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Abstract

The Brazilian Cerrado, a Neotropical savanna, is a fire-prone ecosystem where the ground
layer biomass consists mainly of graminoids. However, as for other savannas, the effects of
fire cues (such as smoke) on Cerrado grasses do not present a clear pattern, either for germin-
ation or seedling development. Smoke can stimulate different stages of the plant life cycle,
which can alter the community and invasion processes. So far, most research on the subject
focuses on germination, not addressing post-germinative phases, a sensitive stage of plant
development. Here, we investigated the effect of smoke on a native (Echinolaena inflexa)
and an invasive (Urochloa decumbens) grass species common in the Cerrado. We analysed
germinative parameters and seedling mass and length after exposing the seeds to dry
smoke for 5, 10, 15 or 20 min. Seedling development was assessed by measuring shoot and
root systems after cultivating germinated seeds for 3, 7 or 15 d. Smoke did not affect germin-
ation percentages. However, fumigation reduced the mean germination time of both species
and the germination onset of E. inflexa. U. decumbens had higher length values in all periods
of cultivation, whereas mass values only surpassed that of E. inflexa at 15 d. Smoke exposure
reduced the aboveground length of 7-d seedlings of U. decumbens, and mass of 15-d plants of
both species. Also, smoke enhanced the root investment of the native and invasive species in
different cultivation periods. Therefore, studying post-germinative parameters on seedling
development may bring further insights into the smoke effects.

Introduction

The plant communities in fire-prone ecosystems are largely affected by fire, making the under-
standing of its effects imperative for the study of the communities (Bond and Keeley, 2005).
In the Brazilian Cerrado, a Neotropical savanna, adaptations to fire date from 9.8 to 0.4 Mya
(million years ago) (Simon et al., 2009). The vegetation in this biome presents numerous fire
adaptations, such as high resprouting capacity, thermal insulation by a thick bark and synchron-
ous flowering after burns (Neves and Damasceno-Junior, 2011; Dantas and Pausas, 2013; Pausas
et al., 2018; Pilon et al., 2018). Despite the possible negative impacts of fire, burned areas
represent new establishment opportunities for the surviving organisms and seedling recruitment
due to the nutrient input and alleviated interplant competition (Miranda and Klink, 1996a,b;
Lamont and Downes, 2011; Musso et al., 2015). Although vegetative reproduction is prevalent
in the Cerrado, seed reproduction is also important for the persistence of species in fire-prone
ecosystems (Pilon et al., 2021). In this context, fire-related cues – such as heat and smoke – may
have a high adaptive value for pyrophytic species. Accordingly, fire-related cues have been
reported to stimulate germination and seedling growth traits (Lange and Boucher, 1990;
Baxter et al., 1994; Clarke and French, 2005; Sparg et al., 2005; Light et al., 2009; Moreira
et al., 2010; Ghebrehiwot et al., 2012; Mojzes et al., 2015; Tavşanoğlu et al., 2015; Zirondi
et al., 2019), which are both common strategies for population maintenance (Labouriau et al.,
1963; Salazar et al., 2011; Andrade and Miranda, 2014).

In the Cerrado, grasses correspond to the majority of the biomass in the ground layer
(Castro and Kauffman, 1998), and most of the species present a perennial life cycle, with
seed dispersal through the dry season (Sarmiento, 1992; Munhoz and Felfili, 2007), when
wildfires are frequent (Pivello, 2011). As in other savannas, Cerrado fires are sustained by
the ground layer and have a low residence time of high temperatures (Miranda et al.,
1993). Several studies suggest that germination responses are idiosyncratic among grassland
species worldwide and report that grass seeds can tolerate heat shocks up to 100°C without
detrimental effects (Clarke and French, 2005; Overbeck et al., 2006; Dayamba et al., 2008;
Ramos et al., 2016; Paredes et al., 2018; Ramos et al., 2019; Dairel and Fidelis, 2020a;
Gorgone-Barbosa et al., 2020). Likewise, smoke stimuli on germination do not present a
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clear pattern for grasses (Dayamba et al., 2008; Fernandes et al.,
2021). On the other hand, the effect of smoke on grass seedling
development is still scarce and indicates that measurable para-
meters might be noticeable only in post-germinative phases
(Taylor and van Staden, 1996; Blank and Young, 1998; Daws
et al., 2007; Ghebrehiwot et al., 2012). In addition, early seedling
development is a critical phase in the plant life cycle, and previ-
ous studies have shown noticeable effects of smoke during this
stage (Sparg et al., 2005).

Different aspects of smoke may result in a broader ecological
significance than heat-shock. First, smoke may influence areas
that have not been burned but are adjacent to its occurrence.
Curtis (1998) and Lamont and Downes (2011) inferred that
an increased blooming in an unburned area resulted from
smoke drift from burned adjacent areas (200–1000 m apart).
However, few studies address the effects of dry smoke, which
surrogates field conditions in the dry season (Sparg et al.,
2005; Dayamba et al., 2008). Second, smoke-stimulated germin-
ation is registered in a large number of clades around the world
and may be an ancestral feature in plant phylogeny (Keeley and
Pausas, 2018). Third, the smoke compound credited for trigger-
ing the processes (butenolide, karrikinolide-1) acts in small con-
centrations and can be originated by any cellulose combustion
(Flematti et al., 2004; Light et al., 2009). Also, the butenolide
penetrates the soil, possibly influencing the soil seed bank,
which is isolated from high temperatures (Stevens et al., 2007;
Ghebrehiwot et al., 2012). In this context, the smoke could
alter the plant community by affecting native and exotic plants
present in the areas.

African grasses represent a threat to Cerrado’s biodiversity
leading to changes in the local species composition (Pivello
et al., 1999; Zenni and Ziller, 2011). For the ground layer vegeta-
tion, the threat increases if a positive interaction between smoke
and the invasive species is presented. Among the alien grasses,
Urochloa decumbens (Stapf) R. D. Webster – a perennial C4
grass – is the most widespread due to pasture formation in the
region (Loch, 1977; Zenni and Ziller, 2011). U. decumbens is a
strong competitor in the soil bank by forming a transient soil
seed bank larger than native species, also by excluding other inva-
ders (Correia and Martins, 2015; Dairel and Fidelis, 2020b).
Although transient, the seed bank is continuously replenished
by several flowering episodes throughout the year (Florencio
et al., 2009; Dantas-Junior et al., 2018; Xavier et al., 2019). The
U. decumbens invasiveness may also be associated with its high
vegetative reproduction rates (Loch, 1977). Among the native
Cerrado grasses, Echinolaena inflexa (Poir.) Chase – a perennial
C3 species – is dominant in the ground layer, with broad distri-
bution through the biome (Klink and Joly, 1989; Pivello et al.,
1999). This species has a set of morphological plasticity traits
influenced by environmental conditions, which allow colonization
of burned areas through seed dispersal and vegetative resprouts
(Miranda and Klink, 1996a,b). Also, E. inflexa presents domin-
ance in the soil seed bank in the months after burns (Andrade
and Miranda, 2014). Both E. inflexa and U. decumbens present
a similar seed morphology and seedling emergence, high vegeta-
tive reproduction rates, stoloniferous growth habit, and are widely
distributed in Brazil. Even though U. decumbens was not able to
alter the distribution of E. inflexa in degraded Cerrado areas
(Pivello et al., 1999), due to their similarities, these grasses
could compete for similar niches in cases of co-occurrence, there-
fore comparing both species is a coherent approach for studying
their interaction.

Here, we investigate the effects of smoke on germination and
early seedling development of E. inflexa and U. decumbens. By
evaluating the changes in germinative parameters, seedling mass
and seedling length, we aim to provide an overview of responses
of these species to different dry smoke exposure periods. Given
the evolutionary history of E. inflexa with fire in the Cerrado,
we initially hypothesized that exposure to smoke would result
in overall beneficial effects for the native grass, whereas the inva-
sive would present negative or no responses. In addition, consid-
ering that smoke is known to affect the germination of a large
number of plants (Keeley and Pausas, 2018) and invasive grasses
may alter the ecosystem’s plant community, our study can be
valuable for management purposes and provide further insights
into the response of E. inflexa to smoke and in the invasion suc-
cess of U. decumbens in the Cerrado.

Materials and methods

Studied species and seed sorting

The species used in this study were E. inflexa and U. decumbens.
Seeds of E. inflexa were collected in the Reserva Ecológica of IBGE
(35 km South of Brasília, DF, 15°55′S, 47°52′W) at the end of the
rainy season in 2017 (March–April). Seeds of U. decumbens were
bought for presenting low quality and quantity in field conditions.
The diaspores of both species were manually sorted and tested,
selecting only those containing a full caryopsis (Brasil, 2009;
Aires et al., 2014). The seeds were stored in ambient conditions
(∼25°C, 50% R.U.) inside paper bags in the laboratory cabinets
until the experiment.

Fumigation

The fumigation was carried out in January 2018, with dry smoke
derived from the burn of leaf litter collected in an open savanna
(cerrado sensu stricto) area at the Reserva Ecológica of IBGE.
Before burning, the litter was dried in an oven at 60°C for 48 h
and homogenized to ensure a similar smoke composition in all
replicates (Light et al., 2009). The smoke passed through a chim-
ney, ca 2 m distant from the heat source, avoiding any tempera-
ture effect on seeds. Smoke and air temperatures (Ts and Ta)
were attested by two thermocouples (type k: chromel/alumel,
30 swg): the first placed over the fine-mesh (1 mm) metallic sup-
port where the seeds were positioned during fumigation, and the
second 2 m apart from the heat source in the upwind direction
(Ts = 1011×Ta; r

2 = 0.9852; P = 0.0001). The seeds were arranged
on the mesh without overlapping, to ensure a homogeneous
exposure to the smoke. The seeds were smoked for 5, 10, 15 or
20 min and a control group (without exposure), waiting for
complete smoke dissipation between replicates. For each species
and treatment, we used five replicates with 70 seeds each,
randomly selected from the previously sorted seeds. To avoid
pseudoreplication, each replicate was fumigated separately
(Morrison and Morris, 2000).

The number of seeds per replicate (70) was established by a
48-h viability test under dark conditions, applying a 1% solution
of 2,3,5-triphenyl tetrazolium chloride (Lakon, 1949), carried
out 5 months before the fumigation. The tetrazolium solution
was applied to seeds of each species, with no optimization
for either. The viability was assessed by cutting all seeds under
a dissecting microscope to determine the presence of a coloured
embryo.
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Germination

After the smoke exposure, the seeds were sown in Petri dishes
with filter paper and moistened with distilled water. No chemical
or physical treatment was applied to the seeds to prevent contam-
ination by pathogens or fungi (Paredes et al., 2018). The dishes
were placed in a greenhouse under white light (12 h/12 h), ambi-
ent temperature and humidity (∼27°C; 54%) and kept continually
moistened by distilled water. The number of germinated seeds was
counted daily for 30 d. The seeds were considered germinated
when presenting aerial parts and the geotropic curvature of the
radicle (Kumar et al., 2012). We also registered the initial time
of germination (T0) and calculated the mean germination time
(MGT). The formula used for the MGT was (Σ(n × d)/N ),
where n is the number of germinated seeds per day, d is days
passed since the beginning of the experiment and N is the total
number of germinated seeds (Kochankov et al., 1998). After the
experiment period, the non-germinated seeds were tested for via-
bility as described previously.

Seedling parameters and Root:Shoot ratio

Concurrent with germination, we evaluated changes in the mass
and length of seedlings after cultivation for 3, 7 or 15 d. All
seedlings were cultivated under the same light, temperature
and humidity conditions as previously described. For each
smoke treatment, the germinated seeds were transferred from
the Petri dishes to trays with moistened filter paper. The seed-
lings were identified by replicate and germination date. After
3 and 7 d of cultivation, five seedlings of each replicate were har-
vested for mass and length measurements. Also, five seedlings of
each replicate were transferred to pots (5 cm diameter × 9 cm
depth) in which they were cultivated for 15 d. The pots con-
tained a commercial substrate made with Sphagnum peat
moss, coconut fibre, rice husk, Pinus bark, vermiculite, NPK
and micronutrients, and pH 6.0–6.5 (Pires et al., 2018). To
avoid damage to the root system and biomass loss, the seedlings
cultivated for 3 and 7 d were carefully removed with tweezers
from the filter paper. Seedlings grown for 15 d were carefully
rinsed under running water to remove the substrate. The seed-
lings were cut directly below the cotyledon, at the beginning
of the root system, and the aerial and root parts were measured
in length, dried for 48 h in an oven (60°C), and then weighted
for attaining the dry mass (0.00001 g precision). For the control
group, the data collection followed the same procedures
described above. With the length and dry mass data, we con-
ducted the Root:Shoot (R:S) analysis to assess the investment
in root development.

Data analysis

We applied a generalized linear mixed model (GLMM) with a
binomial error distribution and Logit link function to analyse
the differences in the percentages of germination and viability
of non-germinated seeds between species for each treatment. In
the GLMM analysis, we used the replicates as random effects.
For the T0 analysis, we used a generalized linear model (GLM)
with a Quasi-Poisson error distribution and Log link function,
since it consisted of underdispersed count data. The effects of
the treatments on the MGT were evaluated using a GLM with a
Gamma error structure and an Identity link function, with species
and smoke treatment as predictor variables and the MGT as

response variable. To analyse the effects of smoke in the develop-
ment of seedlings for each cultivation period (3, 7 or 15 d), we
used the same method of MGT. After adjustments all models
were attained, we tested the interaction between our predictors
(species and treatment). Whenever significant, the interactions
were compared pairwise utilizing Tukey (P < 0.05), otherwise the
effects of treatments were considered similar for both species.

In the analysis of seedling development, we used the average of
the parameters (length and mass of the root and shoot systems) of
five cultivated seedlings as input for the models, to overcome the
lack of independence between seedlings pooled in the same Petri
dishes. Whenever necessary, we removed outliers from the models
based on Cook’s distance method. In order to assure all models’
adjustments, the distribution and variance of residuals was visu-
ally assessed and analysed by the Shapiro–Wilk and Levene
tests. All GLM and GLMM analyses were tested for over- and
under-dispersion of residuals using a goodness-of-fit ratio
(residual deviance/degrees of freedom; Dunn and Smyth, 2018)
and the testDispersion() function from the DHARMa package
(Hartig, 2022; see also Brooks et al., 2019). The analyses were car-
ried out using the R software (version 4.0.0, R Core Team, 2021),
the models were constructed with the stats (R Core Team, 2021)
and lme4 (Bates et al., 2015) packages, and the graphics were built
using the ggplot2 package (Wickham, 2016). Our model analyses
were overall based on Zuur et al. (2009).

Results

Germination

The germination of U. decumbens was greater than the germin-
ation of E. inflexa (P < 0.0001), and we did not find any effect
of smoke on the germination of either species. On average, the
germination of the exotic grass was 65 ± 14%, and for E. inflexa
was 32 ± 10% (Fig. 1A). From the initial tetrazolium solution
tests, the seeds of U. decumbens displayed 78 ± 8% viability,
5.2-fold greater than that of E. inflexa (15 ± 10%; t = −11.172;
P < 0.0001). On the other hand, the percentage of non-germinated
viable seeds was 3.3-fold greater in E. inflexa (P < 0.0001). After
20 min of smoke exposure, E. inflexa presented a significantly
greater percentage of fertile non-germinated seeds (22 ± 5%),
whereas in U. decumbens it was reduced to 4 ± 2% (P < 0.05;
Fig. 1B).

Compared to the control, there was a reduction in MGT of
both species after 5 min of fumigation (P < 0.05; Fig. 1C).
However, E. inflexa generally presented a higher MGT
(P < 0.0001). Except for 10 min, there was a reduction in T0 for
fumigated E. inflexa seeds compared to the control group, reach-
ing 4 ± 0 d after the 5 or 20 min of smoke exposure (P < 0.05;
Fig. 1D). On the other hand, T0 of U. decumbens was synchronic,
just 1 d after the fumigation of seeds.

Seedling parameters and R:S ratio

After 3 d of development, the length of the shoot and root systems
of seedlings of U. decumbens were 2.3-fold and 1.9-fold greater
than seedlings of E. inflexa. However, E. inflexa’s seedlings pre-
sented greater aboveground mass (1.2-fold; P < 0.0001) than
U. decumbens’, with no difference in the root system mass. The
smoke treatment did not affect any of these parameters
(Table 1). After 7 d, the same pattern was maintained when com-
paring the species (P < 0.0001). However, seeds of U. decumbens
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fumigated for 15 min increased the aboveground length from
1.9 ± 0.6 cm in the control to 2.6 ± 0.7 cm (P < 0.01; Table 1).
After 15 d, U. decumbens had higher mass and length values
than E. inflexa for both shoot and root systems (P < 0.0001;
Tables 1 and 2). Also, smoke treatment affected the shoot system
in both species, reducing the mass in all treatments, reaching a
maximum reduction (1.3-fold) after 20 min of treatment
(P < 0.0001; Table 2). The fumigation altered the aboveground
length as well, resulting in a reduction after 5 min in both species
(P < 0.001; Table 1). There was no significant alteration in the root
system of the species.

When the R:S ratio was calculated with length values
(length-R:S), after 3 d of development, the length-R:S of
E. inflexa was 1.4-fold greater than U. decumbens (P < 0.001),
with no significant differences between treatments. After 7 d,
the length-R:S did not present significant differences comparing
species or treatments. For 15 d of development, the E. inflexa’s
length-R:S (0.76 ± 0.54) remained higher than that of U. decum-
bens (0.54 ± 0.18; P < 0.0001), and was increased in both
species after 5 min of exposure to smoke (P < 0.05; Table 1).
When calculated with the mass data (mass-R:S), the R:S after
3 d increased after 10 min of exposure to smoke in both species
(U. decumbens: 1.2-fold; E. inflexa: 1.8-fold; P < 0.05), but there
was no significant difference between species. After 7 d, the
mass-R:S of U. decumbens was 1.3-fold higher (P < 0.01), with
no significant differences between treatments (Table 2). For 15 d
of development, the mass-R:S of U. decumbens remained higher
than E. inflexa (P < 0.0001), however none showed treatment
effects (Table 2).

Discussion

In summary, U. decumbens showed higher values for all studied
germinative parameters than E. inflexa. The invasive species
showed higher and faster germination rates, a smaller number
of dormant seeds, and did not show smoke effects in the germin-
ation percentages. Accordingly, the low occurrence of such
responses in grasses has been previously shown (Pérez-
Fernández and Rodríguez-Echeverría, 2003; Clarke and French,
2005; Daws et al., 2007; Dayamba et al., 2008) including for
both species addressed here (Le Stradic et al., 2015; Gorgone-
Barbosa et al., 2020; Fernandes et al., 2021). For the Cerrado,
smoke-enhanced germination is only reported for Aristida spp.
(Le Stradic et al., 2015; Ramos et al., 2019). In addition,
Andropogon gayanus, another African invasive species in
Cerrado, showed slower germination rates after being treated
with aerosol smoke (Dayamba et al., 2008). In contrast, the
MGT of U. decumbens was not affected by smoke in our experi-
ment. Such an outcome may be a consequence of the capacity
of species for overcoming environmental stresses (Pereira et al.,
2012; Dantas-Junior et al., 2018; Xavier et al., 2019). Despite
not presenting tangible responses to smoke, the germination
rate of U. decumbens seeds also depicted the invasive potential
of the species, as all replicates germinated 3 d earlier than the
first E. inflexa seed.

Albeit lower than U. decumbens’ germination, E. inflexa’s ger-
mination was more responsive to smoke, as the fumigation antici-
pated the onset of germination of the native species. Although
higher than some values reported for the species in previous

Figure 1. Germinative parameters measured for a native (Echinolaena inflexa) and an invasive (Urochloa decumbens) grass species common in the Cerrado, after
different periods of smoke exposure. (A) Germination; (B) percentage of viable non-germinated seed remaining after the experiment; (C) mean germination time;
and (D) time necessary to the first germination. Asterisks denote statistical significance between treatments within species. Data are presented as mean ± standard
deviation.
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studies (e.g. Le Stradic et al., 2015; Musso et al., 2015), the ger-
mination values of E. inflexa showed no difference after fumiga-
tion. Such behaviour may be due to dormancy of E. inflexa’s
seeds (Aires et al., 2014; Le Stradic et al., 2015; Ramos et al.,
2016) and an inability of the smoke to alleviate it. Nevertheless,
the anticipation in T0 may represent an opportunity for earlier
establishment and competitive advantage. It is also noteworthy
that the MGT of E. inflexa corresponds to the lowest values mea-
sured among other native grasses (Aires et al., 2014). Therefore,
E. inflexa should have an advantage in colonizing recently burned
areas in the Cerrado or competing with other native species for
establishment opportunities. However, all U. decumbens replicates
presented faster initial germination and overall lower MGT, which
suggests it would be a better competitor than E. inflexa.

Seed viability of U. decumbens was also significantly higher
(5.2-fold) than that of E. inflexa, determined by the initial tetra-
zolium solution test. Nevertheless, the germination percentage
of the invasive species was only twice the value of the native.
Also, the number of non-germinated viable seeds, assessed by via-
bility tests after the experiment period, was 3.3-fold larger for
E. inflexa. These results suggest that the viability of the fumigated
E. inflexa seeds was higher than previously calculated by the ini-
tial tetrazolium solution test, 5 months prior. It is worth mention-
ing that Aires et al. (2014) also reported an increase in the
viability of E. inflexa seeds after 1-year of storage, which supports
this inference. In addition, despite the low initial viability, the ger-
mination results were consistent with the varied values reported
by previous studies on E. inflexa (Musso et al., 2015 (8–19%);

Paredes et al., 2018 (52%); Fontenele et al., 2020 (20%)). We
did not reassess seed viability closer to the fumigation, leading
to germination values larger than predicted by the tetrazolium
results for the native species. Nevertheless, the gemination results
show that the comparison between the species was fairer than the
initial viability suggested.

Although U. decumbens showed higher length values of root
and shoot systems in all periods of cultivation, the mass
values only surpassed E. inflexa’s after 15 d. A possible explan-
ation is cellular elongation in the early days of U. decumbens’
seedlings development (Kutschera, 2000). Meanwhile, consider-
ing length-R:S, E. inflexa presented a higher root investment,
whereas U. decumbens had a longer aerial part. Moreover,
smoke effects were recorded in the endmost periods of cultivation,
with 5 min of exposure increasing the root investment.
Furthermore, analysing the root and shoot system length could
indicate eventual detrimental effects of smoke, since these post-
germinative parameters have shown sensitivity in response to
stressors, such as herbicides and allelopathic substances (Sparg
et al., 2005; Navas and Pereira, 2016; Muniz et al., 2019).
Nonetheless, when calculated with mass, U. decumbens presented
a higher root investment than E. inflexa. Also, 10 min of smoke
exposure led to higher values in the early stages of development
in both species.

In addition, both length-R:S and mass-R:S results indicate cel-
lular elongation in seedlings of U. decumbens, as an effort to
develop the aerial part and photosynthetic surface and later allo-
cating the resources to the root system. The development of the

Table 1. Effects of different smoke exposure periods on the length of shoot and root systems, and the Root:Shoot ratio of Echinolaena inflexa and Urochloa
decumbens

Treatment (min)

Echinolaena inflexa Urochloa decumbens

Shoot system (cm) Root system (cm) Root:Shoot Shoot system (cm) Root system (cm) Root:Shoot

3 d

Control 0.8 ± 0.3 Ba 1.1 ± 0.5 Ba 1.60 ± 1.04 Ba 1.9 ± 0.5 Aa 2.7 ± 1.0 Aa 1.40 ± 0.38 Aa

5 0.7 ± 0.3 Ba 1.5 ± 0.5 Ba 2.42 ± 1.24 Ba 2.0 ± 0.7 Aa 3.0 ± 1.0 Aa 1.48 ± 0.40 Aa

10 0.7 ± 0.3 Ba 1.5 ± 0.6 Ba 2.37 ± 1.08 Ba 1.7 ± 0.4 Aa 2.7 ± 0.9 Aa 1.61 ± 0.39 Aa

15 0.8 ± 0.3 Ba 1.4 ± 0.7 Ba 1.98 ± 0.97 Ba 2.0 ± 0.6 Aa 2.6 ± 0.9 Aa 1.33 ± 0.45 Aa

20 1.0 ± 0.3 Ba 1.6 ± 0.5 Ba 1.89 ± 0.94 Ba 1.7 ± 0.4 Aa 2.5 ± 0.8 Aa 1.46 ± 0.34 Aa

7 d

Control 1.2 ± 0.4 Ba 1.5 ± 0.7 Ba 1.39 ± 0.74 Aa 1.9 ± 0.6 Aa 2.7 ± 0.8 Aa 1.49 ± 0.68 Aa

5 1.2 ± 0.3 Ba 2.0 ± 0.9 Ba 1.82 ± 0.98 Aa 2.2 ± 0.6 Aa 2.9 ± 1.2 Aa 1.39 ± 0.68 Aa

10 1.3 ± 0.4 Ba 1.4 ± 0.7 Ba 1.14 ± 0.59 Aa 2.5 ± 0.6 Aa 3.2 ± 1.0 Aa 1.32 ± 0.43 Aa

15 1.3 ± 0.5 Ba 1.9 ± 1.0 Ba 1.54 ± 0.73 Aa 2.6 ± 0.7 Ab 3.6 ± 1.4 Aa 1.40 ± 0.49 Aa

20 1.1 ± 0.3 Ba 1.9 ± 0.7 Ba 1.72 ± 0.49 Aa 2.4 ± 0.6 Aa 3.3 ± 1.1 Aa 1.42 ± 0.57 Aa

15 d

Control 4.3 ± 1.0 Ba 2.8 ± 1.1 Ba 0.64 ± 0.21 Ba 15.4 ± 3.8 Aa 7.5 ± 1.7 Aa 0.51 ± 0.15 Aa

5 3.3 ± 1.2 Ba 2.6 ± 1.6 Ba 1.02 ± 0.98 Bb 12.7 ± 3.2 Aa 7.3 ± 1.3 Aa 0.61 ± 0.19 Ab

10 4.1 ± 0.8 Ba 2.9 ± 1.6 Ba 0.74 ± 0.49 Ba 14.5 ± 3.2 Aa 7.1 ± 1.9 Aa 0.50 ± 0.17 Aa

15 3.9 ± 1.0 Ba 2.8 ± 1.7 Ba 0.71 ± 0.39 Ba 14.8 ± 3.4 Aa 6.9 ± 1.7 Aa 0.49 ± 0.16 Aa

20 3.8 ± 0.5 Ba 2.7 ± 1.0 Ba 0.72 ± 0.22 Ba 12.2 ± 3.4 Aa 6.6 ± 1.3 Aa 0.59 ± 0.22 Aa

Upper case letters represent statistical differences between species when analysing the same treatment, whereas lower case letters represent statistical differences between treatments
within the same species.
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root system in the seedlings is essential for the recruitment, since
it increases seedling fixation to the soil and favours water and
nutrient accessibility (Ries and Svejcar, 1991; Leskovar and
Stoffella, 1995; Lynch, 1995). Also, investment in the root system
enables the storage of soluble carbohydrates, which are important
for protection of tissues to stresses, sustenance during periods of
photosynthesis limitation (e.g. drought, post-fire), and play a role
in the osmotic adjustment (Souza et al., 2010; Moraes et al., 2016).
Therefore, well-developed underground organs are essential for
Cerrado grasses survival and resprout (Pilon et al., 2021). A heav-
ier root system, thus denser, suggests a larger carbon allocation
and cellular development by the native species in the early days.
On the other hand, photosynthetic areas represent independence
of the seed’s reserves and carbon fixation by the seedling (Wright
and Westoby, 2000), which would later provide more resources
for the root system development. In this context, the reduction
in aboveground mass of 15-d seedlings of both species in all fumi-
gation periods suggests detrimental effects of smoke on the early
development of these grasses.

As shown by a lower T0 and MGT, dry smoke exposure hastens
the germination process of E. inflexa, a native grass of Cerrado. On
the one hand, this result is not enough to overcome the invasive U.
decumbens, which shares several functional traits. On the other
hand, when considering post-germinative parameters, E. inflexa
presents a greater seedling development in its early days, contribut-
ing to the native’s success in an eventual competition. Since Keeley
and Pausas (2018) argued that responses to smoke might be an
exaptation present in several groups of plants, such effects could

likely comprise different life stages and appear erratically in related
species, as evidenced here. Therefore, analysing post-germinative
parameters and seedling development may bring elucidating
answers on the smoke effects.

Due to the expansion of U. decumbens’ invasion in the
Cerrado (Macedo, 2005), the interaction between the studied spe-
cies has become more frequent, leading to a possible scenario of
competitive exclusion. In this context, the invasion success should
be lower due to the shared functional traits of exotic species with
natives (MacArthur and Levins, 1967; Symstad, 2000; Diez et al.,
2008). Nevertheless, the values of T0, MGT and R:S suggest that
the niche similarity between native and invasive grasses may not
ensure resistance to the U. decumbens invasion in the Cerrado
(see also Damasceno et al., 2018). However, Klink (1996) reports
that seedlings of E. inflexa showed a continual survival rate in the
field, while the seedlings of the invasive A. gayanus were largely
threatened by predation. In this context, high seedbank occu-
pancy (Dairel and Fidelis, 2020b), greater and faster germination
rates, and enhanced root investment of U. decumbens may not be
fully reflected in the seedling recruitment. Such considerations
reinforce that different traits should also be taken in consideration
for management purposes (Assis et al., 2021) and for assessing the
competition between native and alien grasses.
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Table 2. Effects of different smoke exposure periods on mass of aerial and root systems, and the Root:Shoot ratio of Echinolaena inflexa and Urochloa decumbens

Treatment
(min)

Echinolaena inflexa Urochloa decumbens

Shoot system
(mg)

Root system
(mg) Root:Shoot

Shoot system
(mg)

Root system
(mg) Root:Shoot

3 d

Control 4.96 ± 0.76 Ba 0.24 ± 0.24 Aa 0.04893 ± 0.05045 Aa 4.16 ± 0.49 Aa 0.29 ± 0.15 Aa 0.06985 ± 0.03567 Aa

5 4.77 ± 0.76 Ba 0.36 ± 0.23 Aa 0.07546 ± 0.04955 Aa 3.78 ± 0.89 Aa 0.38 ± 0.20 Aa 0.14459 ± 0.25347 Aa

10 4.72 ± 0.78 Ba 0.42 ± 0.27 Aa 0.08982 ± 0.05312 Ab 3.99 ± 0.46 Aa 0.33 ± 0.17 Aa 0.08283 ± 0.04356 Ab

15 4.70 ± 0.80 Ba 0.31 ± 0.20 Aa 0.06736 ± 0.04285 Aa 4.06 ± 0.35 Aa 0.37 ± 0.16 Aa 0.09345 ± 0.04116 Aa

20 4.86 ± 0.57 Ba 0.35 ± 0.16 Aa 0.07271 ± 0.03582 Aa 4.07 ± 0.65 Aa 0.25 ± 0.18 Aa 0.06270 ± 0.04903 Aa

7 d

Control 4.48 ± 0.94 Ba 0.29 ± 0.18 Aa 0.06737 ± 0.04421 Ba 3.83 ± 0.37 Aa 0.39 ± 0.16 Aa 0.10200 ± 0.04396 Aa

5 4.47 ± 1.06 Ba 0.42 ± 0.27 Aa 0.09654 ± 0.05833 Ba 3.72 ± 0.46 Aa 0.46 ± 0.19 Aa 0.12668 ± 0.05588 Aa

10 4.67 ± 0.85 Ba 0.43 ± 0.32 Aa 0.09336 ± 0.06541 Ba 3.92 ± 0.41 Aa 0.40 ± 0.16 Aa 0.10394 ± 0.04593 Aa

15 4.67 ± 0.61 Ba 0.40 ± 0.29 Aa 0.08573 ± 0.06475 Ba 3.64 ± 0.45 Aa 0.43 ± 0.25 Aa 0.12227 ± 0.08017 Aa

20 4.71 ± 0.75 Ba 0.53 ± 0.26 Aa 0.11079 ± 0.04916 Ba 3.75 ± 0.52 Aa 0.53 ± 0.27 Aa 0.14023 ± 0.06680 Aa

15 d

Control 6.56 ± 1.29 Ba 0.58 ± 0.20 Ba 0.08935 ± 0.03343 Ba 9.86 ± 2.25 Aa 1.58 ± 0.57 Aa 0.16051 ± 0.04511 Aa

5 4.68 ± 0.86 Bb 0.54 ± 0.30 Ba 0.11293 ± 0.06322 Ba 8.15 ± 1.79 Ab 1.58 ± 0.54 Aa 0.19650 ± 0.07253 Aa

10 5.34 ± 0.82 Bb 0.43 ± 0.15 Ba 0.08080 ± 0.02944 Ba 12.46 ± 15.90 Ab 1.56 ± 0.46 Aa 0.16265 ± 0.04713 Aa

15 5.44 ± 1.27 Bb 1.00 ± 1.99 Ba 0.17319 ± 0.32674 Ba 8.94 ± 2.22 Ab 1.71 ± 0.76 Aa 0.18714 ± 0.05284 Aa

20 4.94 ± 0.61 Bb 0.54 ± 0.36 Ba 0.10903 ± 0.06651 Ba 7.57 ± 1.88 Ab 1.61 ± 0.66 Aa 0.21559 ± 0.08901 Aa

Upper case letters represent statistical differences between species when analysing the same treatment, whereas lower case letters represent statistical differences between treatments
within the same species.
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