n − i − j)!

⎡
⎢⎣Ft(x)︸ ︷︷ ︸

j

, F̄t(x)︸ ︷︷ ︸
n−i−j

⎤
⎥⎦

Cc
i

=
n∏

i=1

F̄i(t)
l−1∑
i=0

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x).

Observing that

P(Xl:n > t) =
n∏

i=1

F̄i(t)
l−1∑
i=0

∑
Ci

φi(t),

the result follows immediately. �

Remarks:

(a) It is seen that F̄
(Cc

i )

k−i,n−i,t(x) is actually the survival function of an (n − k + 1)-
out-of-(n − i) system composed of (n − i) used units with residual life (Xj)t ,
j ∈ Cc

i . If t = 0, it reduces to the form of Eq. (2.1).

(b) If Xi’s are i.i.d. random variables,

F̄k,l,n,t(x) =
∑l−1

i=0

(n
i

)
φi(t)F̄k−i,n−i,t(x)∑l−1
i=0

(n
i

)
φi(t)

,

which reduces to the expression of H̄l,k,n,t in Li and Zhao [14].

https://doi.org/10.1017/S0269964809990167 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990167


RESIDUAL LIFETIMES OF k -OUT-OF-n SYSTEMS 115

(c) For the particular case l = 1, we have the following interesting result:

F̄k,1,n,t(x) =
k−1∑
j=0

1

j!(n − j)!

⎡
⎢⎣Ft(x)︸ ︷︷ ︸

j

, F̄t(x)︸ ︷︷ ︸
n−j

⎤
⎥⎦ ; (3.1)

that is,

Xk,1,n,t
st= Xk,n,t ,

This result states that if all of the components are working at time t, the residual
lifetime of an (n − k + 1)-out-n system is stochastically equal to that of an
(n − k + 1)-out-n system composed of n used components with residual life
(Xi)t . It follows from Theorem 1.B.26 of Shaked and Shanthikumar [18] that,
for k = 1, . . . , n − 1,

Xk,1,n,t ≤hr Xk+1,1,n,t .

By Theorem 1.B. 28 of Shaked and Shanthikumar [18], it holds that for k =
1, . . . , n − 1,

Xk,1,n,t ≤hr Xk,1,n−1,t ,

which extends Theorem 2 of Sadegh [17]. It also follows from Theorem 1.B.27
of Shaked and Shanthikumar [18] that if Xj ≤hr Xn, which implies (Xj)t ≤hr

(Xn)t , for all j = 1, . . . , n − 1, then for k = 2, . . . , n,

Xk−1,1,n−1,t ≤hr Xk,1,n,t .

Example 3.2: Suppose a data processing system has four video displays and that a
minimum of two displays operable are required for full data display. Hence, this
display subsystem is a 2-out-of-4 system. Now, suppose at time t, at most one dis-
play failed. We are interested in the residual lifetime of this system, which could be
expressed as X3,2,4,t = [X3:4 − t|X2:4 > t]. From Theorem 3.1,

F̄3,2,4,t(x) = F̄3,4,t(x) + ∑
C1

φ1(t)F̄
(Cc

1)

2,3,t (x)

1 + ∑
C1

φ1(t)
.

For simplicity, let us assume that Xi has an exponential distribution with survival
function

F̄i(x) = e−λix.

Then

F̄3,4,t(x) = e− ∑4
i=1 λix +

∑
C3,j∈Cc

3

e− ∑
s∈C3

λsx(1 − e−λjx) +
∑
C2

e− ∑
s∈C2

λsx
∏
j∈Cc

2

(
1 − e−λjx

)
,
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where the summation Ci with size i extends over all subsets of {1, 2, 3, 4} and Cc
i is

the corresponding complement.

∑
C1

φ1(t)F̄
(Cc

1)

2,3,t (x) =
4∑

i=1

[
eλi t − 1

]
⎡
⎢⎢⎣e− ∑

j 
=i λix +
∑

C(i)
2 ,j∈

(
C(i)

2

)c

e
− ∑

s∈C(i)
2

λsx
(1 − e−λjx)

⎤
⎥⎥⎦,

where the summation C(i)
2 with size 2 extends over all subsets of {1, 2, 3, 4}/{i}, and(

C(i)
2

)c
having size 1 means the corresponding complement,

∑
C1

φ1(t) =
4∑

i=1

eλi t − 4.

Now, assume

(λ1, λ2, λ3, λ4) = (0.1, 0.3, 0.5, 0.7).

Figure 1 shows the survival function of the system’s residual lifetime given that
at most one component failed at time t = 10.

Gurler and Bairamov [7] derived the mean residual life functions for (n − k +
1)-out-of-n systems given that all of the components are working at time t. From
Theorem 3.1, one can easily derive the following general mixture expression for the
mean residual life functions of (n − k + 1)-out-of-n systems.

Proposition 3.3: For 1 ≤ l ≤ k ≤ n and t, x ≥ 0,

μk,l,n(t) = E(Xk,l,n,t) =
∑l−1

i=0

∑
Ci

φi(t)μ
(Cc

i )

k,i,n(t)∑l−1
i=0

∑
Ci

φi(t)
,

2 4 6 8 10

0.2

0.4

0.6

0.8

1

FIGURE 1. The survival function of the residual lifetime of the 2-out-of-4 system
given that at most one component is failed at time t = 10.

https://doi.org/10.1017/S0269964809990167 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990167


RESIDUAL LIFETIMES OF k -OUT-OF-n SYSTEMS 117

where

μ
(Cc

i )

k,i,n(t) = E(Xk−i,n−i,t) =
∫ ∞

0
F̄

(Cc
i )

k−i,n−i,t(x) dx. (3.2)

The case l = 1,

μk,1,n(t) = E(Xk,n,t),

reduces to the expression given in Eq. (6) of Gurler and Bairamov [7].

Example 3.4 (Example 3.2 continued): The mean residual lifetime of a 2-out-of-4
data processing system given that at time t = 10 at most one display failed could
be easily computed through Eq. (3.2). Assume (λ1, λ2, λ3, λ4) = (0.1, 0.3, 0.5, 0.7); it
follows that

μ3,2,4(10) = 3.14726.

3.2. Survival Function of X̃k,l,n,t

The survival function of the residual life of an (n − k + 1)-out-of-n system given
at least l components of the system have failed at time t ≥ 0 but the system is still
working; that is, for 1 ≤ l < k ≤ n,

X̃k,l,n,t = [Xk:n − t|Xl:n ≤ t, Xk:n > t]

has a similar mixture representation.

Theorem 3.5: For 1 ≤ l < k ≤ n and t, x ≥ 0,

¯̃Fk,l,n,t(x) = P(X̃k,l,n,t > x) =
∑k−1

i=l

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x)∑k−1
i=l

∑
Ci

φi(t)
.

Proof: Using arguments similar to these for Theorem 3.1, for 1 ≤ l < k ≤ n, t, x ≥ 0,

P(Xk:n > t + x, Xl:n ≤ t, Xk:n > t)

= P(Xk:n > t + x, Xl:n ≤ t)

=
k−1∑
i=l

k−i−1∑
j=0

P(exactly i of X’s are ≤ t, t < exactly j of X’s are ≤ t + x)

=
n∏

i=1

F̄i(t)
k−1∑
i=l

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x)

https://doi.org/10.1017/S0269964809990167 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990167


118 S. Kochar and M. Xu

and

P(Xl:n ≤ t, Xk:n > t) =
k−1∑
i=l

P(exactly i of X’s are ≤ t)

=
k−1∑
i=l

∑
Ci

∏
s∈Ci

Fs(t)
∏
s∈Cc

i

F̄s(t)

=
n∏

i=1

F̄i(t)
k−1∑
i=l

∑
Ci

φi(t).

The required result follows. �

Remark: With the help of Theorem 3.5, we get the following representation for
the mean residual life function of an (n − k + 1)-out-of-n system given at least l
components of the system have failed at time t ≥ 0 but the system is still working:

μ̃k,l,n(t) = E(X̃k,l,n,t) =
∑k−1

i=l

∑
Ci

φi(t)μ
(Cc

i )

k,i,n(t)∑k−1
i=l

∑
Ci

φi(t)
, 1 ≤ l < k ≤ n,

where μ
(Cc

i )

k,i,n(t) is the same as Eq. (3.2).

Example 3.6: Suppose a plane has four engines and a minimum of two engines are
required for the plane work. Hence, this plane is a 2-out-of-4 system. Now, suppose
that at time t, at least one engine has failed but the system is still working. The residual
lifetime of this plane could be modelled as

X̃3,1,4,t = [X3:4 − t|X1:4 ≤ t, X3:4 > t].
Its survival function is represented as

F̄3,1,4,t(x) =
∑

C1
φ1(t)F̄

(Cc
1)

2,3,t (x) + ∑
C2

φ2(t)F̄
(Cc

2)

1,2,t (x)∑
C1

φ1(t) + ∑
C2

φ2(t)
.

Similar to Example 3.2, let us assume Xi has an exponential distribution with survival
function

F̄i(x) = e−λix.

Note that ∑
C2

φ2(t)F̄
(Cc

2)

1,2,t (x) =
∑
C2

∏
s∈C2

(
eλst − 1

)
e
− ∑

j∈Cc
2

λjx
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FIGURE 2. The survival function of the residual lifetime of the 2-out-of-4 system
given that at least one of the components has failed at time t = 10.

and ∑
C2

φ2(t) =
∑
C2

∏
s∈C2

(
eλst − 1

)
.

Now, assume

(λ1, λ2, λ3, λ4) = (0.1, 0.3, 0.5, 0.7).

The survival function of the system’s residual lifetime at time t = 10 is plotted in
Figure 2. The mean residual lifetime of the system given at least one engine has failed
at time t = 10 is

μ̃3,1,4(10) = 2.37856.

4. STOCHASTIC COMPARISONS

It is of interest to study the monotone properties of Xk,l,n,t and X̃k,l,n,t with respect l.
From Corollary 3.2 of Boland, Hollander, Joag-Dev, and Kochar [6] and Theorem 3.2
of Hu and Xie [10], it is known that Xk,l,n,t and X̃k,l,n,t are both stochastically decreasing
in l, where they considered this problem as the balls and bins experiment. Actually,
with the aid of the mixture expressions in Theorems 3.1 and 3.5, one can prove
them directly.

The following lemma due to Nanda and Shaked [15] will be used.

Lemma 4.1: Let X1, X2, . . . , Xm [respectively, Y1, Y2, . . . , Yn] be independent (not
necessarily i.i.d.) continuous random variables. Then

Xi ≤st Yi for all i ⇒ Xi:m ≤st Yj:n, i ≤ j, m − i ≥ n − j.
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Now, we are ready to present the following direct proof that Xk,l,n,t is stochastically
decreasing in l.

Theorem 4.2: For 2 ≤ l ≤ k ≤ n and t ≥ 0,

Xk,l−1,n,t ≥st Xk,l,n,t .

Proof: Note that for x, t ≥ 0, l ≥ 2, F̄k,l−1,n,t(x) − F̄k,l,n,t(x) has the same sign as

l−2∑
i=0

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x)
l−1∑
i=0

∑
Ci

φi(t) −
l−1∑
i=0

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x)
l−2∑
i=0

∑
Ci

φi(t);

that is, for 0 ≤ i ≤ l − 2,

l−2∑
i=0

∑
Ci

φi(t)F̄
(Cc

i )

k−i,n−i,t(x)
∑
Cl−1

φl−1(t) −
∑
Cl−1

φl−1(t)F̄
(Cc

l−1)

k−l+1,n−l+1,t(x)
l−2∑
i=0

∑
Ci

φi(t)

=
l−2∑
i=0

∑
Ci

∑
Cl−1

∏
s∈Ci⊕Cl−1

Fs(t)

F̄s(t)
F̄

(Cc
i )

k−i,n−i,t(x)

−
l−2∑
i=0

∑
C′

i

∑
C′

l−1

∏
s∈C′

i⊕C′
l−1

Fs(t)

F̄s(t)
F̄

(C′c
l−1)

k−l+1,n−l+1,t(x),

where Ci ⊕ Cj means the stacking of all elements in two sets Ci and Cj. Note that
the first part of the above equation has the same number of terms as the second part,
and for each Ci, there exists C′

l−1 such that Ci ⊂ C′
l−1 and C′

i ⊕ C′
l−1 = Ci ⊕ Cl−1.

Therefore, the above equation could be written as

l−2∑
i=0

∑ ∑
Ci⊂C′

l−1

∏
s∈Ci⊕Cl−1

Fs(t)

F̄s(t)

[
F̄

(Cc
i )

k−i,n−i,t(x) − F̄
(C′c

l−1)

k−l+1,n−l+1,t(x)
]

.

Since C′c
l−1 ⊂ Cc

i , according to Lemma 4.1,

F̄
(Cc

i )

k−i,n−i,t(x) ≥ F̄
(C′c

l−1)

k−l+1,n−l+1,t(x),

the result follows immediately. �

Using a similar argument, one could derive the following result.

Theorem 4.3: For t ≥ 0,

X̃k,l−1,n,t ≥st X̃k,l,n,t , 2 ≤ l < k ≤ n.
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Theorem 3.1 of Li and Zhao [14] and Theorem 2.1 of Khaledi and Shaked [13]
compares two systems with i.i.d. components from two samples. The following
theorem will generalize their results to the case when the components are independent
but not identically distributed.

Theorem 4.4: Let X1, . . . , Xn, Y1, . . . , Yn be independent continuous random vari-
ables. If, for all 1 ≤ i, j ≤ n, Xi ≤hr Yj, then for 1 ≤ l ≤ k ≤ n and t ≥ 0,

Xk,l,n,t ≤st Yk,l,n,t .

Proof: Let Z be a random variable with distribution function H and survival function
H̄, and it satisfies the following condition: for 1 ≤ i, j ≤ n,

Xi ≤hr Z ≤hr Yj.

Now, let us first prove

Xk,l,n,t ≤st Zk,l,n,t . (4.1)

Observing Theorem 3.1, it is enough for us to prove

l−1∑
i=0

(
n

i

)
φZ

i (t)H̄k−i,n−i,t(x)
l−1∑
i=0

∑
Ci

φX
i (t) −

l−1∑
i=0

∑
Ci

φX
i (t)F̄

(Cc
i )

k−i,n−i,t(x)

×
l−1∑
i=0

(
n

i

)
φZ

i (t) ≥ 0,

where

φZ
i (t) =

[
H(t)

H̄(t)

]i

, φX
i (t) =

∏
s∈Ci

Fs(t)

F̄s(t)
.

Note that the above expression could be represented as, for t ≥ 0 and x ≥ 0,

l−1∑
i=0

l−1∑
j=0

∑
Cj

φX
j (t)

(
n

i

)
φZ

i (t)H̄k−i,n−i,t(x) −
l−1∑
i=0

l−1∑
j=0

∑
Cj

(
n

i

)
φZ

i (t)φX
j (t)F̄

(Cc
j )

k−j,n−j,t(x)

=
l−1∑
i=0

l−1∑
j=0

∑
Cj

(
n

i

)
φZ

i (t)φX
j (t)

[
H̄k−i,n−i,t(x) − F̄

(Cc
j )

k−j,n−j,t(x)
]

= �1 + �2,

where

�1 =
l−1∑
i=0

l−1∑
j=0

∑
Cj

(
n

i

)
φX

j (t)φZ
i (t)

[
H̄k−i,n−i,t(x) − H̄k−j,n−j,t(x)

]
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and

�2 =
l−1∑
i=0

l−1∑
j=0

∑
Cj

(
n

i

)
φX

j (t)φZ
i (t)

[
H̄k−j,n−j,t(x) − F̄

(Cc
j )

k−j,n−j,t(x)
]

.

According to Eq. (2.3) and Lemma 4.1, it is seen that, for any x ≥ 0, j = 1, . . . , l,

F̄
(Cc

j )

k−j,n−j,t(x) ≤ H̄k−j,n−j,t(x);

hence, �2 ≥ 0.
So, it is sufficient to show �1 ≥ 0. Observe

�1 =
l−1∑
i=0

l−1∑
j=i

∑
Cj

(
n

i

)
φX

j (t)φZ
i (t)

[
H̄k−i,n−i,t(x) − H̄k−j,n−j,t(x)

]

+
l−1∑
i=0

i∑
j=0

∑
Cj

(
n

i

)
φX

j (t)φZ
i (t)

[
H̄k−i,n−i,t(x) − H̄k−j,n−j,t(x)

]

=
l−1∑
i=0

l−1∑
j=i

∑
Cj

(
n

i

)
φX

j (t)φZ
i (t)

[
H̄k−i,n−i,t(x) − H̄k−j,n−j,t(x)

]

+
l−1∑
i=0

l−1∑
j=i

∑
Ci

(
n

j

)
φX

i (t)φZ
j (t)

[
H̄k−j,n−j,t(x) − H̄k−i,n−i,t(x)

]

=
l−1∑
i=0

l−1∑
j=i

[
H̄k−i,n−i,t(x) − H̄k−j,n−j,t(x)

]

×
⎡
⎣∑

Cj

(
n

i

)
φX

j (t)φZ
i (t) −

∑
Ci

(
n

j

)
φX

i (t)φZ
j (t)

⎤
⎦.

From Lemma 4.1, it follows that, for i ≤ j, x ≥ 0,

H̄k−i,n−i,t(x) ≥ H̄k−j,n−j,t(x).

Note that, for i ≤ j,∑
Cj

(
n

i

)
φX

j (t)φZ
i (t) −

∑
Ci

(
n

j

)
φX

i (t)φZ
j (t)

=
∑

Cj

(
n

i

) ∏
s∈Cj

Fs(t)

F̄s(t)

[
H(t)

H̄(t)

]i

−
∑

Ci

(
n

j

) ∏
s∈Ci

Fs(t)

F̄s(t)

[
H(t)

H̄(t)

]j

=
∑

Cj

∏
s∈Cj

Fs(t)

F̄s(t)

∑
Ci

[
H(t)

H̄(t)

]i

−
∑

Ci

∏
s∈Ci

Fs(t)

F̄s(t)

∑
Cj

[
H(t)

H̄(t)

]j

.
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Since the first part has the same number of terms as the second part, for each Ci we
could find Cj such that Ci ⊂ Cj. Hence, the above equation could be written as

∑ ∑
Ci⊂Cj

∏
s∈Ci

Fs(t)

F̄s(t)

[
H(t)

H̄(t)

]i
⎡
⎣ ∏

s∈Cj−Ci

Fs(t)

F̄s(t)
−

(
H(t)

H̄(t)

)j−i
⎤
⎦ ≥ 0,

where the inequality follows from Eq. (2.2).
Hence, relation (4.1) is true. Using a similar argument, it can also be proved that

Zk,l,n,t ≤st Yk,l,n,t .

Combing the two results, the required result follows. �

One can derive the following result by a similar argument.

Theorem 4.5: Let X1, . . . , Xn, Y1, . . . , Yn be independent continuous random
variables. If, for all 1 ≤ i, j ≤ n, Xi ≤hr Yj, then for 1 ≤ l ≤ k ≤ n and t ≥ 0,

X̃k,l,n,t ≤st Ỹk,l,n,t .

5. APPLICATIONS IN PHR MODELS

The proportional hazards model (PHR) has been widely used in reliability theory,
survival analysis and engineering, and so forth, due to its simplicity and flexibility.
Let X1, X2, . . . , Xn be independent random variables. They are said to follow the PHR
model if for i = 1, 2, . . . , n, the survival function of Xi can be expressed as

F̄i(x) = [F̄(x)]λi for λi > 0,

where F̄(x) is the survival function of some random variable X. If r(t) denotes the
hazard rate corresponding to the baseline distribution F, then the hazard rate of Xi

is λir(t), i = 1, 2, . . . , n. It includes many well-known models such as exponential,
Weibull, Rayleigh, and Pareto.

Equation (3.1) enables us to derive a dynamic bound for the hazard rate function of
the residual lifetime of a parallel system given that all of the components are working
at time t:

Xn,1,n,t = [Xn:n − t|X1:n > t] ,

which is of particular interest in practice.

Proposition 5.1: Let X1, . . . , Xn be independent random variables with Xi having
survival function F̄λi , i = 1, . . . , n, and let Y1, . . . , Yn be another random sample with
the common survival function F̄λ. Then

λ ≥ λ̃ =
(

n∏
i=1

λi

)1/n

=⇒ Xn,1,n,t ≥hr Yn,1,n,t .
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Proof: According to Eq. (3.1),

Xn,1,n,t
st= Xn,n,t ,

the largest order statistic from (Xi)t for i = 1, . . . , n. Note that for i = 1, . . . , n,

P ((Xi)t > x) =
[

F̄(t + x)

F̄(t)

]λi

belongs to the PHR model. From Theorem 4.6 of Khaledi and Kochar [12], the required
result follows. �

Example 5.2: Let X1, . . . , Xn be independent Weibull random variables with Xi having
survival function, for i = 1, . . . , n,

F̄i(x) = e−λix2
, λi > 0, x > 0.

The hazard rate of Xn,n,t is

rn,n,t(x) =
∏n

i=1

(
1 − e−λi(x2+2xt)

)
1 − ∏n

i=1

(
1 − e−λi(x2+2xt)

) n∑
i=1

2λi(x + t)e−λi(x2+2xt)

1 − e−λi(x2+2xt)
.

According to Proposition 5.1, it holds that

rn,n,t(x) ≤
2nλ̃(x + t)e−λ̃(x2+2xt)

(
1 − e−λ̃(x2+2xt)

)n−1

1 −
(

1 − e−λ̃(x2+2xt)
)n .

Now, assume n = 3 and

(λ1, λ2, λ3) = (0.1, 0.2, 0.3).

In Figure 3, we plot the hazard rate functions of residual lifetimes of the parallel
system given that all of the components are working at time t when (1) the parameters
of distributions are (λ1, λ2, λ3), (2) when the common parameters are the arithmetic
mean (0.2, 0.2, 0.2), and (3) when the common parameter is the geometric mean
(0.182, 0.182, 0.182) of (λ1, λ2, λ3) at time t = 10. It can be seen that the bound in
case of the geometric mean is better than that for the arithmetic mean.

Due to the complicated expression of the survival function of the residual lifetime
of a k-out-of-n system with independent but nonidentical components, it will be of
interest to provide upper and lower bounds for the survival function of the system’s
residual lifetime. According to Theorems 4.4 and 4.5, we have the following results.
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FIGURE 3. The hazard rate functions of the residual lifetimes of the 1-out-of-3 system
given that all of the components are working at time t = 10 with different parameters.

Proposition 5.3: Let X1, . . . , Xn be independent random variables with Xi having
survival function F̄λi , i = 1, . . . , n. Then

H̄k,l,n,t(x) ≤ F̄k,l,n,t(x) ≤ Ḡk,l,n,t(x),

where H̄k,l,n,t(x) is the survival function of Xk,l,n,t from i.i.d. random variables
X1, . . . , Xn with the common parameter λ = max{λ1, . . . , λn} and Ḡk,l,n,t(x) is the
survival function of Xk,l,n,t with the common parameter λ = min{λ1, . . . , λn}.

Proposition 5.4: Let X1, . . . , Xn be independent random variables with Xi having
survival function F̄λi , i = 1, . . . , n. Then

¯̃Hk,l,n,t(x) ≤ ¯̃Fk,l,n,t(x) ≤ ¯̃Gk,l,n,t(x),

where ¯̃Hk,l,n,t(x) is the survival function of X̃k,l,n,t from i.i.d. random variables

X1, . . . , Xn with the common parameter λ = max{λ1, . . . , λn}, and ¯̃Gk,l,n,t(x) is the
survival function of X̃k,l,n,t with the common parameter λ = min{λ1, . . . , λn}.

Example 5.5 (Example 3.2 continued): Assume

(λ1, λ2, λ3, λ4) = (0.2, 0.25, 0.3, 0.35).

One can use λ1 = 0.2 and λ4 = 0.35 to provide upper and lower bounds for the survival
function of the residual lifetime of the 2-out-of-4 system given at most one display
failed at time t = 10 (see Fig. 4).
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FIGURE 4. Bounds for the survival function of the residual lifetime of the 2-out-of-4
system given at most one display failed at time t = 10.
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( 0.2,0.25,0.27,0.3)

( 0.3,0.3,0.3,0.3)

FIGURE 5. Bounds for the survival function of the residual lifetime of the 2-out-of-4
system given that at least one engine failed but the system is still working at time
t = 10.

Example 5.6 (Example 3.6 continued): Assume

(λ1, λ2, λ3, λ4) = (0.2, 0.25, 0.27, 0.3).
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One can use λ1 = 0.2 and λ4 = 0.3 to provide upper and lower bounds for the survival
function of the residual lifetime of the 2-out-of-4 system given that at least one engine
has failed but the system is still working at time t = 10 (see Fig. 5).
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