
Design rationale: Researching under uncertainty

JANET E. BURGE
Computer Science and Systems Analysis Department, Miami University, Oxford, Ohio, USA

(RECEIVED May 12, 2007; ACCEPTED May 9, 2008)

Abstract

Rationale research in software development is a challenging area because although there is no shortage of advocates for its
value, there is also no shortage of reasons for why rationale is unlikely to be captured in practice. Despite more than 30 years
of research there still remains much uncertainty: how useful are the potential benefits and how insurmountable are the
barriers? Will the value of the rationale (design and otherwise) justify the cost of collecting it? Although there have
been numerous rationale research projects, many, if not most, received little or no empirical evaluation. There also have
not been many studies examining what the needs are of the practitioners who would be supported by the rationale. This
article discusses the “doom and gloom” predictions of rationale’s failure, provides a survey of evaluations of rationale
systems, and discusses what we hope is a brighter outlook for rationale research in the future. There are development stan-
dards and synergistic research areas that may help with rationale research and its acceptance in the software community with
which we should be working. This article also presents the results of a pilot survey of software developers who were asked
how they would envision using rationale and what they believe the most important barriers are. Although some results were
as expected, there were also some surprises. Research on technology transfer indicates that, among other things, to transition
successfully from research into practice we need to understand the need that is being met and demonstrate the value of our
approach. Until we have determined how our work is needed by the people we are trying to help we will remain researching
under uncertainty.

Keywords: Design Rationale; Empirical Studies; Software Engineering; Traceability

1. INTRODUCTION

Rationale1 research in software development is a challenging
area because although there is no shortage of advocates for its
value, there is also no shortage of reasons for why rationale
(for design or other phases of software development) is unlikely
to be captured in practice. There are numerous proposed uses
for rationale: providing additional documentation, assisting new
personnel in learning about the design, supporting software
maintenance, and many more. There are also many barriers to
its capture and use: the effort involved in capturing it, potential
liability issues if decisions can be tracked, the potential for
disrupting design, and so forth. Despite more than 30 years of
research there still remains much uncertainty: how useful are
the potential benefits and how insurmountable are the barriers?

1.1. Rationale capture and project failure

Grudin (1996) describes the danger of adding additional costs
to earlier (“upstream”) phases of software development and,
as part of a discussion of the benefits of upstream invest-
ment when many projects are never completed, offers this
rather off-putting statement “And any project, by diverting re-
sources to capture design rationale, may reduce its likelihood
of surviving or succeeding.” This dramatic assertion pro-
vides an especially gloomy picture of the future of rationale
research.

Software project failure rates are indeed high. A frequently
cited source for software failure information is the CHAOS
Report, generated every 2 years by the Standish Group. The
1994 report (Standish Group, 1994) states that 31.1% of pro-
jects are cancelled prior to completion and 16.2% are com-
pleted on time, within budget, and with all features imple-
mented. The remaining projects (“challenged” projects) are
completed, but with time and cost overruns and often with
not all of the originally planned features implemented. The
situation in 2006 is somewhat improved, with 18% having
failed and 29% having succeeded (Hartmann, 2006; Standish
Group, 2006). Still, it is interesting to note that while only

Reprint requests to: Janet E. Burge, Computer Science and Systems Anal-
ysis Department, Miami University, 230 H Kreger Hall, Oxford, Ohio 45056,
USA. Email: burgeje@muohio.edu

1 Note that in most cases in this article, except when describing prior work
specifically on DR, the more general term “rationale” is used rather than the
more traditional “DR.” This is because in software development, decisions
are made in all phases of development and rationale is not restricted to the
phase known as “design.”

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2008), 22, 311–324. Printed in the USA.
Copyright # 2008 Cambridge University Press 0890-0604/08 $25.00
doi:10.1017/S0890060408000218

311

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

29% can be viewed as having succeeded, the projects in the
challenged category (53% in 2006) are still delivered to the
customer (although with possibly reduced functionality). If
the usefulness of rationale is dependent on the system being
delivered, it has the potential to become useful on 82% of
software projects.

1.2. Barriers to rationale

Horner and Attwood (2006) investigated barriers to design
rationale (DR) use and divided them into four types of limi-
tations: cognitive, capture, retrieval, and usage. The cogni-
tive limitations arise because of human information process-
ing limitations that make it impossible to exhaustively capture
rationale. The capture limitations involve the need to collect
rationale along with its context, the difficulty of eliciting
tacit knowledge, lack of incentives for capturing rationale,
the cost of capture versus predicted benefits, and if the col-
lected rationale may pose a risk to the individual (exposing
a bad decision) or the corporation (possible liability issues).
Retrieval limitations concerned the need to determine what
the content of the rationale being retrieved should be
and the method of retrieval. When rationale is captured
for future use, how do you predict what information will be
useful? The final limitation, usage limitations, was concerned
with if the applicability of rationale reuse might be con-
strained by the uniqueness of design problems and that there
is a deficiency of methods for assessing how effective ra-
tionale is.

Exhaustive rationale capture is certainly unlikely, and is
probably also undesirable. It would make far more sense to
optimize resource allocation by having some rules or heuris-
tics for which information is most likely to be useable in the
future. Another option would be to follow an “incremental
formalization” approach (Shipman & McCall, 1997) where
information is captured in an unstructured format and formal-
ized as needed. Capture remains a key difficulty to rationale
adoption. There is little data available to indicate if the costs
are, indeed, greater than its benefits. This is an area where data
collection would be critical. Retrieval is an area where tech-
nology can be of assistance: integration with development
tools and methodology will help capture the context along
with the rationale although no technology will help us see
the future. The final issue, usage, has similar issues to any re-
use of information or technology yet these issues have not
discouraged reuse research in the software domain. Software
reuse remains a critical goal of software development.

1.3. What use at what cost?

In their article “Argumentation-Based Design Rationale:
What Use at What Cost” Buckingham Shum and Hammond
(1994) examined a variety of argumentation-based DR ap-
proaches to determine if they were able to meet two claims:
“Argumentation-based DR is useful” and “Argumentation-
based DR is usable,” that is, the use and cost of DR. The first

claim was examined by looking for three types of evidence:
evidence that designer reasoning and deliberation were as-
sisted by working with argumentation, evidence that argu-
mentation recorded earlier was useful, and evidence that
using the notation impeded reasoning.

For the first claim, usefulness, they were able to find some
of each type of evidence, including evidence of impeding rea-
soning. The two examples of impeding reasoning were cases
where capturing the rationale as argumentation caused de-
signers to get sidetracked onto issues that were not important
or not controversial. The examination of the second claim,
usefulness, provided some evidence that the semiformal ar-
gumentation was not always easy for the designers but the
overall result was that more information was needed about
how designers might use this kind of an approach. The
need for more empirical evidence was highlighted by this ar-
ticle, and the authors expressed concern that technology was
being built on “a mutually constructed and self-perpetuating
folklore.”

1.4. So why bother?

Why should we press on despite these obstacles? Some of
the doom and gloom predictions appear somewhat specula-
tive, such as Grudin’s assumption that the effort spent in
capturing rationale could be the factor delaying development
just enough to cause cancellation (Grudin, 1996). There are
reports of unsuccessful attempts at rationale use but those re-
sults have not been published so there is no way for those who
were not involved to understand what happened.

Software projects vary widely in size, scope, and process
followed. Developers in companies operating at the higher
levels of the capability maturity model (SEI, 1997) are used
to spending time on documentation, metrics, and other types
of information gathering that go beyond simply writing and
debugging code: is rationale collection more arduous than
those tasks? What do we need to know to move from guessing
about rationale’s benefits and barriers toward determining
what direction is best for our research?

The remainder of this article looks at what we actually
know and do not know in rationale research. Section 2 de-
scribes what techniques have been used in the past to evaluate
rationale and rationale tools. Section 3 discusses why this is
the right time for a renewed interest in the field. Section 4
describes the challenges we face in evaluating our research.
Section 5 discusses the importance of obtaining the perspec-
tive of practitioners in the field and presents the results of a
pilot survey of software practitioners to get their opinions
on how, when, and by whom rationale could be used and what
they perceive to be the most significant barriers. Section 6
discusses conclusions and future research.

2. EMPIRICAL EVIDENCE

What do we really know about design or other forms of ratio-
nale in use? There have been many different approaches to

J.E. Burge312

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

rationale capture and use proposed but most of them did not
receive formal evaluation. Table 1 lists 56 approaches and
how they were evaluated. For nearly half, no evaluation was
described, and of the remaining approaches, the most com-
mon evaluation method was the case study, most of which
were informal.

There have been a couple of studies to investigate DR use
that were not intended to evaluate a specific approach (al-
though they did use specific notations). Karsenty (1996)
investigated usefulness of DR by showing DR captured by a
scribe observing design meetings that was formalized into
the QOC notation (MacLean et al., 1996). All documents
were captured on article with one problem per page. Karsenty
(1996) conducted an experiment where six designers external
to the project were asked to perform a series of tasks given
DR documents captured earlier by a scribe who observed de-
sign meetings. The data collected from the experiment con-
sisted of the questions asked by the designers (168 questions
total) that were grouped into six categories. Of these categories,
the majority fit into the category of DR Questions. Of these
questions, the DR answered 41%. The unanswered questions
were analyzed to determine why the DR was insufficient. In
some cases, the DR did not capture all the issues discussed at
the design meetings, in some cases the questions were not an-
swered because it involved misconceptions about the designed
artifact, whereas in other cases the questions were not answered
because the issues asked about were not issues recorded in the
rationale because they had not come up at the design meetings.

QOC was also used in the first of three studies performed
by Haynes (2006) to investigate the use of DR as explanation.
The first study generated DR retrospectively from design
meeting transcripts and other design artifacts. They found
that it was difficult to capture the chain of reasoning and
that the DR did not appear to be complete. Two additional
studies were performed using scenarios and claims analysis
(Carroll & Rosson, 1992). These studies appeared to indicate
that DR in the form of scenarios would be effective in assist-
ing with technology transfer.

Tang et al. (2006) point out that there is a lack of empirical
research studying practitioner opinions on DR, how they cap-
ture and use DR, and what the barriers are to capturing DR.
They conducted a survey that focused on how software archi-
tects viewed rationale and received valid responses from
81 architects. The survey investigated the capture and use of
nine rationale elements: constraints, assumptions, weaknesses
of designs, costs of designs, benefits of designs, certainty
of the design, certainty of the implementation, and trade-offs
considered. All of these were considered important by their
respondents. The ones with the highest support were benefits,
certainty, and constraints. These types were also identified as
being the most frequently used. The types with the least use
were rationales describing weaknesses in the design decisions
(design weakness, costs, and complexity). When looking at
how frequently they captured the different design elements,
the respondents reported that constraints and assumptions
are documented frequently. The least documented types

were design weaknesses, certainty of design, and certainty
of implementation. When investigating barriers, cost and
time were the most frequently given reason for not document-
ing rationale. The overall conclusion of the article was that
practitioners do believe that DR is important and should be
captured.

3. RENEWED INTEREST: HOW AND WHY

Despite the many doom and gloom predictions, there is still a
significant amount of interest in this area. There are numerous
ongoing research projects, a recent book on rationale manage-
ment in software engineering (Dutoit et al., 2006), another
book, Rationale-Based Software Engineering (Burge et al.,
2008), and several DR-based workshops. Has the time come
for rationale to move beyond being an interesting research
problem into something that can become useful in practice?

3.1. Incentives

There are still strong feelings, at least among researchers, that
this is an important avenue of research and shows great pro-
mise for aiding software development. There are a number
of incentives for continuing to pursue this research.

3.1.1. Capability maturity model integration (CMMI)

One incentive for reconsidering rationale use for software
engineering can be found in the CMMI (CMMI Product
Team, 2006) and its decision analysis and resolution (DAR)
process area. The DAR is required for Level 3 of the CMMI
and consists of defining a “formal evaluation process” for
decision alternative evaluation. The elements of this evalu-
ation include alternative identification, evaluation criteria de-
termination, evaluation method selection and use, and finally,
selecting the alternatives based on the identified criteria. The
CMMI recommends that part of this evaluation process is de-
fining which decision categories need this formal evaluation
and how the evaluation should be performed. The formal
evaluation is especially important for decisions that are iden-
tified as “high risk.”

3.1.2. Knowledge management (KM)

One of the uses of rationale is the ability to capture “cor-
porate knowledge.” This is also a goal of KM. KM is critical
in software engineering because “intellectual capital” is the
key asset for a software organization (Russ & Lindvall,
2002). The challenges faced by the rationale community are
similar to those faced by KM: encouraging knowledge shar-
ing, providing incentives, and making knowledge capture
part of business practices (Smith & Farquhar, 2000).

The importance of KM has been acknowledged by a
number of organizations. Schlumberger (Smith & Farquhar,
2000) uses their intranet and a “knowledge hub” to support
“communities of practice,” groups of personnel within
the organization where information sharing is necessary.
This process is supported by a “knowledge champion” who

Design rationale 313

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

Table 1. Design rationale approach evaluations

Approach Use Evaluation

Field Trials

Compendium (Buckingham Shum et al., 2006) Meeting facilitation through dialog mapping Case studies at 10 organizations (Selvin &
Sierhuis, 1999)

Design Rationale editor (DREd; Bracewell
et al., 2004)

Goal is to replace the traditional designer
notebook

Fifty-four designers at the same aerospace
company were trained and encouraged to use
DREd. Thirty-two returned a questionnaire and
12 had used DREd (11 of the remaining
designers said they did plan to use it).

Logging Rationale for User Interface Designs
(LOUIS; Heiliades & Edmonds, 1999)

Capturing information in early software design
meetings

User trials with five users

IBIS (Kunz & Rittel, 1970), gIBIS (Conklin &
Burgess-Yakemovic, 1996)

Hardware and software development Field trials at NCR

WinWin, EasyWinWin (Boehm & Kitapci,
2006)

Requires negotiation between stakeholders Used by students

EasyWinWin was used in over 100 “real-world”
projects (implemented by students?). There was
also a Digital Library Project case study with
student developers (In et al., 2001).

Sysiphus (Dutoit et al., 2005) Sharing system models and rationale between
students

Used in software engineering courses; qualitative
observations collected

Laboratory Experiments

Pattern mining and Architecturally Significant
Information extracted from Patterns (ASIP;
Barbar et al., 2006)

Software architecture Empirical study: one observational study and two
controlled experiments (mentioned but not
described)

Bratthall et al. (2006) textual DR Software architecture Laboratory study with 17 participants: 7 industrial
senior designers, remaining graduate students
and faculty

Software Engineering Using Rationale
(SEURAT; Burge & Brown, 2004, 2006)

Software development Laboratory study with 20 subjects performing three
maintenance tasks with or without SEURAT
support; subjects were a mix of graduate students
and practitioners with average work experience
of 6 years.

Decision Goals and Alternatives (DGA; Falessi
et al., 2006)

Software architecture Laboratory study with 50 graduate students

Design Pattern Rationale Graphs (DPRG;
Baniassad et al., 2003)

Aid in understanding how a pattern relates to
design goals and how those goals are
implemented in the code

Two confidence case studies, each with a single
developer: one completeness study with two
industrial developers and one tool user where the
developers identified the design goals, the
investigator developed the DPRGs; and the tool
user used the DPRGs to detect six out of seven;
and one “lightweightness” study with two
industrial developers to time DPRG creation

Design process rationale (Brissaud et al., 2003) Capturing design process rationale to reuse in
the current project or other projects

Laboratory experiment where five design actors
performed technician roles to design a
mechanical system; constructing conjectures and
extracting criteria were not difficult.

HERMES (Karacapilidis & Papadias, 2001) Generic decision support Evaluated by mechanical engineering graduate
students and medical doctors; questionnaires
were used to assess the usability of the system
and the effectiveness of the environment.

Desperado (Ball et al., 1999) Provide access to previously considered design
options

Fifteen MS students in three sessions (Lambell
et al., 2000): one only with paper and pencil, one
with an experimental group using Desperado for
encoding, and one with an experimental group
using Desperado for encoding and retrieval.
Results were described as “encouraging” but no
statistical analysis was provided. An industry
study was planned but results have not been
published.

J.E. Burge314

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

Table 1 (cont.)

Approach Use Evaluation

Mission Oriented Architectural Legacy
Evolution (MORALE), Software
Architecture Analysis Method (SAAM;
Richter et al., 1998)

Software architecture SAAM summary document and SAAMPlayer used
to answer questions; experiment looked at how
they used the document and video; four subjects
participated (Richter & Abowd, 1999).

Design Space Analysis (DSA; MacLean et al.,
1996)

Capturing DR to aid in artifact understanding Pairs of designers worked on a design problem and
were recorded; the translation was converted into
the QOC notation to see how well the design
discussion corresponded to DSA concepts.

Representation and Maintenance of Process
knowledge (REMAP; Rhamesh & Dhar,
1994)

System design and maintenance (Ramesh &
Dhar, 1994), requirements engineering
(Ramesh & Dhar, 1992)

Conceptual model was derived from an empirical
study with 20 experienced analysts. Evaluation
of REMAP was not described.

Active Design Documents (ADD; Garcia et. al.,
1993) and Multi-Agent ADD (MultiADD;
Garcia & Vivacqua, 1997)

Supports parametric design and cooperative
design

ADD: two tests creating a design proposal
(experienced designers), two tests with design
documentation users (Garcia et al., 1994);
MultiADD example was described.

Case Studies

Architecture Rationale and Elements Linkage
(AREL; Tang et al., 2007)

Software architecture traceability Case study: the authors of the paper retrospectively
captured DR for an Electronic Funds Transfer
system.

Reusable Rationale Blocks (RRB; Hordijk &
Wieringa, 2006)

Software design Three case studies where RRBs were used by the
authors

Design Rationale Environment for
Argumentation and Modeling (DREAM;
Lacaze et al., 2006)

Safety critical systems Case study where the authors used their tool and
notation to model information from meeting
minutes (10 meetings discussing prototype
systems)

Requirements Engineering Process
Improvements (REPI; Framework
(Palyagar & Richards, 2006)

Capturing rationale behind RE process
improvements

Case study working with a “quality certified
organization,” unidentified for confidentiality
reasons where the authors studied their RE
process

Task-Artifact Framework (Carroll & Rosson,
1992, 2003)

Human–Computer Interaction (HCI) Case study on the MOOsburg community network
system

CodeLink (Zaychick & Regli, 2003) Software design Informal user case study with four two-person
teams of undergraduate and graduate students
who were surveyed after 3 weeks of tool use.

Reasoning Loop Model (Louridas &
Loucopoulos, 2000)

Reflective design and collaborative design Examples/case studies: one regarding a major
European Electricity Supply Company,
capturing rationale for several goals, the other on
the evolution of the Cþþ language
(retrospective DR capture)

Integrated Design Information System (IDIS;
Chung & Goodwin, 1998)

Rationale capture and use to support design
of chemical plants

Five case studies testing the tool with engineers and
students

Collaborative Design Support System
(C-DeSS; Klein, 1997a)

Design geometry Informal: used to capture design and rationale for a
fluid-field measurement device developed at a
university research lab; several designers used
the tool for several weeks and provided
feedback.

JANUS (Fischer et al., 1996) Kitchen design JANUS was evaluated informally with designers
and computer users at different levels
performing learning and design tasks.

Reconstructive Derivational Analogy (RDA;
Britt & Glagowski, 1996)

Design process is replayed using new
requirements to create a new design

CPU and actual time were compared for a
representative set of simple problems. It was not
stated if this was tested using more than one
designer.

The Inquiry Cycle (Potts et al., 1994) Requirements analysis Case study: the four researchers used the process
for about 1 month (Potts et al., 1995).

Scenario Claims Analysis (SCA; Carroll &
Rosson, 1992; Carroll, 2000)

HCI Case studies by a number of researchers including
digital library usability (Keith et al., 2002) and
Interactive Development Environment
evaluation (Haynes, 2006).

Design rationale 315

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

encourages participation. This recalls the success of IBIS,
where the presence of a champion-supporting rationale was
essential (Conklin & Burgess-Yakemovic, 1996). NASA is
also promoting KM initiatives to capture case studies, share

“stories,” describe “lessons learned” and to provide an
“expertise locator” (Liebowitz, 2002). DR research and KM
research share many of the same benefits and barriers and
should study the approaches used in KM research.

Table 1 (cont.)

Approach Use Evaluation

No Evaluation Described

Architecture rationale using causal and
structural graphs (Bass et al., 2006)

Capturing architectural rationale to see how
requirements are satisfied and to determine
implications of design modifications

Not described

Software Concordance Design Rationale
(SCDR; Gill & Munson, 2006)

Software development Not described

RE patterns (Hagge et al., 2006) Sharing requirements of engineering process
rationales

Unclear, examples of uses are described

FOCUS (Schneider, 2006) Capturing knowledge about prototypes Not described
Risk Analysis Tool (Schneider, 2006) Risk analysis Not described
Archium (van der Ven et al., 2006) Software architecture Not described
Kuaba Ontology (de Medeiros et al., 2005) Software design Not described
Reference Architecture Representation

Environment (RARE; Barber & Graser,
2000)

Architecture derivation Not described

Design Rationale Management (DRAMA;
Brice & Johns, 1999)

Engineering design: ranks alternatives,
consistency checking

Commercial product: no evaluation data provided

Rationale Construction Framework (RCF;
Myers et al., 1999)

Computer-aided design; example applied it to
designing a robotic arm

No formal evaluation

Design History System (Shah et al., 1999) Engineering design Not described
Engineering History Base (Taura & Kubota,

1999)
Engineering design (Mechanical) Not described

Design Rationale for the Information Phase of
Value Engineering (DRIVE; de la Garza &
Alcantara, 1997)

Building design Not described

Collaborative Requirements Capture System
(C-ReCS; Klein, 1997b)

Requirements engineering Not described

Hyper-Object Substrate (HOS; Shipman &
McCall, 1997)

Network design Not described

PHIDIAS (Shipman & McCall, 1997) 2-D, 3-D graphical design: kitchen design
example is described

Not described

M-LAP (Brandish et al., 1996) Uses actions from previous design tasks to
group user interface actions into activities to
either automate activities during design or
predict consequences

Not described

CoMo-Kit (Dellen et al., 1996) Software process traceability No evaluation provided, just an example
illustrating use

SHARED-Decision Recommendation and
Intent Management System (SHARED-
DRIMS; Pena-Mora et al., 1995)

Conflict mitigation when developing large-
scale engineering systems; DRIM also used
to use rationale to select software design
patterns (Pena-Mora & Vadhavkar, 1997)

Not described

Documentation System (Lougher & Rodden,
1993)

Sharing software maintenance information Not described

Galileo2 (Bahler & Bowen, 1992) Concurrent engineering Not described
Design Rationale Capture System (DRCS;

Klein, 1992)
Airplane design example described Not described

Process Technology Transfer Tool (PTTT;
Brown & Bansal, 1991)

Used to transfer decision-making results from
one group to another; major goal is
information retrieval

Not described

SYBIL (Lee, 1991) Qualitative decision management Used on some small projects but no evaluation
described

Device Modeling Environment (DME; Gruber
1990)

Electromechanical design Not described

J.E. Burge316

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

3.1.3. Value-based software engineering (VBSE)

VBSE is another synergistic field. The idea behind VBSE
is to move away from “value-neutral” approaches to software
decision making (Boehm, 2006). Not all software require-
ments are of equal value to the stakeholder so it makes sense
to take value into account when making decisions. Boehm’s
win–win Theory W (Boehm & Ross, 1989), a methodology
supported by capturing rationale, lives at the center of his
4þ 1 theory of VBSE (Boehm & Jain, 2006), which also in-
cludes utility theory, dependency theory, decision theory, and
control theory. Using value as a key driver in SE decision
making requires methods for capturing the criteria that indi-
cate what “value” is as well as methods for evaluating the
value of each decision alternative. These are not trivial issues.
There may be uncertainty involved in accessing value: costs
may be unknown, stakeholders may have conflicting beliefs,
intangible benefits are difficult to quantify (Erdogmus et al.,
2006). The potentially numerous criteria affecting decisions
may interact requiring tradeoff analyses (Vetschera, 2006).
Much of the information needed to assess value could be
provided by the rationale.

3.2. Technology and tool advances

The previous flurry of rationale research activity occurred
when hypertext systems became more popular. Hypertext
was a key factor in many of the systems described in Moran
and Carroll’s (1996) human–computer interaction-focused
book. Now we have new tools promising more integrated
development. One example is the Eclipse Framework
(www.eclipse.org). The ability to create “plugins” that add
on to an existing development environment was used in the
SEURAT system (Burge & Brown, 2004) so that rationale
could be captured and used in the same environment that is
being used to develop software. Eclipse is also an open-
source project, which means that it is easily accessible to com-
mercial and research organizations. It is no longer necessary
to have a large software tool budget to get powerful tools.
Eclipse is only one of many potentially useful open-source
development environments and development tools that could
be extended to support rationale.

3.3. Success stories

Although much of the evidence for rationale has been col-
lected rather informally, there have been some notable suc-
cesses. The NCR field trials (Conklin & Burgess-Yakemovic,
1996) demonstrated that IBIS and gIBIS could be useful in
an industrial setting. The Compendium project (http://www.
compendiuminstitute.org/; Buckingham Shum et al., 2006)
has been used on a number of different projects and has cre-
ated a community large enough to sustain an annual work-
shop. The Compendium Institute e-mail group (http://tech.
groups.yahoo.com/group/compendiuminstitute/) has over
1000 members as of December, 2007.

Another success story has been the DREd system
(Bracewell et al., 2004). Not only did the designers at Rolls-
Royce feel that using DREd helped their design process, it
was also given the Rolls-Royce Research and Technology
Director’s Creativity Award for 2004 (http://www.eng.cam.
ac.uk/news/stories/2005/rollsroyce_award/). Using DREd
has been made mandatory for design scheme reviews on at
least one Rolls-Royce project. The acceptance of DREd by
the designers suggests that resistance to the capture of DR
may not be as significant as predicted.

4. CHALLENGES IN RESEARCH AND
TECHNOLOGY TRANSFER

How do we gather evidence for rationale’s success or failure?
Controlled experiments collecting and using rationale are
challenging. The SEURAT evaluation ran into four types of
problems (Burge, 2006): task problems, where tasks had to be
limited to those that could realistically compare using ratio-
nale to not using rationale (eliminating tasks that would re-
quire rationale to be successful); subject availability problems,
where large numbers of subjects could not be recruited for
experiments that needed to be performed after working hours
and that could take up to 4 h; time problems, where tasks had
to be simplified to be possible for all levels of user (making
them so simple that advanced users would not need assis-
tance provided by rationale); and noise problems, where the
short duration of the experiment meant that the learning
curve introduced by using the rationale tool could eclipse
the time saved. Task, time, and noise problems could be mi-
tigated by using the system on more complicated tasks over a
longer duration, but the subject availability problems remain.
In addition, longer term tasks cannot be performed in a con-
trolled environment that introduces the possibility of more
noise.

Ideally, we would like to gather additional data on how ra-
tionale could be used in industry. The challenge is to con-
vince practitioners that using rationale will be beneficial. Al-
though it would be nice if developers would participate in
evaluations “in the interest of science,” the reality is that if
they suspect that the evaluation will add to their work burden
they are likely to decline participation.

Of course, that does not mean we should give up. Technol-
ogy transfer is a difficult process for all new innovations in
software, not just rationale. Redwine and Riddle (1985) stud-
ied technology in the mid-1980s and discovered that it took
15 to 20 years for a technology to become mature. Red-
wine and Riddle also identified a set of critical factors influ-
encing technology adoption: it must be well developed, it
must fill a well-defined and recognized need, it needs to be
adaptable to fit user practice, there need to be reports on
“prior positive experience,” management must be committed,
and training must be provided. Of these, two stand out: user
needs and positive experience. Does rationale meet a well-
defined need or is it a solution in search of a problem? Many
uses have been proposed but which ones are really needed?

Design rationale 317

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

How can we provide “prior positive experience?” gIBIS
was shown to help developers avoid mistakes and provided
considerable cost savings but the researchers were not able
to find other “disciples” to promote it (Curtis, 2000).

5. SURVEY OF SOFTWARE DEVELOPMENT
PRACTITIONERS

Numerous articles on technology transfer point out the criti-
cality of knowing what the technology adopter needs
(Redwine & Riddle, 1985; Larson et al., 2006; McGill et al.,
2006), yet, as Tang et al. (2006) point out, there has been lit-
tle research that studies practitioner views of rationale. DR
has been an active area of research for many years, yet it still
has not been adopted in practice except for a few instances. As
described earlier, there are many theories why this has been
the case but much of this is speculation.

As Redwine and Riddle (1985) pointed out, if a technol-
ogy is going to transition into practice we need to know
what the users need. To get an initial assessment of how soft-
ware development practitioners viewed rationale, we decided
to conduct a pilot survey of software developers to gather
opinions.

5.1. Survey design

We had two primary goals for the survey: to determine how
software practitioners felt rationale could be the most useful,
and to determine what they thought the barriers to rationale
adoption were. For the first goal, we looked at how potential
uses were valued, when rationale would be used, when ratio-
nale would be captured, who would be most likely to provide
it and who would be most likely to use it. For the second goal,
we asked questions about which barriers were most signifi-
cant, and what would make rationale more appealing (and
therefore motivate its capture). We also asked some questions
about rationale presentation and tool integration.

In addition to the questions on rationale, we also collected
demographic data about the company/industry of each re-
spondent, their job role, and their level of experience.

5.2. Survey administration

We planned on two methods for survey administration: hard-
copy surveys administered and collected at the annual Miami
University Computer Science and Systems Analysis (CSA)
Alumni Conference and identical Web-based surveys. Partici-
pants at the Alumni Conference were invited to attend a talk
describing the research and were then invited to fill out the
survey. Attendees were also given a hard copy of the talk
so that those who were not able to attend the talk could still
participate in the survey. This approach proved to be less
than successful with only one survey filled out at the
conference.

The Web-based survey invitations were sent by e-mail
to 168 Miami CSA alumni, 20 professionals who had either

participated in SEURAT evaluations or attended demonstra-
tions, and were also sent out with an electronic newsletter
to alumni from the author’s undergraduate school, Michigan
Technological University. Survey invitees were also encour-
aged to forward the survey to any coworkers whom they felt
would be interested in participating. The online survey ap-
proach proved to be more successful than the paper one and
resulted in 35 responses. The Web-based survey included a
text description of what rationale was and how it could be
used and a link to the presentation created for the Alumni
Conference. Respondents were instructed to view the presen-
tation prior to taking the survey. The average time taken to
complete the online survey (not counting viewing the presen-
tation or reading other information provided about rationale)
was 14 min.

5.3. Demographics

The end of the survey asked a series of questions to provide
demographic information about the respondents companies
and level of experience. This resulted in the following infor-
mation about the respondent’s employers:

1. Nearly 45% of the respondents reported the average
lifetime for a product developed by their company
as 5–10 years. Only 14% reported longer than 10-year
lifetimes.

2. Fifty percent of respondents reported the average time
from conception to product release as 1–2 years. Less
than 17% reported lifecycles longer than 2 years.

3. New releases of a product typically happened at least
once per year (41.67% 6 months to 1 year, 38.89%
less than 6 month intervals between releases).

4. Seventy-five percent of the organizations maintained
the software they developed.

5. Only 25% of the respondents gave the biggest risk of
software failure as mission failure (16.67%) or lives lost
(8.33%). The largest number of responses was 36%
where business process disruption was the greatest risk.

6. Team sizes varied with the largest number of respon-
dents having teams of 6 to 10 people (30.56%), the
next 3 to 5 people (27.78%), 2-person teams were at
16.67% and 1-person teams at 8.33%. Less than 17%
had teams of greater than 10 people.

Many respondents (41.67%) did not feel their organiza-
tion fit into any of the listed types (defense at 22.22%, aero-
space at 2.78%, financial at 8.33%, educational at 2.78%,
computer technology at 22.22%, and entertainment at 0%).

We also asked the respondents about what type of develop-
ment they did: developing systems sold by their organization
(50%), systems used by their organization (19.44%), and pro-
viding consulting services to other organizations (30.56%).
Their current job roles were primarily technical (55.56%), fol-
lowed by management (33.33%), and with 11.11% giving their
role as “other” (two project managers, one VP of government

J.E. Burge318

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

sales, and a fourth in Web development and systems admin-
istration). Our respondents had an average of 16 years of expe-
rience, with the lowest being 1 and the highest being 30.

The survey also asked if the respondents had any prior
experience using rationale tools. Most had not (86.49%).
The three respondents who used rationale tools indicated
SEURAT, self-made decision-tree documentation programs,
and a system the respondent had built for him or herself.

5.4. Survey results

We designed the survey to receive input on two categories of
questions: uses of rationale to investigate if practitioner needs
matched our research goals and the perceived barriers of use
to compare practitioner barriers with those described in the
literature.

5.4.1. Uses of rationale

Our first set of questions looked at how and when software
development practitioners thought rationale would be useful
and used. The first question on the study asked the respon-
dents to rate the importance of several uses of rationale.
Table 2 gives the results shown in the same order presented
to the respondents. The last column of the table shows the
combined percentages of the top two levels.

No rationale uses were ranked as being not useful by more
than one person. Many were ranked in the upper two levels of
usefulness. For the top levels combined, 7 out of 17 uses were
given a combined score of greater than 50%. Uses that appear
to be the most compelling to the respondents were capturing
assumptions,providingtraceability tofunctional requirements,
and assisting in impact assessment when goals change. The
item of least interest was post mortem reporting.

The next five questions asked for additional information
about how rationale could be captured and used. For these
questions, we had the respondents rank the different options
so we could determine relative importance or value with a
value of one being the most likely. We give the percentages
for each ranking in Tables 3–6.

This question, on use time, yielded some of the most sur-
prising results of the survey. Many researchers, including
the author of this article, predicted maintenance as the aspect
of software development where rationale would be the most
valuable. Instead, nearly half the practitioners surveyed ranked
it as the least. It is possible that if the respondents did not
have a preference between the last three elements they
simply ranked them in order of appearance. It is interesting,
however, that less than 20% of respondents ranked mainte-
nance as first or second. During design appears to be the
most likely with during requirements development coming
in second.

These results were not surprising; most respondents felt
that design would be the phase when rationale was most likely
to be captured.

These results are consistent with the earlier question, and
suggest that the designer is most likely to provide rationale.

The consensus appears to be that rationale is most useful
during development by developers wanting to understand
why someone else made a decision or in looking back on their
own decisions. They felt that rationale would be the least use-
ful for managers to review system progress.

The survey also investigated when rationale should be pre-
sented to the user. Some rationale systems, such as JANUS
(Fischer et al., 1996) act as critics and present rationale
when there appears to be a problem with the decisions being
made; other systems, such as SEURAT (Burge & Brown,

Table 2. Potential rationale uses

Not
Useful Low High

Top Levels
Combined

Capturing relationships between requirements 0.00% 5.41% 16.22% 21.62% 37.84% 18.92% 56.76%
Providing traceability from functional requirements to code 0.00% 0.00% 8.11% 29.73% 24.32% 37.84% 66.16%
Providing traceability from nonfunctional requirements to code 0.00% 8.11% 10.81% 35.14% 32.43% 13.51% 51.35%
Connecting the rationale to the code 0.00% 5.41% 21.62% 21.62% 32.43% 18.92% 51.35%
Connecting the rationale to the design documents (UML, etc.) 2.70% 5.41% 18.92% 24.32% 24.32% 24.32% 48.64%
Capturing assumptions made during development 2.70% 0.00% 2.70% 18.92% 51.35% 24.32% 75.67%
Performing impact assessment when system goals change 0.00% 2.70% 10.81% 21.62% 35.14% 29.73% 64.874%
Providing additional documentation describing the system 0.00% 2.70% 16.22% 37.84% 29.73% 13.51% 43.24%
Supporting project postmortem reporting 0.00% 18.92% 27.03% 29.73% 18.92% 5.41% 24.33%
Evaluating support for alternatives 0.00% 8.11% 16.22% 35.14% 29.73% 10.81% 40.54%
Supporting collaborative development by capturing deliberation from

multiple developers 2.70% 5.41% 8.11% 37.84% 29.73% 16.22% 45.95%
Capturing deliberation during design reviews 2.70% 8.11% 16.22% 29.73% 32.43% 10.81% 43.24%
Capturing deliberation during code inspections 0.00% 10.81% 24.32% 27.03% 35.14% 2.70% 37.84%
Pointing out inconsistencies in reasoning that may indicate

inconsistencies in the requirements, design, or implementation 0.00% 2.70% 8.11% 37.84% 27.03% 24.32% 51.35%
Teaching new personnel about the system 2.70% 10.81% 13.51% 35.14% 27.03% 10.81% 37.84%
Assisting with reuse by showing which portions of the system would

require change to support new requirements 0.00% 5.41% 8.11% 37.84% 35.14% 13.51% 48.65%
Ensuring that previously rejected alternatives were not selected 0.00% 5.41% 16.22% 29.73% 32.43% 16.22% 48.65%

Design rationale 319

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

2006), display, or indicate, rationale when the associated arti-
fact is being viewed or modified. Other systems store ratio-
nale but only present it to the user upon request. Nearly
half (45.95%) preferred to see the rationale when they were
editing or viewing an associated artifact with the remainder

of the vote split between when they take an action that signif-
ies a potential problem (24.32%) or upon request (29.73%).

There are also different mechanisms available for visuali-
zation. Some of the most successful approaches, including
Compendium (Buckingham Shum et al., 2006) and DREd
(Bracewell et al., 2004), use a graphical format. Others,
such as SEURAT (Burge & Brown, 2006), use a tree format.
Of the respondents of this survey, 67.57% preferred the tree
structure and 27.03% preferred the graph. Two respondents
chose “other” for their selection. One was not sure what rep-
resentation would be preferable, the other said that a tree
would be insufficient and that they would want to see
indented free text with hyperlinks. It is possible that because
the materials provided to them describing rationale used
SEURAT as an example they may have been biased toward
the tree structure. Alternatively, they could find a tree repre-
sentation more natural because software developers are
used to working in development environments that use a
tree structure to represent code directories.

5.4.2. Barriers and assistance

When designing the survey, we were especially interested
in determining if the barriers to rationale were as described
in the literature. Table 7 ranks several factors that have been
proposed as potential barriers to the use of rationale.

The first two items, cost and tediousness of rationale cap-
ture, were ranked as first or second by the majority of respon-
dents. A quarter of those responding put reluctance to record
decisions as being the greatest barrier. The concern that doc-
umenting reasons behind decisions hampers the process was
ranked as last by over a third of those surveyed.

We were very curious as to practitioners’ opinions on what
could be done to make rationale capture and use appealing.
The results of that survey question are given in Table 8.

Augmenting code comments with rationale scored quite
high. This is not an approach that has been taken by many re-
searchers, with one exception being the Archium project (van
der Ven et al., 2006). Traceability matrixes were also of inter-
est to the practitioners. Using rationale to produce post mor-
tem reports was ranked low which is consistent with results
reported in Table 2.

There has been some discussion among researchers
about how integration with development tools could assist
in rationale capture and use. Table 9 ranks several types of

Table 4. Most likely capture time: When do you think rationale
is most likely to be captured?

First Second Third Fourth Fifth

During requirements
analysis 36.11% 27.78% 19.44% 13.89% 2.78%

During design 47.22% 41.67% 5.56% 2.78% 2.78%
During

implementation 13.89% 11.11% 44.44% 19.44% 11.11%
During integration

and test 2.78% 13.89% 19.44% 50.00% 13.89%
During maintenance 0.00% 5.56% 11.11% 13.89% 69.44%

Table 5. Rationale provider: Who is most likely to provide
rationale?

First Second Third Fourth Fifth

Requirement analyst 33.33% 30.56% 19.44% 11.11% 5.56%
Designer or architect 55.56% 27.78% 8.33% 8.33% 0.00%
Coder 11.11% 22.22% 41.67% 11.11% 13.89%
Tester 0.00% 13.89% 13.89% 41.67% 30.56%
Maintainer 0.00% 5.56% 16.67% 27.78% 50.00%

Table 3. Most likely use time: When do you think rationale is
most likely to be used?

First Second Third Fourth Fifth

During requirements
analysis 27.03% 24.32% 13.51% 18.92% 16.22%

During design 43.24% 37.84% 5.41% 13.51% 0.00%
During

implementation 10.81% 18.92% 27.03% 21.62% 21.62%
During integration

and test 8.11% 10.81% 35.14% 27.03% 18.92%
During maintenance 10.81% 8.11% 18.92% 18.92% 43.24%

Table 6. Rationale user: Who will find rationale the most useful?

First Second Third Fourth Fifth Sixth

Managers reviewing system progress 8.33% 5.56% 5.56% 13.89% 13.89% 52.78%
New people joining the team who need to understand the system 5.56% 16.67% 27.78% 25.00% 19.44% 5.56%
Developers wanting reminders of why they made earlier decisions 13.89% 44.44% 13.89% 11.11% 11.11% 5.56%
Developers wanting to understand why someone else made a decision 50.00% 22.22% 13.89% 8.33% 0.00% 5.56%
Maintainers trying to understand the system 19.44% 5.56% 27.78% 22.22% 16.67% 8.33%
Quality assurance checking if the software meets its requirements 2.78% 5.56% 11.11% 19.44% 38.89% 22.22%

J.E. Burge320

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

tools by how important it would be to integrate them with
rationale.

The first three types of tools on the list, interactive develop-
ment environments (IDEs), design tools, and requirements
management tools were ranked as the most important. There
was little interest in integrating rationale with the other types
of tools.

5.5. Experiment summary

Some survey results were what one might predict. One exam-
ple is the barriers to rationale: the greatest barriers involved
the tediousness, the cost, and designers reluctant to record
their reasons. The biggest surprise was when developers
thought rationalewould be the most useful. Grudin (1996) cau-
tioned that rationale capture required resources “upstream”
while providing savings “downstream” during maintenance

that would weaken incentives for capture. The results of the
survey described here indicated that our respondents felt the
rationale would be most likely to be used during requirements
development and design and would be least likely to be used
during maintenance.

The 36 developers who responded to the survey are not a
representative sample of the industry as a whole. In particular,
it would be interesting to receive responses from more
developers working on safety-critical and mission-critical
systems. One question that, in retrospect, should have been
on the survey was if the developer’s organization followed
the CMM or CMMI. The CMMI process area on decision
analysis and resolution requires formal evaluation of alterna-
tives, yet less than half the respondents rated evaluating sup-
port for alternatives in the top two value categories.

Another interesting observation from the experiment is that
more than half the respondents listed managers reviewing

Table 7. Potential barriers to rationale use

Potential Barriers First Second Third Fourth Fifth Sixth Seventh Eighth

Cost of capturing the rationale 25.00% 27.78% 8.33% 17.14% 8.57% 5.71% 2.86% 2.86%
Rationale capture is likely to be tedious 36.11% 25.00% 22.22% 8.57% 8.57% 0.00% 0.00% 0.00%
Developer reluctance to record reasons for their decisions 25.00% 11.11% 16.67% 17.14% 14.29% 14.29% 2.86% 0.00%
Developer reluctance to document their “mistakes” (alternatives tried

and then rejected) 0.00% 16.67% 22.22% 20.00% 14.29% 14.29% 2.86% 8.57%
Liability issues if software failures can be traced to faulty decisions 2.78% 2.78% 8.33% 11.43% 22.86% 17.14% 11.43% 22.86%
Lack of tool integration 8.33% 11.11% 11.11% 14.29% 14.29% 25.71% 5.71% 11.43%
No need to go back and look at reasons behind decisions after initial

development is complete 2.78% 0.00% 2.78% 8.57% 14.29% 2.86% 51.43% 17.14%
Documenting reasons behind decisions hampers the decision-making

process 0.00% 5.56% 8.33% 2.86% 2.86% 20.00% 22.86% 37.14%

Table 8. Possible appeal: What would make capture and use more appealing?

First Second Third Fourth Fifth

Producing a record of meeting discussions 11.11% 13.89% 33.33% 16.67% 25.00%
Producing requirements for traceability matrixes 25.00% 27.78% 16.67% 22.22% 8.33%
Producing postmortem reports 2.78% 13.89% 11.11% 33.33% 38.89%
Augmenting code comments with rationale 55.56% 27.78% 13.89% 2.78% 0.00%
Producing status reports on development progress 5.56% 16.67% 25.00% 25.00% 27.78%

Table 9. Integration priorities: Importance of integrating rationale with different tools

First Second Third Fourth Fifth Sixth Seventh

Interactive development environment (code compilation and editing) 38.89% 13.89% 13.89% 13.89% 13.89% 2.78% 2.78%
Design tools 25.00% 36.11% 16.67% 8.33% 8.33% 2.78% 2.78%
Requirement management tools 36.11% 19.44% 22.22% 8.33% 8.33% 2.78% 2.78%
Problem reporting tools 0.00% 8.33% 16.67% 22.22% 19.44% 22.22% 11.11%
Configuration management tools 0.00% 2.78% 8.33% 11.11% 16.67% 30.56% 30.56%
Workflow management tools 0.00% 5.56% 16.67% 16.67% 19.44% 16.67% 25.00%
Project management tools 0.00% 13.89% 5.56% 19.44% 13.89% 22.22% 25.00%

Design rationale 321

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

system progress as being those who had the least use for ratio-
nale. Informal discussions with developers had suggested that
providing that kind of insight to managers might be helpful in
promoting rationale acceptance yet these results suggest
otherwise.

6. SUMMARY AND CONCLUSIONS

Rationale, design and otherwise, has been an active research
area for many years yet we still have had only limited success
in putting rationale into practice. Although technology transfer
rates in software engineering are typically slow, we should be
concerned that rationale has not received wider adoption. On
a more positive note, advances in software tool technology
are making it possible to provide support for integrating ratio-
nale into the development process in ways that were not possi-
ble before. There is also an increasing acknowledgement of
the importance of knowledge as a “key asset” to corporations
(Liebowitz, 2002). Rationale has the potential to make a key
contribution toward that knowledge. There remain two major
obstacles toward rationale’s acceptance that need to receive
more attention by the research community. One is that we need
to understand the needs and problems of the practitioners we are
trying to support. The other is that we need to provide more
concrete evidence of the value of our solutions through formal
empirical evaluations of both existing and new approaches.
Until then, we will remain researching under uncertainty.

REFERENCES

Bahler, D., & Bowen, J. (1992). Design rationale management in concurrent
engineering, Proc. Workshop on Design Rationale Capture and Use,
10th National Conf. Artificial Intelligence.

Ball, L., Lambell, N., Ormerod, T.C., Slavin, S., & Mariani, J. (1999).
Representing design rationale to support innovative design reuse: a
minimalist approach. Proc. 4th Design Thinking Research Symp.,
pp. I.75–I.87.

Baniassad, E.L., Murphy, G.C., & Schwanninger, C. (2003). Design pattern
rationale graphs: linking design to source. Proc. 25th ICSE, pp. 352–362.

Barbar, M., Gorton, I., & Kitchenham, B. (2006). A framework for support-
ing architecture knowledge and rationale management. In Rationale Man-
agement in Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I., &
Paech, B., Eds.), pp. 237–254. Heidelberg: Springer–Verlag.

Barber, K.S., & Graser, T. (2000). Reference Architecture Representation
Environment (RARE), A Tool to Support Object-Oriented Software Ar-
chitecture Derivation and Evaluation, Technical Report TR00-UT-
LIPS-SEPA-04. Austin, TX: University of Texas at Austin, Laboratory
for Intelligent Processes and Systems.

Bass, L., Clements, P., Nord, R.L., & Stafford, J. (2006). Capturing and
using rationale for a software architecture. In Rationale Management
in Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I., & and
Paech, B., Eds.), pp. 255–272. Heidelberg: Springer–Verlag.

Boehm, B. (2006). Value-based software engineering: overview and agenda.
In Value-Based Software Engineering (Biffl, S., Aurum, A., Boehm, B.,
Erdogmus, H., & Grünbacher, P., Eds.), pp. 3–14. Heidelberg:
Springer–Verlag.

Boehm, B., & Jain, A. (2006). An initial theory of value-based software en-
gineering. In Value-Based Software Engineering (Biffl, S., Aurum, A.,
Boehm, B., Erdogmus, H., & Grünbacher, P., Eds.), pp. 15–37.
Heidelberg: Springer–Verlag.

Boehm, B., & Kitapci, H. (2006). The WinWin approach: using a require-
ments negotiation tool for rationale capture and use. In Rationale Man-
agement in Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I.,
& Paech, B., Eds.), pp. 173–190. Heidelberg: Springer–Verlag.

Boehm, B., & Ross, R. (1989). Theory-W software project management:
principles and examples. IEEE Transactions on Software Engineering
18(7), 902–916.

Bracewell, R., Ahmed, S., & Wallace, K. (2004). DREd and Design Folders,
a way of capturing, storing, and passing on knowledge generated during
design projects. Proc. ASME 2004 Design Automation Conf.

Brandish, M.J., Hague, M.J., & Taleb-Bendiab, A. (1996). M-LAP: a ma-
chine learning apprentice agent for computer supported design. AID’96
Machine Learning in Design Workshop.

Bratthall, L., Johansson, E., & Regnel, B. (2000). Is a design rationale vital
when predicting change impact?—a controlled experiment on software
architecture evolution. Proc. Int. Conf. Product Focused Software
Process Improvement, pp. 126–139.

Brice, A., & Johns, B. (1999). Improving Design by Improving the Design
Process, Technical Report QSL-9002A-WP-001.

Brissaud, D., Garro, O., & Poveda, O. (2003). Design process rationale
capture and support by abstraction of criteria. Research in Engineering
Design 14, 162–172.

Britt, B., & Glagowski, T. (1996). Reconstructive derivational analogy:
a machine learning approach to automating redesign. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 10,
115–126.

Brown, D.C., & Bansal, R. (1991). Using design history systems for tech-
nology transfer. In Computer Aided Cooperative Product Development,
Lecture Notes in Computer Science (Sriram, D., Logcher, R., & Fukuda,
S., Eds.), Vol. 492, pp. 544–559. New York: Springer–Verlag.

Buckingham Shum, S., & Hammond, N. (1994). Argumentation-based
design rationale: what use at what cost? International Journal of
Human–Computer Studies 40(4), 603–652.

Buckingham Shum, S., Selvin, A., Sierhuis, M., Conklin, J., Haley, C., &
Nuseibeh, B. (2006). Hypermedia support for argumentation-based ratio-
nale: 15 years on from gIBIS and QOC. In Rationale Management in
Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B.,
Eds.), pp. 111–132. Heidelberg: Springer–Verlag.

Burge, J. (2006). Anatomy of an experiment: difficulties in evaluating ratio-
nale-based systems. Workshop on Design Rationale: Problems and Prog-
ress, DCC’06, Conf. Design Computing and Cognition, Eindhoven.

Burge, J., & Brown, D.C. (2004). An integrated approach for software design
checking using rationale. In Proc. Design Computing and Cognition ‘04,
pp. 557–576. Dordrecht: Kluwer Academic.

Burge, J., & Brown, D.C. (2006). Rationale-based support for software main-
tenance. In Rationale Management in Software Engineering (Dutoit, A.,
McCall, R., Mistrı́k, I., & Paech, B., Eds.), pp. 273–296. Heidelberg:
Springer–Verlag.

Burge, J.E., Carroll, J.M., McCall, R., & Mistrı́k, I. (2008). Rationale-Based
Software Engineering. Heidelberg: Springer–Verlag.

Carroll, J., & Rosson, M. (1992). Getting around the task-artifact cycle: how
to make claims and design by scenario. ACM Transactions on Informa-
tion Systems 10(2), 181–212.

Carroll, J., & Rosson, M. (2003). Design rationale as theory. In HCI
Models, Theories, and Frameworks: Toward a Multidisciplinary
Science (Carroll, J.M., Ed.), pp. 431–461. San Francisco, CA:
Morgan–Kaufmann.

Carroll, J.M. (2000). Making Use: Scenario-Based Design of Human–
Computer Interactions. Cambridge, MA: MIT Press.

Chung, P.W.H., & Goodwin, R. (1998). An integrated approach to represent-
ing and accessing design rationale. Engineering Applications of Artificial
Intelligence 11(1), 149–159.

CMMI Product Team. (2006). CMMI for Development. Version 1.2, CMU/
SEI-2006-TR-008.

Conklin, E.J., & Burgess-Yakemovic, K.C. (1996). A process-oriented ap-
proach to design rationale. In Design Rationale Concepts, Techniques,
and Use (Moran, T., & Carroll, J., Eds.), pp. 393–427. Hillsdale, NJ:
Erlbaum.

Curtis, B. (2000). From MCC and CMM: technology transfers bright and
dim. Proc. 22nd ICSE, pp. 521–530.

de la Garza, J.M., & Alcantara, P.T. (1997). Using parameter dependency
network to represent design rationale. Journal of Computing in Civil
Engineering 11(2), 102–112.

Dellen, B., Kohler, K., & Maurer, F. (1996). Integrating software process
models and design rationales. Proc. Knowledge-Based Software Engi-
neering, pp. 84–93.

De Medeiros, A.P., Schwabe, D., & Feijo, B. (2005). Kuaba ontology:
design rationale representation and re-use in model-based designs.

J.E. Burge322

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

Conceptual Modeling—ER 2005, 24th Int. Conf. Conceptual Modeling,
pp. 241–255.

Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B., Eds. (2006). Rationale
Management in Software Engineering. Heidelberg: Springer–Verlag.

Dutoit, A.H., Wolf, T., Paech, B., Borner, L., & Ruckert, J. (2005). Using
rationale for software engineering education. Proc. 18th Conf. Software
Engineering Education and Training, pp. 129–136.

Erdogmus, H., Favaro, J., & Halling, M. (2006). Valuation of software
initiatives under uncertainty: concepts, issues, and techniques. In
Value-Based Software Engineering (Biffl, S., Aurum, A., Boehm, B.,
Erdogmus, H., & Grünbacher, P., Eds.), pp. 39–99. Heidelberg:
Springer–Verlag.

Falessi, D., Cantone, G., & Becker, M. (2006). Documenting design deci-
sion rationale to improve individual and team design decision making:
an experimental evaluation. Proc. ISESE, pp. 134–143.

Fischer, G., Lemke, A., McCall, R., & Morch, A. (1996). Making argumen-
tation serve design. In Design Rationale Concepts, Techniques, and Use
(Moran, T., & Carroll, J., Eds.), pp. 267–293. Hillsdale, NJ: Erlbaum.

Garcia, A., Howard, H., & Stefik, M. (1993). Active Design Documents:
A New Approach for Supporting Documentation in Preliminary Routine
Design, Technical Report 82. Stanford, CA: Stanford University.

Garcia, A., Howard, H., & Stefik, M. (1994). Design Rationale for Collabo-
ration: The Active Document Approach, Technical Report MCC08/94.
Rio de Janeiro: Universidade Católica do Rio de Janeiro, Departmento
de Informática Pontifı́cia.

Garcia, A.C.B., & Vivacqua, A.S. (1997). MultiADD: Multiagent Active De-
sign Documents. Accessed at http://citeseer.ist.psu.edu/242337.html on
April 14, 2007.

Gill, S., & Munson, E. (2006). A version-aware tool for design rationale.
Proc. WebMedia’06, pp. 20–26.

Gruber, T. (1990). Model-based explanation of design rationale. Proc. AAAI-
90 Explanation Workshop.

Grudin, J. (1996). Evaluating opportunities for design capture. In Design Ra-
tionale Concepts, Techniques, and Use (Moran, T., & Carroll, J., Eds.),
pp. 454–470. Hillsdale, NJ: Erlbaum.

Hagge, L., Houdek, F., Lappe, K., & Paech, B. (2006). Using patterns for shar-
ing requirements engineering process rationales. In Rationale Management
in Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B.,
Eds.), pp. 409–427. Heidelberg: Springer–Verlag.

Hartmann, D. (2006). Interview: Jim Johnson of the Standish Group, InfoQ.
Accessed at http://www.infoq.com/articles/Interview-Johnson-Standish-
CHAOS on April 30, 2007.

Haynes, S.R. (2006). Three studies of design rationale as explanation. In
Rationale Management in Software Engineering (Dutoit, A., McCall,
R., Mistrı́k, I., & Paech, B., Eds.), pp. 53–71. Heidelberg: Springer–
Verlag.

Heliades, G., & Edmonds, E. (1999). On facilitating knowledge transfer in
software design. Knowledge-Based Systems 12, 391–395.

Hordijk, W., & Wieringa, R. (2006). Reusable rationale blocks: improving
quality and efficiency of design choices. In Rationale Management in
Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B.,
Eds.), pp. 353–371. Heidelberg: Springer–Verlag.

Horner, J., & Attwood, M.E. (2006). Effective design rationale: understand-
ing the barriers. In Rationale Management in Software Engineering
(Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B., Eds.), pp. 73–90.
Heidelberg: Springer–Verlag.

In, H., Boehm, B., Rodgers, T., & Deutsch, M. (2001). Applying WinWin to
quality requirements: a case study. Proc. 23rd Int. Conf. Software Engi-
neering, pp. 555–564.

Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation
and collaborative decision making: the HERMES system. Information
Systems 26(4), 259–277.

Karsenty, L. (1996). An empirical evaluation of design rationale documents.
Proc. SIGCHI Conf. Human Factors in Computing Systems: Common
Ground, pp. 150–156.

Keith, S., Blandford, A., Fields, R. & Theng, Y.L. (2002). An investigation
into the application of Claims Analysis to evaluate usability of a digital
library interface. Proc. JCDL Workshop on Usability.

Klein, M. (1992). DRCS: an integrated system for capture of designs and
their rationale. Proc. Artificial Intelligence in Design ’92 (Gero, J.,
Ed.), pp. 393–412. Dordrect: Kluwer Academic.

Klein, M. (1997a). An exception handling approach to enhancing con-
sistency, completeness and correctness in collaborative requirements
capture. Concurrent Engineering Research and Applications, pp. 37–46.

Klein, M. (1997b). Capturing geometry rationale for collaborative design.
Proc. 6th Int. Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises.

Kunz, W., & Rittel, H. (1970). Issues as Elements of Information Systems,
Working Paper 131. Berkeley, CA: University of California, Berkeley,
Center for Urban and Regional Development.

Lacaze, X., Palanque, P., Barboni, E., Bastide, R., & Navarre, D. (2006).
From DREAM to reality: specificities of interactive systems development
with respect to rationale management. In Rationale Management in Soft-
ware Engineering (Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B., Eds.),
pp. 155–172. Heidelberg: Springer–Verlag.

Lambell, N.J., Ball, L.J., & Ormerod, T.C. (2000). The evaluation
of Desperado: a computerised tool to aid design reuse. In People
and Computers XVI: Usability or Else! (McDonald, S., Wearn, Y., &
Cockton, G., Eds.), pp. 437–453. Cambridge: Cambridge University
Press.

Larsson, M., Wall, A., Norström, C., & Crnkovic, I. (2006). Technology
transfer: why some succeed and some don’t. Proc. Int. Workshop on Soft-
ware Technology Transfer in Software Engineering, pp. 23–28.

Lee, J. (1991). SIBYL: a qualitative design management system. In Artificial
Intelligence at MIT: Expanding Frontiers (Winston, P.H., & Shellard, S.,
Eds.), pp. 104–133. Cambridge MA: MIT Press.

Liebowitz, J. (2002). A look at NASA Goddard Space Flight Center’s
knowledge management initiatives. IEEE Software 19(3), 40–42.

Lougher, R., & Rodden, T. (1993). Group support for the recording and sharing
of maintenance rationale. Software Engineering Journal 8(6), 295–306.

Louridas, P., & Loucopoulos, P. (2000). A generic model for reflective de-
sign. ACM Transactions on Software Engineering Methodology 9(2),
199–237.

MacLean, A., Young, R.M., Bellotti, V., & Moran, T.P. (1996). Questions,
options and criteria: elements of design space analysis. In Design Ratio-
nale Concepts, Techniques, and Use (Moran, T., & Carroll, J., Eds.),
pp. 201–251. Hillsdale, NJ: Erlbaum.

McGill, K., Deadrick, W., Hayes, J.H., & Dekhtyar, A. (2006). Houston, we
have a success story: technology transfer at the NASA IV&V facility.
Proc. Int. Workshop on Software Technology Transfer in Software Engi-
neering, pp. 49–54.

Moran, T., & Carroll, J., Eds. (1996). Design Rationale Concepts, Tech-
niques, and Use. Hillsdale, NJ: Erlbaum.

Myers, K., Zumel, N., & Garcia, P. (1999). Automated capture of rationale
for the detailed design process. Proc. 11th National Conf. Innovative
Applications of Artificial Intelligence, pp. 876–883.

Palyagar, B., & Richards, D. (2006). Capturing and reusing rationale
associated with requirements engineering process improvement: a case
study. In Rationale Management in Software Engineering (Dutoit, A.,
McCall, R., Mistrı́k, I., & Paech, B., Eds.), pp. 391–408. Heidelberg:
Springer–Verlag.

Peña-Mora, F., Sriram, D., & Logcher, R. (1995). Design rationale for
computer-supported conflict mitigation. ASCE Journal of Computing
in Civil Engineering 9(1), 57–72.

Peña-Mora, F., & Vadhavkar, S. (1997). Augmenting design patterns with
design rationale. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 11, 93–108.

Potts, C., Takahashi, K., & Anton, A. (1994). Inquiry-based requirements
analysis. IEEE Software 11(2), 21–32.

Potts, C., Takahashi, K., Smith, J., & Ota, K. (1995). An evaluation of in-
quiry-based requirements analysis for an Internet service. Proc. 2nd
IEEE Int. Symp. Requirements Engineering, pp. 172–180.

Ramesh, B., & Dhar, V. (1994). Representing and maintaining process
knowledge for large-scale systems development. IEEE Expert: Intelligent
Systems and Their Applications 9(2), 54–59.

Ramesh, B., & Dhar, V. (1992). Supporting systems development by captur-
ing deliberations during requirements engineering. IEEE Transactions on
Software Engineering 18(6), 498–510.

Redwine, S., & Riddle, W. (1985). Software technology maturation. Proc.
8th ICSE, pp. 189–2000.

Richter, H., & Abowd, G. (1999). Automating The Capture of Design Knowl-
edge: A Preliminary Study, Technical Report GVU-99-45. Atlanta, GA:
Georgia Tech.

Richter, H., Schuchhard, P., & Abowd, G. (1998). Automated Capture and
Retrieval of Architectural Rationale, Technical Report GIT-GVU-
98-37. Atlanta, GA: Georgia Tech.

Rus, I., & Lindvall, M. (2002). Guest editors’ introduction: knowledge
management in software engineering. IEEE Software 19(3), 26–38.

Design rationale 323

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

Schneider, K. (2006). Rationale as a by-product, In Rationale Management in
Software Engineering (Dutoit, A., McCall, R., Mistrı́k, I., & Paech, B.,
Eds.), pp. 91–109. Heidelberg: Springer–Verlag.

SEI. (1997). Integrated Product Development Capability Maturity Model, Draft
Version 0.98. Pittsburgh, PA: Carnegie Mellon University, Enterprise
Process Improvement Collaboration and Software Engineering Institute.

Selvin, A., & Sierhuis, M. (1999). Case studies of project Compendium
in different organizations. Workshop on Computer-Supported Collabora-
tive Argumentation Conf. Computer-Supported Collaborative Learning.

Shah, J., Rangaswamy, S., Qureshi, S., & Urban, S. (1999). Design history
system: data models and prototype implementation. In Knowledge Inten-
sive CAD (Tomiyama, T., Mäntylä, M., & Finger, S., Eds.), pp. 91–114.
Dordrecht: Kluwer Academic.

Shipman, F., & McCall, R. (1997). Integrating different perspectives on de-
sign rationale: supporting the emergence of design rationale from design
communication. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 11, 141–154.

Smith, R., & Farquhar, A. (2000). The road ahead for knowledge manage-
ment: an AI perspective. AI Magazine 21(4), 17–40.

Standish Group. (1994). CHAOS Report. Accessed at http://www.stan
dishgroup.com/sample_research/chaos_1994_1.php on April 6, 2007.

Tang, A., Babar, M., Gorton, I., & Han, J. (2006). A survey of architecture
design rationale. Journal of Systems and Software 79, 1792–1804.

Tang, A., Jin, Y., & Han, J. (2007). A rationale-based architecture model for
design traceability and reasoning. Journal of Systems and Software 80(6),
918–934.

Taura, T., & Kubota, A. (1999). A study on engineering history base.
Research in Engineering Design 11(1), 45–54.

van der Ven, J.S., Jansen, A.G.J, Nijhuis, J.A., & Bosch, J. (2006).
Design decisions: the bridge between rationale and architecture. In
Rationale Management in Software Engineering (Dutoit, A., McCall, R.,
Mistrı́k, I., & Paech, B., Eds.), pp. 329–348. Heidelberg: Springer–Verlag.

Vetschera, R. (2006). Preference-based decision support in software engi-
neering. In Value-Based Software Engineering (Biffl, S., Aurum, A.,
Boehm, B., Erdogmus, H., & Grünbacher, P., Eds.), pp. 67–89. Heidel-
berg: Springer–Verlag.

Zaychik, V., & Regli, W.C. (2003). Capturing communication and context
in the software project lifecycle. Research in Engineering Design
14(2), 75–88.

Janet E. Burge is an Assistant Professor in the Miami Uni-
versity Computer Science and Systems Analysis Department.
She has worked in industry as a researcher and software de-
veloper for over 20 years. She received her PhD and MS in
computer science from Worcester Polytechnic Institute and
her BS in computer science from Michigan Technological
University. Dr. Burge’s major research interests are in soft-
ware engineering and artificial intelligence. Her primary re-
search area is in DR, with a focus on DR for software main-
tenance. She is a coauthor of the book Rationale-Based
Software Engineering.

J.E. Burge324

https://doi.org/10.1017/S0890060408000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000218

