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This paper shows that nonparametric identification of latent competing risks
models is possible without the usual conditional independence and exclusion
restrictions+

1. INTRODUCTION

The identification of competing risks models has been addressed by a number
of authors+ Cox ~1962! and Tsiatis~1978! show that, in the absence of indepen-
dence, the underlying joint distribution is, in general, not identifiable+ Heck-
man and Honoré~1989, 1990! and Abbring and van den Berg~2003! demonstrate
that, with observable covariates, identification of these models is possible+ Omori
~1998! shows identifiability of independent competing risks with multiple spells+
Heckman and Honoré~1990! allow for latent situations where one observes the
maximum of two processes but does not know which one was observed+ Exam-
ples of these from epidemiology are in Lee~1992!, from reliability analysis in
Meeker and Escobar~1998!, and from health economics in Paric and Rilstone
~2000!+

The processes in Heckman and Honoré~1989, 1990! are dependent in that
both are functions of unobservables+ Identification is obtained using covariate
exclusion restrictions+ Conditional on the covariates and the unobservables the
processes are independent+ This excludes situations where one wants to con-
sider the direct interaction between durations+ Furthermore, in certain circum-
stances it may not be plausible to employ exclusion restrictions+ This paper
extends the identification results in Heckman and Honoré~1989, 1990! by allow-
ing for conditional dependence between the two latent processes and allowing
for the processes to be conditional upon the same set of covariates+
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One way of seeing the identification problem here is that the observed depen-
dent variables are sample order statistics~the minimum in this case! from
repeated samples whose individual outcomes are unobserved+ Clearly, the results
we derive can be applied to situations where only the maximum of repeated
samples is observed or, in fact, any ~known! order statistics+ As we discuss in
Section 4, the results we develop can be adapted to a number of cases such as
sample selection and disequilibrium models+

As is standard in this literature, the results are nonparametric and allow for
unobservable frailty or heterogeneity+ For clarity, we assume throughout that
there are only two processes, although this can be generalized+

The discussion proceeds as follows+ In Section 2 we allow for direct depen-
dence among the risk sets and show when identification is possible+ In Sec-
tion 3 we show how identification can be obtained even without exclusion
restrictions+ In each of these cases, the results provide sufficient conditions for
identification+

2. IDENTIFICATION WITH CONDITIONALLY DEPENDENT
DURATION VARIABLES

The Heckman and Honoré~1989! competing risks framework can be general-
ized as follows+ Let U1 and U2 be unobservables on~0,1! 3 ~0,1! with joint
distribution and density functionsK andk and letx 5 ~x1, x2, x3, z! be a vector
of covariates taking values onX 5 X1 3 X2 3 X3 3 Z+ Recursively define two
duration processes, T1 andT2:

F1~T1! 5 2
log U1

u1~x1, z!
, F2~T2! 5 2

log U2

u2~x2, z!r~T1, x3, z!
, (1)

whereFj , j 5 1,2 are commonly referred to as the cumulative baseline hazard
rates+ As discussed in Heckman and Honoré~1989!, special cases of this include
the proportional and accelerated hazard rate models+ This framework is also
applicable to multiple spell models and various nonseparable hazard rate mod-
els+ We index thex’s to allow for exclusion restrictions such thatxj appears
only in uj , j 5 1,2+ The termx3 appears only inr, whereasz can be common to
both hazard rates+1 This is similar to exclusion restrictions in simultaneous equa-
tions estimation+ Put c 5 ~u1,u2,r!+ Let

L1 [ F1~t1!u1~x1, z!, L261 [ F2~t2!u2~x2, z!r~t1, x3, z!+ (2)

By the transformation theorem, the density and survivor functions ofT1,T2

are derived as

f ~t1, t26x! 5 6J6k~e2L1,e2L261 ! and S~t1, t26x! 5 K~e2L1,e2L261 !, (3)
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where

6J6 5 F1
' u1F2

' u2 re2L1e2L261 (4)

andFj
' denotes the derivative ofFj + We let R1 5 @0,`!+

We formalize our assumptions as follows+

Assumption 1+ The durations are generated as in equation~1! where~U1,U2! ;
K : ~0,1! 3 ~0,1! r @0,1# , K~{,{! is strictly increasing and differentiable in its
arguments+

Assumption 2+ For j 5 1,2, Fj ~t ! is differentiable and strictly increasing,
Fj ~0! 5 0, Fj ~1! 5 1, andFj ~`! 5 `+

Assumption 3+ ~u1~x1, z!,u2~x2, z!! r R1
2 is continuous+ For j 5 1,2, some

xj
1 [ X j andxj

0 [ X j , uj ~xj
1, z! 5 1, anduj ~xj

0, z! 5 limxjrxj
0 uj ~xj , z! 5 0+

Assumption 4+ r~t, x3, z! r ~a,b!, a , 1 , b, is differentiable with respect
to t, r~0, x3, z! 5 1, and for somex3

1 [ X3, r~t, x3
1, z! 5 1; c21~R1

2 3 ~a,b!! 5
X1 3 X2 3 X3 3 Z 3 R1+

The statements regarding the domains, ranges, and inverse images ofu and
r are made to ensure that, when evaluating one of the variates at a fixed point,
this does not inadvertently impose restrictions on the values the other variates
may take+ The intuition of the results is very simple+ In a competing risks frame-
work, the observed duration variable is the minimum of the two duration pro-
cesses+We find conditions under which the “observable” survivor function tends
to the marginal survivor function of the processes+ This kind of approach is
sometimes referred to as “identification at infinity” as in Heckman~1990!+ Essen-
tially, the assumption is made that, for some value of the conditioning variables
~not necessarily infinity! or set of values, one of the dependent variables has
a degenerate distribution+ Given that, results like those of Elbers and Ridder
~1982! can be applied directly+ Moreover, because the parameters of interest
are expressed directly in terms of the survivor function and its derivatives, these
can be estimated directly by their sample analogs+

The partitioning ofx 5 ~x1, x2, x3, z! allows for a subset of the observed
covariates to enter intor+ We show identification of this model under two dif-
ferent sets of assumptions+ We either assume thatx3 is a subset ofx with no
elements in common with eitherx1, x2, or z andx3 has a certain limiting impact
on r, or we will show that certain shape restrictions onF2 andr can identify
the components of this model+ Under the assumption thatr~t, x3

1, z! 5 1, T1 has
no direct impact onT2 and the duration processes become conditionally inde-
pendent+ In this situation identification essentially follows along the lines of
Heckman and Honoré~1989, 1990!+ We impose the natural restriction that
r~0, x3, z! 5 1 so that the marginal distributions with this model are also as in
the conditionally independent model+
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We letK1~u1! 5 K~u1,1!, K2~u2! 5 K~1,u2!, denote the marginal distribution
functions and indicate their derivatives byKj

' , j 5 1,2+ The partial derivatives
of K are indicated byK ~ j ! , j 5 1,2+ Note thatKj ~0! 5 0 andKj ~1! 5 1, j 5 1,2+

Assumption 5+ For j 5 1,2 Kj
' is left continuous at 1 andKj

'~1! 5 Lj . 0+

Assumption 5 guarantees that a certain limiting ratio of theKj
'’s in the

proofs that follow is well defined+ Alternatively, one could allow for theKj
'’s to

vanish, by, say, strengthening the smoothness assumption and using L’Hôpital’s
rule+

PROPOSITION 1+ Let Assumptions 1–5 hold. Then,uj , Fj , j 5 1,2, r, and K
are identifiable.

Proof+ The survivor function of the minimum of the two durations is given by

S~t 6x! 5 K~e2L1~t 6x!,e2L261~t 6 t, x! !+ (5)

We can identifyu2 by evaluating the ratio

]

]t
S~t 6x1

0, x2, x3, z!

]

]t
S~t 6x1

0, x2
1, x3, z!

5

u2~x2, z!K2
'~e2F2~t !u2~x2, z!r~t, x3, z! !

]

]t
~F2~t !r~t, x3, z!!

K2
'~e2F2~t !r~t, x3, z! !

]

]t
~F2~t !r~t, x3, z!!

5 u2~x2, z!
K2
'~e2F2~t !u2~x2, z!r~t, x3, z! !

K2
'~e2F2~t !r~t, x3, z! !

(6)

and observing that

u2~x2, z! 5 lim
tr0

]

]t
S~t 6x1

0, x2, x3, z!

]

]t
S~t 6x1

0, x2
1, x3, z!

+ (7)

We can identifyu1 symmetrically+ To identify K note that

S~16x1, x2, x3
1, z! 5 K~e2u1~x1, z!,e2u2~x2, z! !+ (8)

By varying u1 andu2 over R1
2 , we can trace outK+ BecauseK is identifiable

and increasing in its arguments, K2 has a unique and identifiable inverse, H2,
such that

e2F2~t !u2~x2, z!r~t, x3, z! 5 H2~S~t 6x1
0, x2, x3, z!!, (9)

so that

F2~t ! 5 2ln~H2~S~t 6x1
0, x2

1, x3
1, z!!! (10)
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and

r~t, x3, z! 5
ln~H2~S~t 6x1

0, x2
1, x3, z!!!

ln~H2~S~t 6x1
0, x2

1, x3
1, z!!!

+ (11)

The termF1 is identified symmetrically+ n

Remark 1+ Without the identifying variable, x3, it is still possible to identify
the parameters using functional form restrictions+ Note that in this case we can
identify

r~t !F2~t ! 5 2ln~H2~S~t 6x1
0, x2

1!!!+ (12)

In general, it is not possible to decompose the left-hand side into the two func-
tions+ However, for certain, fairly rich parametric models one can show that, if
r~t ! 5 r~t;a! and F~t ! 5 F~t;b!, where the true values area0 and b0, say,
then for any other values, a' and b' , say, r~t;a0! Þ r~t;a'! and F~t;b0! Þ
F~t;b'! on a set of positive measure+ Consequently, it is possible to identify
the two functions+

For example, supposeF~t ! 5 t a, r~t ! 5 ~1 1 t !b and say for two values
a0,b0 anda',b' these are the same+ Then

0 5
d

dt
~a0 log t 1 b0 log~11 t !! 2

d

dt
~a' log t 1 b' log~11 t !!

5
a0 2 a'

t
1

b0 2 b'

11 t
(13)

or

t 5 2S 1

a0 2 a'
1

1

b0 2 b'D~b0 2 b' !, (14)

a constant, which can only hold on a set of measure zero+ The rest of the iden-
tification follows as previously+

3. IDENTIFICATION WITHOUT EXCLUSION RESTRICTIONS

In many situations it may not be plausible to impose exclusion restrictions+ For
example, in bargaining situations, if both agents have access to the same infor-
mation, there is no reason to expect that one agent will condition on less infor-
mation than the other+ However, it may be plausible to make an assumption as
to how a covariate will impact on each agent’s duration dependence, at least in
a limiting sense+ In this case the data are generated as

F1~T1! 5 2
log U1

u1~x, z!
, F2~T2! 5 2

log U2

u2~x, z!
, (15)
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wherex ~a scalar! andz, taking values onX 3 Z, are common to bothu1 and
u2+ The durations respond asymmetrically tox such that for, say, large ~small!
values ofx, we haveu1 r 0 ~u2 r 0! and we can assume that an observed exit
is due toT2 ~T1! being the minimum+ It should be intuitive how the model is
identified+ The termsF2 andu2 are identified using values ofx such that, say,
x $ x10+ Conversely, F1 andu1 are identified using values ofx such that, say,
x # x20 ~x20 , x10!+We require that the relevant normalizations can be imposed
within these ranges+ The assumptions are as follows+

Assumption 6+ The durations are generated as in equation~15! where
~U1,U2! ; K : ~0,1! 3 ~0,1! r @0,1# , K~{,{! is strictly increasing and differen-
tiable in its arguments+

Assumption 7+ u~x, z! 5 ~u1~x, z!,u2~x, z!! r R1
2 is continuous; u21~R1

2 ! 5
X 3 Z+

Assumption 8+ For all ~x, z! [ X 3 Z such thatx . x10, u1~x, z! 5 0 and
for all ~x, z! [ X 3 Z such thatx , x20, u2~x, z! 5 0, somex10 . x20+ For
some~x2, z2! [ X 3 Z, x2 . x10, u2~x2, z2! 5 1; for some~x1, z1! [ X 3 Z,
x1 , x20, u1~x1, z1! 5 1+

PROPOSITION 2+ Let Assumptions 2 and 5–8 hold. ThenFj , j 5 1,2 and K
are identifiable,u1 is identifiable for x, x20, andu2 is identifiable for x. x10.

Proof+ Note first that for values ofx such thatx . x10

]

]t
S~t 6x, z!

]

]t
S~t 6x2, z2!

5
F2
' ~t !u2~x, z!K2

'~F2~t !u2~x, z!!

F2
' ~t !K2

'~F2~t !!

5 u2~x, z!
K2
'~F2~t !u2~x, z!!

K2
'~F2~t !!

, (16)

so that

u2~x, z! 5 lim
tr0

]

]t
S~t 6x, z!

]

]t
S~t 6x2, z2!

+ (17)

We identify u1~x, z! symmetrically+ Settingt 5 1 we can identifyK by varying
u1 andu2 overR1

2 + As in the proof of Proposition 1, we can then identifyFj by
inverting Kj , j 5 1,2+ n
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Remark 2+ Note that Proposition 2 only partially identifies the model~at
least nonparametrically!+ Without imposing other restrictions we can identify
u1~x, z!~u2~x, z!! only for those values ofx, z such thatx , x20 ~x . x10!+

Remark 3+ The presence ofz in u1 andu2 allows us to vary these functions
overR1

2 and identifyK+Without z we would only be able to observeu1 andu2

over, say, ~x20,`! 3 ~x10,`!, so thatK andFj , j 5 1,2, are only partially iden-
tifiable+ This problem can be partially circumvented by assumingu1, u2 are
differentiable+An explanation is in the working paper version of this paper~Paric
and Rilstone, 1999!+

4. CONCLUSION

This paper has shown that, under a variety of restrictions, a class of latent com-
peting risks models can be identified+ Because the functions we consider are
identified in terms of the observed durations and their derivatives, our results
suggest a couple of estimation strategies+ One possibility would be to use non-
parametric analogs of the survivor function and its derivatives+ There are both
theoretical and practical difficulties involved with this, because the estimation
would involve calculations at boundary points+ Alternatively, one could param-
eterize the components of the model and use standard maximum likelihood pro-
cedures+ Simulation and empirical results in Paric and Rilstone~1998, 2000!
indicate that this works quite well+

The identification results in the paper can be readily extended to a number
of other econometric models+ In the case of sample selection problems one often
observes the minimum or maximum of two or more random variables+ The pro-
totype of this is the Roy~1951! model where one observes the maximum of,
say, salary offers+ The framework of this paper is readily adaptable to that model+
Moreover, it is quite intuitive that the results would be useful in the Roy con-
text if an agent conditions on a sequence of wage offers+ The same analysis
applies to auction models+

The latent feature of the data that is central to our paper is also present in
disequilibrium models of supply and demand where one observes the minimum
of these two functions but does not know which has been observed+ A number
of examples are given in Maddala~1986!+ Our results are directly applicable
with a simple reinterpretation of the variables and functions in the model+

Another extension of the results of this paper would be for an intermediate
situation along the lines of Lee and Porter~1984! in which the “cause of fail-
ure” is imperfectly observed+ In this case, additional observables would beDY
and Y, say, whereD indicates which process was the minimum andY equals
one if D is observed, zero otherwise, and possibly depends on the covariates+
BecauseY is observable, its distribution is identifiable+ The complete observa-
tions could be used to identify the distribution of the rest of the process+
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NOTE

1+ It is tempting to generateT1 andT2 symmetrically so that a function, say, r1~T2!, appears in
the denominator of the first term in equation~1!+ In fact, one could do this and mechanically walk
through the identification proofs that follow+ However, because of the inherent nonlinearities involved
in equation~1!, T1 andT2 would not be uniquely defined except under rather implausible conditions+
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