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A generic population model for the African tick

Rhipicephalus appendiculatus
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

We present a simulation population model for the African tick Rhipicephalus appendiculatus, based on previous analyses

of the mortality factors most closely correlated with observed population changes at 11 sites in equatorial and South

Africa. The model incorporates temperature-dependent rates of egg production and development, climate-driven density-

independent mortality rates, particularly during the adult-larval stage, and density-dependent regulation of both nymphs

and adults. Diapause is also included for tick populations in southern Africa. The model successfully describes both the

seasonality and annual range of variation in numbers of each tick stage observed at each of 4 test sites in Uganda, Burundi

and South Africa. Sensitivity analysis showed that the final version of the model is robust to 4-fold variation in most

parameter values (that were per force based on informed guesses), but is more sensitive to the regression coefficients

determining density-dependent interstadial mortality (that were derived from analysis of field data). The model is able to

predict the seasonality of ticks from a site in Kenya where a full prior population analysis was not possible because only

adults and nymphs had been counted. The model is potentially applicable to other species of ticks, both tropical and

temperate, to predict tick abundance and seasonality as risk factors for tick-borne diseases.
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

Tick seasonal dynamics exert a major influence on

the dynamics of transmission of tick-borne patho-

gens. They determine not only seasonally variable

vector}host ratios, but also the time-delay between

acquisition and transmission of pathogens by suc-

cessive tick life-stages, that has a significant impact

on the transmission potential through its effect on

vector survival probabilities. A population model for

the tick is thus the foundation for tick-borne

pathogen transmission models and for explanations

of spatial variation in the risk of infection, allowing

spatially and temporally variable values to replace

the constant tick population terms used previously

(Medley, Perry & Young, 1993). As parasites in their

own right, ticks cause considerable direct damage to

their hosts in addition to their ro# le as vectors.

Predictions of the resultant economic losses, and

planning effective control strategies to limit them,

will benefit from tick population models (e.g. Kaiser

et al. 1988).

For insects, complete population models arising

from population analyses that determined the key

factors most closely correlated with the observed

population changes, date from Varley & Gradwell’s

classic study of the winter moth (Operophtera
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brumata (L)) (Varley & Gradwell, 1968). In com-

parison with this long pedigree, population models

for ticks (reviewed by Kitron & Mannelli, 1994) are

in their infancy, and there is none born of such

population analyses. Furthermore, due to the com-

plexity of tick life-cycles, which necessitates the

prediction of the numbers of 3 life-stages (larvae,

nymphs and adults) arising simultaneously from

overlapping generations, most tick population

models are, per force, simulation rather than ana-

lytical models. These include matrix models that are

computationally simple, but biologically incomplete,

when applied to 1 stage only (Lord, 1992), but

become very complex when extended to multiple

matrices, a different one for each stage (Sandberg,

Awerbuch & Spielman, 1992; Awerbuch, Sandberg

& Spielman, 1992). None of these matrix models

includes any density-dependence and so all fail to

predict stable equilibria. Of the tick population

models based on the construction of age-specific life-

tables, those developed by Haile & Mount for 3 tick

species in America (Haile & Mount, 1987; Mount &

Haile, 1989; Mount et al. 1991, 1993) are deductive,

using estimates of development and mortality rates

derived from a large variety of field and laboratory

studies. A description of the only complete popu-

lation model for the African tick Rhipicephalus

appendiculatus Neumann that gives a reasonably

good fit to field observations in Burundi and

Zimbabwe, T3HOST, has never been published
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beyond a summary outline of the principles (Floyd,

Maywald & Sutherst, 1987) and a graphical display

of its output (Kaiser et al. 1988).

The wide distribution of R. appendiculatus

throughout eastern and southern Africa is reflected

in the variety of patterns of its seasonal activity

(reviewed by Norval, Perry & Young, 1992). In

southern Africa, there are marked annual cycles of

abundance of each life-stage (larva, nymph and

adult) punctuated by near total absences for several

months of each year. Nearer to the equator, ticks

usually feed throughout the year and numbers vary

far less, but still show discernible seasonality,

especially in the immature stages. A single generic

population model for ticks must capture this geo-

graphical variation in seasonality. Such a robust

model can only arise from a quantitative explanation

of the demographic processes that generate the

observed patterns, and it will itself test that ex-

planation by the accuracy with which it can predict

these recorded observations. Only then can the

model be used to make reliable predictions about the

unknown. In this paper, we describe an inductive

model for the population dynamics of R. appendi-

culatus developed on the basis of analyses of field

populations at 11 sites in different parts of Africa.

We present the model’s output for 2 sites in East

Africa (in Uganda and Burundi) and 2 sites in South

Africa to illustrate the model’s ability to predict

correctly the contrasting situations in equatorial and

temperate regions and the subtly different patterns

within each of these regions.

Detailed quantitative analyses of published tick

data sets (Randolph, 1994, 1997) from 2 sites in

Uganda (Kaiser, Sutherst & Bourne, 1982, 1991), 4

sites in Burundi (Kaiser et al. 1988), 1 site in each of

Tanzania (McCulloch et al. 1968) and Zimbabwe

(Short & Norval, 1981) and 3 sites in South Africa

(Rechav, 1981, 1982), have revealed that the ob-

served variety of seasonal dynamics is generated by a

remarkably consistent set of underlying processes

that change quantitatively, but not qualitatively, in

different parts of the tick’s range. The key features

include (a) temperature-dependent development

rates; (b) facultative diapause, manifested as a delay

in the onset of host-questing behaviour by adult

ticks, thought to be induced by day-length condi-

tions at certain times of the year (Rechav, 1981;

Berkvens, Pegram & Brandt, 1995); (c) very strong

density dependence in the interstadial mortalities

from larvae to nymphs and from nymphs to adults,

probably caused by the hosts’ responses during tick

feeding; (d) density-independent mortality, caused

by the impact of a critical abiotic factor acting on the

off-host development stages, that dominates during

the first interstadial period from adults to larvae; (e)

tick questing activity characterized by a certain level

of daily mortality plus a certain probability of

successfully contacting a host. The parameter values

can be varied, including setting some (e.g. diapause

induction) to zero, as appropriate for each geo-

graphical site. The greatest between-site variation

concerns which abiotic factor is best correlated with

off-host density-independent mortality, i.e. is critical

for the tick’s survival ; for most parts of the tick’s

range, moisture availability appears to be critical,

although mortality is highest where it is both too dry

and too wet, while in the coolest southern areas, low

minimum temperatures are limiting (Randolph,

1994, 1997).

 , a

Model description

In outline, the tick model (Fig. 1) predicts the

number of ticks present (i.e. ‘ feeding’) on a constant

population of hosts over time. Ticks enter the feeding

population on the hosts after periods of (a) de-

velopment (which may or may not include diapause)

from the previous life-stage, and (b) questing, which

results in finding and attaching to a host at a stadial-

dependent constant rate. Mortalities imposed be-

tween successive feeding stages are either density

independent or density dependent according to the

relationships established by Randolph (1994, 1997).

Each run of the model begins by fixing the site-

specific climatic variables of importance, and the

various determinants of the mortalities for each tick

life-stage. The model is calculated on a daily basis,

but the output presents the number of ticks feeding

on hosts at the mid-point of each 30-day month.

The model is initially ‘seeded’ with 5 adult ticks

(2±5 males and 2±5 females) on each day throughout

the first year. Adult female ticks are assumed to

produce a total of 3000 eggs each, over a tempera-

ture-dependent period of time. Inspection of the

R. appendiculatus egg-laying curves reported by

Branagan (1973a) suggested the following mathe-

matical description for the number of eggs laid per

day, n
eggsperday

.

n
eggsperday

¯k[(1®expr"t) exp−r#t], (1)

where r1 and r2 are constants determining the rate at

which egg-laying begins to increase (r1) and sub-

sequently decline (r2) over time from the start of

egg-laying (t days) and k is a scaling factor ensuring

that the total number of eggs laid per female is

always 3000 (k depends upon the precise values of r1

and r2 and is obtained by integrating the term within

the square brackets of eqn (1)). The time to peak egg-

laying (t
p
) is found by equating the differential of eqn

(1) to zero,

t
p
¯

®log[r2}(r1­r2)]

r1
days. (2)

Branagan (1973a) presented his data as the total

number of eggs laid at 4-day intervals. We selected
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Fig. 1. The form of the population model, identifying

the input parameters and the model output (predicted

number of feeding ticks of each stage). Values for the

slopes of the relationships in bold type were estimated

directly from analyses of the field populations whose

seasonality is predicted by the model.

values of r1 and r2 for eqn (1) to give 4-day egg

production curves similar in both time of peak egg

production and time over which the majority of eggs

are laid for the 3 temperatures used by Branagan (18,

21 and 25 °C). Fig. 2 shows the daily egg production

curves predicted by eqn (1) at 18, 21 and 25 °C, with

one example of the 4-day totals arising from them

(21 °C).

The eggs present on any particular day (which are

assumed to have been laid by females present on

hosts 7 days previously) are assumed to develop at

temperature-specific rates. Developmental periods

are calculated by the day–degree summation method

previously described by Randolph (1997). Briefly,

the observed relationships between adult-to-larval

developmental periods (including post-emergence

inactivity) and ambient temperatures in the labora-

tory (Branagan, 1973a) and the field (Kaiser et al.

1988) are used to calculate a daily development rate

at the current day’s temperature and at the tempera-

tures of days to come in the future, until the total

development (obtained by summing the daily pro-

portional development) reaches unity. The time

taken for this limit to be reached is the total

development time. In themodel, dailymean tempera-

tures are estimated by interpolation between the

values of the mean monthly temperatures, which are

assumed to apply to the mid-point (i.e. day 15) of

their respective months.

Once development is completed, the active tick

larvae are assumed to quest for hosts with a stadial-

specific success rate (the ‘feeding probability’).

Whether or not the larvae survive to the feeding

stage is determined by 3 mortality components. (1)

The female-to-larval survival probability is calcu-

lated using the relationships between inter-stadial

mortalities (expressed as k-values) and climatic

variables established by Randolph (1994, 1997).

These relationships are site specific, i.e. the par-

ticular climatic variables shown to be critical, the

partial regression coefficient of mortality on this

variable and any additional partial regression coeffi-

cient on female tick densities all vary from site to

site. This survival probability is assumed, for

simplicity, to be independent of the total time

between adult female ticks and their larval offspring

feeding. (2) An additional density-independent mor-

tality based on a constant daily rate is applied over

the actual development period. (3) A second ad-

ditional density-independent mortality, at a rather

higher daily rate, is applied during the questing

period. Finally, in equatorial sites where rainfall was

shown to be the critical abiotic factor determining

survival, an additional very high daily mortality was

imposed on eggs and ticks developing during the dry

season (rainfall!5–10 mm}week).

Both the nymphs and the adults present in the

model on any particular day are treated in an

analagous way. Developmental periods are calculated

and the 3 components of mortality applied as in the

case of the larvae. Whereas the first mortality

component (1, above) between adults and larvae is

rarely density dependent, those of the larval-to-

nymphal and nymphal-to-adult stages are usually a

function of the initial densities of larvae and nymphs

respectively (Randolph, 1994, 1997). Since the

operation of density dependence was detected

through the analysis of field counts of ticks on hosts,

the model uses the number of ticks present on any

particular day on the hosts as the independent

variable in its calculation of the appropriate mortality

rates. There may also be a secondary abiotic factor

determining this mortality component, according

to a site- and stadial-specific partial regression

coefficient.

Finally, the model applies diapause to ticks in the

South African sites where this has been shown to be

important (Rechav, 1981), according to an empiri-

cally derived rule (Randolph, 1997). All nymphs that

would have given rise to adults after July each year

are held over (i.e. diapause) and do not appear as

adults until some time after November of the same
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Fig. 2. The time-course of egg-laying by Rhipicephalus

appendiculatus as included in the model, showing the

numbers of eggs laid per day at 18 °C (solid line), 21 °C
(dotted line) and 25 °C (dashed line), and the numbers

of eggs paid per 4 days at 21 °C (heavy line) for

comparison with empirical data from Branagan (1973a).

Fig. 3. Cumulative proportion of active female

Rhipicephalus appendiculatus related to the time since

first activity after diapause was recorded in experimental

columns, in shade but otherwise under natural

conditions in Zambia (data from Berkvens et al. (1995)

Fig. 4). Also shown are the normal curve (dashed line)

and cumulative normal curve (solid line) with the same

mean and standard deviation (93³43 days) as the

observed data.

year. Berkvens et al. (1995) have shown that diapause

does not end abruptly, but that diapausing R.

appendiculatus in Zambia become active over ex-

tended periods of time of up to 5 months (Fig. 3).

This behaviour was incorporated into the model by

assuming a Gaussian random distribution of time to

diapause cessation beyond 1 November each year,

with the mean set 3–4 months after this date, and a

standard deviation of about a third of the mean (with

the rule, however, that diapause could never end

before 1 November). The result of these assump-

tions is that post-diapause females appear on hosts

from 1 November each year until possibly March

or April of the following year, with a peak near the

turn of the year. The total interstadial mortality from

nymphs to adults applied at this stage in the model

is composed of the same 3 components as described

above. As the second component (density-inde-

pendent mortality during development) is applied on

a daily basis, it has a greater impact on the diapausing

than non-diapausing individuals.

Choice of parameter values

The model (programmed in Quick BASIC) was run,

its output was compared on-screen with the observed

field data for each test site, and the parameters were

varied until the fit improved (Table 1 gives the final

chosen values). There are no estimates of absolute

mortality rates or feeding probabilities for R.

appendiculatus under completely natural field condi-

tions, but the values were constrained to be biologi-

cally sensible and consistent with any available

empirical data, and, in the absence of evidence to the

contrary, to be as constant across sites as possible.

Thus the observed partial regression coefficients

determining the seasonal mortality indices, as de-

rived from the field data, were preserved. The field

data, however, give only relative, not absolute,

estimates of the abundance of the different life-stages

of the tick on the hosts. The re-scaling of the tick

counts ((larvae­1)¬100, (nymphs­1)¬10) applied

by Randolph (1994, 1997) to ensure non-negative

inter-stadial mortalities reflects this differential sam-

pling efficiency, but does not necessarily correct for

it sufficiently. The resulting mortality relationships

are likely to show the correct sensitivity of mortality

rates to the different independent variables selected,

as reflected in the partial regression coefficients, but

not their correct levels, as determined by the

regression intercepts. Thus, in running the model,

the value of the intercept of each inter-stadial

mortality was adjusted to improve model perform-

ance (Table 1).

Estimates taken from field observations on survival

periods of engorged ticks in Kenya (Branagan,

1973b) and Zambia (Pegram & Banda, 1990) and

unfed ticks in Zimbabwe (Short et al. 1989), all in

containers (i.e. protected from predators), consist-

ently show decreasing daily mortality rates as the

life-cycle proceeds (larvae, 0±07–0±003; nymphs,

0±029–0±0028; adults, 0±011–0±0015). Although there

was no obvious difference between the mortality

rates of developing and questing ticks in these

studies, intuitively it seems likely that questing ticks,

exposed on the vegetation, will suffer higher mor-

tality. The constant daily density-independent mor-

talities were therefore set according to this pattern
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Table 1. Input parameter values and variables for the population model for Rhipicephalus appendiculatus

at 4 sites in equatorial and southern Africa

Kirundo

Burundi

B’s Fort

Uganda

Gulu

S. Africa

B’sfield

S. Africa

Egg-laying parameters, r1 and r2 0±5, 0±1 0±7, 0±15 0±5, 0±1 0±3, 0±06

Diapause: start and end months emergence,

mean day and ..

n}a n}a 6, 11,

105, 30

6, 11,

105, 30

Daily feeding probability

Larvae 0±05 0±04 0±04 0±05

Nymphs 0±1 0±09 0±1 0±1
Adults 0±15 0±14 0±14 0±14

Constant daily mortality

During development*

Adults–larvae 0±015 0±02 0±02 0±015

Larvae–nymphs 0±006 0±01 0±01 0±01

Nymphs–adults 0±003 0±005 0±006 0±005

During questing

Larvae 0±05 0±05 0±05 0±06

Nymphs 0±02 0±03 0±03 0±04

Adults 0±005 0±01 0±01 0±02

Drought daily mortality

rain threshold (mm}week) 5 10 n}a n}a

Eggs 0±1 0±25

Larvae 0±01 0±15

Nymphs 0±04 0±15

Adult 0 0

Variable density-independent interstadial

mortality

Adults–larvae

Factor Rainfall Rainfall Min. RH Min. temp.

Intercept ®1±5 1±5 ®0±5 2±2
Slope ®0±0563 ®0±039 0±0255 ®0±104

2nd factor (no. adult), slope 0±992

Density-dependent interstadial mortality

Larvae–nymphs

Intercept ®4±0 ®2±5 ®1±8 ®2±5
Slope 0±900 0±585 0±387 0±387

2nd factor (rain), slope ®0±03 ®0±01

Nymphs–adult

Intercept ®3±5 ®3±5 ®2±6 ®3±0
Slope 1±21 1±281 1±24 1±24

2nd factor (rain), slope ®0±01

* The development periods, y, depend on mean ambient temperature according to the following empirical relationships

(Randolph (1997): adult to larva, y¯283±806¬10−!
±
!#'x ; nymph to adult, y¯318±634¬10−!

±
!$$x ; larva to nymph, y¯

193±409¬10−!
±
!$'x, where x is the mean ((min.­max.)}2) temperature.

(Table 1). If the later tick life-stages are physically

and physiologically less vulnerable to adverse abiotic

conditions (Randolph, 1993), these ticks can spend

longer questing at the top of the vegetation thus

increasing their daily feeding probability relative to

earlier stages. Estimates for Ixodes ricinus in the UK

suggest this to be the case (Randolph & Steele,

1985).

The parameter values for the final models varied

very little from site to site, and only in ways that

were consistent with the known variation in climatic

conditions. For example, the best-fit constant daily

mortality rates were slightly lower at Kirundo

(Burundi) than at the other equatorial site, Baker’s

Fort (Uganda), perhaps because Kirundo was cooler,

especially during and just after the dry season. This

constancy suggests that the geographical variation in

seasonal patterns is determined almost wholly by

abiotic factors, firstly temperature that drives the

development rates and secondly the factor critical for

the tick’s survival, rainfall near the equator and

relative humidity or minimum temperature in South

Africa.

Validation and sensitivity analysis

In selecting the final model, the overall aim was to

mimic (a) the observed pattern of seasonality, judged

visually and also statistically by the R# value of the

regressions of the predicted versus observed monthly

log numbers of each stage of tick; (b) the observed

(i.e. log scale) variation of each tick life-stage, judged

by how closely the slopes of the above regressions

approximate to 1; (c) the different relative stabilities
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Fig. 4. Baker’s Fort, Uganda. Seasonal variation in

rainfall and the mean number of Rhipicephalus

appendiculatus larvae, nymphs and adults per host

observed (E) and predicted by the model (D). For the

observations, month 11 is November 1977 (from Kaiser

et al. 1991), and the observed pattern is repeated (G)

for comparison with predictions up to month 48.

Observed larvae¬100, observed nymphs¬10.

of each stage; (d) the observed relationships between

interstadial mortality rates and population density.

For example, a nymphal population that shows less

variation on a log scale than the larval population

that gave rise to it, must have experienced some

density-dependent mortality in the interim. The

amount of such mortality could be adjusted in the

model by varying the value of the intercept of the

density-dependent larval-nymphal mortality. In-

creasing the mortality on one life-stage always has

consequences for other life-stages as well as the one

directly affected, so that, for example, a reduced

nymphal population is less likely than before to

experience density-dependent mortality (or experi-

ences less of it) as it develops to the next, adult stage.

For the model output to show the same mortality

relationships as those calculated from the field data is

Fig. 5. Kirundo, Burundi. Seasonal variation in rainfall

and the mean number of Rhipicephalus appendiculatus

larvae, nymphs and adults per host observed (E) and

predicted by the model (D). For the observations,

month 1 is January 1980 (from Kaiser et al. 1988), and

the observed pattern is repeated (G) for comparison

with predictions up to month 48. Observed larvae¬100,

observed nymphs¬10.

by no means trivial, as the various distributions

included within the model (e.g. of oviposition,

development time, feeding intervals and diapause

completion) all had to be estimated from barely

adequate data sets, and it is these distributions which

to a large extent determine the time-delays that

Randolph (1994, 1997) incorporated into the various

regression calculations of mortality rates in the field

data.

Of less significance in validating the model are

matches between the observed and predicted ab-

solute levels of abundance of each stage, because of

the problem of differential sampling efficiency re-

ferred to above. Despite the likelihood that such

sampling biases varied between sites (studies), for

comparability all the actual field counts of larvae

have been multiplied by 100, and those of nymphs

by 10, but this may correct for the under-counting of

immature stages either by too much or too little,

resulting in some mismatches between the re-scaled
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Fig. 6. Gulu, South Africa. Seasonal variation in

minimum relative humidity and the mean number of

Rhipicephalus appendiculatus larvae, nymphs and adults

per host observed (E) and predicted by the model (D).

For the observations, month 6 is June 1975 (from

Rechav, 1981). Observed larvae¬100, observed

nymphs¬10.

observed and the predicted. Of more importance is

that the predictions should reflect the biologically

correct relative numbers of each stage, with the

expectation that predicted adult numbers will most

closely match the field counts.

The sensitivity of the model outputs to the precise

value of each parameter value was tested by halving

and doubling each parameter value for each tick

stage in turn, and then for all stages together. The

effects were examined by regressing the monthly

numbers of ticks predicted by the changed model

against those predicted by the final chosen model,

over 50 months of model output. The greater the

impact of changing each parameter value, the more

the slope and R# value of each regression would

depart from 1±0, as the seasonal variation in tick

numbers and its pattern, respectively, are altered.

Fig. 7. Beaconsfield, South Africa. Seasonal variation in

minimum temperature and the mean number of

Rhipicephalus appendiculatus larvae, nymphs and adults

per host observed (E) and predicted by the model (D).

For the observations, month 11 is November 1977 (from

Rechav, 1981), and the observed pattern is repeated (G)

for comparison with predictions up to month 48.

Observed larvae¬100, observed nymphs¬10.

Finally, the model was used to predict the seasonal

dynamics of populations of ticks from a site other

than those of the original population analyses. Here,

only adults and nymphs had been counted (which is

why full population analysis was not possible),

against which the model’s predictions were tested.

The site chosen was Ukunda, on the Kenyan coast

(39° 34« E, 4° 17« S) (Newson, 1978), because the

climatic conditions here are rather different from

those at any of the 11 sites previously explored in

detail, making the test particularly stringent.



Seasonal variation in tick numbers

Model predictions and the assays of their validity

and sensitivity are presented for 4 test sites: Baker’s
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Fig. 8. Gulu, South Africa. Regressions of model-

predicted versus observed log monthly numbers of

Rhipicephalus appendiculatus larvae, nymphs and adults,

including (dashed line) and excluding (solid line)

months of zero counts of field ticks (D). The statistics

of these regressions, and of those at the other 3 test

sites, are presented in Table 2.

Table 2. Model validation: correlations of the monthly numbers of feeding Rhipicephalus appendiculatus

observed at 4 sites in equatorial and South Africa and predicted by the population model

Stage of

Full observed data set Omitting observed zero counts

Site tick n b† t value‡ %R# n b† t value‡ %R#

South Africa

Gulu Larvae 35 1±247 1±019 74±4*** 25 0±863 0±576 50±2***

Nymphs 38 0±848 0±895 64±4*** 29 0±933 0±249 42±3***

Adults 38 0±896 0±686 82±1*** 19 1±083 0±297 70±7***

Beaconsfield Larvae 25 1±301 0±989 71±2*** 13 0±680 0±837 20±9
Nymphs 24 1±107 0±446 85±8*** 16 1±097 0±261 43±8**

Adults 25 1±014 0±063 86±7*** 13 0±986 0±034 38±0*

Uganda

Baker’s Fort Larvae 16 0±749 0±947 47±3**

Nymphs 16 0±978 0±097 81±2***

Adults 16 0±702 1±362 49±3*

Burundi

Kirundo Larvae 25 0±607 2±537* 56±7***

Nymphs 26 0±326 4±19*** 13±8
25 0±901 0±642 68±6***

† Slope of regression of predicted versus observed monthly tick numbers.

‡ Test of the difference of slope from 1±0. *P!0±05; **P!0±01; ***P!0±001.

Fort (Patiko) in northern Uganda, and Kirundo in

Burundi, as examples of equatorial sites where

rainfall is the critical abiotic factor, but where the

seasonality patterns of R. appendiculatus differ

somewhat; Gulu and Beaconsfield farms in South

Africa, where the critical abiotic factor is minimum

relative humidity and minimum temperature re-

spectively. For each site, the model has captured the

essential features of the tick’s seasonal dynamics in

considerable detail (Figs 4–7). As the observed larvae

are plotted as log ((n­1)¬100)), and observed

nymphs as (log ((n­1)¬10)), zero counts of these

stages appear as 2±0 and 1±0 respectively. These

minimum observed levels probably represent the

lower threshold of detectability rather than complete

absences of immature stages on cattle. For South

Africa, the model predicts an absence of larvae and

nymphs for 1 or 2 months of the year, and very low

numbers of both stages for 3–4 months, coinciding

with the recorded absences. The periods of low

numbers observed at Beaconsfield (Fig. 7) are longer

than those at Gulu (Fig. 6), and the model reflects

this. In contrast, adults are predicted to be absent

from cattle for almost exactly the same extended

periods as recorded. For equatorial Africa, the model

captures the observed sudden marked decreases in

numbers of all 3 stages soon after each dry season,

but never predicts zero ticks of any stage at any time

of the year. Least well matched by the model is the

observed pattern for nymphs at Kirundo (Fig. 5) ;

elements of this pattern, specifically the second

marked decline in December}January, could not be

explained by the original population analysis either

(Randolph, 1994).

In comparing the fit of the predictions to the

observations statistically, the extended periods of
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Fig. 9. Kirundo, Burundi. Interstadial mortality

relationships for Rhipicephalus appendiculatus. Density-

dependent relationships between the index of mortality

(A) from larvae to nymphs and the log number of

larvae, and (B) from nymphs to adults and the log

number of nymphs, observed (D) and predicted by the

model (E). (C) The relationship between the index of

mortality from adults to larvae and rainfall 2 months

after the females had fed, observed (D) and predicted

by the model (E). The statistics of these regressions,

and of those at the other 3 test sites, are presented in

Table 3. In all cases only the principal single variable

regression is presented, omitting any additional partial

regressions.

zero counts in South Africa potentially have a major

effect on the correlations (Fig. 8, for an example at

Gulu). When all the zero counts are included, the

slopes are very little different from those of regres-

sions that omit all observed zero counts, but the R#

values are much increased (Table 2). Even when all

zero counts, and therefore a significant element of

the seasonal pattern, are omitted, the model explains

42–71% of the remaining observed variation in tick

abundance at Gulu. At Beaconsfield, when the

seasonal low periods are omitted, statistically the

model fit seems much less good (R#¯21–44%

compared with 71–87% for the full seasonal pattern,

Table 2), because tick numbers varied very little

during the periods of high tick abundance, and single

monthly mis-matches (month 26 for larvae, month

16 for nymphs, month 11 for adults, Fig. 7) have a

large impact on R# values. At equatorial sites, where

it is unnecessary to exclude the brief period of zero

counts of larvae from the correlations, the model

explains 47–81% of the observed variation in tick

numbers, except for nymphs at Kirundo, reflecting

the rather poor visual match noted above. Kirundo

was the only site for which the slopes of the

regressions were low, especially for nymphs; in no

other case were the slopes significantly different

from 1±0, confirming that the model has captured the

observed seasonal variation in the numbers of each

tick stage.

Mortality relationships

The mortality relationships of the model popula-

tions, calculated in exactly the same way as in the

original field population analyses (Randolph, 1994,

1997), were similar both qualitatively and quan-

titatively to those of the field populations (Fig. 9,

Table 3). Strong density dependence operated

during the larval–nymphal and nymphal–adult

stages. The model density dependence was less

intense than observed during the larval–nymphal

stage at Beaconsfield, largely because the annual

peak of the modelled larval population was flatter

than the observed peak (Fig. 7), giving more constant

high levels of both larval numbers and larval–

nymphal mortality indices. During the adult–larval

stage, mortality was density independent; only at

Beaconsfield did the model fail to show the same

relationship between this mortality and the critical

abiotic factor as was observed in the field population.

Again, this arose from the model’s flat-topped peak

numbers of larvae, giving unnaturally high estimates

of mortality after females had fed (and laid their

eggs) when minimum temperatures were high

("8 °C, Dec.–Feb.), which is associated with low

mortality in the field (Randolph, 1997).

Sensitivity analyses

The final chosen model proved to be remarkably

robust. Changes in the amount of seasonal variation

in the numbers of each stage (measured by the

departure from 1±0 of the slope of the regression of

modified versus chosen model output, Figs 10A and

11A) and in the pattern of that variation (measured

by the reduction from unity in R# value for the same

regression, Figs 10B and 11B) rarely exceeded 20%

and were usually less than 5%. The model was most

sensitive to changes in the regression coefficients

determining the density-dependent interstadial mor-

tality indices (parameter numbers 18 and 20, Figs 10

and 11), whose chosen values were most reliable,
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Table 3. Model validation: interstadial mortality relationships for Rhipicephalus appendiculatus at 4 sites in

equatorial and South Africa: as observed, as input to, and as output from the population model

Interstadial Independent

Model

input

Observed Model output

Site period variable b† n b† %R# n b† %R#

South Africa

Gulu Larva–nymph Log larvae 0±387 22 0±383 46±4*** 44 0±290 76±4***

Nymph–adult Log nymphs 1±240 14 1±337 77±4*** 29 1±001 65±1***

Adult–larva Min. %RH 0±026 22 0±027 44±0*** 28 0±019 19±4*

Beaconsfield Larva–nymph Log larvae 0±387 13 0±585 52±4** 42 0±109 70±4***

Nymph–adult Log nymphs 1±240 6 2±003 74±1* 27 0±829 61±2***

Adult–larva Min. temp. ®0±104 11 ®0±162 58±5** 41 0±012 0±002

Uganda

Baker’s Fort Larva–nymph Log larvae 0±585 15 0±591 91±2*** 50 0±512 75±9***

Nymph–adult Log nymphs 1±281 14 1±281 66±8*** 50 0±805 50±0***

Adult–larva Rainfall ®0±039 13 ®0±039 41±6* 48 ®0±034 42±9***

Burundi

Kirundo Larva–nymph Log larvae 0±900 23 0±891 80±8*** 50 0±953 75±5***

Nymph–adult Log nymphs 1±210 22 1±360 87±4*** 50 1±279 70±6***

Adult–larva Rainfall ®0±056 21 ®0±052 60±1*** 48 ®0±038 48±4***

† Slope of the regression of interstadial mortality indices against either the identified critical abiotic factor, or the density

of the feeding stage immediately preceding the mortality. *P!0±05; **P!0±01; ***P!0±001.

having been derived from field data. In South Africa,

the pattern of emergence from diapause (parameter

22, Fig. 11) was also critical ; both a more rapid

activation of adults (mean³.. day of emergence¯
75³15 days after 1 November) and a more gradual

activation (135³60 days after 1 November) had a

marked effect on the model output. Also, doubling

the daily mortality rate acting on all 3 development

stages (parameter 12, Fig. 11) reduced seasonal peak

numbers of all ticks. Near the equator, the major

seasonal variation is caused by drought-induced

mortality (Randolph, 1994); correspondingly,

changing the amount of this mortality, especially

that acting on adults (parameter 15) or on all 3 stages

(parameter 16) had a marked effect (Fig. 10A).

Predicting the partly known

The model was able to predict the seasonal patterns

of nymphs and adults at Ukunda, Kenya, with

acceptable accuracy (Fig. 12), but only when 2 slight

modifications in the parameters were introduced. At

Ukunda, the very high maximum temperatures

(daily mean of over 32 °C recorded nearby at

Mombasa; HMSO (1958)) during the dry season,

followed by an extremely abrupt period of heavy

rainfall, apparently had adverse effects on tick

survival. Best fits between the model output and

observations were achieved by including 2 additional

partial regression coefficients (1) relating adult–larval

and nymphal–adult interstadial mortality indices

positively to the maximum temperature 1 month

after adults and nymphs fed, and (2) relating the

larval–nymphal mortality positively (rather than

negatively) to the rainfall 1 month after larvae had

fed. These effects have been identified elsewhere: at

Mwanza, Tanzania, where temperatures are also

very high, maximum temperatures were shown to be

significantly correlated with mortality; at Gihofi,

Burundi, questing nymphs also survived poorly in

high rainfall (Randolph, 1994), another example of

high mortality under conditions that are too wet

rather than too dry (see Introduction section). Apart

from these modifications, the model was the same as

those for the other equatorial sites. Parameter values

for feeding probabilities and daily mortality rates

during development and questing were the same as

at Baker’s Fort, Uganda (see Table 1); additional

daily mortality when rainfall!5 mm}week, eggs

0±15, larvae 0±10 and nymphs 0±075; adult–larval

interstadial mortality¯®3±75®(0±06¬rainfall)­
(0±98¬log females)­(0±12¬max. temp.) ; larval–

nymphal interstadial mortality¯®3±75­(0±85¬log

larvae)­(0±013¬rainfall) ; nymphal–adult inter-

stadial mortality¯®5±0­(0±8¬log nymphs)®
(0±015¬rainfall)­(0±13¬max. temp.). Regressions

of predicted versus observed log monthly numbers

at Ukunda gave slopes of 0±710 and 0±838, and

explained 71% and 76% of the seasonal variation in

numbers, for nymphs and adults respectively.



The utility of a model depends on its robustness and

therefore its applicability under a wide range of

conditions. The generic population model for R.

appendiculatus presented here has proved to be

robust on 2 major counts. First, the same form of the

model, with very similar specific parameter values,

correctly predicts the very different patterns of
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Fig. 10. Kirundo, Burundi. Results of sensitivity analysis. Changes in (A) regression slopes and (B) R# values relative

to the final model, when parameter values are doubled (stippled) or halved (shaded). Parameter codes: 1–4, feeding

probabilities for larvae, nymphs, adults and all 3 stages; daily mortality rates, 5–8 during questing, 9–12 during

development, and 13–16 during periods of drought, for larvae, nymphs, adults and all 3 stages; interstadial mortality

regression coefficients, 17 for adult–larval, 18 and 19 for larval–nymphal and 20 and 21 for nymphal–adult periods

(including partial regressions, see Table 1). In the case of parameter number 20, the value was multiplied by 1±5 or

by 0±75.

seasonality over virtually the complete north–south

range of R. appendiculatus, from northern Uganda to

the Cape of South Africa. The only changes needed

as one moves south from tropical equatorial regions

to increasingly temperate regions, is the insertion of

a diapause term and the lessening of any extra

drought-induced mortality. Secondly, once the cor-

rect combination of parameter values is found, the

model is remarkably insensitive to the precise value

of any one parameter. This allows the model to be

used even when many of the daily rates of mortality

and feeding can only be roughly estimated, as indeed

they are here. The model is most sensitive to changes

in the regression coefficients for the density-

dependent interstadial mortality indices. They were

derived from field data for the test sites presented

here, and therefore, of all the parameter values, are

most likely to be realistic. For sites where such

estimates cannot be made, (as at Ukunda, see above)

the general patterns apparent from the larger data set

from 11 sites may act as a guide (Randolph, 1997,

Table 2); for the nymphal–adult interstadial mor-

tality, the density-dependent regression coefficient is

very high throughout the tick’s range (mean³1 ..

¯1±200³0±140, n¯10), while for the larval–

nymphal mortality, the regression coefficient is lower

in southern Africa (0±403³0±069, n¯4) than in

equatorial Africa (0±794³0±061, n¯7). The critical

climatic factor that determines the adult–larval

mortality is geographically variable, although in

equatorial regions it appears always to be some

measure of moisture availability, for which rainfall is

a useable index. Once the relationships between the

relevant abiotic factor and satellite imagery have
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Fig. 11. Gulu, South Africa. Results of sensitivity analysis as for Fig. 10. Parameter number 22 refers to the mean

day and standard deviation of diapause emergence, which was changed from 105³30 to 75³15 or 135³60.

been established reliably (Randolph, 1994; Hay et al.

1996), such variable climatic data may be replaced by

satellite data, perhaps leading to a more unified

predictive relationship between tick population para-

meters and environmental conditions. The present

rather ad hoc identification of significant climatic

factors is nevertheless sufficient to predict tick

seasonality even without the benefit of a full

population analysis, again as at Ukunda.

The time-course of diapause termination also has

a marked effect on the predicted seasonality in South

Africa. Although diapause is thought to be controlled

in some way by daylength (Rechav, 1981; Berkvens

et al. 1995), the predictive relationship between

daylength and either the onset of, or gradual

emergence from, diapause has not yet been es-

tablished for any one site, let alone taking account of

any geographical variation in such a relationship.

Empirical studies of this are urgently required.

A model of this form is potentially widely

applicable to ticks other than R. appendiculatus in

Africa. Its simplicity makes it adaptable for other

tropical tick species, and at the same time the

inclusion of temperature-dependent variable de-

velopment rates and diapause makes it appropriate

for temperate species. There is nothing in the

population dynamics of, for example, Ixodes ricinus

in Europe that is not covered by this model.

Population analysis for such a tick species, with

annual or biannual seasonal peaks each composed of

cohorts of ticks of mixed developmental history, is

very difficult, but a model could generate simple

predictions that could be tested against field data.

The model could yield predictions of the future fate

(development time and mortality) of ticks known to

have fed at a certain time on hosts of a certain

infection status, that will appear during future

feeding seasons alongside ticks of a different infection

history. At present there is no way of identifying the

developmental, and therefore, the infection, origin of

ticks observed in the field, but a model could assign

a probability of past history to each tick.
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Fig. 12. Ukunda, Kenya. Seasonal variation in rainfall,

maximum temperature and the mean number of

Rhipicephalus appendiculatus larvae, nymphs and adults

per host observed (E) and predicted by the model (D).

For the observations, month 1 is January 1973 (from

Newson, 1978). Rainfall is presented as the synoptic

annual pattern (because rainfall was not recorded in all

months of all years) and maximum temperature is taken

from HMSO (1958) for Mombasa (36 km north of

Ukunda). Observed nymphs¬10.

The evidence from the present modelling exercise

is that any spatial variation in the population

dynamics of R. appendiculatus is determined prin-

cipally by a single climatic factor that affects

mortality, together with mean temperature that

affects development rates. Biotic factors, such as host

availability and host species composition, that may

affect the tick’s feeding probability and the intensity

of density dependence as mediated by host-acquired

resistance to ticks, respectively, will be superimposed

on these principal climatic factors. The survival or

extinction of local tick populations may therefore be

predicted primarily by inserting into the model the

appropriate climatic data for that locality. In this

way the distributional limits of the tick may be

defined biologically in terms of its population

processes, rather than statistically by identifying

areas whose environmental conditions match those

known to be associated with tick presence (Rogers &

Randolph, 1993). Preliminary trials indicate that this

approach is indeed workable.

Finally, we return to the raison d’eW tre for vector

population models, their use in predicting vector

abundance and seasonality as risk factors for vector-

borne diseases. Tick population models are only a

means to the end of developing risk maps for tick-

borne diseases. The seasonal and annual variation in

the number of ticks is only one, albeit essential, part

of a full epidemiological model, that must also

include the parameters of disease transmission

dynamics, as have been described for East Coast

Fever (Medley et al. 1993) and for Lyme borreliosis

(Randolph & Craine, 1995), that determine how

many of those ticks are infective. Whether the

pathogens are transmitted only by nymphs and

adults, or by larvae as well, the dynamics of disease

transmission are determined by the seasonal patterns

of feeding by all three tick stages (nymphs cannot

transmit unless larvae have already acquired in-

fection from their bloodmeal). We need to be able to

predict the numbers and interstadial development

periods of each tick stage accurately. This model,

RaPOP does exactly that, while also offering a useful

tool to those veterinarians concerned with designing

economical and effective intervention strategies to

limit the direct damage caused to meat, milk and

hide production by adult feeding ticks (inter alia

Kaiser et al. 1988; Norval et al. 1988; Pegram et al.

1989; Mukhebi et al. 1989).

This paper is dedicated to the memory of Dr M. N.

Kaiser, whose insistence on the value of counting larval

ticks is, we hope, vindicated by these analyses. S.E.R. is

supported by a Senior Research Fellowship in Basic

Biomedical Science from the Wellcome Trust.
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