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In this paper, we study the existence, multiplicity and concentration of positive
solutions for a class of quasilinear problems

−εpΔpu + V (x)|u|p−2u = f(u) + |u|p
∗−2u, x ∈ R

N ,

u ∈ W 1,p(RN ), u(x) > 0, x ∈ R
N ,

where −Δp is the p-Laplacian operator for 2 � p < N , p∗ = Np/(N − p), ε > 0 is a
small parameter, f(u) is a superlinear and subcritical nonlinearity that is continuous
in u. Using a variational method, we first prove that for sufficiently small ε > 0 the
system has a positive ground state solution uε with some concentration phenomena
as ε → 0. Then, by the minimax theorems and Ljusternik–Schnirelmann theory, we
investigate the relation between the number of positive solutions and the topology of
the set of the global minima of the potentials. Finally, we obtain some sufficient
conditions for the non-existence of ground state solutions.

1. Introduction and main results

Consider the quasilinear problem

−εp div(|∇u|p−2∇u) + V (x)|u|p−2u = h(u),

u ∈ W 1,p(RN ), u(x) > 0, x ∈ R
N ,

}
(1.1)

where 2 � p < N , ε > 0 is a small parameter, h(u) is a superlinear term.
In recent years many mathematicians have studied (1.1). Especially when, for

p = 2, it corresponds to the Schrödinger equation. Up to now, there has been
a lot of work on existence and concentration phenomena of semi-classical states
of nonlinear Schrödinger equations. For instance, see [13, 14, 18, 29, 30, 36] and the
references therein. It is well known that the nonlinear Schrödinger equations arise in

411
c© 2015 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210513001492 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001492


412 J. Wang, T. An and F. Zhang

non-relativistic quantum mechanics. Consider the nonlinear Schrödinger equation

i�
∂ψ

∂t
= − �

2

2m
Δψ + H(x)ψ − g(x, |ψ|)ψ, (1.2)

where i is the imaginary unit, Δ is the Laplacian operator and � > 0 is the Planck
constant. Let ψ(x, t) be a standing wave solution of (1.2) with the form

ψ(x, t) = u(x)e−iEt/�, u(x) ∈ R.

Then, ψ(x, t) solves (1.2) if and only if u(x) solves

− �
2

2m
Δu + A(x)u = h(x, u), (1.3)

where A(x) = H(x) − E is called the potential function and h(x, u) = g(x, |u|)u.
If h(x, u) is independent of x, then (1.3) is reduced to (1.1) with ε = �/

√
2m and

p = 2.
For (1.3), many authors have focused on the case

inf
x∈RN

A(x) > 0. (1.4)

In this case, and for N = 1 and p = 4, by the Lyapunov–Schmidt reduction argu-
ments, Floer and Weinstein [18] first constructed semiclassical states, which con-
centrate near a non-degenerate critical point of A. Later, Oh [29, 30] generalized
their results to the case of N � 3.

When the potential A has no non-degenerate critical point, under the assumption
that

0 < inf
x∈RN

A(x) < lim inf
|x|→∞

A(x), (1.5)

Rabinowitz [31] obtained the existence result for (1.3) with h = up−1 (2 < p <
2∗ = 2N/(N − 2) if N � 3, p > 2 if N = 1, 2) and ε > 0 being small. In [36] Wang
improved Rabinowitz’s result and obtained the concentration of the positive ground
state solutions as ε → 0+ at global minimum points of A. For more information in
the case of (1.4), we refer the reader to [13, 14] and the references therein. In the
case of

inf
x∈RN

A(x) = 0, (1.6)

the existence of semiclassical solutions for (1.3) was first proved in [6, 7] and then
generalized in [8,9]. When ε = 1 and p > 2, (1.1) also arises in a lot of applications,
such as image processing, non-Newtonian fluids and pseudo-plastic fluids, and some
important results are obtained in [4, 10,15].

Many previous results for (1.1) are obtained in the case of subcritical growth.
However, in the presence of critical growth, the problem has also been widely
studied.

Several papers have appeared recently about the semiclassical p-Laplacian prob-
lems involving critical growth (see [3,26] and the references therein). For convenience
we write (1.1) with critical growth in the following form:

−εp div(|∇u|p−2∇u) + V (x)|u|p−2u = |u|p∗−2u + f(u),

u ∈ W 1,p(RN ), u(x) > 0, x ∈ R
N ,

}
(LP)ε

where p∗ = Np/(N − p) and f(u) is a subcritical term.
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Assume that f ∈ C1 and that V : R
N → R is a function that is bounded from

below away from 0 such that
inf
∂Ω

V > inf
Ω

V,

where Ω is an open bounded subset of R
N . By the local mountain pass theorem and

truncation function technique, Marcos do Ó [26] obtained solutions of (LP)ε that
concentrate around a local minima of V , that are not necessarily non-degenerate.

Later, using Ljusternik–Schnirelmann theory (see [39]) and minimax methods,
under some assumption on f , the author [17] proved the existence of multiple
positive solutions for (LP)ε that concentrate on the minima of V (x) as ε → 0.
In [17], f ∈ C1 and satisfies that

f(s)
sp−1 is increasing on (0,∞),

0 < μF (s) = μ

∫ s

0
f(t) dt � sf(s), μ > p,

f(s) � λsq1−1 for all s > 0 with λ > 0 and q1 > 0,

σ ∈ (4, 6), C > 0,

lim
|s|→0

|f(s)|
|s|p−1 = 0 and lim

|s|→∞

|f(s)|
|s|q = 0, q ∈ (p, p∗).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.7)

Recently, Alves and Figueiredo [3] studied the quasilinear problem

−εN div(|∇u|N−2∇u) + M(x)|u|N−2u = f(u),

u ∈ W 1,N (RN ), u(x) > 0, x ∈ R
N ,

}
(B)ε

where ε > 0 is a positive parameter, N � 2, M : R
N → R is a continuous function

and f : R → R is a C1-function having critical exponential growth. By Lusternik–
Schnirelmann category theory and minimax methods, the authors proved the exis-
tence, multiplicity and concentration of positive solutions for (B)ε.

Since this phenomenon of concentration is very interesting for both mathemati-
cians and physicists, motivated by [3,17,26], we continue to study (LP)ε when the
potential V has a global minimum, and investigate the existence, multiplicity and
concentration of positive solutions. More precisely, we focus on four points: a more
general nonlinearity than in [3,26], positive ground state solutions with some prop-
erties of concentration and exponential decay, the relation between the number of
solutions and the topology of the set of the global minima of the potentials, and
sufficient conditions for the non-existence of positive ground state solutions.

Before stating our theorems, we first give some assumptions. Assume that V
satisfies one of the following two conditions.

(D0) V ∈ C(RN , R) such that V∞ = lim inf |x|→∞ V (x) > V0 = infx∈RN V (x) > 0.

(D1) V ∈ C(RN , R) such that 0 < V ∞ = lim sup|x|→∞ V (x) � V (x) and |K| > 0,
where K = {x ∈ R

N , V (x) > V ∞}.
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The hypothesis (D0) was first introduced by Rabinowitz [31] in the study of
a nonlinear Schrödinger equation with subcritical growth. In this paper, without
loss of generality, we also assume that V∞ < ∞. This condition is made only for
simplicity. Actually, it is even easier if the potential is large at ∞, since we have
better embedding theorems in that case.

For the nonlinearity f we assume that the following hold.

(f1) f ∈ C(RN ), f(t) = o(tp−1) as t → 0, f(t)t > 0 for all t > 0 and f(t) = 0 for
t � 0.

(f2) There exist q, q1 ∈ (p, p∗) and c > 0 such that

f(t) � cλtq1−1 for all t > 0 with λ > 0 and lim
t→∞

f(t)
tq

= 0.

(f3) f(t)/tp−1 is strictly increasing on the interval (0, +∞).

Since we look for positive solutions, let f(s) = 0 for s � 0. Obviously, from
conditions (f1) and (f2) it follows that

F (u) > 0, pF (u) < f(u)u ∀u �= 0, (1.8)

where F (u) =
∫ u

0 f(s) ds. Set

V := {x ∈ R
N : V (x) = V0}.

Without loss of generality, below we assume that 0 ∈ V, that is, V (0) = V0. The
limit problem associated with (LP)ε reads as

−Δpu + V0u = f(u) + |u|p∗−2u, u ∈ W 1,p(RN ). (LP)V0

Let
Qε(u) :=

1
p

∫
RN

(εp|∇u|p + V (x)|u|p) −
∫

RN

F (u) − 1
p∗

∫
RN

|u|p∗
,

which is called an energy function associated with (LP)ε. Set

�ε = inf{Qε(u) : u �= 0 is a solution of (LP)ε}.

If u0 > 0 and solves (LP)ε, we say that u0 is a positive solution. A positive solution
u0 with �ε = Qε(u0) is called a positive ground state solution. Denote by L′

ε the
set of all positive ground state solutions of (LP)ε. We recall that, if Y is a closed
subset of a topological space X, the Ljusternik–Schnirelmann category catX(Y ) is
the least number of closed and contractible sets in X that cover Y .

Theorem 1.1. Suppose that the assumptions (D0) and (f1)–(f3) are satisfied. If
one of the conditions

(b1) N � p2,

(b2) p < N < p2, p∗ − p/(p + 1) < q1 < p∗,

(b3) p < N < p2, p∗ − p/(p + 1) � q1 and large λ
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holds, then there exists ε∗ > 0 such that, for each ε ∈ (0, ε∗), the following conclu-
sions hold true.

(i) (LP)ε has one positive ground state solution uε in W 1,p(RN ).

(ii) L′
ε is compact in W 1,p(RN ).

(iii) There exists a maximum point xε of uε such that limε→0 dist(xε,V) = 0, and,
for any sequences of such xε, hε(x) = uε(εx + xε) uniformly converges to a
positive ground state solution of (LP)V0 , as ε → 0, where uε ∈ L′

ε.

(iv) lim|x|→∞ uε(x) = 0 and uε ∈ C1,σ
loc (RN ) with σ ∈ (0, 1). Furthermore, there

exist constants C, c > 0 such that |uε(x)| � Ce−(c/ε)|x−xε| for all x ∈ R
N .

Theorem 1.2. Let the assumptions (D0) and (f1)–(f3) be satisfied. If (b1) or (b2) or
(b3) in theorem 1.1 holds, then, for each δ > 0, there exist εδ > 0 such that, for any
ε ∈ (0, εδ), (LP)ε has at least catVδ

(V) positive solutions. Furthermore, if uε denotes
one of these positive solutions and σε ∈ R

N such that uε(σε) = maxx∈RN uε(x), then
one gets that

(i) limε→0 V (σε) = V0,

(ii) lim|x|→∞ uε(x) = 0 and uε ∈ C1,γ
loc (RN ) with γ ∈ (0, 1). Furthermore, there

exist constants C, c > 0 such that |uε(x)| � Ce−(c/ε)|x−σε| for all x ∈ R
N .

Theorem 1.3. If the assumptions (D1) and (f1)–(f3) hold, then, for each ε > 0,
(LP)ε has no positive ground state solution.

Below, we compare our results with those in [17]. First, our nonlinearities are
more general. In fact, in this paper f is only required to be a continuous function;
moreover, we weaken the Ambrosetti–Rabinowitz condition (see (1.7)):

0 < μF (s) = μ

∫ s

0
f(t) dt � sf(s), μ > p.

Second, we have more information for the positive solutions, such as the relationship
between the positive ground state solution of (LP)ε and (LP)V0 , the exponential
decay etc. Finally, we obtain some sufficient conditions for non-existence of positive
ground state solutions.

The proof is based on the variational method. By comparing with the previous
works, we may summarize as follows the main difficulties that one has to face in
proving our theorems. On the one hand, as we see below, since the embeddings
W 1,p(RN ) ↪→ Lt(RN ) (for all t ∈ [p, p∗)) and W 1,p(RN ) ↪→ Lp∗

loc(R
N ) are not com-

pact, the lack of compactness prevents us from using the variational methods in
a standard way. However, we make up the global compactness by the limit prob-
lem (LP)V0 . To remedy the local compactness (H1(RN ) ↪→ Lp∗

loc(R
N )), as in [17,26]

we give some new estimates for the ground state level for the energy functional. On
the other hand, in the previous papers [3,17,26], since f is a C1-function, it follows
that Qε ∈ C2 and Kε ∈ C1, where Kε is the Nehari manifold given by

Kε = {u ∈ W 1,p(RN ) \ {0} : Q′
ε(u)u = 0}.
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From these properties of Qε and Kε, one can easily deduce that critical points of Qε

on Kε are critical points of Qε on W 1,p(RN ). Furthermore, one can use the standard
Ljusternik–Schnirelmann category theory on Kε directly (see [11,39]). However, in
the present paper we cannot obtain these properties, since f is only continuous, and
so Kε is only a continuous sub-manifold in W 1,p(RN ). To overcome this difficulty,
we should carefully study the elementary properties for Kε as in [34]. By doing this
we can reduce the variational problem for an indefinite functional to the minimax
problem on a manifold and find positive solutions for (LP)ε.

For the proof of our theorems, we consider an equivalent problem to (LP)ε. For
this purpose, making the change of variable εy = x, we can rewrite (LP)ε as

−Δpu + V (εx)u = f(u) + |u|p∗−2u, u > 0, u ∈ W 1,p(RN ). (Pε)

In the following we focus on this equivalent problem (Pε).

2. Variational setting

In order to establish the variational setting for (Pε), we first give some notation.
Let Lp ≡ Lp(RN ) be the usual Lebesgue space endowed with the norm

|u|pp =
∫

RN

|u|p < ∞ for 1 � p < ∞, |u|∞ = sup
x∈RN

|u(x)|.

Let W 1,p(RN ) be the usual Sobolev space endowed with the standard norm

‖u‖p =
∫

RN

(|∇u|p + |u|p).

We denote by Sp the best Sobolev constant of the Sobolev embedding D1,p(RN ) ↪→
Lp∗

(RN ), that is,

Sp = inf
{ |∇u|pp

|u|pp∗
: u ∈ D1,p(RN ) \ {0}

}
,

where D1,p(RN ) is the completion of C∞
0 (RN ) with respect to the norm ‖u‖p

D1,p =
|∇u|pp

Let E = W 1,p(RN ) and let S = B1(0) = {u ∈ E : ‖u‖ = 1}.
The letters c, C, Ci are indiscriminately used to denote various positive constants

whose exact values are irrelevant.
For any ε > 0, let Eε = {u ∈ W 1,p(RN ) :

∫
RN V (εx)u2 < ∞} denote the Sobolev

space endowed with the norm

‖u‖p
ε =

∫
RN

|∇u|p + V (εx)|u|p for u ∈ Eε.

Clearly, ‖ · ‖ε and ‖ · ‖ are equivalent norms for ε > 0 and V∞ < ∞. Now, on Eε

we define the functional

Ψε(u) =
1
p

∫
RN

(|∇u|p + V (εx)|u|p) −
∫

RN

F (u) − 1
p∗

∫
RN

|u|p∗
for u ∈ Eε.

https://doi.org/10.1017/S0308210513001492 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001492


Positive solutions for quasilinear problems with critical growth in R
N 417

Obviously, Ψε ∈ C1(Eε, R). A standard argument shows that critical points of Ψε

are solutions of (Pε) (see [1, 3, 33]).
Let Nε denote the Nehari manifold related to Ψε, given by

Nε = {u ∈ Eε \ {0} : Ψ ′
ε(u)u = 0}.

Thus, for u ∈ Nε, it follows that∫
RN

(|∇u|p + Vε(x)|u|p) =
∫

RN

f(u)u +
∫

RN

|u|p∗
, (2.1)

where Vε(x) = V (εx). This implies that, for u ∈ Nε,

Ψε|Nε
=

∫
RN

(
1
p
f(u)u − F (u)

)
+

(
1
p

− 1
p∗

) ∫
RN

|u|p∗
. (2.2)

Before proving some elementary properties for Nε, we first prove some properties
for the functional Ψε.

Lemma 2.1. Under the assumptions of (D0) and (f1)–(f3), we have that, for ε > 0,
(i) Ψε maps bounded sets in Eε into bounded sets in Eε, (ii) Ψ ′

ε is weakly sequentially
continuous in Eε, (iii) Ψε(tnun) → −∞ as tn → ∞, where un ∈ E, and E ⊂ Eε\{0}
is a compact subset.

Proof. (i) We follow the idea of [37]. From the conditions (f1) and (f3), we deduce
that, for each ε > 0, there exists Cε > 0 such that

|f(s)| � ε|s|p−1 + Cε|s|q−1 and |F (s)| � ε|s|p + Cε|s|q. (2.3)

Let {un} be a bounded sequence of Eε. Then, for each ϕ ∈ Eε, one deduces from
(D0) and (2.3) that

Ψ ′
ε(un)ϕ =

∫
RN

(|∇un|p−2∇un∇ϕ + Vε(x)|un|p−1ϕ)

+
∫

RN

f(un)ϕ +
∫

RN

|un|p∗−2unϕ

� c‖un‖(p−1)/p|ϕ|p + c‖un‖(q−1)/q|ϕ|q + c‖un‖p∗−1|ϕ|p∗

� c.

(ii) To prove the conclusion (ii), one can refer to [3, 33]; we omit the details here.

(iii) Finally, we prove the conclusion (iii). Without loss of generality, we may assume
that ‖u‖ε = 1 for each u ∈ E . For un ∈ E , after passing to a subsequence, we obtain
that un → u ∈ Sε := {u ∈ Eε : ‖u‖ = 1}. It follows from (1.8) that

Ψε(tnun) =
tpn
p

∫
RN

(|∇un|p + Vε(x)|un|p) −
∫

RN

F (tnun) +
tp

∗

n

p∗

∫
RN

|un|p∗

� tqn

(∫
RN (|∇un|p + Vε(x)|un|p)

tq−p
n

−
∫

RN F (tnun)
tqn

− tp
∗−q

n

∫
RN

|un|p∗
)

→ −∞

as n → ∞.
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We are now ready to prove some elementary properties for Nε.

Lemma 2.2. Under the assumptions of lemma 2.1, for ε > 0 the following hold.

(i) For all u ∈ Sε, there exists a unique tu > 0 such that tuu ∈ Nε. More-
over, mε(u) = tuu is the unique maximum of Ψε on Eε, where Sε = {u ∈
Eε : ‖u‖ε = 1}.

(ii) The set Nε is bounded away from 0. Furthermore, Nε is closed in Eε.

(iii) There exists α > 0 such that tu � α for each u ∈ Sε and, for each compact
subset W ⊂ Sε, there exists CW > 0 such that tu � CW for all u ∈ W.

(iv) Nε is a regular manifold diffeomorphic to the sphere of Eε.

(v) cε = infNε Ψε � ρ > 0 and Ψε is bounded below on Nε, where ρ > 0 is
independent of ε.

Proof. We follow the idea of [37].

(i) For each u ∈ Sε and t > 0, we define g(t) = Ψε(tu). It is easy to verify that
g(0) = 0, g(t) < 0 for t > 0 large. Moreover, we claim that g(t) > 0 for t > 0 small.
Indeed, we derive, from the condition (2.3), that

g(t) = Ψε(tu)

=
tp

p

∫
RN

(|∇u|p + V (εx)|u|p) −
∫

RN

F (tu) − tp
∗

p∗

∫
RN

|u|p∗

� tp

p
‖u‖p

ε − εtp|u|pp − tqcCε|u|qq − ctp
∗ |u|p

∗

p∗

� tp

p
‖u‖2

ε − ctpε‖u‖p
ε − cCεt

q‖u‖q
ε − ctp

∗‖u‖p∗

ε .

Since we have p < q < p∗ and ε > 0 small enough, we derive that g(t) > 0 for
t > 0 small. Therefore, maxt>0 g(t) is achieved at t = tu > 0, so g′(tu) = 0 and
tuu ∈ Nε. Suppose that there exists t′u > tu > 0 such that t′uu, tuu ∈ Nε. It then
follows from (2.1) that

tpu‖u‖p
ε =

∫
RN

f(tuu)tuu + tp
∗

u

∫
RN

|u|p∗
,

(t′u)p‖u‖p
ε =

∫
RN

f(t′uu)t′uu + (t′u)p∗
∫

RN

|u|p∗
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

We then see that

0 =
∫

RN

(
f(t′uu)

(t′uu)p−1 − f(tuu)
(tuu)p−1

)
up + ((t′u)p∗−p − tp

∗−p
u )

∫
RN

|u|p∗
,

which makes no sense in view of (f2) and t′u > tu > 0. So the conclusion (i) follows.
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(ii) For u ∈ Nε, we infer from (2.1) and (2.3) that

‖u‖p
ε � ε|u|pp + Cε|u|qq + c|u|p

∗

p∗ � cε‖u‖p
ε + cCε‖u‖q

ε + c‖u‖p∗
.

So, for some κ > 0, we get that

‖u‖ε � κ > 0. (2.5)

Next, we prove that the set Nε is closed in Eε. Let {un} ⊂ Nε such that un → u
in Eε. In the following we prove that u ∈ Nε. By lemma 2.1, we have that Ψ ′

ε(un)
is bounded; we then infer from

Ψ ′
ε(un)un − Ψ ′

ε(u)u = (Ψ ′
ε(un) − Ψ ′

ε(u))u − Ψ ′
ε(un)(un − u) → 0 as n → ∞,

that Ψ ′
ε(u)u = 0. Moreover, it follows from (2.5) that ‖u‖ε = limn→∞ ‖un‖ε � κ >

0. So u ∈ Nε.

(iii) For {un} ⊂ Eε \ {0}, there exist tun
such that tun

un ∈ Nε. By the conclu-
sion (ii), one sees that ‖tun

un‖ε = tun
‖un‖ε � κ > 0. It is impossible to have that

tun → 0, as n → ∞. To prove tu � CW , for all u ∈ W ⊂ Sε, we argue by contradic-
tion. Suppose that there exists {un} ⊂ W ⊂ Sε such that tn = tun → ∞. Since W
is compact, there exists u ∈ W such that un → u in Eε and un(x) → u(x) almost
everywhere (a.e.) on R

N after passing to a subsequence. Then, lemma 2.1 implies
that Ψε(tnun) → −∞ as n → ∞. However, from (2.2) we deduce that Ψε(tnun) � 0.
This is a contradiction.

(iv) Define the mappings m̂ε : Eε \ {0} → Nε and mε : Sε → Nε by setting

m̂ε(u) = tuu and mε = m̂ε|Sε
. (2.6)

By the conclusions (i)–(iii), we know that the conditions of [34, proposition 3.1] are
satisfied. So, the mapping mε is a homeomorphism between Sε and Nε, and the
inverse of mε is given by

m̌ε(u) = m−1
ε (u) =

u

‖u‖ε
. (2.7)

Thus, Nε is a regular manifold diffeomorphic to the sphere of Eε.

(v) For ε > 0, s > 0 and u ∈ Eε \ {0}, it follows from (2.3) that

Ψε(su) =
sp

p

∫
RN

(|∇u|p + Vε(x)|u|p) −
∫

RN

F (su) − sp∗

p∗

∫
RN

|u|p∗

� sp

p
‖u‖2

ε − spcε‖u‖p
ε − sqcCε‖u‖q

ε − csp∗‖u‖p∗

ε

=
sp

p
(1 − cpε)‖u‖p

ε − sqcCε‖u‖q
ε − csp∗‖u‖p∗

ε .

So, there exists ρ > 0 such that Ψε(su) � ρ > 0 for s > 0 small. On the other hand,
we deduce from the conclusions (i)–(iii) that

cε = inf
Nε

Ψε(u) = inf
w∈Eε\{0}

max
s>0

Ψε(sw) = inf
w∈Sε

max
s>0

Ψε(sw). (2.8)

So, we get that cε � ρ > 0 and Ψε|Nε � ρ > 0.
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We now consider the functionals Υ̂ε : Eε \ {0} → R and Υε : Sε → R defined by

Υ̂ε = Ψε(m̂ε(u)) and Υε = Υ̂ε|Sε ,

where m̂ε(u) = tuu is given in (2.6). As in [34], we have the following lemma.

Lemma 2.3 (Szulkin and Weth [34, corollary 3.3]). Under the assumptions of
lemma 2.1, we have, for ε > 0, that the following hold.

(i) Υε ∈ C1(Sε, R) and

Υ ′
ε(w)z = ‖mε(w)‖εΨ

′
ε(mε(w))z for z ∈ Tw(Sε).

(ii) {wn} is a Palais–Smale sequence for Υε if and only if {mε(wn)} is a Palais–
Smale sequence for Ψε. If {un} ⊂ Nε is a bounded Palais–Smale sequence
for Ψε, then m̌ε(un) is a Palais–Smale sequence for Υε, where m̌ε(u) is given
in (2.7).

(iii) We have
inf
Sε

Υε = inf
Nε

Ψε = cε.

Moreover, z ∈ Sε is a critical point of Υε if and only if mε(u) is a critical
point of Ψε, and the corresponding critical values coincide.

3. The periodic system

In this section we prove some properties of the ground state solution of the limit
equation. Precisely, for each ξ > 0, we are concerned with the following equation:

− div(|∇u|p−2∇u) + ξ|u|p−uu = f(u) + |u|p∗−2u, u > 0, u ∈ W 1,p(RN ). (Pξ)

For any ξ > 0, let Eξ = {u ∈ W 1,p(RN ) :
∫

RN ξup < ∞} be a Banach space endowed
the norm

‖u‖p
ξ =

∫
RN

|∇u|p + ξ|u|p for u ∈ Eξ.

We then see that the energy functional corresponding to (Pξ) is defined by

Ψξ(u) =
1
p

∫
RN

(|∇u|p + ξ|u|p) −
∫

RN

F (u) − 1
p∗

∫
RN

|u|p∗
for all u ∈ Eξ.

As in § 2, Ψε ∈ C1(Eξ, R) and a standard argument shows that critical points of Ψε

are solutions of (Pξ). In order to find the critical points for the functional (Pξ), we
also use the Nehari manifold methods. The Nehari manifold corresponding to Ψξ is
defined by

Nξ = {u ∈ Eξ \ {0} : Ψ ′
ξ(u)u = 0}.

Thus, for u ∈ Nξ, one sees that∫
RN

(|∇u|p + ξ|u|p) =
∫

RN

f(u)u +
∫

RN

|u|p∗
. (3.1)

https://doi.org/10.1017/S0308210513001492 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001492


Positive solutions for quasilinear problems with critical growth in R
N 421

This implies that, for u ∈ Nξ,

Ψξ|Nξ
=

∫
RN

(
1
p
f(u)u − F (u)

)
+

(
1
p

− 1
p∗

) ∫
RN

|u|p∗
. (3.2)

To prove some properties for the function Ψξ, we need the following result.

Lemma 3.1. Let 1 < r � ∞, 1 � q < ∞ with q �= Nr/(N − r) if r < N . Assume
that φn is bounded in Lq(RN ), |∇φn| is bounded in Lr(RN ) and

lim
n→∞

sup
y∈R

∫
BR(y)

|φn|q → 0 for some R > 0.

Then, φn → 0 in Lσ(RN ) for any σ ∈ (q, Nr/(N − r)). Moreover, if φn is bounded
in Lp(RN ), |∇φn| is bounded in Lp(RN ) and

lim
n→∞

sup
y∈R

∫
BR(y)

|φn|p∗ → 0 for some R > 0.

Thus, φn → 0 in Lk(RN ) for any k ∈ (q, Np/(N − p)].

Proof. For the proof of the first conclusion of this lemma, one can refer to [24,25,32].
We now prove the last conclusion. Clearly, it suffices to prove φn → 0 in Lp∗

(RN ).
It follows from the Hölder inequality that∫

Br(y)
|φn|p∗ �

( ∫
Br(y)

|φn|p∗
dx

)(p∗−p)/p∗( ∫
Br(y)

|φn|p∗
dx

)p/p∗

� c

(
sup

y∈RN

∫
Br(y)

|φn|p∗
dx

)(p∗−p)/p∗ ∫
RN

(|∇φn|p + |φn|p) dx.

Now, covering R
N by balls of radius r, in such a way that each point of R

N is
contained in at most N + 1 balls, we find that∫

RN

|φn|p∗ � c(N + 1)
(

sup
y∈RN

∫
Br(y)

|φn|p∗
dx

)(p∗−p)/p∗ ∫
RN

(|∇φn|p + |un|p) dx

� c(N + 1)
(

sup
y∈RN

∫
Br(y)

|φn|p∗
dx

)(p∗−p)/p∗

→ 0 as n → ∞.

This completes the proof of the lemma.

We are now ready to prove some elementary properties for Nξ.

Lemma 3.2. Under the assumptions of lemma 2.1, we have that, for ξ > 0, the
following hold.

(i) For all u ∈ Sξ := {u ∈ Eξ : ‖u‖ξ = 1}, there exists a unique tu > 0 such that
tuu ∈ Nξ. Moreover, mξ(u) = tuu is the unique maximum of Ψξ on Eξ.

(ii) The set Nξ is bounded away from 0. Furthermore, Nξ is closed in Eξ.
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(iii) There exists δ > 0 such that tu � δ for each u ∈ Sξ and, for each compact
subset W ⊂ Sξ, there exists CW > 0 such that tu � CW for all u ∈ W.

(iv) Nξ is a regular manifold diffeomorphic to the sphere of Eξ.

(v) cξ = infNξ
Ψξ > 0 and Ψξ|Nξ

is bounded below by some positive constant.

Proof. Using the same arguments as those of lemma 2.2, one can easily prove the
conclusions (i)–(v). We omit the details here.

From lemma 3.2(i), we know that, for each u ∈ Eξ \ {0}, there exists a unique
tu > 0 such that tuu ∈ Nξ. So we define the mapping m̂ξ : Eξ \ {0} → Nξ by
m̂ξ(u) = tuu. Clearly, mξ = m̂ξ|Sξ

. Let

Υ̂ξ : Eξ \ {0} → R, Υ̂ξ(w) := Ψξ(m̂ξ(w)) and Υξ := Υ̂ξ|Sξ
.

If the inverse of the mapping mξ to Sξ is given by

m̌ξ = m−1
ξ : Nξ → Sξ, m̌ξ =

u

‖u‖ ,

then we have the following lemma.

Lemma 3.3 (Szulkin and Weth [34, corollary 3.3]). Under the assumptions of
lemma 2.1, we have that, for ε > 0, the following hold.

(i) Υξ ∈ C1(Sξ, R) and

Υ ′
ξ(w)z = ‖mξ(w)‖ξΨ

′
ξ(mξ(w))z for z ∈ Tw(Sξ).

(ii) {wn} is a Palais–Smale sequence for Υξ if and only if {mξ(wn)} is a Palais–
Smale sequence for Ψξ. If {un} ⊂ Nξ is a bounded Palais–Smale sequence for
Ψξ, then m̌ξ(un) is a Palais–Smale sequence for Υξ, where m̌ξ(u) = m−1

ξ (u) =
u/‖u‖ξ.

(iii) We have
inf
Sξ

Υξ = inf
Nξ

Ψξ = cξ.

Moreover, z ∈ Sξ is a critical point of Υξ if and only if mξ(u) is a critical
point of Ψξ, and the corresponding critical values coincide.

Remark 3.3. By lemma 3.1, we note that the infimum of Ψξ over Nξ has the
following minimax characterization:

0 < cξ = inf
z∈Nξ

Ψξ(z) = inf
w∈Eξ\{0}

max
s>0

Ψξ(sw) = inf
w∈Sξ

max
s>0

Ψξ(sw). (3.3)

Similarly to [26], one can easily prove the following mountain pass geometry of
the functional Ψξ(u).

Lemma 3.4 (mountain pass geometry). The functional Ψξ satisfies the following
conditions.

(i) There exist positive constants β, α such that Ψξ(u) � β > 0 for ‖u‖μ = α.

(ii) There exists e ∈ Eξ with ‖e‖ > α such that Ψξ(e) < 0.
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From lemma 3.4, by using the Ambrosetti–Rabinowitz mountain pass theorem
without the (PS)c-condition (see [12, 27]), it follows that there exists a (PS)c-
sequence {un} ⊂ Eξ such that

Ψξ(un) → c′
ξ = inf

γ∈Γ
max
0�t�1

Ψξ(γ(t)) and Ψ ′
ξ(un) → 0, (3.4)

where Γ = {γ ∈ C(Eξ, R) : Ψξ(γ(0)) = 0, Ψξ(γ(1)) < 0}. As in [31, proposi-
tion 3.11], we use the equivalent characterization of c′

ξ, which is more adequate for
our purpose, given by

c′
ξ = inf

u∈Eξ\{0}
max
t>0

Ψξ(tu) = cξ. (3.5)

Here in the last equality we used (3.3). As in [17], we have the following estimates
for cμ.

Lemma 3.5. If the conditions (D0) and (f1)–(f3) hold, one gets that, for any 0 <
ξ � V∞, the number cξ satisfies

0 < cξ <
1
N

SN/p
p ,

where Sp is the best Sobolev constant, namely,

Sp = inf
{ |∇u|pp

|u|pp∗
: u ∈ D1,p(RN ) \ {0}

}
.

We are now ready to study the minimizing sequence for Ψξ.

Lemma 3.6. Let {un} ⊂ Nξ be a minimizing sequence for Ψξ. Then, {un} is
bounded. Moreover, there exist r, δ > 0 and a sequence {yn} ⊂ R

N such that

lim inf
n→∞

∫
Br(yn)

|un|p � δ > 0,

where Br(yn) = {y ∈ R
N : |y − yn| � r} for each n ∈ N.

Proof. We first prove that {un} is bounded. Arguing by contradiction, suppose that
there exists a sequence {un} ⊂ Nξ such that ‖un‖μ → ∞ and Ψξ(un) → cξ. Let
zn = un/‖un‖ξ. Then, zn ⇀ z and zn(x) → zn(x) a.e. in R

N after passing to a
subsequence. Moreover, we have that either {zn} is vanishing, i.e.

lim
n→∞

sup
y∈RN

∫
Br(y)

|zn|p∗
= 0, (3.6)

or non-vanishing, i.e. there exist r, δ > 0 and a sequence {yn} ⊂ R
N such that

lim
n→∞

∫
Br(yn)

|zn|p∗ � δ > 0. (3.7)

As in [21], we show that neither (3.6) nor (3.7) holds true, and this provides the
desired contradiction.
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If {zn} is vanishing, lemma 3.1 implies that zn → 0 in Lp(RN ) for p ∈ (2, p∗].
Therefore, from (2.3) we deduce that

∫
RN F (�zn) → 0 as n → ∞ for each � ∈ R.

So, we infer from lemma 3.2 that, for ξ > 0,

cξ + o(1) � Ψξ(un)
� Ψξ(�zn)

=
�p

p

∫
RN

(|∇zn|p + ξ|zn|p) −
∫

RN

F (�zn) − �p∗

p∗

∫
RN

|zn|p∗

� �p

p
−

∫
RN

F (�zn) − �p∗

p∗

∫
RN

|zn|p∗

→ �p

p

as n → ∞. We now arrive at a contradiction if � is large enough. Hence, non-
vanishing must hold. It follows from (2.3) that∫

RN

F (un) � cε‖un‖p
ξ + cCε‖un‖q

ξ. (3.8)

So, from (3.7) and (3.8) we infer that, for n large,

0 � Ψξ(un)
‖un‖p∗

ξ

= − 1
p∗

∫
RN

|zn|p∗
+ o(1) � − 1

p∗ sup
y∈RN

∫
Br(y)

|zn|p∗
+ o(1) < 0,

a contradiction.
Next, we prove the latter conclusion of this lemma. Since {un} is bounded, if

lim
n→∞

sup
y∈RN

∫
Br(y)

|un|p = 0,

we deduce from lemma 3.1 that un → 0 in Lt(RN ) for t ∈ (p, p∗). We infer from (2.3)
that

∫
RN F (un) → 0 as n → ∞. Moreover, it follows from Ψ ′

ξ(un)un = 0 that∫
RN

(|∇un|p + ξ|un|p) =
∫

RN

up∗

n + o(1). (3.9)

Assume that
∫

RN (|∇un|p + ξ|un|p) → γ. If γ > 0, it follows from Ψξ(un) → cξ that

1
p
‖un‖p

ξ − 1
p∗

∫
RN

|un|p∗ → cξ.

Thus, we obtain that cξ = γ/N . On the other hand, we infer from γ � Spγ
p/p∗

that

γ � SN/p
p .

Therefore, we get that cξ = (1/N)γ � (1/N)SN/p
p . This contradicts the conclusion

of lemma 3.5.

We now state the main results for the limit problem (Pξ).
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Theorem 3.7. Let the assumptions of theorem 1.1 be satisfied. Then, for each
ξ > 0, the following conclusions hold.

(i) The problem (Pξ) has at least one positive ground state solution uξ in Eξ =
W 1,p(RN ).

(ii) lim|x|→∞ uξ(x) = 0 and uξ ∈ C1,σ
loc with σ ∈ (0, 1). Furthermore, there exist

C, c > 0 such that uξ(x) � Ce−c|x|.

(iii) Lξ is compact in Eξ for ξ > 0, where Lξ denotes the set of all least energy
solutions of (Pξ).

Proof. (i) From the conclusion of lemma 3.2(v) we know that cξ > 0 for each ξ > 0.
Moreover, if u0 ∈ Nξ satisfies Ψξ(u0) = cξ, then m̌ξ(u0) is a minimizer of Υξ, and
therefore a critical point of Υξ, so u0 is a critical point of Ψξ by lemma 3.3. It
remains to show that there exists a minimizer u of Ψξ|Nξ

. By Ekeland’s variational
principle [39], there exists a sequence {ωn} ⊂ Sξ such that Υξ(ωn) → cξ and
Υ ′

ξ(ωn) → 0 as n → ∞. Set un = mξ(ωn) ∈ Nξ for all n ∈ N. Then Ψξ(un) → cξ

and Ψ ′
ξ(un) → 0 as n → ∞. Similarly to the proof of lemma 3.6, we know that {un}

is bounded and there exist r, δ > 0 and a sequence {yn} ⊂ R
N such that

lim
n→∞

∫
Br(yn)

|un|p � δ > 0.

So, we can choose r′ > r > 0 and a sequence {yn} ⊂ Z
N such that

lim
n→∞

∫
Br′ (yn)

|un|p � δ

2
> 0. (3.10)

Using that Ψξ and Nξ are invariant under translations, we may assume that {yn}
is bounded in R

N . So un ⇀ u �= 0 and Ψ ′
ξ(u) = 0.

It remains to show that Ψξ(u) = cξ. Since {un} is bounded, by (1.8) and Fatou’s
lemma we get that

cξ = lim inf
n→∞

(
Ψξ(un) − 1

p
Ψ ′

ξ(un)un

)

= lim inf
n→∞

( ∫
RN

(
1
p
f(un)un − F (un)

))

�
∫

RN

(
1
p
f(u)u − F (u)

)

= Ψξ(u) − 1
p
Ψ ′

ξ(u)u

= Ψξ(u).

Hence, Ψξ(u) � cξ. The reverse inequality follows from the definition of cξ since
u ∈ Nξ. So, we prove that Ψξ(u) = cξ. Finally, we need to find a positive ground
state solution for (Pξ). In fact, for each u ∈ W 1,p(RN ), there exists t > 0 such that
t|u| ∈ Nξ. From the condition (f1) and the form of Ψξ, we deduce that Ψξ(t|u|) �
Ψξ(tu). Moreover, it follows from u ∈ Nξ that Ψξ(tu) � Ψξ(u). So, we prove that
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cξ = Ψξ(u) � Ψξ(t|u|) � Ψξ(u). That is, uξ = t|u| also attains the least energy on
Nξ. In addition, from lemma 3.3 we infer that uξ is a non-negative ground state
solution of Ψξ. It follows from Harnack’s inequality (see [19]) that uξ > 0 for all
x ∈ R

N . This finishes the proof of the conclusion (i).

(ii) Using the arguments of [20,23,26,35], we have that u ∈ Lt(RN ) ∩ C1,α
loc (RN ) for

t ∈ [2,∞] and α ∈ (0, 1). Set

h(u) = f(u) − ξ|u|p−2u + |u|p∗−2u.

From (2.3), we infer that

|h(u)| � c(|u|p−1 + |u|q−1 + |u|p∗−1).

It follows that

|h(u)|Lτ (B2ρ) � c(|u|p−1
L(p−1)τ (B2ρ) + |u|q−1

L(q−1)τ (B2ρ) + |u|p
∗−1

L(p∗−1)τ (B2ρ)), (3.11)

where τ > N and B2ρ = {x ∈ R
N : |x − x0| � 2ρ, x0 ∈ R

N}. Using (Pξ) and the
definition of the norm ‖ · ‖W 1,τ , we derive that

‖u‖W 1,τ (B2ρ) � c(|h(u)|Lτ (B2ρ) + |u|Lτ (B2ρ)) (3.12)

From (3.11) and (3.12), we deduce that

‖u‖W 1,τ (B2ρ) � c(|u|p−1
L(p−1)τ (B2ρ) + |u|q−1

L(q−1)τ (B2ρ) + |u|Lτ (B2ρ) + |u|p
∗−1

L(p∗−1)τ (B2ρ)).

Since τ > N , by Sobolev’s embedding theorem (see [19]) one has that

‖u‖C0,σ(B̄ρ) � c(|u|p−1
L(p−1)τ (B2ρ) + |u|q−1

L(q−1)τ (B2ρ) + |u|Lτ (B2ρ) + |u|p
∗−1

L(p∗−1)τ (B2ρ)),

where σ ∈ (0, 1). Letting |x0| → ∞, we conclude that ‖u‖C0,σ(B̄ρ) → 0. Therefore,
we get that lim|x|→∞ u(x) = 0.

Next, we prove that u(x) � Ce−c|x|. By (f2) and the fact that the solutions u
decay uniformly to 0 as |x| → ∞, we can take R0 > 0 such that

f(u(x))u1−p + up∗−p � ξ

2
for all |x| � R0.

Consequently,

−Δpu +
ξ

2
up−1 = f(u) + up∗−1 − ξ

2
up−1 � 0 for all |x| � R0.

Let β and δ be positive constants such that ξ/2−(p−1)βp > 0 and u � δ exp(−βR0)
for all |x| = R0. Hence, the function η(x) = δ exp(−β|x|) satisfies

−Δpη +
ξ

2
ηp−1 �

(
ξ

2
− (p − 1)βp

)
ηp−1 > 0 for all x �= 0.

Since p � 2, we have that the function χ : R
N → R, χ(x) = |x|p is convex (see [26,

40]); thus,

(|x|p−2x − |y|p−2y, x − y) � Cp|x − y|p � 0 for p � 2, x, y ∈ R
N . (3.13)
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We now take γ = max{u − η, 0} ∈ W 1,p
0 (|x| > R0) as a test function. Hence,

combining these estimates,

0 �
∫

RN

[
(|∇u|p−2∇u − |∇η|p−2∇η)∇γ +

ξ

2
(up−1 − ηp−1)γ

]

� ξ

2

∫
x∈RN : u�η

(up−1 − ηp−1)(u − η)

� 0 for |x| � R0.

Therefore, the set {x ∈ R
N : |x| � R0 for u(x) � ψ(x)} is empty. From this we can

easily conclude that

u(x) � Ce−c|x|.

(iii) Let the bounded sequence {un} ⊂ Lξ ∩ Nξ such that Ψξ(un) = cξ and
Ψ ′

ξ(un) = 0. Without loss of generality we assume that un ⇀ u in Eξ. As in the
proof of the conclusion (i), one can easily prove that {un} is non-vanishing, i.e.

lim
n→∞

∫
Br(yn)

|un|p � δ

2
> 0.

By the invariance of Ψξ and Nξ under translations of the form u → u(· − k) with
k ∈ Z

N , we may assume that {yn} is bounded in Z
N . So un ⇀ u �= 0 and Ψ ′

ξ(u) = 0.
Moreover, repeating arguments as in the proof of the conclusion (i), one sees that
Ψξ(u) = cξ and Ψ ′

ξ(u) = 0. So, it follows from Fatou’s lemma that

cξ = Ψξ(u)

= Ψξ(u) − 1
p
(Ψ ′

ξ(u), u)

=
∫

RN

(
1
p
f(u)u − F (u)

)
+

(p∗ − p)
p∗p

∫
RN

|u|p∗

� lim inf
n→∞

[ ∫
RN

(
1
p
f(un)un − F (un)

)
+

(p∗ − p)
p∗p

∫
RN

|un|p∗
]

= lim inf
n→∞

(
Ψξ(un) − 1

p
Ψ ′

ξ(un)un

)
= cξ.

Thus, we conclude that

lim
n→∞

∫
RN

up∗

n =
∫

RN

up∗
.

By using the Brezis–Lieb lemma (see [39]), we obtain that |un − u|Lp∗ (RN ) → 0 as
n → ∞. Note that un satisfies

− div(|∇un|p−2∇un) + ξ|un|p−2un = f(un) + |un|p∗−2un. (3.14)
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Using un − u as a test function in (3.14), we conclude that, for each ε > 0, there
exists Cε > 0 such that∫

RN

(|∇un|p−2∇un∇(un − u) + ξ|un|p−2un(un − u))

= ξ

∫
RN

[f(un)(un − u) + |un|p∗−2un(un − u)]

� βξ

∫
RN

|un||un − u| + cCβ

∫
RN

|un|q−1|un − u|

� cβ + cCβ |un − u|Lp∗ (RN ). (3.15)

So it follows that∫
RN

(|∇un|p−2∇un∇(un − u) + ξ|un|p−2un(un − u)) = o(1) as n → ∞. (3.16)

Similarly, since u satisfies the equation

− div(|∇u|p−2∇u) + ξu = f(u) + |u|p∗−2u, (3.17)

we infer that ∫
RN

(|∇u|p−2∇u∇(un − u) + ξ|u|p−2u(un − u)) = o(1). (3.18)

From (3.13), (3.16) and (3.18), we deduce that∫
RN

(|∇(un − u)|p + ξ|un − u|p) �
∫

RN

(|∇un|p−2∇un − |∇u|p−2∇u, ∇un − ∇u)

+ ξ

∫
RN

(|un|p−2un − |u|p−2u, un − u) → 0

(3.19)

as n → ∞. So, we obtain that ‖un − u‖W 1,p(RN ) → 0 as n → ∞.

Remark 3.8. We point out that our arguments in this section can also be applied
to the case of periodic potentials, or to the equation

− div(|∇u|p−2∇u)+V (x)|u|p−2u = f(u)+|u|p∗−2u, u > 0, u ∈ W 1,p(RN ), (PV )

where V (x) is a positive continuous periodic function in each variable. Using trans-
lation invariance of the problem, the proof is still valid. Thus, the conclusions of
theorem 3.7 hold.

Lemma 3.9. Under the assumptions of lemma 2.1, we have that cξ1 > cξ2 for
ξ1 > ξ2.

Proof. For ξ1, ξ2 > 0, one sees that Eξ1 = Eξ2 = E. Let u1 ∈ Nξ1 be such that

cξ1 = Ψξ1(u1) = max
w∈Eξ1

Ψξ1(w).

On the other hand, let u2 ∈ Eξ2 be such that

Ψξ2(u2) = max
w∈Eξ2

Ψξ2(w).
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Therefore, one sees that

cξ1 � Ψξ1(u2)

= Ψξ2(u2) + (ξ1 − ξ2)
∫

RN

up
2

� cξ2 + (ξ1 − ξ2)
∫

RN

up
2

> cξ2 .

4. A compactness condition

In this section we prove some compactness results for the functional Ψε. Precisely,
we show that any minimizing sequence of Ψε has a strongly convergent subsequence
in Eε. We begin with the following lemma.

Lemma 4.1. Under the assumptions of (D0) and (f1)–(f3), we have that

(i) cε � cV0 for all ε > 0,

(ii) cε → cV0 as ε → 0.

Proof. The idea of the proof comes from [16,37].

(i) Since V is a bounded function, it is easy to check that, for all ε > 0 and ξ > 0,
Eε = Eξ = W 1,p(RN ). To prove the first conclusion, we argue by contradiction and
assume that cε < cV0 for some ε > 0. By the definition of cε, we can choose an
e ∈ Eε \{0} such that maxs>0Ψε(se) < cV0 . Again by the definition of cV0 , we know
that cV0 � maxs>0 ΨV0(se). Since Vε(x) � V0, Ψε(u) � ΨV0(u) for all u ∈ Eε, and
we get

cV0 > max
s>0

Ψε(se) � max
s>0

ΨV0(se) � cV0 ,

a contradiction.

(ii) Set V 0(x) = V (x) − V0 and V 0
ε (x) = V 0(εx). We then see that

Ψε(u) = ΨV0(u) +
∫

RN

V 0
ε (x)up.

Let u ∈ NV0 be such that cV0 = ΨV0(u) = maxw∈EV0\{0} ΨV0(w). We take v ∈ Eε \
{0} such that

cε � Ψε(v) = max
s>0

Ψε(su) = ΨV0(v) +
∫

RN

V 0
ε (x)vp. (4.1)

Obviously, for each ε > 0 we can choose R > 0 such that∫
|x|>R

V 0
ε (x)|v|p < cε. (4.2)
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Moreover, since 0 ∈ V, one has that∫
|x|�R

V 0
ε (x)|v|p → 0 as ε → 0. (4.3)

Substituting (4.2) and (4.3) into (4.1), we deduce that∫
RN

V 0
ε (x)vp → 0 as ε → 0.

Therefore, we get that

cε � ΨV0(v) + o(1)
� max

w∈EV0\{0}
ΨV0(w) + o(1)

= ΨV0(u) + o(1)
= cV0 + o(1).

Furthermore, it follows from the conclusion (i) that

cV0 � lim
ε→0

cε � lim
ε→0

Ψε(v) = ΨV0(v) � ΨV0(u) = cV0 .

Hence, we obtain cε → cV0 as ε → 0.

From (D0), we know that V0 < V∞. So, we can choose � > 0 such that

V0 < � < V∞.

As in [2, 17], we have the following lemmas.

Lemma 4.2. Suppose that the assumptions of (D0) and (f1)–(f3) hold. Let {un} ⊂
Nε such that Ψε(un) → c with c � c� and un ⇀ 0 in Eε; then one of the following
conclusions holds.

(i) un → 0 in Eε.

(ii) There exist a sequence yn ∈ R
N and constants r, δ > 0 such that

lim inf
n→∞

∫
Br(yn)

up
n � δ.

Lemma 4.3. Let the assumptions of (D0) and (f1)–(f3) be satisfied. If {un} ⊂ Nε

such that Ψε(un) → c with c � c� and un ⇀ 0 in Eε, we have that un → 0 in Eε

for ε > 0 small.

Lemma 4.4. Under the assumptions of (D0) and (f1)–(f3), we have that if {vn} ⊂
Sε such that Υε,λ(vn) → c and Υ ′

ε,λ(vn) → 0 with 0 < c � c� < cV∞ , then {vn} has
a convergent subsequence in Eε.

Proof. Let un = mε(vn). It follows from lemmas 2.2 and 2.3 and

Ψε(un) → c, Ψ ′
ε(un) → 0 and Ψ ′

ε(un)un = 0.
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By using similar arguments as in the proof of lemma 3.6, one can easily check that
{un} is bounded. So, there exists u ∈ Eε such that un ⇀ u in Eε. Moreover, u is a
critical point of Ψ ′

ε. Set wn = un −u. By the Brezis–Lieb lemma (see [39]), we have
that ∫

RN

|∇wn|p =
∫

RN

|∇un|p −
∫

RN

|∇u|p + o(1)

and ∫
RN

|wn|p =
∫

RN

|un|p −
∫

RN

|u|p + o(1).

Moreover, as in [22], it follows that Ψε(wn) = Ψε(un)−Ψε(u)+o(1) and Ψ ′
ε(wn) → 0

as n → ∞. It follows from Ψ ′
ε(u) = 0 and (1.8) that

Ψε(u) = Ψε(u) − 1
p
Ψ ′

ε(u)u =
∫

RN

(
1
p
f(u)u − F (u)

)
� 0.

So, we deduce that Ψε(wn) = Ψε(un) − Ψε(u) + o(1) → c − y as n → ∞, where
y = Ψε(u) � 0. Thus, it follows from c1 = c − y � c � c� and lemma 4.3 that
wn = un − u → 0 in Eε. Obviously, u ∈ Nε. Since un = tnvn and tn is bounded,
tn → t �= 0 (if t = 0, one can deduce that u = 0). Moreover, from the boundedness
of {vn}, we infer that there exists v such that vn ⇀ v in E. So, it follows from
tn → t and un → u that vn → v and u = tv.

We are now in a position to prove that (Pε) has a positive ground state solution.

Lemma 4.5. Under the assumptions of (D0) and (f1)–(f3), we have that cε is at-
tained for all small ε > 0.

Proof. It follows from lemma 2.2(v) that cε � ρ > 0 for each ε > 0. Moreover, if
uε ∈ Nε satisfies Ψε(uε) = cε, then m̌ε(uε) is a minimizer of Υε, and therefore a
critical point of Υε, so uε is a critical point of Ψε by lemma 2.3. It remains to show
that there exists a minimizer uε of Ψε|Nε . By Ekeland’s variational principle [39],
there exists a sequence {νn} ⊂ Sε such that Υε(νn) → cε and Υ ′

ε(νn) → 0 as
n → ∞. Set wn = mε(νn) ∈ Nε for all n ∈ N. Then, from lemma 2.3 again, we
deduce that Ψε(wn) → cε, Ψ ′

ε(wn)wn = 0 and Ψ ′
ε(wn) → 0 as n → ∞. So, {wn} is

a (PS)cε
-sequence for Ψε. By lemmas 4.1 and 4.2, we know that cε � c� for ε > 0

small. Thus, from the proof of lemma 4.4, we infer that un = wn − w → 0 in Eε.
Therefore, we prove that w ∈ Nε and Ψε(w) = cε.

Let Lε denote the set of all positive ground state solutions of (Pε). Similarly to
theorem 3.7(iii), one has the following lemma.

Lemma 4.6. Suppose that the assumptions of theorem 1.1 are satisfied. Then Lε is
compact in W 1,p(RN ) for all small ε > 0.

Proof. Let the boundedness sequence {un} ⊂ Lε ∩ Nε such that Ψε(un) = cξ and
Ψ ′

ε(un) = 0. Without loss of generality we assume that un ⇀ u ∈ Eε. It then follows
from the weak continuity of Ψ ′

ε that Ψ ′
ε(u) = 0. Set wn = un − u. As in lemma 4.5,

we can prove that wn → 0 in W 1,p(RN ).
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5. Multiplicity and concentration of positive solutions

In this section, we are in a position to give the proof of the main results. We first
prove the existence of multiple positive solutions to (Pε). To do this, as in [2,5,17],
we make good use of the ground state solution of PV 0 . Precisely, let w be a ground
state solution of PV 0 and let Φ be a smooth non-increasing function defined in
[0,∞) such that Φ(s) = 1 if 0 � s � 1

2 and Φ(s) = 0 if s � 1. For any y ∈ V, we
define

ψε,y(x) = Φ(|εx − y|)w
(

εx − y

ε

)
. (5.1)

There then exists tε > 0 such that maxt�0Ψε(tψε,y) = Ψε(tεΦε,y). We define
ρε : V → Nε by ρε(y) = tεψε,y. By the construction, ρε(y) has a compact sup-
port for any y ∈ V. As in [2, 17], one can easily prove the following results.

Lemma 5.1. Under the assumptions of (D0) and (f1)–(f3), we have that the func-
tion ρε such that limε→0 Ψε(ρε(y)) = cV0 .

For each δ > 0, let � = �(δ) be such that Vδ ⊂ B�(0). Let χ : R
N → R

N be
defined by χ(x) = x for |x| � � and by χ(x) = �x/|x| for |x| � �. Finally, we define
βε : Nε → R by

βε(u) =

∫
RN χ(εx)u2 dx∫

RN u2 dx
.

As in the proof of lemma 5.1, it is easy to see that

βε(ρε(y)) =

∫
RN χ(εx)ρ2

ε(y) dx∫
RN ρε(y)2 dx

=

∫
RN χ(εx + y)|w(x)Φ(|εx|)|2 dx∫

RN |w(x)Φ(|εx|)|2 dx

= y +

∫
RN (χ(εx + y) − y)|w(x)Φ(|εx|)|2 dx∫

RN |w(x)Φ(|εx|)|2 dx

= y + o(1)

as ε → 0, uniformly for y ∈ Nε. So we conclude that limε→0 βε(ρε(y)) = y uniformly
for y ∈ Nε.

Next we prove some concentration phenomena for the positive ground state solu-
tions of (Pε). Before doing so, we start with the following preliminary lemma.

Lemma 5.2. Suppose that the assumptions of theorem 1.1 are satisfied. Let un ⊂
NV0 be a sequence satisfying ΨV0(un) → cV0 . Then, either {un} has a subsequence
strongly convergent in W 1,p(RN ) or there exists {yn} ⊂ R

N such that the sequence
wn(x) = un(x + yn) converges strongly in W 1,p(RN ). In particular, there exists a
minimizer of cV0 .

Proof. By lemma 3.2, we know that {un} is a bounded sequence. Moreover, it
follows that

ΨV0(un) → cV0 and Ψ ′
V0

(un)un = 0. (5.2)
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Hence, for some subsequence, still denoted by {un}, we may assume that there
exists a u ∈ W 1,p(RN ) such that un ⇀ u in W 1,p(RN ).

(h1) If u �= 0, it follows that u ∈ NV0 . Thus, in the same way as in the proof of
lemma 4.5, we can prove that un → u in E.

(h2) If u = 0, as in lemma 3.2, we have that there exist {yn} ⊂ R
N , r, δ > 0 such

that
lim inf
n→∞

∫
Br(yn)

u2
n � δ. (5.3)

We set wn(x) = un(x + yn); then ‖wn‖V0 = ‖un‖V0 , ΨV0(wn) → cV0 and
Ψ ′

V0
(wn)wn = 0. It is clear that there exists w ∈ W 1,p(RN ) with w �= 0 such

that wn ⇀ w in W 1,p(RN ). The proof then follows from the arguments used
in the case of u �= 0.

Lemma 5.3. Let uε be the positive ground state solutions of (Pε) and let 0 ∈ V =
{x ∈ R

N : M(x) = V0}. Under the assumptions of theorem 1.1, uε has a maximum
point yε such that dist(εyε,V) → 0. Moreover, vε(x) = uε(x + yε) converges in
W 1,p(RN ) to a positive ground state solution of PV 0 as ε → 0.

Proof. Let εj → 0, uj ∈ Lεj
such that Ψεj (uj) = cεj and Ψ ′

εj
(uj) = 0. Clearly,

{uj} ⊂ Nεj . Using the same arguments as in lemma 4.4, one can easily check
that {uj} is bounded in W 1,p(RN ). So we can assume that uj ⇀ u in W 1,p(RN ).
Moreover, since Ψεj (uj) = cεj → cV0 as j → ∞ according to lemma 4.1, then we
have cεj � cV∞ for j large. Thus, similarly to the proof of lemma 4.4, we can prove
that there exist r, δ > 0 and a sequence {y′

j} ⊂ R
N such that

lim inf
j→∞

∫
Br(y′

j)
up

j � δ > 0. (5.4)

Let {yj} ⊂ R
N be such that

uj(yj) = max
y∈RN

uj(y) ∀j.

We claim that there exists κ > 0 (independent of j) such that

uj(yj) � κ > 0 uniformly for all j ∈ N. (5.5)

Assume by contradiction that uj(yj) → 0 as j → ∞. We deduce from (5.4) that

0 < δ �
∫

Br(y′
j)

up
j � cuj(yj)p → 0 as j → ∞.

This is a contradiction. As in theorem 3.7, one can easily check that uj ∈ C1,σ(RN )∩
L∞(RN ) for each j ∈ N. So it follows from (5.4) and (5.5) that there exist R > r > 0
and δ′ > 0 such that

lim inf
j→∞

∫
BR(yj)

|uj |p � δ′ > 0.
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Set

vj(x) = uj(x + yj) and V̂εj
(x) = V (εj(x + yj)).

Then, along a subsequence we have vj ⇀ v �= 0 in W 1,p(RN ) and vj → v in Lt
loc(R

N )
(for all t ∈ (p, Np/(N − p))). We first claim that vj → v �= 0 in W 1,p(RN ). In fact,
according to lemma 3.2, we choose tj > 0 such that mV0(vj) = tjvj ∈ NV0 . Set
ṽj = tjvj . It follows from (D0), uj ∈ Nεj

and lemma 4.1 that

ΨV0(ṽj) � 1
p

∫
RN

(|∇ṽj |p + V̂εj (x)|ṽj |p) −
∫

RN

F (ṽj) − 1
p∗

∫
RN

ṽp∗

j

= Ψεj
(tjuj)

� Ψεj
(uj)

= cV0 + o(1).

Note that ΨV0(ṽj) � cV0 , and thus limj→∞ ΨV0(ṽj) = cV0 . From lemma 3.2(vi), we
infer that tj is bounded. Without loss of generality we can assume that tj → t � 0.
If t = 0, we have that ṽj = tjvj → 0 in view of the boundedness of vj , and hence
ΨV0(ṽj) → 0 as j → ∞, which contradicts cV0 > 0. So, t > 0 and the weak limit of
ṽj is different from 0. Let ṽ be the weak limit of ṽj in W 1,p(RN ). Since tn → t > 0
and vn ⇀ v �= 0, we have, from the uniqueness of the weak limit, that ṽ = tv �= 0
and ṽ ∈ NV0 . From lemma 5.2, ṽj → ṽ in W 1,p(RN ), and so vj → v in W 1,p(RN ).
This proves the claim for vj → v �= 0 in W 1,p(RN ).

Obviously, vj solves

− div(|∇vj |p−2∇vj) + M̂j(x)vj = f(vj) + |vj |p
∗−2vj in R

N . (Pv
ε )

Correspondingly, the energy functional is defined as

Pεj (vj) =
1
p

∫
RN

(|∇vj | + M̂j(x)vj) −
∫

RN

F (vj) +
∫

RN

|vj |p
∗

= Ψεj (uj) = cεj .

We next show that {εjyj} is bounded. To do this we borrow an idea of [16].
Assume by contradiction that εj |yj | → ∞. Without loss of generality assume that
V (εjyj) → Ṽ ∞. Clearly, V0 < Ṽ ∞ by (D0). For each ϕ ∈ W 1,p(RN ), as in [3], one
can easily derive that

lim
j→∞

∫
RN

f(vj)ϕ =
∫

RN

f(v)ϕ,

lim
j→∞

∫
RN

V̂εj (x)|vj |p−2vjϕ =
∫

RN

Ṽ ∞|v|p−2vϕ,

lim
j→∞

∫
RN

|vj |p
∗−2vjϕ =

∫
RN

|v|p∗−2vϕ.

Moreover, we claim that∫
RN

|∇vj |p−2∇vj∇ϕ →
∫

RN

|∇v|p−2∇v∇ϕ as n → ∞.
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Indeed, by the Hölder inequality, we deduce that∣∣∣∣
∫

RN

|∇vj |p−2∇vj∇ϕ −
∫

RN

|∇v|p−2∇v∇ϕ

∣∣∣∣
=

∣∣∣∣
∫

RN

(|∇vj |p−2 − |∇v|p−2)∇v∇ϕ +
∫

RN

|∇v|p−2∇ϕ(∇vj − ∇v)
∣∣∣∣

�
( ∫

RN

(|∇vj |p−2 − |∇v|p−2)p/(p−2)
)(p−2)/p

|∇v|p|∇ϕ|p

+ |∇vj − ∇v|p|∇ϕ|p|∇vj − ∇v|p−2
p . (5.6)

Since p/(p − 2) > 1, we infer from the Brezis–Lieb lemma (see [39]) and vj → v in
Lp(RN ) that

( ∫
RN

(|∇vj |p−2 − |∇v|p−2)p/(p−2)
)(p−2)/p

→ 0 and

|∇vj − ∇v|p|∇ϕ|p|∇vj − ∇v|p−2
p → 0 as j → ∞. (5.7)

Combining (5.6) and (5.7) we derive that∫
RN

|∇vj |p−2∇vj∇ϕ →
∫

RN

|∇v|p−2∇v∇ϕ as n → ∞.

So it follows that

lim
j→∞

P ′
εj

(vj)ϕ =
∫

RN

(|∇v|p−2∇v∇ϕ + Ṽ ∞|v|p−2vϕ) −
∫

RN

f(v)ϕ = 0.

Thus, v solves

− div(|∇v|p−2∇v) + Ṽ ∞v = f(v) + |v|p∗−2v in R
N . (PṼ ∞)

We denote the energy functional by

P∞(v) =
1
p

∫
RN

|∇v|p + Ṽ ∞vp −
∫

RN

F (v) � cṼ ∞ .

Remark that, since V0 < Ṽ ∞, one has cṼ ∞ > cV0 by lemma 3.6. Moreover, since
P ′

εj
(vj)vj = Ψ ′

εj
(uj)uj = 0, it follows from Fatou’s lemma and (1.8) that

lim
j→∞

cεj = lim
j→∞

Pεj (vj)

= lim
j→∞

(
Pεj (vj)(vj) − 1

p
Pεj (vj)′(vj)vj

)

= lim inf
j→∞

[ ∫
RN

(
1
p
f(vj)vj − F (vj)

)
+

p∗ − p

pp∗

∫
RN

|vj |p
∗
]

�
[ ∫

RN

(
1
p
f(v)v − F (v)

)
+

p∗ − p

pp∗

∫
RN

|vj |p
∗
]

= P∞(v). (5.8)
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Consequently, we infer from (5.8) that

cV0 < cṼ ∞ � P∞(v) � lim
j→∞

cεj = cV0 ,

a contradiction. Thus, {εjyj} is bounded. Hence, we can assume that xj = εjyj →
x0. Then v solves

− div(|∇v|p−2∇v) + V (x0)|v|p−2v = f(v) + |v|p∗−2v in R
N . (PV 0)

It follows from V (x0) � V0 that

P0(v) =
1
p

∫
RN

(|∇v|p + V (x0)|v|p) −
∫

RN

F (v) − 1
p∗

∫
RN

|v|p∗ � cV (x0) � cV0 .

Similarly to (5.8), one gets

cV0 = lim
j→∞

cεj
� P0(v) � cV0 .

This implies that P0(v) = cV0 , and hence V (x0) = V0. So, by lemma 4.1, x0 ∈ V.

We now study the exponential decay for the ground state solution.

Lemma 5.4. Suppose that uε is a positive ground state solution of (Pε) for suf-
ficiently small ε > 0. Then, under the assumptions of theorem 1.1, we have that
lim|x|→∞ uε(x) = 0 and uε ∈ C1,σ

loc (RN ) for σ ∈ (0, 1). Furthermore, there exist
C, c > 0 such that uε(x) � Ce−c|x−yε|, where uε(yε) = maxx∈RN uε(x).

Proof. As in the proof of theorem 3.7(ii), we know that, for each ε > 0 small,
lim|x|→∞ uε(x) = 0 and uε ∈ C1,σ

loc (RN ) ∩ L∞(RN ) for σ ∈ (0, 1). In the following,
we prove the exponential decay for the positive solution of uε. Let εj → 0 and let
uj ∈ Lεj such that Ψεj (uj) = cεj and Ψ ′

εj
(uj) = 0. As in the proof of lemma 5.3,

we have that vj = uj(x + yj) such that

− div(|∇vj |2∇vj) + V̂εj (x)|vj |p−2vj = f(vj) + |vj |p
∗−2vj in R

N (Pv
ε )

and vj → v �= 0 in W 1,p(RN ), where uj(yj) = maxy∈RN uj(y).
Next we use the Moser iterative method (see [17, 26, 28]) to prove the regularity

of the solution of (Pv
ε ). Set βn = pρn and ρ = N/(N −p). From above we know that

vj ∈ Lβ1(RN ). For the function η ∈ C∞
0 (RN , [0, 1]), we use the function ψ = ηpvjv

kn

l,j

as the test function in (Pv
ε ), where kn = p(ρn − 1) and vl,j = min{l, vj}. Thus, it

follows from (f1) and (f3) that, for each ε > 0, there exists Cε > 0 such that∫
RN

[|∇vj |p−2∇vj∇ψ + V̂εj
(x)vp−1

j ψ] =
∫

RN

f(vj)ψ + |vj |p
∗−2vjψ

�
∫

RN

[εvp−1
j + Cεv

p∗−1
j ]ψ,

which implies that ∫
RN

|∇vj |p−2∇vj∇ψ � Cε

∫
RN

vp∗−1
j ψ.
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A direct computation shows that

∫
RN

|∇vj |pηpvkn

l,j + kn

∫
RN

ηpvjv
kn−1
l,j |∇vj |p−2∇vj∇vl,j

� −p

∫
RN

ηp−1vjv
kn

l,j |∇vj |p−2∇vj∇η + Cε

∫
RN

vp∗

j vkn

l,j ηp. (5.9)

We deduce from Young’s inequality that

∣∣∣∣
∫

RN

ηp−1vjv
kn

l,j |∇vj |p−2∇vj∇η

∣∣∣∣
� (p − 1)εp/(p−1)

p

∫
RN

ηpvkn

l,j |∇vj |p +
1

pεp

∫
RN

∇vp
j vkn

l,j |∇η|p. (5.10)

On the other hand, we infer from the Gagliardo–Nirenberg–Sobolev inequality that

|ηvjv
kn/p
l,j |p

Lp∗ =
( ∫

RN

(ηvjv
kn/p
l,j )p∗

)p/p∗

� M

( ∫
RN

|∇η|pvp
j vkn

l,j +
∫

RN

ηpvkn

l,j |∇vj |p
)

+
(

kn

p

)p ∫
RN

ηpvp
j vkn−p

l,j |∇vl,j |p, (5.11)

where the constant M = M(N, p, ε). Moreover, since∫
RN

ηpvp
j vkn−p

l,j |∇vl,j |p �
∫

RN

ηpvjv
kn−1
l,j |∇vj |p−2∇vj∇vl,j ,

it follows from (5.9)–(5.11) that

|ηvjv
kn/p
l,j |p

Lp∗ � Mρp(n−1)
( ∫

RN

|∇η|pvp
j vkn

l,j +
∫

RN

vp∗

j vkn

l,j ηp

)
.

To obtain the estimate for |vj |Lβn+1 (|x|�R) for some large R > 0, we define the
function η ∈ C∞

0 (RN , [0, 1]) such that η = 1 if |x| � R, η = 0 if |x| � R − r and
|∇η| � 1. So, it follows from the Hölder inequality that∫

RN

ηpvp∗

j vkn

l,j � |ηvjv
kn/p
l,j |p

Lp∗ |vj |p
∗−p

Lp∗ (|x|�R/2).

Therefore, we obtain that

|ηvjv
kn/p
l,j |p

Lp∗ � Mρp(n−1)(||∇η|vjv
kn/p
l,j |pLp + |ηvjv

kn/p
l,j |p

Lp∗ |vj |p
∗−p

Lp∗ (|x|�R/2)).

Since vj → v in W 1,p(RN ), we can take R large enough such that

Mρp(n−1)|vj |p
∗−p

Lp∗ (|x|�R/2) � 1 for all j.

https://doi.org/10.1017/S0308210513001492 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001492


438 J. Wang, T. An and F. Zhang

Thus, we get that

|ηvjv
kn/p
l,j |p

Lp∗ (|x|�R) � |ηvjv
kn/p
l,j |p

Lp∗

� Mρp(n−1)||∇η|vjv
kn/p
l,j |pLp

= Mρp(n−1)
∫

RN

|∇η|pvp
j vkn

l,j

� Mρp(n−1)
∫

|x|�R/2
vβn

j ,

where M = M(N, p, ε, R). Therefore, letting l → ∞, by the dominated convergence
theorem, one has that

|vj |Lβn+1 (|x|�R) � M1/βnρp(n−1)/βn |vj |Lβn (|x|�R/2) ∀j.

Interaction yields that

|vj |Lβn+1 (|x|�R) � M
∑

1/βnρ
∑

p(n−1)/βn |vj |Lβ1 (|x|�R/2) ∀j.

By the convergence of {vj} to v in W 1,p(RN ), we know that, for each τ > 0, there
exists R > 0 such that

|vj |L∞(|x|�R) < τ.

Thus, we prove that

lim
|x|→∞

vj(x) = 0 uniformly for all j ∈ N.

From this we deduce that there exists ε0 > 0 such that

lim
|x|→∞

vε(x) = 0 uniformly for all ε ∈ (0, ε0].

So, by using the same arguments as in the proof of theorem 3.7(ii), we know that
there exist C, δ > 0 (independent of ε) such that

vε(x) � Ce−δ|x|,

where vε = uε(x + yε) and uε(yε) = maxy∈RN uε. Thus, the conclusions of this
lemma hold.

To prove the concentration phenomenon for the positive solutions of (Pε), we
need the following results, which are due to [2, 17].

Lemma 5.5. Under the assumptions of theorem 1.1 or theorem 1.2, if εn → 0 and
{un} ⊂ Nεn such that Ψεn(un) → cV0 , then there exists a sequence {yn} ⊂ R

N such
that ỹn = εnyn → y ∈ V.

Let α(ε) be any positive function tending to 0 as ε → 0, and let

Dε = {u ∈ Nε : Ψε(u) � cV0 + α(ε)}.

For any y ∈ V, we deduce from lemma 5.1 that α(ε) = |Ψε(ρε(y)) − cV0 | → 0
as ε → 0+. Thus, ρε(y) ∈ Dε and Dε �= ∅ for ε > 0. By the same argument as
in [2, lemma 4.4], we can obtain the following property on Dε.
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Lemma 5.6. Suppose that the assumptions of theorem 1.1 or theorem 1.2 are sat-
isfied. Then, for any δ > 0, there holds that limε→0 supu∈Dε

dist(βε(u),Vδ) = 0.

Lemma 5.7. Suppose that the assumptions of theorem 1.1 or theorem 1.2 are satis-
fied. Assume that un satisfies Ψεn(un) → cV0 and there exist r, δ > 0 and a sequence
{yn} ⊂ R

N such that lim infn→∞
∫

Br(yn) up
n � δ > 0; moreover, assume that

vn(x) = un(x + yn) satisfies the problem

− div(|∇vn|2∇vn) + V̂εn
(x)|vn|p−2vn = f(vn) + |vn|p∗−2vn in R

N , (P∗
ε )

where V̂εn
(x) = V (εnx + εnyn) and yn is given in lemma 5.3. We then have that

vn → v in W 1,p(RN ) with v �= 0, vn ∈ L∞(RN ) and ‖vn‖L∞(RN ) � C for all n ∈ N.
Furthermore, lim|x|→∞ vn(x) = 0 uniformly for n ∈ N and vn(x) � ce−c|x−yn|.

Proof. Since vn satisfies (P∗
ε ), we know that Ψ ′

εn
(vn) = 0. Moreover, Ψεn(un) → cV0 .

Using the same arguments as in lemma 5.4, one can obtain the conclusion of this
lemma. We omit the details here.

Proof of theorem 1.1. Go back to (LP)ε with the variable substitution x → x/ε.
Lemma 4.5 implies that (LP)ε has at least one positive ground state solution uε ∈
W 1,p(RN ) for all ε > 0 small. The conclusions (ii) and (iii) follow from lemmas 4.6
and 5.3, respectively. Finally, it follows from lemma 5.4 that the conclusion (iv) of
theorem 1.1 holds.

Lemma 5.8. Under the assumptions of theorem 1.2, (Pε) has at least catVδ
(V)

positive solutions for sufficiently small ε > 0.

Proof. To prove (Pε) has at least catVδ
(V) positive solutions, since Nε is not a

C1-submanifold of Eε, we cannot apply the category theorem directly. Fortunately,
from lemma 2.2, we know that the mapping mε is a homeomorphism between
Nε and Sε, and Sε is a C1-submanifold of Eε. So we can apply this theorem to
Υε(w) = Ψε(m̂ε(w))|Sε = Ψε(mε(w)), where Υε is given in lemma 2.3.

Define

με,1(y) = m−1
ε (tεψε,y) = m−1

ε (ρε(y)) =
tεψε,y

‖tεψε,y‖ =
ψε,y

‖ψε,y‖

for y ∈ V. It follows from lemma 5.1 that

lim
ε→0

Υε(με,1(y)) = lim
ε→0

Ψε(ρε(y)) = cV0 . (5.12)

Furthermore, we set

Dε,1 := {w ∈ Sε : Υε(w) � cV0 + α(ε)}, (5.13)

where α(ε) → 0+ as ε → 0+. It follows from (5.12) that α(ε) = |Υε(με,1(y))−cV0 | →
0 as ε → 0+. Thus, με,1(y) ∈ Dε,1 and Dε,1 �= ∅ for any ε > 0. Recall that
Dε := {u ∈ Nε : Ψε(u) � cV0 + α(ε)}. From lemmas 2.2, 2.3, 5.1 and 5.6, we know
that, for any ε > 0 sufficiently small, the diagram

V ρε−→ Dε
m−1

ε−−−→ Dε,1
mε−−→ Dε

βε−→ Vδ (5.14)
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is well defined. By the arguments in the paragraph just before lemma 5.2, we see
that

lim
ε→0

βε(ρε(y)) = y uniformly in y ∈ V. (5.15)

For ε > 0 small enough, we define βε(ρε(y)) = y+λ(y) for y ∈ V, where |λ(y)| < δ/2
uniformly for y ∈ V. Define H(t, y) = y + (1 − t)λ(y). Then, H : [0, 1] × V → Vδ

is continuous. Obviously, H(0, y) = βε(ρε(y)), H(1, y) = y for all y ∈ V. Let
ξε,1 = m−1

ε ◦ ρε and βε,1 = βε ◦ mε. Thus, we obtain that the composite mapping
βε,1 ◦ ξε,1 = βε ◦ ρε is homotopic to the inclusion mapping id: V → Vδ. So it follows
from [11, lemma 2.2] that

catDε,1(Dε,1) � catVδ
(V). (5.16)

On the other hand, let us choose a function α(ε) > 0 such that α(ε) → 0 as
ε → 0 and such that (cV0 + α(ε)) is not a critical level for Υε. For ε > 0 small
enough, we deduce from lemma 4.5 that Υε satisfies the Palais–Smale condition in
Dε,1. So, it follows from [11, theorem 2.1] that Υε has at least catDε,1(Dε,1) critical
points on Dε,1. By lemma 2.3(iii), we conclude that Ψε has at least catVδ

(V) critical
points.

Proof of theorem 1.2. From the above arguments we know that (Pε) has at least
catVδ

(V) positive solutions. Go back to (LP)ε with the variable substitution x →
x/ε. We obtain that (LP)ε has at least catVδ

(V) positive solutions. In the following
we prove the concentration phenomena for positive solutions. Let uεn denote a
positive solution of (LP )ε. Then, vn(x) = un(x + yn) is a solution of the problem

− div(|∇vn|p−2∇vn) + V̂εn(x)|vn|p−2vn = f(vn) + |vn|p∗−2vn in R
N ,

where V̂εn(x) = V (εnx + εnyn) and yn is given in lemma 5.5. Furthermore, up to a
subsequence, it follows from lemma 5.5 that vn → v and ỹn = εnyn → y ∈ V. As
in [17, lemma 4.5], we have that there exists a δ > 0 such that ‖vn‖L∞(RN ) � δ > 0.
Let νn be the global maximum of vn; we infer from lemma 5.7 and the claim above
that {νn} ⊂ BR(0) for some R > 0. Thus, the global maximum of uεn

given by
zn = yn + νn satisfies εnzn = ỹn + εnνn. Since {νn} is bounded, it follows that
εnzn → y ∈ V. Moreover, since the function hε(x) = uε(x/ε) is a positive solution
of (LP)ε, the maximum points σε and zε of hε and uε, respectively, satisfy the
equality σε = εzε. So, we have that

lim
ε→0

V (σε) = lim
n→∞

V (εnzn) = V0.

Finally, from the above arguments and lemma 5.7, it follows from the boundedness
of {νn} that un(x) � ce−c|x−zn+νn| � ce−c|x−zn|. So, we conclude that uε satisfies
theorem 1.2(ii).

Proof of theorem 1.3. We use the idea of [37,38] to prove this conclusion, since, for
each ε > 0, we have E = W 1,p(RN ) = Eε. Therefore, to prove the conclusion, we
first claim that cε = cV ∞ for each ε > 0. In fact, as in lemma 4.2, since V (x) � V ∞,
one can easily check that cε � cV ∞ . So, in order to prove cV ∞ = cε, it suffices to
show that

cV ∞ � cε. (5.17)
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By theorem 3.7, we know that there exist e ∈ SV ∞ = {u ∈ W 1,p(RN ) : ‖u‖V ∞ = 1}
and s0 > 0 such that u0 = mV ∞(e) = s0e is a positive ground state solution of
(PV ∞). Moreover, mV ∞(e) is the unique global maximum of ΨV ∞ on E. Set wn =
e(· − yn), where yn ∈ R

N and |yn| → ∞ as n → ∞. Then, by lemma 2.2, it follows
that, for each n, mε(wn) = m̂ε(wn) ∈ Nε is the unique global maximum of Ψε on
E. Therefore, we get

cε � Ψε(mε(wn))

=
1
p

∫
RN

(|∇mε(wn)|p + Vε(x)|mε(wn)|p)

−
∫

RN

F (mε(wn)) − 1
p∗

∫
RN

|mε(wn)|p∗

=
1
p

∫
RN

(|∇mε(e)|p + V (εx + εyn)|mε(e)|p)

−
∫

RN

F (mε(e)) − 1
p∗

∫
RN

|mε(e)|p
∗

= ΨV ∞(mε(e)) +
∫

RN

(V (εx + εyn) − V ∞)mp
ε(e)

� cV ∞ +
∫

RN

(V (εx + εyn) − V ∞)mp
ε(e). (5.18)

It is clear that, for each ε > 0, there exists R > 0 such that∫
|x|�R

(V (εx + εyn) − V ∞)(mp
ε(e)) � cε. (5.19)

Moreover, we conclude from Lebesgue’s dominated convergence theorem that

lim
n→∞

∫
|x|<R

(V (εx + εyn) − V ∞)mp
ε(e)

=
∫

|x|<R

(
lim

n→∞
V (εx + εyn) − V ∞

)
mp

ε(e)

�
∫

|x|<R

(
lim sup

n→∞
V (εx + εyn) − V ∞

)
mp

ε(e)

= 0. (5.20)

So it follows from (5.19) and (5.20) that∫
x∈RN

(V (εx + εyn) − V ∞)mp
ε(e) = o(1), (5.21)

where o(1) → 0 as n → ∞. So, it follows that cV ∞ = cε for ε > 0.
Finally, assume, seeking a contradiction, for some ε0 > 0, that there exists

0 < û ∈ Nε0 such that cε0 = Ψε0(û). From lemma 2.2(iv), we deduce that there
exists ê ∈ Sε0 such that û = mε0(ê) = s1ê, where s1 > 0. From lemma 2.2 again,
we infer that mε0(ê) = m̂ε0(ê) is the unique global maximum of Ψε0 on E. We first
have that cV ∞ � ΨV ∞(mV ∞(ê)) = maxu∈E ΨV ∞(u). On the other hand, by (D1),
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it follows that V (x) � V ∞ for all x ∈ R
N and ΨV ∞(u) � Ψε0(u) for each u ∈ E.

Thus,

cV ∞ � ΨV ∞(mV ∞(ê)) � Ψε0(mV ∞(ê)) � Ψε0(mε0(ê)) = cε0 = cV ∞ .

This implies that cV ∞ = ΨV ∞(mV ∞(ê)) = Ψε0(mV ∞(ê)). Moreover, u∞ = mV ∞(ê)
satisfies

− div(|∇u∞|p−2∇u∞) + V ∞|u∞|p−2u∞ = f(u∞) + |u∞|p∗−2u∞ in R
N . (PV ∞)

As in the proof of theorem 3.7(i), one can easily check that u∞(x) > 0 in R
N .

However, one has that

ΨV ∞(u∞) = Ψε0(u
∞) +

∫
RN

(V ∞ − V (ε0x))(u∞)p. (5.22)

Furthermore, we deduce from (D1) that∫
RN

(V ∞ − V (ε0x))(u∞)p < 0. (5.23)

Thus, ΨV ∞(u∞) < Ψε0(u
∞). This is a contradiction.
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109–145.

25 P. L. Lions. The concentration–compactness principle in the calculus of variations. The
locally compact case. Part 2. Annales Inst. H. Poincaré Analyse Non Linéaire 1 (1984),
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40 J. F. Yang. Positive solutions of quasi-linear elliptic obstacle problems with critical expo-
nents. Nonlin. Analysis 25 (1995), 1283–1306.

(Issued 3 April 2015 )

https://doi.org/10.1017/S0308210513001492 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001492



