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The two-dimensional boundary-layer flow over a cooled/heated flat plate is investi-
gated. A cooled plate (with a free-stream flow and wall temperature distribution
which admit similarity solutions) is shown to support non-modal disturbances, which
grow algebraically with distance downstream from the leading edge of the plate. In
a number of flow regimes, these modes have diminishingly small wavelength, which
may be studied in detail using asymptotic analysis.

Corresponding non-self-similar solutions are also investigated. It is found that there
are important regimes in which if the temperature of the plate varies (in such a way
as to break self-similarity), then standard numerical schemes exhibit a breakdown at
a finite distance downstream. This breakdown is analysed, and shown to be related
to very short-scale disturbance modes, which manifest themselves in the spontaneous
formation of an essential singularity at a finite downstream location. We show how
these difficulties can be overcome by treating the problem in a quasi-elliptic manner,
in particular by prescribing suitable downstream (in addition to upstream) boundary
conditions.

1. Introduction
Mixed forced–free convection boundary layers have been much studied in the past

due to their importance in a wide variety of heat transfer applications in industry.
There is now a considerable body of literature on this class of flow which can be
divided into studies on heat transfer (Leal 1973; Hady, Bakier & Gorla 1996), flow
stability (Chen & Mucoglu 1979; Denier & Bassom 2003; Denier & Mureithi 1996)
and critical phenomena associated with the breakdown of the boundary-layer ap-
proximation (Daniels 1992; Daniels & Gargaro 1993; Schneider 1979; Schneider &
Wasel 1985).

Much of the work on this class of flows can be viewed as studies into the effect
of buoyancy upon the behaviour of the boundary-layer flow. The effect of buoyancy
upon heat transfer in mixed convection boundary layers has been considered by a
number of authors. Hady et al. (1996) demonstrated that incorporating a temperature
dependency into the model has a significant effect on the heat transfer and (laminar)
drag characteristics of the flow. Importantly a velocity overshoot, in which the
streamwise velocity exceeds the free-stream velocity, was observed at sufficiently high
levels of buoyancy. Leal (1973) considered the general problem of a mixed convection
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boundary layer over a flat plate inclined at an angle to the horizontal. Similarity
solutions were developed as series expansions in powers of a (small) buoyancy
parameter. A number of asymptotic limits, based upon the magnitude of the Prandtl
number, were investigated in the context of quantifying the effect of buoyancy on
skin friction and heat flux at the plate surface. Hussain & Afzal (1988) employed a
higher-order expansion method, similar to that used by Leal (1973), to further refine
predictions of heat transfer and drag characteristics for mixed convection flows.

All the aforementioned works were based upon the concept of similarity (or local
similarity) of the mixed convection boundary layer. Under conditions of a uniform
free-stream speed and a uniform plate temperature (or a constant heat flux at the wall)
similar solutions are no longer possible. Then the full parabolic partial differential
equations must be solved and this calculation was first undertaken by Schneider &
Wasel (1985). Their results showed that in the case of a unstably stratified flow, the
streamwise velocity develops an overshoot at a given streamwise location. Interest-
ingly, a stably stratified flow (corresponding to, for example, a cooled wall) terminates
in a singularity that is not directly associated with boundary-layer separation.
Schneider & Wasel (1985) attribute this singularity to the presence of a local turning
point in the wall shear. This argument is not entirely convincing since it ignores
the important point that the local turning point is intimately linked to the non-
uniqueness of self-similar solutions (as we will show in § 3), a point overlooked by
Schneider (1979) in his study on self-similar flows.

Steinrück (1994) investigated the boundary-layer flow over a cooled horizontal
plate, and found numerical difficulties that were associated with large eigenvalues
associated with perturbations to the flow field. His analysis (which may be regarded
as being linked to one particular choice of parameters in our analysis) was based on
the use of modal flow disturbances and consequently involved the use of the parallel-
flow approximation; as such the approach was largely heuristic. In the present paper,
in addition to studying a much wider class of problem, the analysis for the most part
is completely rigorous, mathematically, and we show that even heated-flow situations
can be susceptible to numerical difficulties. We also present a resolution of these
difficulties, using a somewhat novel approach.

In addition to the purely flat-plate mixed convection flow, velocity overshoot occurs
in a variety of other important problems. Kumari & Nath (1982) demonstrated stream-
wise velocity overshoot in three-dimensional stagnation-point flows; the characteristics
of the flow being similar to the flat-plate analogue. A similar phenomenon can be
found in the work of Daniels & Gargaro (1993) where the flow has a stable thermal
stratification but the overshoot is due to the intrusion of a non-buoyant wall jet.
In this case the velocity overshoot vanishes as the flow develops in the streamwise
direction (see their figure 6); this is in direct contrast to the unstably stratified mixed
convection flow for which the strength (or magnitude) of the velocity overshoot
increases with increasing distance from the leading edge of the plate.

It is inevitable that whenever an overshooting-type situation arises, the underlying
boundary-layer profile becomes inflectional and therefore inviscidly unstable. The
linear stability of a particular family of self-similar buoyant boundary layers was
considered by Mureithi, Denier & Stott (1997) who demonstrated that the flow,
when subject to wave-like disturbances, develops a ‘degenerate’ critical layer at the
position where the streamwise velocity attains its maximum. It was shown that these
modes are short compared with the boundary-layer thickness and that they propagate
downstream with a wave speed equal to the maximum value of the mean streamwise
velocity. The analysis was extended into the weakly nonlinear regime by Denier &
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Mureithi (1996) who uncovered a supercritical bifurcation to a new class of finite-
amplitude travelling waves. These are governed by a mean-field theory in which the
fundamental component of the disturbance is coupled to the mean-flow correction
induced by the self-interaction of the fundamental itself. Further work on the stability
of the flow to O(1)-wavelength disturbances can be found in Chen & Mucoglu (1979)
and Mureithi (1998). Chen & Mucoglu (1979) employed a parallel-flow approximation
to pose the problem of the wave instability of the flow in terms of a generalized Orr–
Sommerfeld equation coupled through the buoyancy term to a disturbance energy
equation. Curves of neutral stability demonstrated that the effect of buoyancy is to
destabilize the flow, although multiple modes of instability were also uncovered. These
new modes led to predicted critical Reynolds number (based upon a characteristic
length) of O(10). Further work on this problem is in Mureithi (1998), where a variety
of unstable modes were found – again these have the property that instability arises
at values of the Reynolds number in the range O(10). However, their relevance to
true boundary-layer flows, for which the Reynolds number is large, is not clear. The
effect of non-parallelism on this class of instability has recently been considered by
Denier & Bassom (2003), where it was shown that nonlinear short waves become
increasingly focused within the degenerate critical layer as the flow develops in the
streamwise direction. Stability aspects of the related natural convection problem have
also been the subject of investigation – see for example Higuerra (1992).

To date, with the exception of Steinrück (1994), all results concerning the stability of
mixed forced–free convection boundary layers have focused upon wave-like (normal
mode) disturbances. Recently, however, there has been renewed interest in the problem
of non-modal disturbances in boundary-layer flows, a problem first studied by
Libby & Fox (1964). Luchini (1996) considered the instability of a flat-plate boundary
layer to three-dimensional non-modal (in the streamwise direction) disturbances.
Such disturbances are ascribed to the interplay between inviscid algebraic growth
and viscous dissipation and it is demonstrated that, although viscous dissipation
provides an algebraic decay it is unable to overcome the inviscid algebraic growth.
This is in stark contrast to the equivalent problem in a parallel flow where algebraic
decay resulting from viscous dissipation does serve to damp out the inviscid algebraic
growth, thus resulting in a flow which is stable to such disturbances. The existence
of algebraically growing disturbances (within the context of the boundary-layer
flow) provides a driving mechanism for the linear amplification stage observed in
experiments on by-pass transition. Luchini (2000) extended this work to consider the
question of optimal disturbances within the boundary-layer flow, thus strengthening
the link between algebraic disturbances and by-pass transition (for further dis-
cussion on algebraically growing disturbances see Andersson, Berggren & Henningson
(1999) and Obrist & Schmid (2003) for spatial growth and Trefethen et al. (1993) for
temporal growth).

Here we are concerned with the Reynolds-number independent instability of a class
of mixed forced–free convection boundary-layer flows. The problem is formulated in
§ 2. Basic similarity flows are considered in § 3, where for cooled flows (that is,
the surface temperature is less than the free-stream temperature) the self-similar
flow is non-unique. The instability of these self-similar flows to algebraically growing
disturbances is demonstrated numerically. Sections 3.1 and 3.2 describe the asymptotic
form of the disturbance for large disturbance growth rate, thus confirming our
numerical results. In § 4 we turn our attention to the non-parallel evolution of the
boundary layer where we demonstrate the existence of a very short-scale instability.
Finally in § 5 we show that the instabilities described in previous sections can be
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suppressed through a quasi-elliptic treatment of the boundary-layer flow. Some
conclusions from our study are drawn in § 6.

2. Formulation
The dimensionless equations which govern the two-dimensional motion of a steady

incompressible Boussinesq fluid flowing over a heated/cooled flat plate may be written
in the form

∂ũ

∂x
+

∂ṽ

∂y
= 0, (2.1a)

ũ
∂ũ

∂x
+ ṽ

∂ũ

∂y
= −∂p̃

∂x
+

1

Re
∇2ũ, (2.1b)

ũ
∂ṽ

∂x
+ ṽ

∂ṽ

∂y
= −∂p̃

∂y
+ GT̃ +

1

Re
∇2ṽ, (2.1c)

ũ
∂T̃

∂x
+ ṽ

∂T̃

∂y
=

1

σRe
∇2T̃ , (2.1d)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2. Here the fluid velocities have been scaled on a typical
free-stream speed U∞ and the distances along (x) and normal to (y) the plate expressed
relative to a characteristic length L. The pressure p̃ has been non-dimensionalized
using ρ0U

2
∞ where ρ0 is the density of the fluid at the temperature of the plate (T0)

and the fluid temperature T̃ has been written relative to the difference T0 − T∞ where
T∞ is the temperature of the free stream. The Prandtl number is denoted by σ and
the Reynolds number Re takes its usual form equal to U∞L/ν where ν represents
the kinematic viscosity of the fluid. Lastly, within (2.1) we have defined G =GrRe−2

where Gr = gβL3(T0 − T∞)/ν2 is the Grashof number; g denotes the acceleration due
to gravity, and β is the coefficient of volume expansion.

When Re � 1 the velocity, pressure and temperature fields within the boundary
layer can be written as

(ũ, ṽ, T̃ , p̃) =
(
u, Re−1/2v, T , − 1

2
u2

e(x) + Re−1/2p
)

+ · · · , (2.2)

where the quantities on the right-hand side are functions of x and the boundary-
layer variable Y ≡ Re−1/2y. The governing equations then become (to leading order
in powers of Re)

∂u

∂x
+

∂v

∂Y
= 0, (2.3a)

u
∂u

∂x
+ v

∂ū

∂Y
= ue

due

dx
− G0

∂p

∂x
+

∂2u

∂Y 2
, (2.3b)

∂p

∂Y
= T , (2.3c)

u
∂T

∂x
+ v

∂T

∂Y
=

1

σ

∂2T

∂Y 2
, (2.3d)

subject to the boundary conditions u = v = 0, T = Tw(x) on the plate Y = 0 and that
u → ue(x), T → 0 as Y → ∞. In (2.3), the apparently small term G0 ≡ Re−1/2G has
been retained and the pressure has been rescaled using G0. The extreme cases in
which G0 � 1 or G0 � 1 are respectively referred to as forced and free convection
boundary layers, whereas our interest here is in the intermediate regime for which
G0 = O(1). Then the momentum and temperature fields within the boundary layer
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become fully coupled and this provides a mechanism whereby the buoyancy-induced
streamwise pressure gradient can serve to accelerate the streamwise flow to levels
above its normalized free-stream speed.

Before proceeding it is worthwhile to note estimates that characterize some of
the key parameters involved. For example, water at 20◦ C has kinematic viscosity
ν = 1.004 × 10−2 cm2 s−1 and coefficient of thermal expansion β = 2.1 × 10−4 K−1 (see
Batchelor 1967). If we consider a device in which the characteristic length scale L is,
say, 100 cm and the temperature difference �T is 20◦ C then the Grashof number
Gr ∼ O(1010). If the water is replaced by air then Gr drops by up to roughly two
orders of magnitude but overall this implies that the G0 = O(1) regime will be
achieved when the associated Reynolds number becomes O(103)–O(104). Such values
are readily achieved under controlled experimental conditions (see Wang 1982; Lin &
Lin 1996).

We consider a general similarity-like solution to the boundary-layer equations (2.3)
by setting

u = xmf ′(η, x), v = − 1√
2

(
(m + 1)x(m−1)/2f + (1 − m)ηx(m−1)/2f ′ − 2x(m+1)/2fx

)
,

T = x(5m−1)/2g(η, x), p = x2mq(η, x),




(2.4)

where we have set ue = xm, Tw = x(5m−1)/2Tw(x). The ‘similarity’ variable is given by

η =
Y√

2x(1−m)/2
. (2.5)

Under this transformation the boundary-layer equations become

f ′′′ + 2m(1 − (f ′)2) + (m + 1)ff ′′ = G0

(
4mq + (m − 1)ηq ′ + 2x

∂q

∂x

)

+ 2x

(
f ′ ∂f

′

∂x
− f ′′ ∂f

∂x

)
, (2.6a)

1

σ
g′′ − (5m − 1)gf ′ + (m + 1)fg′ = 2x

(
f ′ ∂g

∂x
− g′ ∂f

∂x

)
, (2.6b)

q ′ =
√

2g, (2.6c)

where a prime denotes differentiation with respect to η. This system must be solved
subject to the boundary conditions

f = 0, f ′ = 0, g = Tw(x) on η = 0, (2.7)

f ′ → 1, g → 0, q → 0 as η → ∞. (2.8)

Note that although we have introduced similarity-like variables, this certainly does
not preclude us from studying non-similarity-type flows. Indeed, the latter are an
important component of this work. However, since the spatial development of the
solution will, close to the leading edge, x = 0, take on a locally similar form, the
variables introduced above enable us to progress the solution downstream in an
entirely regular manner.

Finally we note that Steinrück (1994) studied flows which were related to the
particular case m =0, G0 = 0 (in our notation).
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Figure 1. Variation of f ′′
0 (0) with G0.

3. Similarity flows
In this section we study first the form of similarity solutions of (2.6), and then a

particular class of disturbance to these base flows. The basic, similarity forms (denoted
here by f0(η), g0(η), q0(η)) may be obtained from (2.6) by merely setting x = 0, leading
to

f ′′′
0 + 2m(1 − (f ′

0)
2) + (m + 1)f0f

′′
0 = G0(4mq0 + (m − 1)ηq ′

0), (3.1a)

1

σ
g′′

0 − (5m − 1)g0f
′
0 + (m + 1)f0g

′
0 = 0, (3.1b)

q ′
0 =

√
2g0, (3.1c)

which are to be solved subject to the boundary conditions

f0 = 0, f ′
0 = 0, g0 = 1 on η = 0,

f ′
0 → 1, g0 → 0, q0 → 0 as η → ∞.

This system was solved using a straightforward fourth-order Runge–Kutta tech-
nique (coupled with Newton iteration), and results for m = −0.05, 0, 0.1 and 0.2, over
a range of G0 are shown in figures 1 and 2 (f ′′

00(0) and g′
00(0) respectively). Note

that all results shown in this paper were obtained with a Prandtl number σ =0.72.
These base-flow (similarity) results are reminiscent of the well-known Hartree (1937)
distributions encountered in classical Falkner–Skan distributions of wall shear versus
Hartree parameter (effectively our parameter m), in which non-uniqueness is found at
negative values of the Hartree parameter. In particular, note that the non-uniqueness
in the solution for negative values of G0 mimics the non-uniqueness of the classical
Falkner–Skan equations found for negative values of the Hartree parameter. Figure 1
fills in the missing part of the picture presented in Schneider (1979) past the turning
point in the wall shear. We note that for G0 < 0 (that is, for flow over a cooled
wall) there is the possibility of having two self-similar solutions of the boundary-layer
equations, both of which exhibit positive wall shear. It should be noted that these
results appear to agree with those of Schneider (1979) when m = 0.
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Figure 2. Variation of g′
0(0) with G0 (note that g′

0(0) ≡ 0 when m= 0).

We next move on to consider stability issues related to these similarity solutions;
certainly the occurrence of non-uniqueness raises the question of stability, and is
therefore worthy of investigation. At this point it should be noted that the system
(2.6) does admit (in a fully rational sense) small-amplitude perturbations which have
an algebraic behaviour in the streamwise (x) direction, basically of the same form as
that employed by Luchini (1996) and Duck, Stow & Dhanak (1999) in their work
on classical boundary layers. In particular we consider perturbations to the basic
boundary-layer flow of the form

(f, g, q) = (f0(η), g0(η), q0(η)) + xλ(f1(η), g1(η), q1(η)) + O(x2λ), (3.2)

where it is implicitly assumed that x � 1. Note that the leading-order terms in this
expansion are functions of η alone; this is only appropriate if Tw is constant and so
we will, without loss of generality, set Tw = 1 for the remainder of this section.

Taking the O(xλ) terms when (3.2) is substituted into (2.6) we obtain

f ′′′
1 + (m + 1)f0f

′′
1 − 2(2m + λ)f ′

0f
′
1 + (m + 1 + 2λ)f1f

′′
0

= G0(2(2m + λ)q1 + (m − 1)ηq ′
1), (3.3a)

1

σ
g′′

1 − (5m − 1 + 2λ)g1f
′
0 + (m + 1)f0g

′
1 = −(m + 1 + 2λ)f1g

′
0 + (5m − 1)g0f

′
1, (3.3b)

q ′
1 =

√
2g1, (3.3c)

which are subject to the homogeneous boundary conditions

f1 = 0, f ′
1 = 0, g1 = 0 on η = 0, (3.4a)

f ′
1 → 0, g1 → 0, q1 → 0 as η → ∞. (3.4b)

This system represents an eigenvalue problem for λ as a function of G0 (and the
Prandtl number σ ), which was solved by discretizing all η-derivatives using second-
order centred differences. The resulting discretized system can then be written as a
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Figure 3. The positive eigenvalue for m= 0 (asymptotic values shown as broken line).

generalised eigenvalue problem of the form Ah = λBh where the vector h contains
the field variables at the grid points ηj = j�η. This was then solved, first by using
the QZ algorithm to identify estimates for the eigenvalues λ, which were subsequently
refined by using the same differencing scheme, but employing a searching (iterative)
procedure which exploited the banded nature of the resulting algebraic system. In all
the cases (i.e. for all values of the pressure gradient parameter m) studied, for heated
boundary layers, namely G0 > 0, only negative values for λ were found, which, in the
context of the present paper are of limited interest, although these are of relevance
in the far-downstream behaviour of flow disturbances, in the sense of Libby & Fox
(1964). It is worth noting in this respect that for the m =0 case, as G0 → 0+, in
addition to the modes found by Libby & Fox (1964) for the Blasius boundary layer,
other eigenvalues were found which may be regarded as eigenvalues of the energy
equation, one of which was of smaller magnitude (λ≈ −0.296) than the least negative
Libby & Fox (1964) eigenvalue (λ= −1). It would be the former eigenvalue that con-
trols the downstream decay of the solution.

For the reasons detailed above, we focus on results in regimes which do admit
positive values of the eigenvalue λ, and therefore flows which admit downstream
algebraically growing disturbances. Figure 3 presents results for the case m =0, in
particular distributions of (the logarithm of) λ are shown as a function of the
wall shear (for later cases, this turns out to be advantageous, rather than as a
function of G0, given the aforementioned non-uniqueness). In this case just one (real)
positive eigenvalue was found over the range shown, and the following are the key
observations: (i) as G0 → 0−, λ→ ∞; (ii) as the ‘nose’ of the f ′′

0 (0) versus G0 curve
is approached, i.e. as G0 → −0.0699 . . . , f ′′(0) → 0.149 . . . , then λ→ 0; (iii) for the
lower branch solution, i.e. for 0.149 . . . < f ′′

0 (0) < 0, only negative values of λ were
encountered; (iv) for f ′′

0 (0) < 0 (that is, for reversed flow solutions) a large (probably
infinite) number of positive values of λ were encountered (these are not shown); (v) the
vast majority of eigenvalues were real. Note that (i) will be considered in detail below,
(ii) is an inevitable consequence of the non-uniqueness, whilst (iv) is a reflection of
the ‘ellipticity’ of the flow in the case of flow reversal.
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Figure 4. The (real part of the) positive eigenvalues for m= −0.05 (asymptotic values shown
as a broken line).

The second set of eigenvalue distributions is shown in figure 4, and corresponds
to the case m = −0.05. This distribution replicates most of the features observed
in the previous (m = 0) case, although there is one slight exception, namely that a
second real and positive eigenvalue is also present over a range of values of f ′′

0 (0).
This second eigenvalue intersects with the original eigenvalue at f ′′

0 (0) = 0.125 . . . ,

G0 = −0.0124 . . . to form a complex-conjugate pair of eigenvalues (which extends
from this point to smaller values of f ′′

0 (0) – this is the left-hand branch on figure 4). It
should be noted that in the context of non-modal disturbances, complex eigenvalues
are quite rare. As in the previous case at the point where f ′′

0 (0) = 0−, a (probable)
infinite number of positive eigenvalues spontaneously appear.

The next set of results presented (figure 5) is for m =0.2. Although in this case the
vast majority of eigenvalues appeared to be real (again), the results are intriguingly
qualitatively different from the results for the previous two choices of m. When
m = 0.2, although the unboundedness in λ as G0 → 0− is clearly present again (this
mode terminating with λ=0 at the nose of the distribution curve, figure 1), in this case
as G0 is reduced, additional (λ> 0) modes form, arising with infinite magnitude at
other (negative) values of G0. Figure 5 shows the first four modes found; many others
appeared to arise at progressively more negative values of G0. In the limit of λ→ ∞
these computations became quite challenging, and the results shown were obtained
with an η-grid size of approximately 4 × 10−5 (these results were also checked against
control computations with double this grid size). The asymptotic analysis presented
later in this section reveals just why such small grid sizes were necessary in this limit.
Many other calculations were performed by the authors (but not presented here), and
these all pointed to the existence of many modes provided m > 0 in the region G0 < 0.

From these results, it is quite clear that there are two (distinct) limits leading
to λ→ ∞: the first as G0 → 0−, the second at discrete, non-zero critical values of
G0 (which seem to occur only for m > 0); these two limits are now considered in
§ § 3.1 and 3.2 respectively. Both these limits are important physically, since both
correspond to flow disturbances with diminishingly small wavelengths, a theme which
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Figure 5. The positive eigenvalues for m= 0.2 (asymptotic values/locations shown as
broken line/arrows).

runs throughout this paper, including in later sections where non-similarity forms of
base flow are studied.

3.1. The large-λ limit, G0 → 0

The results presented in figures 3–5 strongly suggest that in the limit G0 → 0− one
positive eigenvalue becomes unbounded. We now consider this (large-λ) limit. It
proves convenient to work with λ as a large parameter and so we pose the ansatz
G0 = Ĝλ−1/3, which may be confirmed a posteriori. Inspection of the disturbance
equations (3.3) suggests that in this limit the flow will develop a two-tiered structure
comprising an inviscid ‘core flow’, which occupies the majority of the boundary layer,
together with a viscous wall layer in which the flow adjusts to the full no-slip boundary
conditions.

Standard asymptotic procedures indicate that the solution may be expanded in
reciprocal powers of λ1/3. Thus, for the basic boundary-layer flow we write

(f0, g0, q0) = (f00, g00, q00) + λ−1/3(f01, g01, q01) + O
(
λ−2/3

)
, (3.5)

where subscript ‘00’ indicates base-flow quantities when G0 = 0. We note that as η → 0,

f00 = 1
2
f ′′

00(0)η2 + · · · , g00 = 1 + g′
00(0)η + · · · ,

where f ′′
00(0) and g′

00(0) are the shear and temperature gradient at the surface,
respectively.

For η = O(1) we expand the disturbance field as

(f1, g1, q1) = (f10, g10, q10) + λ−1/3(f11, g11, q11) + O
(
λ−2/3

)
. (3.6)

Substituting these expansions into (3.3) gives the solution

f10 = Cf ′
00, g10 = Cg′

00, q10 =
√

2Cg00, (3.7)
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where we have made use of the far-field boundary conditions (3.4b) on the disturbance
quantities. At next order we have

f ′
00f

′
11 + f ′

01f
′
10 − f ′′

00f11 − f10f
′′
01 = −Ĝq10. (3.8)

In order to correctly define the matching condition for the viscous-layer region (to
be considered subsequently) we require the limiting behaviour of f11 as η → 0. This is
most readily obtained by setting η =0 in (3.8) to give

f ′′
00f11 = Ĝq10 on η = 0. (3.9)

We then have

f11(0) =

√
2CĜ

f ′′
00(0)

. (3.10)

Combining this result with the leading-order solution in the core we find that, as
η → 0, the core flow behaves as

f1 = Cf ′′
00(0)η +

√
2CĜ

f ′′
00(0)

λ−1/3 + · · · . (3.11)

The solution given above does not satisfy the full no-slip boundary conditions on
η =0. We must therefore introduce a thin viscous layer to enable the disturbance
amplitude to adjust from its constant level as it exits the core to a zero value on
the plate surface. By balancing normal diffusion with streamwise advection in the
sublayer, we are led to conclude that η = λ−1/3z, z = O(1) is the appropriate scaling,
and subsequently that in the viscous layer, the disturbance quantities expand as

f1 = λ−1/3f̂ 1 + · · · , g1 = ĝ1 + · · · , q1 = q̂1 + · · · . (3.12)

Substitution of these expansions into (3.3) gives, to leading order

f̂ zzz − 2f ′′
00(0)zf̂ z + 2f ′′

00(0)f̂ = 2
√

2Ĝ, (3.13)

where we have defined f̂ 1 = Cf̂ . The boundary conditions on f̂ are

f̂ = f̂ z = 0 on z = 0, (3.14a)

and

f̂ → f ′′
00(0)z +

√
2Ĝ

f ′′
00(0)

+ . . . as z → ∞. (3.14b)

Integrating (3.13) and applying the wall boundary conditions (3.14a) gives

f̂ = A

∫ z

0

∫ t

0

Ai
(
(2f ′′

00(0))1/3s
)
ds dt, (3.15)

where A is a constant of integration. Matching with the core flow then yields

A = 3f ′′
00(0)(2f ′′

00(0))1/3, Ĝ =
3

25/6
f ′′

00(0)5/3Ai′(0). (3.16)

Noting that Ai′(0) < 0, we therefore find that for G0 < 0 the flow supports disturbances
which grow algebraically. Confirmation of the consistency, as G0 → 0, between the
(fully) numerical results obtained for (3.3) and the asymptotic results obtained above
may be seen on figures 3–5, the latter being indicated by broken lines on these figures.
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3.2. The large-λ limit, G0 → Gcrit
0 =0

In addition to the mode with eigenvalue that originates and becomes unbounded as
G0 → 0−, the results for free-stream-flow parameter m =0.2, as shown in figure 5,
exhibit additional downstream-growing modes, which form at finite values of G0 =
Gcrit

0 , also with unbounded values of λ. The details of the formation of these modes,
as G0 → Gcrit

0 are quite different from those described in § 3.1, and we study this aspect
next.

As before, it is useful to consider the eigenvalue λ as our large parameter, and then
to write

G0 = Gcrit
0 + λ−1/3Ĝ + · · · , (3.17)

where the scaling on λ may (again) be verified a posteriori. Usefully, the expansions
(3.5) and (3.6) are again appropriate (although now the subscript 00 indicates base-
flow quantities evaluated at G0 =Gcrit

0 ), and when substituted into (3.3), the largest
(powers of λ) terms yield

f ′
00f

′′
10 +

[√
2Gcrit

0 g′
00

f ′
00

− f ′′′
00

]
f10 = 0. (3.18)

Since this equation is fundamentally inviscid in nature, the appropriate boundary
conditions are that

f10(0) = 0, f ′
10(η → ∞) → 0. (3.19)

However, the system (3.18) taken together with (3.19) is a homogeneous one. Con-
sequently the authors tackled the system as an eigenvalue problem (for Gcrit

0 ), and
then accepted the solution if the calculated value of Gcrit

0 and the actual value of G0,
used in calculating the base flow, coincided. More specific details regarding this will
be given below when we discuss our results.

It is useful to be rather more precise regarding the behaviour of f10 as η → 0. A
Frobenius-type expansion of f10 reveals that the two linearly independent solutions
close to η = 0 take the form

f10 ∼ A−ηΛ− + A+ηΛ+, (3.20)

where

Λ± =
1

2
± 1

2

[
1 − 4

√
2Gcrit

0 g′
00(0)

f ′′
00(0)2

]1/2

. (3.21)

Since in the case when m = 0, g′
00(0) = 0, these values are 0 (which must be discarded)

and 1, then it is immediately clear why these types of mode are not present when
m =0. Inspection of the numerical results presented above (and many others obtained
by the authors) in fact indicated that the pertinent range corresponded to the regime
for which 4

√
2Gcrit

0 g′
00(0)/(f ′′

00(0)2) > 1, and hence the Λ± formed a complex-conjugate
pair (along with the A±). There must clearly be a sublayer that forms on η = 0. It
turns out (again) that η = λ−1/3z is the appropriate scaling, although to leading order
this layer plays a passive role.

We now consider some numerical results for this particular limit, focusing our
attention on the predicted critical values of G0 for which these very short-wavelength
disturbances appear, i.e. the values of Gcrit

0 . As already mentioned, the system (3.18)
together with (3.19) may be regarded as an eigenvalue problem for Gcrit

0 , which in our
case is only meaningful when Gcrit

0 and the G0 corresponding to the basic-flow solution
coincide. To tackle this problem a value of G0 was assumed, the basic flow computed
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Figure 6. Variation of Gcrit
0 with m, first three modes.

(in the manner described earlier in this section), and then (3.18) was approximated
using second-order finite differences. A QZ algorithm was adopted to obtain first
estimates for Gcrit

0 , and these were then refined using smaller grid sizes in a local search
algorithm, which employed a Newton iteration procedure to adjust the value of G0 to
coincide with Gcrit

0 (to within some prescribed tolerance). Typically, exceedingly small
grid sizes were again found to be necessary to achieve graphical accuracy – generally
O(5 × 10−7); the reason for this is not surprising, given the asymptotic behaviour
as η → 0 described by (3.20)–(3.21), which indicates decreasingly short-wavelength
oscillations in the η-direction in this limit. Figure 6 shows the variation of the first
three modes (i.e. Gcrit

0 ) of this type over a range of values of m. Indeed, the indications
were that many modes are encountered (again, provided m > 0). For comparison, the
arrows on figure 5 indicate the location of the corresponding critical values of f ′′

0 (0)
(for the particular case m =0) for these three modes (labelled (i)–(iii)). Additional
evidence of the multiplicity of modes is provided in figure 7, which rather than using
an iterative-type procedure to determine the critical values of G0/Gcrit

0 , shows the
minimum difference between G0 and any of the Gcrit

0 which were computed using
the QZ procedure. The significance of these results is that any zeros of the quantity
Gcrit

0 − G0 indicate values of G0 where (infinite) modes originate. These results (which
are for the case m =0.2) show vividly that more and more modes appear as the critical
location where f ′′

00(0) = 0 is approached (from the positive f ′′
00(0) side), the implication

being that an infinite number of these modes exist (i.e. a continuous spectrum) in this
limit. Unsurprisingly, iterative procedures tend to fail in this regime.

Yet further credence can be given here to the multiplicity of modes by additional
asymptotic analysis. Let us assume that G0 = G00 − G̃, where G̃> 0, |G̃| � 1 and G00

is the value of G0 for which f ′′
00(0) = 0; this anticipates explicitly that this regime is

between the nose of the distributions shown in figure 1, and the point of flow reversal.
We now define a scaled transverse coordinate, η̂ = η/Q̃, and so (3.18) becomes

d2f10

d2η̂2
+

1

G̃2

( √
2G00g

′
00(η = 0; G0 = G00)[

1
2
f ′′′

00(η = 0; G0 = G00)η̂2 + κη̂
]2

)
f11 = 0, (3.22)
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Figure 7. Gcrit
0 − G0, m= 0.2 (�η = 0.000833).

where

κ = − ∂3f11

∂2η∂G0

(η = 0, G0 = G00) > 0. (3.23)

Usefully, this equation has an exact solution which may be written in the form

f11 = B1η̂
r1

[
1
2
f ′′′

00(η = 0; G0 =G00) + κη̂
]1−r1

+ B2η̂
r2

[
1
2
f ′′′

00(η = 0; G0 = G00) + κη̂
]1−r2

,

(3.24)
where r1, r2 are the two roots of the equation

r(r − 1) +
4
√

2G00g
′(η = 0; G0 = G00)

G̃2f ′′′
00(η = 0; G0 = G00)2

= 0. (3.25)

The key points to note from this, therefore, are that (3.24) satisfies the wall condition
(impermeability) for all values of B1 and B2 whilst as η → ∞, f11 ∼ constant × η̂,
strongly pointing to the fact that potential solutions exist for all (positive) values of
G̃, confirming our assertion that a continuous spectrum of modes exists as G0 → G00.

Finally (with respect to these inviscid modes), note that the above analysis predicts
just the location of the origin of these modes; calculation of the asymptotic value of
the corresponding eigenvalues requires higher-order analysis, which is omitted in the
interests of brevity.

4. The non-parallel evolution of the boundary layer
We now turn our attention to the question of the non-parallel development of

the buoyant boundary layer. In particular we focus our attention on the question
of how the boundary layer responds when the wall temperature is variable (or
more precisely, decreases with distance downstream from the leading edge of the
plate). Our initial interest in this problem arose because of a desire to understand
the phenomenon of velocity overshoot in buoyant mixed forced–free convection
boundary layers and whether this overshoot could be controlled through a judicious
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Figure 8. Spatial development of wall-shear stress, m= 0, G0 = 0.5, γ = −0.1, �x as shown.

choice of wall temperature. The development of overshoot is intimately linked with
the generation of short-wave instabilities in this class of boundary-layer flow (see
Denier & Mureithi 1996; Mureithi et al. 1997; Denier & Bassom 2003).

In order to tackle the question of spatially developing (i.e. non-self-similar) flows,
we revert to a consideration of the system (2.6)–(2.8). The self-similarity is broken by
the choice of a downstream-varying wall temperature as

Tw(x) = e−x + γ (1 − e−x), (4.1)

where here γ is treated as a parameter, controlling the downstream evolution of the
flow. Consistent with the form (4.1), the initial profiles at x = 0 may be taken as
the similarity solutions obtained from (3.1). A second-order finite-difference/Crank–
Nicolson scheme (coupled with Newton iteration) was then employed to march the
solution downstream.

Figure 8 shows the downstream development of the wall-shear stress (f ′′(η = 0)), for
the case m =0, γ = −0.1, G0 = 0.5. These results were obtained using four streamwise
grid sizes, namely �x = 10−2, 10−3, 10−4 and 10−5 (for a fixed transverse grid size,
�η = 5 × 10−3). It is immediately apparent that these results suffer a spontaneous
breakdown, characterized by sudden oscillations (which on close inspection are of
a streamwise point-to-point nature). Other flow quantities (e.g. the wall temperature
gradient) exhibited the same type of behaviour. The genesis of this is highly grid
dependent. There is clearly no sign of flow reversal occurring, nor of any other
‘suspicious’ base-flow behaviour immediately prior to this event. It should be noted
that for the choice of the parameters taken, there does (in principle) exist a far
downstream solution, that is with m =0, G0 = 0.5, Tw = −0.1 (which, by rescaling the
temperature, is equivalent to G0 = − 0.05, Tw =1).

A second example is presented in figure 9; the parameters taken correspond to those
of figure 8, but with γ =0.1; again, results are presented for a variety of streamwise
step sizes, and are qualitatively similar to the previous set of results, exhibiting a
sudden breakdown at locations which are again highly dependent upon grid size.
An important matter of detail here is that (again) for this regime a far downstream
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Figure 9. Spatial development of wall-shear stress, m= 0, G0 = 0.5, γ = 0.1, �x as shown.
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Figure 10. Spatial development of wall-shear stress and wall temperature gradient, m= 0,
G0 = 0.5, γ = 0.25.

solution does exist, equivalent to the similarity form corresponding to (with rescaling)
Tw = 1, G0 = 0.05, implying that such failures can occur, even with the local equivalent
of positive values of the Grashof number far downstream.

A final example involving the marching procedure is provided in figure 10; again,
all parameters remain unchanged from the previous two examples, except in this
case γ =0.25. Here the solution proceeds downstream, unabated, with the far-
downstream form being (asymptotically) approached. It is clear that this case differs
significantly from the previous two examples in which the spontaneous breakdown in
the calculation was observed.
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In order to investigate the difficulties encountered in the cases γ = 0.1 and −0.1 a
procedure closely analogous to that developed for the similarity states was adopted,
namely one based on (3.2). Here we seek local solutions of the form

(f, g, q) = (f0(η; x), g0(η; x), q0(η; x)) + ε(f1(η; x), g1(η; x), q1(η; x)) exp Θ(x) + O(ε2),

(4.2)
where the amplitude ε is assumed small.

From the onset it must be stressed that the approach to be adopted here (unlike any
of those developed elsewhere in this paper) may be regarded as somewhat heuristic,
but nonetheless extremely useful in understanding the difficulties experienced in the
numerical marching computations, detailed above, and does become increasingly
valid in the short-wavelength limit, |xΘx | → ∞. Taking the O(ε) terms when (4.2) is
substituted into (2.6) yields

f ′′′
1 +(m+1)f0f

′′
1 −2(2m+xΘx)f

′
0f

′
1 +(m+1+2xΘx)f1f

′′
0 −G0(2(2m+xΘx)q1

+ (m − 1)ηq ′
1) = 2x

(
f ′

0

∂f ′
1

∂x
+ f ′

1

∂f ′
0

∂x
− f ′′

0

∂f1

∂x
− f ′′

1

∂f0

∂x

)
, (4.3a)

1

σ
g′′

1 − (5m − 1 + 2xΘx)g1f
′
0 + (m + 1)f0g

′
1 + (m + 1 + 2xΘx)f1g

′
0

+ (5m − 1)g0f
′
1 = 2x

(
f ′

0

∂g1

∂x
+ f ′

1

∂g0

∂x
− g′

0

∂f1

∂x
− g′

1

∂f0

∂x

)
, (4.3b)

q ′
1 −

√
2g1 = 0, (4.3c)

subject to (3.3); as before, primes denote differentiation with respect to η. We now
make the assertion that both the base flow f0, g0, q0 and perturbation quantities
f1, g1, q1 are slowly varying in the streamwise direction, thereby permitting the neglect
of the right-hand-side terms in (4.3). If we then write λ= xΘx , we recover (3.3). This
system was solved in precisely the same manner as that employed previously, except
the analysis was performed at each streamwise location (i.e. on the corresponding local
base flow profile). Results for γ = −0.1 and 0.1 (corresponding to figures 8 and 9)
are shown in figures 11 and 12 respectively. Here we have only shown ‘unstable’
eigenvalues (as previously, negative eigenvalues are of little importance in this context).
It is immediately apparent that in both cases, a large (infinite) eigenvalue forms at a
finite downstream location, which therefore suggests that infinitely short-wavelength
disturbances are responsible for the numerical marching difficulties experienced with
γ = −0.1 and γ = 0.1. Similar eigenvalue searching procedures were adopted for the
case γ = 0.25, but these failed to detect any positive values of λ, an observation
entirely consistent with the lack of difficulties encountered with the marching scheme
in this case.

The conclusion therefore is that in cases where these infinitesimal-wavelength
unstable disturbances exist, marching schemes will (inevitably) fail. Indeed, the results
shown in figures 11 and 12 clearly indicate that downstream the wavelength of the
disturbances increases, and it is therefore entirely reasonable to conclude that these
will only be detected by numerical marching schemes when the numerical grid is of
sufficient resolution to detect these disturbances. The analysis of § 3.2 suggests that
the streamwise step size (�x) must be at least comparable to the third power of the
wavelength of the disturbance, namely λ−1/3. This fully explains why in figures 8 and 9
the failure is clearly observed at earlier streamwise locations as the numerical grid
(�x) is reduced.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

27
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004002782


164 J. P. Denier, P. W. Duck and J. Li

12

16

20

24

28

0.6 0.7 0.8 0.9 1.0 1.1 1.2

log λ

x

Figure 11. Downstream variation of local eigenvalues, m= 0, G0 = 0.5, γ = −0.1.
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Figure 12. Downstream variation of local eigenvalues, m= 0, G0 = 0.5, γ = 0.1.

Returning to a more formal (rational) treatment of the problem, we can make
further analytical progress on understanding this phenomenon, guided by the work
of § 3.2. Supposing that λ→ ∞ as x → x0, then § 3.2 strongly suggests we should seek a
disturbance whose wavelength is O((x − x0)

3), and so in place of (4.2), more formally
we write, as x → x+

0 ,

(f, g, q) = (f00(η), g00(η), q00(η)) + O(x − x0)

+ {(f10(η), g10(η), q10(η)) + O(x − x0)} exp

{
−λ0

(x − x0)2

}
+ . . . . (4.4)
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In the core of the flow (η = O(1)), this leads formally to the system (3.18)–(3.19),
where in this case f00 is taken to be the local base-flow solution (at x = x0). The
system was solved (as before) at each streamwise location, and when the eigenvalue
Gcrit

0 corresponded to the actual Grashof number G0, this location was then deemed
to be the point where infinite spatial (λ) eigenvalues appeared, i.e. x = x0. For the cases
γ = −0.1 and 0.1 these locations are clearly marked by vertical arrows on figures 11
and 12 respectively. Inspection of these figures (and indeed of the numerical results
in detail) indicate consistency between the numerical results obtained from (4.3) and
the predicted origin of these modes (x0) obtained from (3.18)–(3.19). A sublayer
will also be present, which (again, consistent with § 3.2) will be of thickness
η =O(x − x0); however to leading order this plays a passive role. Asymptotic
predictions for the values of λ requires solution to higher order, which is omitted for
brevity.

5. The suppression of the instability
The difficulties associated with the failures of marching schemes are a serious

restriction on the usefulness of the procedure. However the problems encountered here
have some similarities (and differences) with those found by Duck et al. (1999) in which
linearly growing eigenfunctions, which were triggered by perturbing algebraically
growing eigenfunctions, were observed. There is one extremely important difference
between the current difficulties with the marching procedure and those encountered
in the Duck et al. (1999) paper, insofar as in the cases γ = −0.1, 0.1, described
above, there are no eigenfunctions which spring from the leading edge – rather
(infinite) eigenvalues are encountered at finite downstream locations. In Duck et al.
(1999) the difficulties were overcome by treating the (parabolic) problem as quasi-
elliptic, imposing (physically reasonable) downstream as well as upstream boundary
conditions. This type of procedure, in the context of parabolic systems, can be justified,
insofar as it ‘selects’ the appropriate eigen-form to give the desired behaviour to the
problem downstream. As noted by Duck et al. (1999) this type of approach is
reminiscent of that adopted in free-interaction/triple-deck work (see Stewartson &
Williams (1969), for example, § 6). This is the motivation behind the procedure we
adopt here.

The system (2.6) was therefore treated quasi-elliptically. As before, boundary
conditions at the leading edge were imposed (using the appropriate similarity
solution), whilst Neumann boundary conditions were imposed (at a finite x location)
downstream (this treatment worked well in the study of Duck et al. (1999) and proved
very effective in the present study); this condition is completely consistent with the
imposed conditions, notably (4.1), which is expected to lead to a similarity form
far downstream. Second-order central differencing was used in both the η- and x-
directions. In order to solve the resulting nonlinear set of algebraic equations, Newton
iteration was employed, i.e. the entire flow field was calculated simultaneously (the
banded nature of the algebraic system was fully exploited which made this possible).
A typical calculation involved a streamwise grid size of �x =0.025, a transverse grid
size of �η = 0.1 and no more than five iterations (for convergence to within 10−6).

The first set of results using this quasi-elliptic procedure is shown in figure 13; this
corresponds to the case computed earlier with the marching routine, as illustrated
in figure 8, namely γ = −0.1, G0 = 0.5 and m =0. The elliptic-type procedure has no
difficulty in computing solutions (which are accurate to within the graphical accuracy
of the figures). It is clear that the imposition of (reasonable) downstream conditions
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Figure 13. Spatial development of wall-quantities, m= 0, G0 = 0.5, γ = −0.1.
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Figure 14. Spatial development of wall-quantities, m= 0, G0 = −0.05, γ = 0.5.

leads to a complete suppression of the small-scale instabilities, over which marching
schemes have no control. This same procedure also yielded completely regular results
for the other ‘problematic’ case considered in the previous section (figure 9).

The second set of results obtained using this procedure is presented in figure 14,
corresponding to the parameter choice m = 0, G0 = −0.05, γ = .5, which corresponds
to an example where leading-edge eigenvalues will be present (i.e. immediately at
x = 0). Again, in spite of the presence of downstream-growing eigensolutions, the
quasi-elliptic procedure is able to identify a solution state which extends smoothly
downstream (towards another similarity state). The method proved extremely efficient
in identifying solutions, provided similarity states existed far downstream.
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6. Conclusions
Flows of the type considered in this paper exhibit a number of interesting

phenomena, most of which are linked to the occurrence of algebraically growing
(in the downstream direction) eigensolutions. Instabilities of this type have received
a great deal of attention, recently, in particular with regard to transient growth in
boundary layers (Luchini 1996; Andersson et al. 1999; Luchini 2000). However there
is one important distinction between the current work, and these previous studies, in
that as the present problem exhibits algebraic instabilities, even in two-dimensional
contexts, whilst in the aforementioned boundary-layer studies, three-dimensionality
was an inherent necessity for the occurrence of such modes. In the present study,
one requirement is that for the similarity forms to be algebraically unstable, it is
necessary for the wall temperature to be lower than that of the free stream, i.e.
the requirement is that G0 < 0. Since our results indicate that diminishingly small-
wavelength disturbances exist as G0 → 0−, this suggests that very small amounts
of surface cooling could provoke small wavelength disturbances, which could have
important practical implications. Indeed, the work of Steinrück (1994) supports this
assertion, given that his study was linked to the case m =0, G0 = 0− (in our notation).
It is therefore inevitable that in this case instabilities are present immediately from
the leading edge. It is worthy of note that (3.16) and (3.21) do have some similarity
to the results of Steinrück (1994), although as noted earlier, the present analysis may
be regarded as being somewhat more complete.

In the case of non-similarity flows, the situation is even more intriguing. The results
of § 4 clearly reveal the further subtleties associated with flows of this type, especially
the occurrence of eigensolutions, which form spontaneously through the formation of
essential singularities; these in turn lead to exceedingly challenging numerical tasks.
The present work also reveals that heated plates can also be susceptible to these
numerical difficulties. However, the quasi-elliptic treatment of the non-self-similar
flows bypasses the difficulties associated with the triggering of (very) short-wavelength
disturbances; the imposition of downstream boundary conditions appears to render
the problem well posed, and this leads to sensible (credible) solutions extending from
the leading edge of the plate, to far downstream.

The treatment and procedure adopted in § 5 is similar to those used in free-
interaction/(supersonic) triple-deck work over many years (originating from the
study of Stewartson & Williams 1969). In these latter types of problems, (again)
eigensolutions exist, which in the linear context grow exponentially fast downstream.
If allowed to develop into the nonlinear regime, these eigensolutions then lead either to
a flow with a pressure increase that leads to separation, or to a flow which undergoes
(unbounded) expansion at a point. Over the years, a number of techniques have
been developed in order to suppress these instabilities/breakdowns. One technique
(e.g. Daniels 1974) involves introducing a small amplitude eigensolution far upstream
of any flow perturbation, and adjusting the magnitude of this (iteratively) so that
far downstream, the flow asymptotes to some reasonable conditions and also finite-
location breakdowns are avoided. A second approach, proposed by Burggraf &
Duck (1982) involves Fourier transforming the problem (in the streamwise direction),
a technique which automatically handles upstream/downstream issues (implicitly
assuming reasonable downstream conditions). A third approach, which has some
similarity with the treatment of § 5 was proposed by Rizzetta, Burggraf & Jenson
(1978), treating the (interaction) problem in a quasi-elliptic manner, thereby again
suppressing exponentially growing eigenstates. All three approaches lead to the same
results. It should also be noted that techniques similar to those described above can
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be applied to study the effects of a class of three-dimensional disturbance to a wide
class of boundary-layer flows (Duck et al. 1999). In these latter cases, streamwise
algebraically growing eigensolutions exist, similar to those encountered in § 3, but it
is possible to find solutions that extend from the leading edge to far downstream,
which are bounded and which do not exhibit breakdowns. On the other hand, if the
eigensolutions are not suppressed, then Duck (2003) found that either the flow would
exhibit an inviscid type of singularity or could make a translation to another base
state downstream.

This procedure has been validated experimentally in the context of turbulent boun-
dary layers. The early work of Clauser (1954), which was concerned with the effect
of adverse pressure gradients on turbulent boundary layers, demonstrated that in
the presence of rather flat pressure distributions the flow developed one particular
downstream state. Changes to steeper pressure gradients resulted in a different down-
stream response. In this case the flow pressure distribution (along the whole wind
tunnel) serves to select the downstream response and effectively amounts to prescribing
a downstream boundary condition on the flow, just as we have done in our computa-
tions. Furthermore, Clauser (1954) demonstrated that small changes to the steeper
pressure gradients (made simultaneously at several points) resulted in a flow whose
response was ‘chaotic’. Clauser (1954) argued that this response indicated that some
form of downstream instability was present within the flow. These experimental
results are, intriguingly, consistent with our theoretical results. However, we should
emphasise that Clauser’s experiments are for turbulent boundary layers with no
appreciable buoyancy present.

As with the free-interaction problem, it can be argued that both sets of solutions
(i.e. those that do not exhibit breakdowns and those that do) are full and proper
solutions of the complete equation set. Further, the work of Duck & Dry (2001),
which was partly concerned with an initial value approach (both in the streamwise
direction and temporally) does suggest that bounded solutions are fully realisable far
downstream. Indeed, it is worth re-emphasizing that even the similarity form of the
equations can exhibit non-uniqueness over a range of (negative) values of G0.

A note about the choice of downstream boundary conditions is also in order. For the
scenarios considered in § 5, the underlying assumption, which is entirely reasonable
from a physical standpoint, is that the flow becomes independent of downstream
location (if described in terms of similarity variables), this being consistent with
the imposed wall temperature distribution (which itself becomes independent of
downstream location). However, it should be possible to devise acceptable downstream
conditions for other downstream behaviours, and to incorporate these into the scheme
proposed in this paper.

Very short-wavelength disturbances have been observed in a number of viscous flow
calculations in the past (see Brinckman & Walker 2001) and it has been suggested
(Cowley 2001) that these present a considerable challenge to boundary-layer theory.
However it may be that approaches, based on that used in this paper, may be a remedy
to such difficulties in other boundary-layer flow situations exhibiting diminishingly
small wavelength disturbances.

Parts of this work were completed while P.W.D. was visiting the School of Applied
Mathematics at the University of Adelaide. Their kind hospitality is gratefully
acknowledged. J.P.D. and J.L. gratefully acknowledge the financial support of the
Australian Research Council through grant DP0210877. The authors benefited from
a number of useful discussions with Dr R. E. Hewitt.
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