
Robotica (2019) volume 37, pp. 141–160. © Cambridge University Press 2018
doi:10.1017/S0263574718000899

Position analysis, singularity loci and workspace of a
novel 2PRPU Schoenflies-motion generator
Henrique Simas† and Raffaele Di Gregorio‡,∗

†Raul Guenther Lab. of Applied Robotics, Department of Mechanical Engineering, Federal
University of Santa Catarina, Florianópolis, SC 88040–900, Brazil
‡Department of Engineering, University of Ferrara, Via Saragat, 1, Ferrara 44100, Italy

(Accepted August 9, 2018. First published online: September 10, 2018)

SUMMARY
Pick-and-place applications need to perform rigid body displacements that combine translations
along three independent directions and rotations around one fixed direction (Schoenflies motions).
Such displacements constitute a four-dimensional (4-D) subgroup (Schoenflies subgroup) of the 6-D
displacement group. The four-degrees of freedom (dof) manipulators whose end effector performs
only Schoenflies motions are named Schoenflies-motion generators (SMGs). The most known SMGs
are the serial robots named SCARA. In the literature, parallel manipulators (PMs) have also been
proposed as SMGs. Here, a novel single-loop SMG of type 2PRPU is studied. Its position analysis,
singularity loci and workspace are addressed to provide simple analytic and geometric tools that are
useful for the design. The proposed single-loop SMG is not overconstrained, its actuators are on
or near the base and its end effector can perform a complete rotation. These features solve the main
drawbacks that parallel SMG architectures have in general and make the proposed SMG a valid design
alternative.

KEYWORDS: Parallel manipulators, Schoenflies subgroup, Position analysis, Instantaneous
kinematics, Workspace

1. Introduction
A number of industrial applications (e.g., pick-and-place tasks) require rigid body translations along
three independent directions together with rotations around one fixed direction. The displacement
set of this type constitutes the four-dimensional (4-D) Schoenflies subgroup of the 6-D displacement
group1−3 and the 4-degrees of freedom (dof) manipulators whose end effector is constrained to perform
Schoenflies displacements are called Schoenflies-motion generators (SMGs).2 The most known SMGs
are the serial robots named SCARA.

In the literature (see, for instance, refs. [3-11]), parallel manipulators (PMs) have also been proposed
as SMGs. Parallel architectures feature two rigid bodies, one fixed (base) and the other movable
(platform), that are connected with one another by a number of kinematic chains (limbs). Most of
the parallel SMGs have four limbs (e.g.4−6,8,11), and one actuator per limb located on the base.
Nevertheless, two-limbed symmetric (i.e., single-loop) architectures with serial3,26,30 or hybrid7,10

limbs have been proposed, too. Other parallel SMGs are simply obtained by adding a double Cardan
shaft (i.e., a limb of RUPUR(1) type),12,13 which connects the base to the platform, in a translational
PM.

Parallel SMGs are faster6 than their serial counterparts since they allow the possibility of locating
the actuators on the base. Nevertheless, reduced workspace and cumbersome multi-loop topologies
with complex kinematics are their main drawbacks. In particular, parallel SMGs usually cannot make

* Corresponding author. E-mail: rdigregorio@ing.unife.it
(1)Hereafter, R, P, U and C stand for revolute pair, prismatic pair, universal joint and cylindrical pair, respectively.
The underlining indicates the actuated joints and the sequence of joint types, which are encountered by moving
from the base to the platform on a limb, is given with a string of capital letters.
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the platform perform a complete rotation and some tricks have to be devised for overcoming this
drawback.14 For instance, articulated platforms combined with a rotation amplifier have been used in
ref. [6]. This solution exploits a passive not-idle R pair as input either of a gear train or of a toothed
belt (rotation amplifier) whose output is another R pair, hinged on the platform, which controls the
end effector’s rotation.

Also, reducing the number of limbs and keeping the actuators on or near the base is a good
compromise to obtain fast machines with a wider workspace. Single-loop architectures with two
actuators per limb3 are a way to satisfy this requirement.

Eventually, not-overconstrained architectures would make it possible to avoid jamming without
using small tolerances during manufacturing. Here, a novel parallel SMG of type 2PRPU is studied.
Its position analysis, singularity loci and workspace are addressed to provide simple analytic and
geometric tools that are useful for the design. The proposed SMG has a single-loop not-overconstrained
architecture with actuators on or near the base and make the end effector perform a complete rotation
by using a simple rotation amplifier that does not need an articulated platform.

The paper is organized as follows. Section 2 presents the novel parallel SMG together with the
adopted notations. Section 3 solves, in closed form, both its direct and inverse position analyses. Then,
Section 4 addresses the instantaneous kinematics and identifies its singularity loci, whereas Section
5 studies its dexterous workspace. Eventually, Section 6 discusses a number of issues related to this
SMG, and Section 7 draws the conclusions.

2. The 2PRPU: Description and Notations
A single-loop mechanism of type 2PRPU is not-overconstrained and has four-dof. Figure 1 shows
a particular 2PRPU mechanism. With reference to Fig. 1, the base and the platform are fixed to the
Cartesian references Obxbybzb and Oexeyeze, respectively, and are connected to each other by two
PRPU limbs with the PR chain, adjacent to the base, that constitutes a C pair, whose axis is parallel
to the axis of the first R pair of the U joint. In addition, the platform is connected to the two limbs by
two R pairs (i.e., the second ones of the two U joints) with parallel axes and keeps these axes always
parallel during motion. In ref. [3], Lee and Hervé proved that these geometric conditions are sufficient
to make the platform perform only Schoenflies motions when singularities do not occur, since this
particular 2PRPU mechanism is just a special case of an item in a list of topologies they presented
that are suitable to be single-loop SMGs; nevertheless, they did not provide any further analysis on it.

In Fig. 1, one of the axes of the two C pairs is parallel to the xb axis and the other is parallel to the
yb axis, whereas the axes of the second R pairs of the two U joints are both parallel to the zb axis. A1

and A2 are the centers of the two U joints. B1 (B2) is the foot of the perpendicular from A1 (A2) to the
xb axis (yb axis). The directions of the axes of the second R pairs of the two U joints must be parallel
to each other and, simultaneously, perpendicular to the axes of the first R pairs of the two U joints,
whose directions are fixed by the limb geometry. Thus, the orientations of the planes that contain the
two R-pair axes of each U joint do not change during motion.

It is easy to prove, with the screw theory,15 that each PRPU limb applies to the platform only one
torque perpendicular to the plane that contains the two R-pair axes of the U joint. Consequently, the
platform of the 2PRPU mechanism of Fig. 1 undergoes only two torques with fixed directions, one
parallel to the yb axis and the other to the xb axis, which forbid the platform rotations around axes with
those two directions. The conclusion is that it can only perform free spatial translations and rotations
around axes with the direction of the zb axis (i.e., Schoenflies motions with rotation axis parallel to
the zb axis).

The parallel SMG presented here is shown in Fig. 2. It is obtained from the 2PRPU mechanism of
Fig. 1 by choosing all the P pairs as actuated joints and by adding a rotation amplifier. The rotation
amplifier is constituted by a toothed belt that transmits the motion from a pulley, named “fixed pulley”
(2) in Fig. 2, which is embedded in the hub of the second R pair of the U joint with center at A1, to
another pulley, named “rotating pulley” in Fig. 2, which is embedded in the gripper that, now, is
hinged to the platform. Since the hub of the second R pair of the U joint with center at A1 does not
rotate with respect to the base, the “fixed pulley” does not rotate with respect to the base, and its

(2)With respect to the base, this pulley translates with the platform without rotating, that is, it keeps a “fixed
orientation”. The adopted name “fixed pulley” is just an abbreviation of “fixed-orientation pulley”.
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Fig. 1. An SMG of type 2PRPU: (a) Kinematic scheme (parallelepipeds and cylinders denote P and R pairs,
respectively) and (b) 3-D CAD model.

rotation with respect to the platform is equal to the opposite of the platform rotation with respect to
the base (i.e., –α). Also, the rotation of the “rotating pulley” with respect to the platform has the same
direction as the rotation of the “fixed pulley” with respect to the platform. The amplification ratio, kp,
is defined as the ratio between the angular velocities of the gripper and of the platform with respect to
the base (i.e., the angular-velocity ratio16 of this rotation amplifier). As a consequence, kp is always
negative and the angular-velocity ratio of the belt transmission is equal to (1–kp). Differently from
other parallel SMGs that use rotation amplifiers,14 the proposed solution does not need an articulated
platform.

With reference to Figs. 1 and 2, d1 and d3 are the signed distances of the points B1 and B2,
respectively, from Ob and are the joint variables of the two P pairs adjacent to the base. d2 and d4

are the variable lengths (limb lengths) of the segments B1A1 and B2A2, respectively, and are the joint
variables of the remaining two P pairs. L is the constant length of the segment A1A2 and u is a constant
coefficient ranging from 0 to 1. α is the angle, counterclockwise with respect to the direction of the
zb axis, that the segment A1A2 forms with the direction of the yb axis, and identifies the platform
orientation. Eventually, the angles θi for i = 1,…,6 are the joint variables of the six R pairs. θ1 and
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Fig. 2. The SMG of type 2PRPU with rotation amplifier: (a) kinematic scheme and notations, (b) 3-D view of
the CAD model, (c) ybzb-plane lateral view of the CAD model, (d) xbzb-plane lateral view of the CAD model
and (e) top view of the CAD model.

θ2 (θ4 and θ5) are defined counterclockwise with respect to the direction of the xb axis (the yb axis),
whereas θ3 and θ6 are defined counterclockwise with respect to the direction of the zb axis. θ1 (θ4) is
equal to 0 when the vector (A1–B1) [the vector (A2–B2)] has the same direction of the yb axis (the xb

axis).
The parallel PM of Fig. 2 has no passive P pair. Also, since, in PMs, actuated P pairs, which control

the limb lengths, are commonly considered near the base enough for not significantly affecting the
speed of the PM, the parallel PM of Fig. 2 has two actuators on the base and the remaining two near
the base.

3. Position Analysis
The analysis of Fig. 2 reveals that, once the platform pose is determined, the gripper pose is uniquely
determined, since the gripper position is obtained by adding the constant vector (0, 0, H)T to the
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coordinates of the platform reference point and the gripper orientation is obtained by amplifying the
angle α with the angular-velocity ratio kp. Hereafter, without losing generality, the mechanism of
Fig. 1 will be considered in the kinematic analyses.

With reference to Fig. 1, the four-tuple q = (d1, d2, d3, d4)T , which collects all the actuated-joint
variables, will be used to locate the points of the joint space. The coordinates (A1x, A1y, A1z)T of the
platform point A1 measured in Obxbybzb and the angle α uniquely identify the platform pose, and the
four-tuple κ = (A1x, A1y, A1z, α)T will be adopted to locate the points of the operational space.

The inspection of Fig. 1 brings to write the following relationships (bold capital letters denote the
position vectors, measured in Obxbybzb, of the points the letters refer to):

B1 =
⎛
⎝d1

0
0

⎞
⎠ ; B2 =

⎛
⎝ 0

d3

0

⎞
⎠ , (1a)

A1 =
⎛
⎝A1x

A1y

A1z

⎞
⎠ =

⎛
⎝ d1

d2cosθ1

d2sinθ1

⎞
⎠ ; (A2 − A1) =

⎛
⎝−L sinα

L cosα
0

⎞
⎠ , (1b)

A2 =
⎛
⎝A2x

A2y

A2z

⎞
⎠ =

⎛
⎝ d4 cosθ4

d3

−d4 sinθ4

⎞
⎠ ≡ A1 + (A2 − A1). (1c)

Also, vector Eq. (1c) yields the following closure equations:

d1 − L sinα = d4cosθ4, (2a)

d3 − L cosα = d2cosθ1, (2b)

d2 sinθ1 = −d4 sinθ4. (2c)

3.1. Inverse position analysis
The inverse position analysis (IPA) consists in the determination of the values of q compatible with
an assigned platform pose (i.e., with an assigned value of κ). In the studied SMG, once A1x, A1y, A1z

and α have been assigned, the actuated-joint variables d1 and d2 can be immediately computed as
follows (see Eqs. (1a) and (1b)):

d1 = A1x; d2 = |A1 − B1| =
√

A2
1y + A2

1z. (3)

Then, the coordinates of point A2 can be computed with the last of formulas (1c) that yields

A2x = A1x − L sinα; A2y = A1y + L cosα; A2z = A1z. (4)

Eventually, the remaining actuated-joint variables, d3 and d4, can be computed with the following
formulas:

d3 = A2y; d4 = |A2 − B2| =
√

A2
2x + A2

2z. (5)

The conclusion is that the IPA has only one solution computable with simple explicit formulas.
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3.2. Direct position analysis
The direct position analysis (DPA) consists in the determination of the platform poses (i.e., of the
values of κ) compatible with assigned actuated-joint variables (i.e., with an assigned value of q). In the
studied SMG, if the coordinates of points A1 and A2 are computed as a function of the actuated-joint
variables, di for i = 1,…,4, the platform pose will be known as a function of the same variables and
the angle α can be computed with the second of formulas (1b) thus solving the DPA. Regarding these
coordinates, Eqs. (3)–(5) highlight that A1x and A2y are immediately expressible as a function of the
actuated-joint variables, whereas A2z is equal to A1z. Therefore, only the coordinates A1y, A1z and A2x

must be computed to solve the DPA. This computation is reported below.
The following three scalar equations can be written (see Fig. 1):

(A2 − A1) · (A2 − A1) = L2, (6a)

(A1 − B1) · (A1 − B1) = d2
2, (6b)

(A2 − B2) · (A2 − B2) = d4
2, (6c)

which by taking into account Eqs. (1), (3), (4) and (5) become

(A2x − d1)2 + (d3 − A1y)2 = L2, (7a)

A1y
2 + A1z

2 = d2
2, (7b)

A2x
2 + A1z

2 = d4
2. (7c)

Equations (7a)–(7c) constitute a non-linear system of three equations in the three unknowns A1y, A1z

and A2x. System (7) can be further reduced by linearly eliminating A2
1z in Eqs. (7b) and (7c). So doing,

it becomes (the left-hand side of Eq. (7a) has been expanded)

A2x
2 + A1y

2 − 2d1 A2x − 2d3A1y + d1
2 + d3

2 = L2, (8a)

A2x
2 − A1y

2 = d4
2 − d2

2. (8b)

The sum of Eqs. (8a) and (8b) yields

A1y = b2A2x
2 + b1A2x + b0, (9)

where b0 =(d2
1 + d2

2 + d2
3 –d2

4 –L2)/2d3, b1 = –d1/d3, and b2 =1/d3.
The introduction of expression (9) into Eq. (8b) gives the following univariate polynomial equation

of degree 4 in A2x:

A2x
2 − (b2A2x

2 + b1A2x + b0)2 = d4
2 − d2

2, (10)

which can be solved in closed form17 and gives four complex (i.e., up to four real) values of A2x. The
computed values of A2x, when back substituted into Eqs. (9) and (7c), yield as many values of A1y

and two opposite values of A1z for each A2x given by the formula

A1z = ±
√

d2
4 − A2

2x. (11)
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Fig. 3. No real DPA solution (d1 = 120 l.u., d2 = 450 l.u., d3 = 300 l.u., d4 = 448 l.u., L = 100 l.u.; l.u. stands
for a generic “length unit”).

The conclusion is that the DPA has up to eight solutions symmetrically disposed with respect to the
plane xbyb, which can be computed in closed form.

From a geometric point of view, in a Cartesian plane with A2x and A1y as abscissa and ordinate,
respectively, Eq. (8a) [Eq. (7a)] is a circumference with center at (d1, d3) and radius L, whereas Eq.
(8b) is a rectangular hyperbola with the two lines A1y = ±A2x as asymptotes. Thus, the real solutions
of system (8) are the possible intersections of these two curves. Figs. 3–5 show three cases: the first
with no real solution, the second with only two real solutions and the third with four real solutions.
Such diagrams are useful tools for visualizing the effects of the values of the actuated-joint variables
on the DPA since changing (d1, d3) corresponds to rigidly translating the circumference, whereas the
variation of (d2

4 –d2
2 ) modifies the hyperbola without affecting its asymptotes (i.e., only the central part

of the hyperbola is modified in practice). Also, since each real solution of system (8) corresponds to
two real DPA solutions, which are symmetrically located with respect to the coordinate plane xbyb,
they show that eight real DPA solutions may actually occur.

4. Instantaneous Kinematics
The determination and the analysis of the linear relationship between the actuated-joint rates
(instantaneous inputs) and the platform twist (instantaneous output) are the subjects of the
instantaneous kinematics. Such a relationship is named the instantaneous input–output relationship
(InI/O). In the studied SMG, q̇ = (ḋ1, ḋ2, ḋ3, ḋ4)T is the four-tuple that collects the actuated-joint
rates, whereas the platform twist can be identified by κ̇ = (Ȧ1x, Ȧ1y, Ȧ1z, α̇) only if manipulator
configurations (constraint singularities18) where the platform motion can instantaneously be different
from a Schoenflies motion are not present.
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Fig. 4. Two real solutions of system (8) corresponding to four real DPA solutions symmetrically disposed with
respect to the plane xbyb (d1 = 150 l.u., d2 = 450 l.u., d3 = 150 l.u., d4 = 448 l.u., L = 100 l.u.; l.u. stands for a
generic “length unit”): (a) graphical solution of system (8), (b) manipulator configuration, located in the region
zb > 0, which corresponds to the solution P1 (i.e., A2x = 218.65 l.u., A1y = 222.72 l.u.) and (c) manipulator
configuration, located in the region zb > 0, which corresponds to the solution P2 (i.e., A2x = 73.87 l.u., A1y =
85.16 l.u.).

With reference to Fig. 1, the fact that the two ending R pairs of the two limbs must be parallel to
one another from the platform’s geometry and, at the same time, one R pair must be perpendicular to
the xb axis and the other to the yb axis from the limbs’ geometry, constrains their axes to be always
parallel to the zb axis. As a consequence, the angular velocity, ω, of the platform can be written in
the following two different ways according to the limb used to compute it (ib, jb and kb are the unit
vectors of the axes xb, yb and zb, respectively)

ω = (θ̇1 + θ̇2)ib+θ̇3kb, (12a)

ω = (θ̇4 + θ̇5)jb + θ̇6kb. (12b)

Equating the right-hand sides of Eqs. (12a) and (12b) yields

(θ̇1 + θ̇2)ib − (θ̇4 + θ̇5)jb + (θ̇3 − θ̇6)kb = 0. (13)

Equation (13) can be satisfied if and only if the coefficients of the three independent unit vectors
ib, jb and kb are identically equal to zero. Since the coefficients of ib and jb are the same that appear
in the first terms at the right-hand sides of Eqs. (12a) and (12b), the platform angular velocity must
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Fig. 5. Four real solutions of system (8) corresponding to eight real DPA solutions symmetrically disposed with
respect to the plane xbyb (d1 = 30 l.u., d2 = 450 l.u., d3 = 30 l.u., d4 = 448 l.u., L = 100 l.u.; l.u. stands for a
generic “length unit”): (a) graphical solution of system (8), (b) manipulator configuration, located in the region zb
> 0, which corresponds to the solution P1 (i.e., A2x = 96.11 l.u., A1y = 105.03 l.u.), (c) manipulator configuration,
located in the region zb > 0, which corresponds to the solution P2 (i.e., A2x = 52.47 l.u., A1y = −67.44 l.u.), (d)
manipulator configuration, located in the region zb > 0, which corresponds to the solution P3 (i.e., A2x = −28.53
l.u., A1y = −51.09 l.u.), and (e) manipulator configuration, located in the region zb > 0, which corresponds to
the solution P4 (i.e., A2x = −60.05 l.u., A1y = 73.49 l.u.).

always be parallel to kb. Thus, the occurrence of constraint singularities is excluded and the platform
twist can be identified by κ̇ = (Ȧ1x, Ȧ1y, Ȧ1z, α̇) .

In order to deduce the InI/O, the following four constraint equations can be selected/deduced from
Equations (3)–(5), (7b) and (7c):

A1x = d1, (14a)

A1y
2 + A1z

2 = d2
2, (14b)

A1y + L cosα = d3, (14c)

(A1x − L sinα)2 + A1z
2 = d4

2, (14d)

whose time derivatives yield the following InI/O:

M κ̇ = N q̇, (15)
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where the Jacobian matrices M and N are defined as follows:

M =

⎡
⎢⎣

1 0 0 0
0 A1y A1z 0
0 1 0 −L sinα

A1x − L sinα 0 A1z L cosα(L sinα − A1x )

⎤
⎥⎦ , (16a)

N =

⎡
⎢⎣

1 0 0 0
0 d2 0 0
0 0 1 0
0 0 0 d4

⎤
⎥⎦ . (16b)

4.1. Singularity analysis
Singular configurations (singularities) are manipulator configurations where the InI/O fails to state a
one-to-one correspondence between actuated-joint rates and platform twists.18−21 The InI/O allows
the solution of two problems relevant in the control of a manipulator21: (i) the determination of the
actuated-joint rates for an assigned platform twist [Instantaneous Inverse Kinematic Problem (IIKP)]
and (ii) the determination of the platform twist for assigned actuated-joint rates [Instantaneous Forward
Kinematic Problem (IFKP)]. The solution of these problems depends on the manipulator configuration
since the Jacobian matrices appearing in the InI/O depend on it. In ref. [19], singularities have been
collected into three types according to which of these problems is undetermined: (i) the IIKP is
undetermined, (ii) the IFKP is undetermined and (iii) both IIKP and IFKP are undetermined. Then, in
ref. [21], this classification has been further detailed by taking into account the passive-joint variables.

Singularities play an important role in the static behavior of a manipulator and must be determined
during its design. In particular, type-I singularities are located at the workspace boundaries and
correspond to configurations where the platform can carry external loads without requiring that
generalized torques are applied by one or more actuators. Also, type-II singularities can be located
inside the workspace and correspond to configurations where infinite generalized torques must be
applied by at least one actuator to make the platform carry external loads (even infinitesimal).

In the studied SMG, the above-deduced InI/O (i.e., system (15)) shows that type-I singularities
occur when det(N) is equal to zero, type-II singularities occur when det(M) is equal to zero, and
type-III singularities occur when det(M) and det(N) are both equal to zero. The analytic expressions
of these two determinants are [see Eqs. (16a) and (16b)]

det(M) = LA1z[A1ysinα + cosα(A1x − L sinα)] ≡ LA1z[A1ysinα+cosαA2x], (17a)

det(N) = d2d4. (17b)

Therefore, type-I singularities occur when either d2 or d4 are equal to zero, both these conditions
cannot be reached in practice for the actual physical dimensions of the limbs. Type-II singularities
occur when either of the following conditions are satisfied:

A1z = 0, (18a)

A1ysinα + A2xcosα = 0. (18b)

Condition (18a) corresponds to a configuration where the manipulator is flattened on the xbyb plane
(see Fig. 1). It is worth noting that, if this condition is satisfied, the third column of matrix M will be
a null vector and Ȧ1z cannot be computed with the actuated-joint rates any longer. From a kinematic
point of view, the indeterminacy of Ȧ1z means that the actuators are not able to control the platform
translation along the zb axis when this flattened configuration is reached.
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Fig. 6. Projection of a generic configuration of the 2PRPU SMG onto the xbyb plane together with the vectors
vb and xp: singularity condition (18b) is satisfied when |μ| = 90◦.

Condition (18b) is more difficult to interpret. The analytic solution of system (15) obtained by
transforming matrix M into an upper triangular matrix with the Gaussian elimination22 highlights
that the left-hand side of Eq. (18b) is the coefficient of α̇ in the last row of the triangular matrix.
Therefore, when this coefficient is equal to zero, α̇ cannot be computed with the actuated-joint rates
any longer, and the actuators are not able to control the platform orientation. From a geometric point
of view (Fig. 6), such coefficient can be interpreted as the dot product, vb · xp, of two planar vectors:
vb = (A2x, A1y)T and xp = (cos α, sin α)T , which is a unit vector perpendicular to the projection
onto the xbyb plane of the vector (A2–A1) [see Eq. (1b)]. The manipulator configurations where these
two vectors are perpendicular make the coefficient equal to zero and the platform orientation out of
control. The perpendicularity of vb and xp corresponds to the parallelism of vb and (A2–A1). Also,
condition (18b) can be rewritten in the following form:

tanα = −A2x

A1y
, (19)

which highlights that—for α ∈[0◦, 90◦], if the projections of A1 and A2 (Fig. 6) lie on either the first
or the third quadrant of the xbyb plane (i.e., when A1yA2x ≥0) condition (18b) is satisfied only when
the manipulator is flattened either on the ybzb plane (α = 0◦ and A2x = 0) or on the xbzb plane (α =
90◦ and A1y = 0)—for α ∈[–90◦, 0◦], if the projections of A1 and A2 (Fig. 6) lie on either the second
or the fourth quadrant of the xbyb plane (i.e., when A1yA2x ≤0) condition (18b) is satisfied only when
the manipulator is flattened either on the ybzb plane (α =0◦ and A2x =0) or on the xbzb plane (α =
−90◦ and A1y = 0).

The conclusion is that, if the limitations 0◦<|α|< 90◦ and |A1z |>0 are introduced, there are always
two separate octants of the Cartesian reference Obxbybzb, whose location depends on the chosen signs
of α and A1z, where the platform can be moved without encountering type-II singularities. In each
of these octants, even though the platform rotation is limited, the gripper rotation (Fig. 2) can be a
complete rotation by choosing a suitable value of the angular-velocity ratio kp of the rotation amplifier.

https://doi.org/10.1017/S0263574718000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000899


152 Position analysis, singularity loci and workspace of a novel SMG

Fig. 7. Dexterous workspace of the 2PRPU SMG sectioned with the xbyb plane: the points pi, for i = 1,…,7, are
the reference vertices of the four rectangles that constitute this section.

5. Workspace Analysis
Since the position of the gripper’s reference point Oe (see Fig. 2) is obtained from the position of the
homonymous platform point of Fig. 1 by adding the constant translation (0, 0, H)T , and the rotation
range of the gripper is the product of the platform rotation range by the angular-velocity ratio kp of
the rotation amplifier, for the sake of clarity and without losing generality, this workspace analysis
will be referred to the platform and to the notations of Fig. 1.

The shape of the dexterous workspace [23] depends on the ranges(3) chosen for α, d1, d2, d3

and d4, and on the values of the geometric constants u and L. Hereafter, the dexterous workspace
will be represented by giving the positions that the platform point Oe (Fig. 1) can reach with any
platform orientation in the range 0◦ ≤ α ≤90◦. Such workspace is the intersection of two right circular
cylindrical shells due to the two PRPU limbs (see Figs. 7 and 8). One shell has the axis (axis B in
Fig. 7) parallel to the xb axis and passing through the point {(1–u)L/2, uL/2, 0}T , and the inner and
outer radii equal to (d2min+uL/2) and (d2max – uL/2), respectively (i.e., with reference to Fig. 7, the
shell obtained by rotating around the axis B the rectangle whose vertices are the points p1, p5, p6 and
p7). The other shell has the axis (axis A in Fig. 7) parallel to the yb axis and passing through the point
{(1–u)L/2, uL/2, 0}T , and the inner and outer radii equal to [d4min+(1–u)L/2] and [d4max–(1–u)L/2],
respectively (i.e., with reference to Fig. 7, the shell obtained by rotating around the axis A the rectangle
whose vertices are the points p1, p2, p3 and p4). The section of this workspace with the xbyb plane
consists of four rectangles symmetrically located with respect to the axes of the two right circular

(3)Hereafter, the minimum and the maximum values of α, d1, d2, d3 and d4 will be denoted with the right subscripts
“min” and “max”, respectively, added to the symbols of the variables.
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Fig. 8. Dexterous workspace for u = 0.5, L = 100 l.u., d2min = d4min = 3 L and d2max = d4max = 6 L: (a) xbzb
section, (b) ybzb section, (c) xbyb section and (d) 3-D view.

cylindrical shells. Figure 7 shows this section together with a manipulator configuration located at the
workspace boundary,(4) whereas Fig. 8 shows the 3-D diagram of the dexterous workspace for u =
0.5, L = 100 l.u., d2min = d4min = 3 L and d2max = d4max = 6 L.

Since, as proved in the previous section, singularity conditions are not encountered when the
segment A1A2 is in the first octant of the Cartesian reference Obxbybzb, and Eq. (2) relates d1 and d3 to
d2 and d4, in order to determine a free-from-singularities (FFS) dexterous workspace, the minimum
and the maximum values of d1 and d3 can be computed as follows (see Fig. 7):

d1min = (1 − u)L, d1max = d4max + uL, d3min = uL, d3 max = d2 max + (1 − u)L. (20)

Figure 9 shows how this FFS dexterous workspace changes for three different values of u, namely,
u = 0.2, u = 0.5 and u = 0.8, whereas Fig. 10 shows how the volume, V , of this workspace changes
as a function of u and that the maximum value of V corresponds to u = 0.5.

By keeping u = 0.5, d2min = d4min = 3L and d2max = d4max, the dimensionless volume, V /L3, of
the FFS dexterous workspace depends only on the ratios d2max/d2min since the ranges of the other

(4)The manipulator configuration shown in Fig. 7 refers to a manipulator with u = 0.5.
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Fig. 9. Free-from-singularities dexterous workspace (L = 100 l.u., d2min = d4min = 3 L and d2max = d4max =
6 L) for (a) u = 0.2, (b) u = 0.5, and (c) u = 0.8.
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Fig. 10. Dimensionless volume, V /L3, of the free-from-singularities dexterous workspace as a function of the
parameter u for d2min = d4min =3 L and d2max = d4max = 6 L.

Fig. 11. Dimensionless volume, V /L3, of the free-from-singularities dexterous workspace as a function of the
d2max/d2min for u = 0.5, (d2min/L) = (d4min/L) = 3 and d2max = d4max .

dimensionless variables, d1/L and d3/L, can be computed through Eq. (20). Figure 11 shows the
diagram of V /L3 as a function of d2max/d2min for u = 0.5, d2min = d4min = 3L and d2max = d4max . The
analysis of Fig. 11 highlights that the volume of the FFS dexterous workspace increases more than
six times passing from (d2max/d2min) = 2, which is the value of Fig. 9(b), to (d2max/d2min)=3. Figure 12
shows the FFS dexterous workspace for (d2max/d2min) = 3, u = 0.5, L = 100 l.u., d2min = d4min = 3L
and d2max = d4max . The analysis of Fig. 12 reveals that the FFS dexterous workspace is wide enough
for including useful workspace suitable for real applications.
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Fig. 12. Free-from-singularities dexterous workspace for (d2max/d2min) = 3, u = 0.5, L = 100 l.u., d2min = d4min =
3 L and d2max = d4max .

6. Discussion
This section provides pieces of information on stiffness, performance analysis and optimal design of
the proposed SMG.

Regarding the stiffness of the proposed SMG, the usual stiffness analyses (see, for instance, refs.
[24, 25]) keep the links rigid and concentrate flexibility in the actuated joints. In addition, the same
analyses reduce the stiffness matrix of the actuated joints to a stiffness coefficient that multiplies an
identity matrix and bring to conclude that the stiffer configurations are the ones that are far from
type-II singularities. In the case under study, since all the actuated joints are P pairs, the hypothesis
that they all have the same stiffness coefficient is applicable and brings to a stiffness matrix of the
actuated joints equal to a stiffness coefficient that multiplies the 4x4 identity matrix. Therefore, the
presented singularity analysis also provide information on the stiffness of the manipulator, which
also depends on the stiffness coefficient of the chosen actuated P pairs. According to this conclusion,
its payload capability is related to the stiffness coefficient of the chosen actuated P pairs. Since the
majority of PMs adopt actuated P pairs, the limitation on the payload capability due to the stiffness
is comparable to the one of other PMs.

Regarding the performance analysis and the optimal design, the following subsection addresses
the performance analysis based on kinetostatics and the optimal design of the proposed SMG.

6.1. Kinetostatics performances and optimal design
Equation (15) can be exploited to deduce the relationship between the four-tuple τ = (τ1, τ2, τ3, τ4)T

that collects the generalized forces applied by the actuators and the wrench (fT , mT )T the platform
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applies to the external world as follows (5). Actually, the power balance on the SMG (i.e., fT Ȧ1 +
mzα̇ = τ T q̇) together with Eq. (15) yield the following input-output static (StI/O) relationship:

J−T (fT , mz )T = τ (21)

with J−T = NT M−T ≡ [
U f uα

vT
f vα

], where

U f =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
A2xsinα

A1y sinα + A2xcosα

−A1yA2xsinα

A1z
(
A1ysinα + A2xcosα

)
0

d2sinα

A1ysinα + A2xcosα

d2A2xcosα

A1z
(
A1ysinα + A2xcosα

)
0

A2xcosα

A1ysinα + A2xcosα

−A1yA2x cos α

A1z
(
A1ysinα + A2xcosα

)

⎤
⎥⎥⎥⎥⎥⎥⎦

, uα =

⎛
⎜⎜⎜⎜⎜⎜⎝

A2x

L
(
A1ysinα + A2xcosα

)
d2

L
(
A1ysinα + A2xcosα

)
−A1y

L
(
A1ysinα + A2xcosα

)

⎞
⎟⎟⎟⎟⎟⎟⎠

vT
f =

(
0,

−d4sinα

A1ysinα + A2xcosα
,

d4A1ysinα

A1z
(
A1ysinα + A2xcosα

)
)

, vα = −d4

L
(
A1ysinα + A2xcosα

)
The expansion of Eq. (21) transforms it as follows:

U f f + uαmz = (τ1, τ2, τ3)T , (22a)

v f
T f + vαmz = τ4. (22b)

Equation (22b) allows the linear elimination of mz from Eq. (22a) which becomes as follows:

f = J f τ, (23)

where J f = E−−1F with E = [U f –(uαvT
f /vα)], F = [13x3,–uα/vα] and 13x3 is the 3x3 identity matrix.

Equation (23) implicitly takes into account mz and, with respect to Eq. (21), it has the advantage
that both the input τ and the output f are homogenous vectors whose entries are all forces. Thus,
the condition f · f = 1 is dimensionally consistent and yields the following 4-D ellipsoid with the
introduction of Eq. (23):

τ T J f
T J f τ = 1, (24)

which is dimensionally consistent, too.
The shape of ellipsoid (24) depends on the SMG configuration through J f . The semi-axes lengths

of this ellipsoid are the inverse of the singular values (6) of J f . Also, the minimum, λmin, and maximum,
λmax, lengths of the semi-axes of ellipsoid (24) at a given configuration correspond to the minimum
and maximum values, respectively, of |τ | necessary to equilibrate a unit resultant force applied to the
platform at that configuration. Therefore, the following local index, CI, can be adopted as a measure
of the kinetostatic performance of the SMG at a given configuration:

CI = λmin

λmax
. (25)

(5)Hereafter, f = ( fx, fy, fz)T is the resultant force and m = (mx, my, mz)T is the resultant moment about A1 of
the force system the platform applies to the external world.
(6)The “singular values” of a real matrix A are the square roots of the eigenvalues of the positive-semi-definite
matrix AT A. Also, the spectral norm of A is the square root of the largest eigenvalue of AT A; thus, the spectral
norm of A is equal to its largest singular value.
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Fig. 13. Useful workspace with CI ≥ 0.45: (a) 3-D view (the useful workspace is the rectangular parallelepiped),
and (b) projections onto the xbzb-and ybzb-planes (dp corresponds to d4 or d2 for the xbzb or ybzb plane,
respectively).

The above-defined CI ranges from 0 to 1: the higher the CI, the better the performance is. It corresponds
to the conditioning index [27] of the Jacobian matrix J f and can be used for any SMG. Accordingly, the
global performance of the SMG can be measured by the global conditioning index [27], GCI, defined
as the average value of CI on the useful workspace. Moreover, the concept of isotropic configuration
[28] of an SMG can be referred to the SMG configurations with CI = 1.

Section 5 showed that, for the studied SMG, the geometric values (d2max/d2min) = 3, u = 0.5, L =
100 l.u., d2min = d4min = 3 L and d2max = d4max provide a free-from-singularity dexterous workspace
(Fig. 12) wide enough to locate a useful workspace adequate for industrial applications. For these
geometric values, the CI values corresponding to the SMG configurations located in the dexterous
workspace shown in Fig. 12 have been computed. This numerical analysis highlighted that the CI
value increases with the z coordinate of Oe from CImin = 0, at z = 0 (i.e., on the xbyb plane), to the
maximum value CImax = 0.707. According to this computation, the useful workspace of the studied
SMG must be located in the upper part of its dexterous workspace (Fig. 12) to get good kinetostatic
performances.

The useful workspace is a regular geometric object (e.g., a cube, a ball, etc.)29 located in the region
of the operational workspace that satisfies all the kinetostatics requirements (e.g., CI ≥ CImin). Here,
the useful workspace is chosen equal to the rectangular parallelepiped [see Fig. 13(a)] with maximum
volume, Vu, that has a square base and two equal rectangular sides lying on the boundary surfaces of
the dexterous workspace shown in Fig. 12. Figure 13(b) shows simultaneously its projections on the
xbzb and ybzb planes with dp that corresponds to d4 or d2 for the xbzb or ybzb plane, respectively. With
reference to Fig. 13, zmin depends on the assigned minimum value, CImin, of CI and the value reported
in Fig. 13 corresponds to CImin = 0.45. Once CImin is assigned the above-defined useful workspace is
uniquely determined and, over zmin, the maximum value, CImax, and the average value, GCI, of CI in
the useful workspace can be computed together with the volumetric ratio, Vu/Vo, between the volumes
of the useful and the dexterous workspaces. Figure 14 shows a dimensionless diagram that, for each
value of zmin/L, gives the values of Vu/Vo, CImax, CImin and GCI in the useful workspace.

The diagram of Fig. 14 shows that the GCI has always values greater than 0.602 (i.e., near to
CImax = 0.707), whereas CImin and Vu/Vo strongly depend on zmin/L with CImin that is always greater
than 0.332 and Vu/Vo that is always lower than 34.4%. Such high GCI brings to conclude that only
small parts of the useful workspace have CI values near to CImin. A good compromise could be CImin =
0.45 (i.e., the value of Fig. 13) since it yields zmin = 4.54 L, h = 2.24 L, b = 5.52 L, (Vu/Vo) = 20.9%
and GCI = 0.639, which are values interesting for practical applications (see Fig. 13).
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Fig. 14. Diagrams of Vu/Vo, CImin, CImax and GCI as a function of zmin/L.

7. Conclusions
Based on a previously identified 2PRPU topology, a novel SMG has been presented and studied.
The novel SMG has a rotation amplifier that makes its end effector perform a complete rotation
even though the platform, on which the end effector is hinged, can only perform a bounded rotation.
The proposed SMG has a single-loop not-overconstrained architecture with actuators on or near the
base.

The position analysis, the instantaneous kinematics and the workspace analysis of this SMG have
been addressed. In particular, both the inverse (IPA) and the direct (DPA) position analyses have been
solved in closed form. The IPA has only one solution that can be computed with simple formulas,
whereas the DPA has up to eight real solutions symmetrically disposed with respect to a plane fixed to
the base, which can be computed in closed form. A simple geometric construction has been devised
to find and visualize all the DPA real solutions.

Regarding the instantaneous kinematics, the instantaneous input–output relationship has been
deduced and the singularity analysis has been exhaustively addressed. Both analytical expressions
of the singularity loci and a graphical tool that easily identifies singular configurations have been
provided. The singularity analysis showed that the proposed SMG has no constraint singularity, and
two type-II19 singularity conditions; nevertheless, by bounding the platform rotation, wide operational-
space regions that are FFS can be identified.

Eventually, the workspace analysis brought to determine the values of the geometric parameters
that make the FFS dexterous workspace wide enough for including useful workspace suitable for
real applications. The kinetostatics performances and the optimal location of the useful workspace
of the proposed SMG have been discussed by using the so-obtained values of the geometric
parameters.

All the above-summarized results highlight that the proposed SMG is a valid design alternative.
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