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NONPARAMETRIC IDENTIFICATION
OF LATENT COMPETING
RISKS MODELS

GoRDANA CoLBY
York University

PAauL RILSTONE
York University

This paper shows that nonparametric identification of latent competing risks
models is possible without the usual conditional independence and exclusion
restrictions

1. INTRODUCTION

The identification of competing risks models has been addressed by a number
of authors Cox (1962 and Tsiatiq1978 show thatin the absence of indepen-
dence the underlying joint distribution isin general not identifiable Heck-
man and Honoré1989 1990 and Abbring and van den Befg003 demonstrate
that with observable covariateglentification of these models is possib@mori
(1998 shows identifiability of independent competing risks with multiple spells
Heckman and Honorél 990 allow for latent situations where one observes the
maximum of two processes but does not know which one was obsdfxath-
ples of these from epidemiology are in LEE92), from reliability analysis in
Meeker and Escobdd 998, and from health economics in Paric and Rilstone
(2000.

The processes in Heckman and Hon¢t889 1990 are dependent in that
both are functions of unobservabladentification is obtained using covariate
exclusion restrictionsConditional on the covariates and the unobservables the
processes are independefhis excludes situations where one wants to con-
sider the direct interaction between duratioRarthermorein certain circum-
stances it may not be plausible to employ exclusion restrictiohss paper
extends the identification results in Heckman and Hord889 1990 by allow-
ing for conditional dependence between the two latent processes and allowing
for the processes to be conditional upon the same set of covariates
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One way of seeing the identification problem here is that the observed depen-
dent variables are sample order statistittee minimum in this cagefrom
repeated samples whose individual outcomes are unobs&lestly the results
we derive can be applied to situations where only the maximum of repeated
samples is observed,dn fact, any (known) order statisticsAs we discuss in
Section 4 the results we develop can be adapted to a humber of cases such as
sample selection and disequilibrium models

As is standard in this literaturéhe results are nonparametric and allow for
unobservable frailty or heterogeneifyor clarity we assume throughout that
there are only two processedthough this can be generalized

The discussion proceeds as follows Section 2 we allow for direct depen-
dence among the risk sets and show when identification is possiblgec-
tion 3 we show how identification can be obtained even without exclusion
restrictions In each of these casebe results provide sufficient conditions for
identification

2. IDENTIFICATION WITH CONDITIONALLY DEPENDENT
DURATION VARIABLES

The Heckman and Honor@ 989 competing risks framework can be general-
ized as follows Let U; and U, be unobservables of®,1) X (0,1) with joint
distribution and density functiorts andk and letx = (x4, X», X3, Z) be a vector
of covariates taking values oti = X; X X, X X3 X Z. Recursively define two
duration processed; andT,:

T @
B 01(X1,2)’ 2 0>(X2,2) p(Ty, X3,2)°
whered;, j = 1,2 are commonly referred to as the cumulative baseline hazard

rates As discussed in Heckman and Hon¢i®89, special cases of this include

the proportional and accelerated hazard rate modéls framework is also
applicable to multiple spell models and various nonseparable hazard rate mod-
els We index thex’s to allow for exclusion restrictions such that appears

only in 6, ] = 1,2. The termx; appears only ip, whereasz can be common to

both hazard rat€'sThis is similar to exclusion restrictions in simultaneous equa-
tions estimationPutys = (64,65, p). Let

Ay = Dy(11)01(%y, 2), A= Dy(1) 05(Xo, 2) p(ty, X3, 2). (2

By the transformation theorgnthe density and survivor functions af, T,
are derived as

f(t, t,|x) = | I k(e 2,e 221) and S(ty,t,|x) = K(e e tan), 3)
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where
|J] = ©16, D50, pe e an 4)

and®; denotes the derivative af;. We let), = [0,00).
We formalize our assumptions as follows

Assumption 1 The durations are generated as in equatiornvhere(U,,U,) ~
K:(0,1) X (0,1) — [0,1], K(-,-) is strictly increasing and differentiable in its
arguments

Assumption 2 For j = 1,2, ®;(t) is differentiable and strictly increasing

Assumption 3 (6,(X4, ), 62(X,,2)) — RZ is continuousFor j = 1,2, some
x' € X andx’ € Xj, 6,(x!,2) = 1, andg;(x°, z) = lim, _,06;(x;,2) = 0.

Assumption 4 p(t, X3, 2) — (a,b), a < 1 < b, is differentiable with respect
tot, p(0,Xs,2) =1, and for some} € X5, p(t,x3,2) =1; 4 1(N2 X (a,b)) =
XX X X X3 X ZX N,

The statements regarding the domairages and inverse images af and
p are made to ensure thathen evaluating one of the variates at a fixed point
this does not inadvertently impose restrictions on the values the other variates
may take The intuition of the results is very simplg a competing risks frame-
work, the observed duration variable is the minimum of the two duration pro-
cessesWe find conditions under which the “observable” survivor function tends
to the marginal survivor function of the processé&his kind of approach is
sometimes referred to as “identification at infinity” as in Heckn(a®90. Essen-
tially, the assumption is made th&r some value of the conditioning variables
(not necessarily infinity or set of valuesone of the dependent variables has
a degenerate distributiosiven thaf results like those of Elbers and Ridder
(1982 can be applied directlyMoreover because the parameters of interest
are expressed directly in terms of the survivor function and its derivativese
can be estimated directly by their sample analogs

The partitioning ofx = (X, X», X3, Z) allows for a subset of the observed
covariates to enter intp. We show identification of this model under two dif-
ferent sets of assumption®/e either assume thag is a subset ok with no
elements in common with eitha&g, x,, or zandx; has a certain limiting impact
on p, or we will show that certain shape restrictions ®pandp can identify
the components of this modélnder the assumption tha(t, x3, z) = 1, T, has
no direct impact oril, and the duration processes become conditionally inde-
pendent In this situation identification essentially follows along the lines of
Heckman and Honoré1989 1990. We impose the natural restriction that
p(0,x3,2) = 1 so that the marginal distributions with this model are also as in
the conditionally independent model
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We letK(uy) = K(ug,1), Ky(uy) = K(1,u,), denote the marginal distribution
functions and indicate fcheir derivatives By, ] = 1,2. The partial derivatives
of K are indicated by /), j = 1,2. Note thatK;(0) = 0 andK;(1) = 1,j = 1,2.

Assumption 5 Forj = 1,2 K/ is left continuous at 1 an#{(1) = L; > 0.
Assumption 5 guarantees that a certain limiting ratio of Kjé in the
proofs that follow is well definedAlternatively one could allow for the|s to

vanish by, say strengthening the smoothness assumption and using L'Hopital’'s
rule.

PROPOSITION 1 Let Assumptions 1-5 hold. Theh, ®;, j = 1,2, p, and K
are identifiable.

Proof The survivor function of the minimum of the two durations is given by
S(t]x) = K(e M), g Aenltit) (5)

We can identifyd, by evaluating the ratio

d ]
a S(t]X?, Xy, X3, 2) 0,(X2,2) Ké(ei%(t)gz(xz’ 2p(txs2)) 5 (P,(t)p(t, X3,2))

d d
a S(t | X](_)’ X%’ X3, Z) KZ/(e_q)Z(t)p(t’ X3’Z)) a (‘bz(t)P(ta X3’ Z))
Kzr(efsz(t)Gz(Xz, 2)p(t, X3, Z))
= ‘92()(2’ Z) Ké(e_q)z(t)p(t’ stz)) (6)

and observing that

J 0

5 S(t | Xl’ XZ’ X3’ Z)
05(X5,2) = lim . (7)

t—0 0 1

at S(t[x7, X2, X3, 2)
We can identifyd; symmetrically To identify K note that
S(1] Xq, X, X3, 2) = K(e™000:2) @ 020x2.2)) (8)

By varying 6; and @, over 1%, we can trace ouK. BecauseK is identifiable
and increasing in its arguments, has a unique and identifiable inversé,,

such that

e 2000220 (0352 = H,(S(t| X0, X, X3, 2)), ()
so that

Dy(t) = —In(Ha(S(t[XE, X3, %3, 2))) (10)
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and
IN(H,(S(t|x%, x2, X4, Z

pltxy2) = LI D) an
In(H(S(t[x?, X2, X3, 2)))

The term®, is identified symmetrically u

Remark 1 Without the identifying variablexs, it is still possible to identify
the parameters using functional form restrictioNste that in this case we can
identify

p(1)Py(t) = —In(Hy(S(t|XE, x2))). (12)

In generalit is not possible to decompose the left-hand side into the two func-
tions However for certain fairly rich parametric models one can show that
p(t) = p(t;a) and ®(t) = ®(t;b), where the true values am® andb,, say
then for any other values’ andb’, say p(t;ap) # p(t;a’) and ®(t;by) #
®(t;b’) on a set of positive measur€onsequentlyit is possible to identify
the two functions

For example supposed(t) = t2 p(t) = (1 + t)® and say for two values
ay, by anda’,b’ these are the sam&hen

d d
0= o (aglogt + bylog(1+1t)) — m (a’logt + b’ log(1+1))

_ ao - a/ bo - b,
= + (13)
t 1+t

1 1
t= —< + >(b0 —b), (14)

a.o_a, bo_b,

a constantwhich can only hold on a set of measure zérbe rest of the iden-
tification follows as previously

3. IDENTIFICATION WITHOUT EXCLUSION RESTRICTIONS

In many situations it may not be plausible to impose exclusion restrictiors
examplein bargaining situationsf both agents have access to the same infor-
mation there is no reason to expect that one agent will condition on less infor-
mation than the otheHowever it may be plausible to make an assumption as
to how a covariate will impact on each agent’s duration dependandeast in

a limiting senseln this case the data are generated as

logU logU
- 0 g L 9’ (I)Z(TZ) = - g 2 ’
1(X,2) 6,(X, 2)

®y(Ty) = (15)
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wherex (a scalay andz taking values ont X Z, are common to boti; and

0». The durations respond asymmetricallyxsuch that forsay large (smal)
values ofx, we havef; — 0 (6, — 0) and we can assume that an observed exit
is due toT, (T;) being the minimumIt should be intuitive how the model is
identified The terms®, and#, are identified using values of such thatsay

x = x1°, Conversely®, and#g, are identified using values of such thatsay

x = x20 (x20 < x19), We require that the relevant normalizations can be imposed
within these rangesThe assumptions are as follows

Assumption 6 The durations are generated as in equat{®b) where
(U,Uy) ~ K:(0,2) X (0,1) — [0,1], K(-,-) is strictly increasing and differen-
tiable in its arguments

Assumption 7 0(X, z) = (01(x, ), 6-(x, z)) = R? is continuousf (N2 ) =
X X Z.

Assumption 8 For all (x,z) € X X Z such thatx > x'°, 6,(x,z) = 0 and
for all (x,z) € X X Z such thatx < x2°, ,(x,z) = 0, somex*° > x2°. For
some(x? z%) € X X Z, x2 > x10, 0,(x? z?) = 1; for some(x%, z!) € X X Z,
xt < x?0 9,(x%zY) =1

PROPOSITION 2 Let Assumptions 2 and 5-8 hold. Thép j = 1,2 and K
are identifiable 9, is identifiable for x< x2°, and#é, is identifiable for x> x1°,

Proof Note first that for values ok such thatx > x*°

d
o Stix.2) _ D5(0)05(%, 2)KJ(D5(1)05(%, 2))

D5(1) K3 (D,(1))

J
— S(t|x? z2
o SHx%7)

K3 (@(1)6(X, 2))
Ka(@,(1)

= 0,(X,2) (16)

so that

dJ
— S(t]%, 2)

05(X,z) = lim
t—0

. an
p S(t|x? z?)

We identify 6,(x, z) symmetrically Settingt = 1 we can identifyK by varying
6, andé, overiZ. As in the proof of Proposition,we can then identifyb; by
invertingKj, j = 1,2. |
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Remark 2 Note that Proposition 2 only partially identifies the modet
least nonparametrically Without imposing other restrictions we can identify
61(x, 2)(62(x, 2)) only for those values of, z such thatx < x2° (x > x19).

Remark 3 The presence dof in 6, and 6, allows us to vary these functions
overN2 and identifyK. Without z we would only be able to observg andé,
over say (x?%00) X (x*%00), so thatk and®;, j = 1,2, are only partially iden-
tifiable. This problem can be partially circumvented by assumingd, are
differentiable An explanation is in the working paper version of this pafiearic
and Rilstone1999.

4. CONCLUSION

This paper has shown thainder a variety of restrictiona class of latent com-
peting risks models can be identifieBecause the functions we consider are
identified in terms of the observed durations and their derivativas results
suggest a couple of estimation strategi@se possibility would be to use non-
parametric analogs of the survivor function and its derivatiVé®re are both
theoretical and practical difficulties involved with thisecause the estimation
would involve calculations at boundary poinédternatively one could param-
eterize the components of the model and use standard maximum likelihood pro-
cedures Simulation and empirical results in Paric and Rilstqda®98 2000
indicate that this works quite well

The identification results in the paper can be readily extended to a number
of other econometric modelk the case of sample selection problems one often
observes the minimum or maximum of two or more random variaBlles pro-
totype of this is the Roy1951) model where one observes the maximum of
say salary offersThe framework of this paper is readily adaptable to that model
Moreover it is quite intuitive that the results would be useful in the Roy con-
text if an agent conditions on a sequence of wage affehe same analysis
applies to auction models

The latent feature of the data that is central to our paper is also present in
disequilibrium models of supply and demand where one observes the minimum
of these two functions but does not know which has been obsefvedmber
of examples are given in Madda(d986). Our results are directly applicable
with a simple reinterpretation of the variables and functions in the model

Another extension of the results of this paper would be for an intermediate
situation along the lines of Lee and Port{@®84) in which the “cause of fail-
ure” is imperfectly observedn this caseadditional observables would Y
andY, say whereD indicates which process was the minimum anequals
one if D is observedzero otherwisgand possibly depends on the covariates
BecauseY is observablgits distribution is identifiableThe complete observa-
tions could be used to identify the distribution of the rest of the process
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NOTE

1. It is tempting to generat&, andT, symmetrically so that a functiorsay p1(T), appears in
the denominator of the first term in equati@). In fact one could do this and mechanically walk
through the identification proofs that followowever because of the inherent nonlinearities involved
in equation(1), T; andT, would not be uniquely defined except under rather implausible conditions
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