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Real-time and accurate fault detection and isolation is very important to ensure the reliability and
precision of integrated inertial navigation and global navigation satellite systems. In this paper,
the detection performance of a residual chi-square method is analysed, and on this basis an
improved method of fault detection is proposed. The local test based on a standardised residual
is introduced to detect and identify faulty measurements directly. Differing from the traditional
method, two appropriate thresholds are selected to calculate the weight factor of each measure-
ment, and the gain matrix is adjusted adaptively to reduce the influence of the undetected faulty
measurement. The sliding window test, which uses past measurements, is also added to further
improve the fault detection performance for small faults when the local test based on current
measurements cannot judge whether a fault has occurred or not. Several simulations are con-
ducted to evaluate the proposed method. The results show that the improved method has better
fault detection performance than the traditional detection method, especially for small faults,
and can improve the reliability and precision of the navigation system effectively.
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1. INTRODUCTION. The integration of inertial navigation system (INS) and global
navigation satellite system (GNSS) can achieve a superior performance to either of them
operating alone due to their good complementary characteristics. The INS/GNSS inte-
gration can be briefly classified as loosely-coupled, tightly-coupled and deeply-coupled
(Gautier and Parkinson, 2003). Compared with the loosely-coupled approach, the tightly-
coupled strategy uses the raw pseudorange measurements directly and can work when the
number of visible satellites drops to below four, therefore it has better precision and fault
tolerance ability (Hu et al., 2015; Li et al., 2017). The integration cannot always offer
reliable and accurate navigation information, however, due to the faulty observations of
navigation sensors (Alqurashi and Wang, 2015). As a self-contained system, INS is immune
to jamming as well as interference (Bhatti et al., 2012); hence, it is usually considered as
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the common reference system and assumed to be absolutely reliable. GNSS measurements
are easily interfered with and may contain fault errors. There are many types of fault associ-
ated with GNSS/INS integrated architectures (Bhatti and Ochieng, 2007), which are mainly
divided into two types: the abrupt fault and gradual fault, and the gradual fault is the most
difficult to detect among all fault modes. If the fault is not promptly diagnosed, the whole
navigation system will be polluted by the faulty measurements and the navigation precision
will degrade (Zhao et al., 2013). Therefore, it is necessary to carry out real-time fault detec-
tion to ensure the reliability and precision of the integrated navigation system (Bruggemann
et al., 2011).

In the field of integrated navigation system fault detection, the chi-square detection
method, which belongs to the analytical redundancy category and involves less calcula-
tion, is the classic method which is widely used (Abuhashim et al., 2010; Joerger and
Pervan, 2013; Yang et al., 2016). Brumback and Srinath (1987) proposed a chi-square test
based on the difference of the two state estimates for fault detection in Kalman filters.
An integrity and quality control procedure using recursive filtering and residual chi-square
test was investigated by Teunissen (1990). Compared with the state chi-square detection
method, the residual chi-square detection method can detect an abrupt fault in time with a
small amount of computation, but it does not work well in the detection of gradual faults
(Liu et al., 2016). Based on the chi-square distribution test, the autonomous integrity moni-
toring by extrapolation (AIME) method, in which the measurements used are not limited to
a single epoch, was proposed for detecting gradual faults (Diesel and Luu, 1995). Multiple
solutions separation (MSS) is another effective integrity monitoring method which uses the
difference between the main filter solution and the subfilter solution to determine the test
statistic (Brenner, 1995; Call et al., 2006), and it is a snapshot method, like residual chi-
square detection. The performance of MSS and AIME for gradual fault monitoring were
tested and the analysis revealed that both methods had advantages and disadvantages (Lee
and O’Laughlin, 2000). MSS guarantees satisfactory detection performance on the basis
of theory, but it has a heavy calculation burden due to the design of large numbers of fil-
ters. AIME can achieve significantly higher availability, however, there is no good way
to confirm the detection performance of the extrapolation method based on theory. A new
rate detector algorithm based on AIME is developed and the test results show that the rate
detector algorithm has better detection performance than AIME and MSS for gradual faults
(Bhatti et al., 2012).

With the development of computing technology in recent years, artificial intelligence
has attracted more attention and has been applied in fault detection. A novel data-driven
adaptive neuron fuzzy inference system (ANFIS)-based approach is presented for the detec-
tion of on-board navigation sensor faults in Unmanned Aerial Vehicles (UAVs) (Sun et al.,
2017). Zhu et al. (2016) proposed a novel fault detection method based on Gaussian pro-
cess regression to improve the fault detection performance of the residual chi-squared test
for gradual faults. Approaches based on least squares support vector machine (LS-SVM)
have been proposed and investigated for detecting faults in INS/GPS integration (Chen
et al., 2014; Zhong et al., 2017). However, artificial intelligence-based methods always
involve a large amount of calculation, which will result in a heavy calculation burden on
the navigation computer (Liu et al., 2016).

Besides, the above methods mainly evaluate the performance and quality of the inte-
grated system at the system or sensor level (Bhatti et al., 2007; Zhong et al., 2016). When
the fault is detected, usually the faulty subsystem is isolated and the one-step prediction
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of the Kalman filter is used for state estimation, which results in the waste of useful mea-
surements and the degradation of filter precision and the sensitivity of the fault detection
method. An improvement is to conduct a local measurement test after the global test. If
the global test is rejected, then the system measurement fault can be identified by the local
test (Wang et al., 2004; Hewitson and Wang, 2010). However, this scheme is effective only
for large faults, the fault detection and isolation performance for small faults needs to be
enhanced.

Apart from fault detection, robust estimation is another way to improve the precision
and reliability of the integrated navigation system. There are many different kinds of robust
filter methods, but the core idea of all of them is adaptively adjusting the measurement
noise covariance matrix to reduce the weight of the faulty measurement (Gandhi and Mili,
2010; Chang et al., 2013; Jiang et al., 2016, 2017). However, robust estimation can reduce
the weight of the outlier but not eliminate the influence of the outlier on the filter precision,
and its performance depends to a great degree on the selection of the weight matrix (Yang
and Gao, 2005).

In practical application, the value of a fault is not always large; both small faults and
gradual faults often occur. Based on the above analysis, taking the requirement of real-time
performance and the extensive application of residual chi-square detection into considera-
tion, the residual chi-square detection method is selected as the research object in this paper
and its detection performance is analysed theoretically. On this basis, to ensure the relia-
bility and precision of tightly-coupled INS/GNSS integration, an improved fault detection
method is proposed, which combines the advantage of fault detection and robust estima-
tion. The local test is conducted on each dimensional measurement directly to detect and
identify the faulty observation. Differing from the traditional method, the weight function
with two thresholds is selected and a weight factor is added to the measurement noise
covariance to adjust the filter gain matrix adaptively, which could reduce the influence of
the small size of a fault on the fault detection performance to some degree. To further
improve the fault detection performance, a sliding window test based on the past measure-
ment is added. The principle of the sliding window test is analysed and its superiority to
the traditional method in the sensitivity of fault detection is proved in theory. Finally, a
strategy is proposed for the local test to be adaptively adjusted between the sliding window
test and the traditional local test. This strategy can improve the fault detection performance
for small faults without imposing too much of a calculation burden.

The rest of this paper is organised as follows. The principle of residual chi-square detec-
tion method is introduced and its fault detection performance is analysed in Section 2.
Section 3 describes the proposed fault detection method. Simulation results and analysis
are shown in Section 4. Finally, conclusions are drawn in Section 5.

2. RESIDUAL CHI-SQUARE DETECTION METHOD.
2.1. Principle of residual chi-square detection method. The linear discrete time

varying system model can be described as{
X k = Φk,k−1X k−1 + Γ k,k−1Wk−1

Z k = H kX k + Vk
(1)

where X k is the state vector, Φk,k−1 is the transition matrix, Γ k,k−1 is the coefficient matrix,
Z k represents the measurement vector, H k is the measurement model matrix. Wk is the
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process noise which is commonly assumed as a zero-mean Gaussian white noise with
covariance matrix Qk and Vk is the measurement noise which is commonly assumed as
a zero-mean Gaussian white noise with covariance matrix Rk. Wk and Vk are independent.

One-step prediction of the state in the Kalman filter is

X̄ k/k−1 = Φk,k−1X̂ k−1 (2)

The residual vector is

vk = Z k − H kX̄ k/k−1 (3)

The covariance of the residual vector is

Pvk = H kPk/k−1H T
k + Rk (4)

When no fault occurs, the residual vector is white noise and its mean is 0. If the measure-
ment vector contains fault, the statistical characteristics of the residual will change, and
its mean is no longer equal to 0. Define two hypotheses, the null hypothesis H0 and the
alternative hypothesis H1.

H0 denotes no fault and can be expressed as

H0 : vk ∼ N (0, Pvk) (5)

H1 denotes the existence of fault and can be given by

H1 : vk ∼ N (μ, Pvk) (6)

where μ is the mean of vk.
Then, the fault detection function is

�k = vT
k P−1

vk vk (7)

where �k obeys the χ2 distribution and its degree of freedom is the dimension of observa-
tions vector Z k. Under the null hypothesis, �k ∼ χ2(0, n), under the alternative hypothesis,
�k ∼ χ2(σ , n), where σ is the non-centrality parameter and can be obtained as

σ = μTP−1
vk μ (8)

The fault detection criteria are{
�k > Td the existence of fault
�k ≤ Td no fault occurs

(9)

where Td is the threshold and determines the performance of the fault detection method.
According to the Neyman–Pearson criterion, when the false alarm rate is defined as α, the
threshold Td can be worked out through solving the equation P{�k > Td/H0} = α, and this
will minimise the missed detection rate.
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Figure 1. Rates of false alarm and missed detection of residual chi-square method.

2.2. Performance analysis of residual chi-square detection method. Residual chi-
square detection is a global detection method for all the filter measurements at time k.
To analyse the performance of the residual chi-square detection method, the concept of a
minimal detectable bias (MDB) is introduced. The MDB is defined as the model error that
can just be detected with the detection method (Yang et al., 2013; Teunissen, 2017).

First, the case in which a fault occurs on only one dimension measurement is considered.
If it is assumed that the fault occurs on the ith measurement, then the measurement model
can be written as

Z k = H kX k + Vk + li∇ (10)

where ∇ is the fault in the ith observation, and li = (0, 0, · · · , 1, · · · , 0)T is the unit vector
with the ith element equal to one, when the residual vector is

v̄k = Z k − H kX̄ k/k−1 = vk + li∇ (11)

which has the expectation:

E(v̄k) = μ = li∇ (12)

Then the non-centrality parameter of fault detection function is

σ∇ = μTP−1
vk μ = (li∇)TP−1

vk li∇ = ∇2P−1
vk ii (13)

where P−1
vk ii is the ith diagonal element of covariance matrix P−1

vk .
Assume the conditional probability density function under the null hypothesis H0 and

the alternative hypothesis H1 are p(�/H0) and p(�/H1). The false alarm rate is defined
as α and the missed detection rate is defined as β, the non-centrality parameter σ is the
function of α and β, and their relationship can be shown as in Figure 1.

From Figure 1, α and β can be expressed as

α =
∫ ∞

Td

p(�/H0)d� (14)

β = 1 −
∫ ∞

Td

p(�/H1)d� = 1 −
∫ ∞

Td−σ

p(�/H0)d� (15)

Combining the above two equations, the non-centrality parameter σ can be given by

σ = χ2
α (n) − χ2

1−β(n) (16)
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The MDB for the ith observation can then be obtained according to Equations (13) and
(16).

|∇|min =
√

σ/P−1
vk ii (17)

If a fault occurs on multiple dimensions of measurements at the same time, assume that
the fault vector is ∇ = (∇1, ∇2, · · · , ∇i, · · · , ∇n)T, where ∇i is the fault value in the ith
observation; if there is a fault, ∇i �= 0, otherwise ∇i = 0. The corresponding coefficient
matrix is L. Under this case, the non-centrality parameter σ can be written as

σ̄∇ = μTP−1
vk μ = (L∇)TP−1

vk L∇ (18)

Recalling Equation (16), a fault can be detected easily only when the fault vector meets the
following equation:

σ ≤ (L∇)TP−1
vk L∇ (19)

The larger the fault, the more easily it can be detected. When the fault is smaller than the
MDB, it is difficult to detect the fault accurately and the probability of missed detection
will increase. Faults do not always have a large size of value in practical applications, so
there is a need to make an improvement in the residual chi-square detection method.

Moreover, the residual chi-square detection method is a system-level evaluation. After
detection of the fault, the faulty subsystem is isolated and the state estimation is obtained by
using the one-step prediction of the Kalman filter in general. On the one hand, isolating the
faulty subsystem is a waste of useful measurements and, as a result, the estimation accuracy
will decrease. On the other hand, the error of the one-step prediction of the Kalman filter
will increase with the recursive time, and this in turn will have an influence on the value
of the residual and the fault detection sensitivity will degrade, which would cause more of
the missed detection phenomenon. To sum up, the performance of the residual chi-square
detection method is affected by the size and duration time of the fault. To improve the
fault detection performance, three improvements are introduced and the new fault detection
scheme is designed in the next section.

3. IMPROVED FAULT DETECTION METHOD.
3.1. Fault detection and identification based on local test. The residual chi-square

detection method is a system-level method, it cannot identify the faulty measurement. But
identifying and isolating the faulty measurement in time is of great significance to improve
the performance of fault detection and the precision of the integrated navigation system.
To identify the faulty measurement and retain more useful normal observations, the local
test method is introduced.

Assume the fault vector at time k is ∇k = (∇1
k , ∇2

k , · · · , ∇ i
k, · · · , ∇n

k ), the residual vector
is v̄k, then the fault detection function can be given as

λi
k =

v̄i
k√

P ii
vk

(20)

where P ii
vk is the ith diagonal element of covariance matrix Pvk, and v̄i

k is the ith element of
v̄k. λi

k is the standardised residual.
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Figure 2. Rates of false alarm and missed detection of local test method.

If there is no fault on the ith dimension of the measurement vector, then the null
hypothesis is H0 : λi

k ∼ N (0, 1), otherwise the alternative hypothesis is H1 : λi
k ∼ N (δi, 1),

where δi is the non-centrality parameter, and it is the function of the false alarm rate α0
and missed detection rate β0. Their relationship can be shown in Figure 2. For the sake of
writing the later equations conveniently, we replace λi

k with its absolute value, and λi
k in

the later part is equal to |v̄i
k|/

√
P ii

vk.
From Figure 2, the non-centrality parameter can be expressed as

δ = N1−α0/2(0, 1) − Nβ0 (0, 1) (21)

The fault detection criteria are{
λi

k > Nα0/2(0, 1) fault occurs
λi

k ≤ Nα0/2(0, 1) no fault occurs
(22)

Ideally, the probability of false alarm in the ith pseudorange α0 is set so that the probability
of any one of the outlier tests failing, when the null hypothesis is true, is equal to the global
test probability of false alarm α (Yang et al., 2013). Usually, the relationship of α0 and α

can be expressed as in Kelly (1998):

α0 = 1 − n
√

1 − α (23)

In the same way, the missed detection rate of local test β0 can be approximated as β (Kelly,
1998). The MDB for the ith observation can be obtained as

|∇i|min = δ

√
P ii

vk (24)

Every dimensional measurement should be tested to identify the fault because a fault may
occur on each measurement. After identification of the fault, the faulty measurement is iso-
lated, while the remaining normal measurements are used to conduct the filter measurement
update process.

3.2. Fault detection based on robust estimation. In practical application, the value
of a fault is not always large; small faults and soft faults often occur, and these types of
fault are hard to detect. The traditional local detection method gives the alarm when the
detection function is larger than the threshold, otherwise it indicates no fault. According
to the analysis in Subsection 3.1, when the measurement contains a small size of fault,
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the detection method can easily give the missed detection result. That is to say, when the
test function is smaller than the threshold, it may include two cases: one is that no fault
occurs on the measurement in reality, the other is that the fault is too small to detect, and
this may result in decrease of filter accuracy and fault detection sensitivity. Hence, in order
to improve the performance of the local test method for the small size of fault, the robust
estimation scheme is introduced. The weight function of the measurements can be defined
as follows:

pi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 λi
k ≤ Td1

Td1

λi
k

(
Td2 − λi

k

Td2 − Td1

)2

Td1 < λi
k ≤ Td2

0 Td2 < λi
k

(25)

where Td1 and Td2 are constant and selected as Td1 = 1 · 0 − 1 · 5 and Td2 = 2 · 5 − 8 in
general (Yang et al., 2001). It can be seen from Equation (25) that when the fault detection
function λi

k is smaller than Td1, it can be considered that no fault occurs on the ith dimen-
sional measurement, the weight of this dimensional measurement will be equal to 1. When
λi

k is larger than Td2, it indicates that there is a fault on the ith dimensional measurement
and the weight of this measurement will be selected as 0 to isolate its influence on the filter
precision. When λi

k is between Td1 and Td2, it means that the ith dimensional measurement
may be polluted by fault error and the quality of this measurement is lower than the nor-
mal measurement, so a weight factor smaller than 1 will be used to reduce the influence
of this measurement on the filter precision. Therefore, Td1 and Td2 can be regarded as two
thresholds for faults with different values.

According to the adjustment of the weight function, each dimension of the measure-
ments will be given different weight based on the quality of the measurement. And this will
affect their weight in the filtering estimation. The better the quality of the measurement, the
greater the weight.

Define P̄k as the equivalent weight matrix, and

P̄i
k = Ri

k/pi (26)

where pi is the nonzero element, P̄i
k and Ri

k are the ith diagonal elements of P̄k and Rk,
respectively. Then the new filter gain matrix can be written as

K̂ k = Pk/k−1H T
k (H kPk/k−1H T

k + P̄k)−1 (27)

When a small fault occurs but the fault detection function is lower than Td2, the weight
of the faulty measurement will be adjusted to be less than 1. This means that the weight
of this measurement in the Kalman filter measurement update will decrease and the filter
accuracy will be improved, in return this would improve the fault detection performance
the next time.

According to Equation (25), it can be concluded that Td1 and Td2 will have a great
influence on the performance of the filter, so suitable thresholds need to be selected. It can
be seen from Equation (25) that when the fault detection function λi

k is larger than Td2, the
ith dimensional measurement will be isolated, so Td2 is taken as the threshold, which is
equal to the threshold Nα0/2(0, 1) of the local test.
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In the next part, the effect of Td1 on the performance of filter will be analysed. Define

f (Td1) =
Td1

λi
k

(
Td2 − λi

k

Td2 − Td1

)2

(28)

For a fixed λi
k and Td2, f (Td1) can be seen as the function of Td1. Take the derivative of

f (Td1), with respect to Td1, the derived function can be written as

f ′(Td1) =
(Td2 − λi

k)2(Td2 + Td1)
λi

k(Td2 − Td1)3
(29)

From the above equation, it can be concluded that f ′(Td1) > 0 when Td1 ∈ (0, Td2), which
means f (Td1) is a monotone increasing function when Td1 is in the interval (0, Td2). In
other words, the weight of the measurement will increase with the value of Td1. Assume
that λi

k is the standardised residual of the ith measurement, and Td1 < λi
k < Td2. If a fault

occurs on this measurement, the larger the value of Td1, the greater the weight of the faulty
measurement, and the worse the precision of navigation. In contrast, if no fault occurs, the
larger the value of Td1, the greater the weight of the normal measurement, and the better the
precision of navigation. Therefore, the value of Td1 will have a great effect on the weight
of both normal and faulty measurements. The optimal value is difficult to choose, and
usually the choice of the Td1 is based on the experience or the requirement of the practical
application.

As the probability of the fault is much smaller than that of normal operation, the per-
formance of filtering with different values of Td1 is investigated when no fault occurs.
The results show that the positioning error will increase by nearly 30% and 100% when
Td1 = 1.5 and Td1 = 1, respectively. And the false alarm rate corresponding to Td1 = 1.5
is more than 100 times the false alarm rate α0 of the local test. When the fault detection
function λi

k is smaller than 1.5, the ith dimensional measurement can be regarded as normal
measurement. Based on the above analysis, to improve the fault detection performance for
small size of fault and ensure the weight of normal measurements, Td1 is selected to be
equal to 1.5.

3.3. Improved fault detection method aided by sliding window test. In Subsection 3.2,
when the fault detection function λi

k is between Td1 and Td2, a weight factor is added to
reduce the weight of the ith observation. In fact, a small size of fault may have occurred but
the local test based on the standardised residual fails to detect it. Restricted by the detection
ability of the local test, the performance of the fault detection for small faults is still not
ideal and remains to be further improved. Therefore, to improve the detection performance
for small faults, a sliding window test based on the past measurements is added.

In the sliding window test, the measurements used are not limited to the current epoch.
Assume that the window width is m, the new residual vector is defined as

v̂k =
(

P̂
−1
vk

)−1 ∑k

j =k−m+1
P−1

vj vj (30)

where P̂vk and Pvj are the covariance matrix of v̂k and vj , respectively. P̂vk can be
expressed as

P̂
−1
vk =

k∑
j =k−m+1

P−1
vj (31)
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From Equations (30) and (31), it can be seen that the new residual vector of the sliding
window test is a weighted average of the Kalman filter residual over the past measurements,
and it can be obtained that

P̂
ii
vk < P ii

vk (32)

where P̂
ii
vk and P ii

vk are the ith diagonal element of P̂
ii
vk and Pvk, respectively. The

mathematical derivation of Equation (32) is as follows.
Proof. P̂vk and Pvj are the covariance matrix of v̂k and vj , so P̂vk and Pvj are symmetric

positive definite matrices. When the window width m is 2, Equation (31) can be written as

P̂
−1
vk = P−1

vk−1 + P−1
vk (33)

For the sake of convenience in writing, Equation (33) can be written as

P−1
g = P−1

1 + P−1
2 (34)

where Pg = P̂vk, P1 = Pvk−1, P2 = Pvk. Based on the matrix theory, Equation (34) can be
written as

Pg = (P−1
1 + P−1

2 )−1

= P1 (P1 + P2)
−1 P2

= P1 − P1 (P1 + P2)
−1 P1

= P1 − PT
1 (P1 + P2)

−1 P1

= P1 − P̂1 (35)

Because P1 and P2 are symmetric positive definite matrices, P1 + P2 is also a symmetric
positive definite matrix; therefore, the following equation can be obtained:

P̂
ii
1 = PT

1i (P1 + P2)
−1 P1i > 0 (36)

where P̂
ii
1 is the ith diagonal element of P̂1, and P1i is the ith column of P1. Then, it can be

obtained that the following equation is established:

P ii
g < P ii

1 (37)

where P ii
g and P ii

1 are the ith diagonal element of Pg and P1, respectively.
In the same way, the following equation can be obtained:

P ii
g < P ii

2 (38)

where P ii
2 is the ith diagonal element of P2. So it can be concluded that P ii

g < P ii
l , ∃l ∈

(1, 2). The same result can be easily obtained when m > 2 by using mathematical induction.
Therefore, Equation (32) is proved.
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The test statistic is given by

λ̂i
k =

∣∣∣v̂i
k

∣∣∣√
P̂

ii
vk

(39)

The fault detection criteria are the same as in Equation (22).
According to the analysis in Subsection 3.1, the MDB of the ith observation in this

method can be obtained as ∣∣∣∇̂i

∣∣∣
min

= δ

√
P̂

ii
vk (40)

Combining Equations (24), (32) and (40), it can be obtained that∣∣∣∇̂i

∣∣∣
min

< |∇i|min (41)

Equation (41) indicates that the MDB of the sliding window test is smaller than that of the
local test based on current measurement. In other words, the sliding window test has better
sensitivity for the small size of fault than the local test based on current measurement.
But when no fault occurs, due to the higher sensitivity of fault detection, the fault detection
function of the sliding window test may be greater than that of the local test based on current
measurement, which may result in more normal measurements being judged as polluted or
faulty measurements. If using the sliding window test in the whole detection, the weight of
more normal measurements may reduce, which will result in a decrease of the navigation
precision when no fault occurs. Besides, it also involves a heavy computation burden due
to the storage of historical data and the calculation of covariance matrix inversion. On this
basis, the sliding window test is added to assist the fault detection method in Subsection 3.2
as follows.

For i = 1, 2, · · · , n, the fault detection function of the ith dimensional measurement at
time k − 1 is λi

k−1, and a fault may have occurred on the ith observation when

Td1 < λi
k−1 ≤ Td2 ∃i ∈ (1, 2, · · ·, n) (42)

To improve the fault detection performance, the sliding window test is adopted to conduct
the fault detection process at time k. If the above equation is not established, then the local
test based on the current measurement is used in the fault detection process of epoch k. By
using this strategy, the local test is adaptively adjusted between the sliding window test and
the traditional local test based on current measurements.

The fault detection scheme of this paper is shown in Figure 3. According to Figure 3,
the steps of the improved fault detection method are as follows.

(1) Calculation of the residual vector. Choose the fault detection method according to
the fault detection function of the last epoch. If Equation (42) is satisfied, the sliding
window test is adopted and the residual is calculated by Equation (30), otherwise,
the local test based on the current measurement is used and the residual vector is
calculated by Equation (11).

(2) Standardisation of the residual. Calculate the standardised residual of each dimen-
sional measurement. If the residual is calculated by Equation (30), the standardised

https://doi.org/10.1017/S0373463319000778 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000778


NO. 4 IMPROVED FAULT DETECTION METHOD 787

k

k

k

Figure 3. The fault detection scheme.

residual can be obtained by v̂
i
k/

√
P̂

ii
vk. On the contrary, if the residual is calculated by

Equation (11), the standardised residual will be calculated by Equation (20).
(3) Local fault detection and identification. Compare the standardised residual λi

k with
the two thresholds Td1 and Td2. If λi

k ≤ Td1, it indicates that no fault occurs on the
ith dimension measurement, the weight factor is 1. If Td2 < λi

k, there is fault on the
ith dimension measurement, the weight factor is 0 and the measurement is isolated.
If Td1 < λi

k ≤ Td2, calculate the weight factor according to Equation (25).
(4) Filter measurement update. After all the local tests are complete, calculate the

equivalent weight matrix, and then conduct the filter measurement update.
(5) Fault detection process at time k is complete, return to step 1 at time k + 1.

4. SIMULATION AND ANALYSIS.
4.1. Simulation conditions. The gyro constant drift is 0.1 h with its random drift 0.1 h,

the constant bias and random bias of accelerometer is 50 µg. The initial geographical posi-
tion is 108◦ east longitude and 34◦ north latitude, the initial velocity is zero, and the initial
azimuth is 90◦. The flight trajectory includes acceleration, deceleration, climbing motion,
diving motion and turning motion. The number of visible satellites is eight (S1 to S8) and
the pseudorange measurement error standard deviation is 10 m. The output frequency of
the inertial measurement unit (IMU) and GNSS receiver is 100 Hz and 1 Hz, respectively.
The whole simulation time is 1,600 s, and the filter cycle is set to be 1 s.

The state vector is X = [φE , φN , φU, δvE , δvN , δvU, δL, δλ, δh, εx, εy , εz, ∇x, ∇y , ∇z,
δtu, δtru]T, where φE , φN , φU are the misalignment angles, δvE , δvN and δvU are the east,
north and upward velocity errors, respectively. δL, δλ and δh denote the latitude, longitude
and height errors. εx, εy , εz and ∇x, ∇y , ∇z represent the gyro biases and accelerome-
ter biases. δtu, δtru are the range bias and range drift related to the receiver clock. The
observations of the filter are the pseudorange differences between INS and GNSS.

To verify the performance of the proposed method (M4), the other three methods are
introduced in the simulations for comparison. The first one is the residual chi-square
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Figure 4. MDB of M1 and M2 for each measurement.

detection method (M1), the second is the local fault detection method in Subsection 3.1
(M2), the third is the fault detection method proposed in Subsection 3.2 (M3).

The false alarm rate of M1 is 0.01 and its missed detection rate is 0.2. So it can be
obtained by calculation that the thresholds of M1 and M2 are 20.09 and 3.226, respectively.
For M3 and M4, the thresholds Td1 and Td2 are selected as 1.5 and 3.226, according to the
analysis in Subsection 3.2.

4.2. Simulation results. First the MDB of the residual chi-square detection method
and the local fault detection method is analysed. Assume that only one dimensional mea-
surement has fault, then the MDB of M1 and M2 for each measurement is shown in
Figure 4.

Under the case that only one measurement has fault, from Figure 4 it can be seen that
the MDB of each measurement of M1 is about 39.5, while that of M2 is about 40.8, which
is a little larger than that of M1. As the residual chi-square detection method is a system-
level method, the fault detection result is the comprehensive effect of the faults on all the
measurements. In other words, if small faults occur on multiple dimensional measurements
at the same time, it may result in the situation that the fault can be detected by M1 but M2
fails to detect the fault.

To choose an appropriate window width, the MDB of the sliding window test with dif-
ferent window widths is shown in Figure 5. All the MDB are calculated from time k = 100.
From Figure 5, it can be seen that the larger the window width, the smaller the MDB. In
other words, the fault detection sensitivity for a small fault will increase with the enlarge-
ment of the window width. The MDB for three different window widths are about 18 m,
13 m and 9 m, respectively. Although the sensitivity of fault detection will increase with the
enlargement of the window width, it will also bring greater calculation burden. Besides, the
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Figure 5. MDB of the sliding window test with different window widths.

Figure 6. Fault detection function of four methods: Test 1, large abrupt fault. (a) M1 and M2; (b) M3 and M4.

enlargement of the window width will further reduce the weight of the normal measurement
when no fault occurs and result in the decrease of navigation precision. Therefore, to give
the whole navigation process high navigation precision and to impose less computation
burden, the window width is chosen as 5 m.

To verify the fault detection performance of the proposed method, several simulation
tests with different fault models are performed.
Test 1: Assume that a large abrupt fault occurs in the fourth satellite pseudorange observa-
tion in the period of 600–900 s, and the value of the fault is 100 m. The detection results of
the four methods are shown in Figure 6. Here, for the convenience of comparison, only the
fault detection function of the fourth satellite pseudorange is given in M2, M3 and M4.
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Figure 7. Fault detection function of four methods: Test 2, small abrupt fault. (a) M1 and M2; (b) M3 and M4.

From Figure 6, it can be concluded that the values of the fault detection function of four
methods obviously increase when the abrupt fault occurs at 600 s. And during the interval
of 600–900 s, the values of the fault detection function are larger than the thresholds, which
indicates that the large abrupt fault can be detected by all the four methods. In Figure 6(a)
the fault detection function of M1 has a trend of decline. It can be imagined that if the
fault interval lasts for a long time, the fault detection function may decrease to lower than
the threshold, which would lead to missed detection. The fault detection functions of M2
and M3 fluctuate near a stable value, and the fault detection performance is not affected by
the duration of the fault. From Figure 6(b), it can be seen that the fault detection function
values often jump due to the frequent switching between the local test based on the current
measurement and the sliding window test based on past measurements.
Test 2: Assume that a small abrupt fault occurs in the fourth satellite pseudorange in the
period of 600–900 s, and the value of the fault is 30 m. The detection results of the four
methods are shown in Figure 7. Only the fault detection function of the fourth satellite
pseudorange is given in M2, M3 and M4.

From Figure 7, it can be seen that a large number of the fault detection function values
for the four methods are lower than the threshold during the fault stage when a small fault
occurs. That means that a lot of missed detection phenomena appear. Compared with M1
and M2, M3 adopts a robust filter and it can reduce the weight of the faulty measurement
when it fails to detect and isolate it, so it has better fault detection performance and less
missed detection phenomena. But from Figure 7(b), it can be seen that there are still a large
number of detection function values which are between the two thresholds or under thresh-
old Td1 in M3. M4 adopts the sliding window test which has better detection performance
than the local test which only uses the current measurement, therefore, M4 has less missed
detection phenomena compared with M3.
Test 3: Assume that multiple measurements have faults at the same time. Here, the 30 m,
45 m and 60 m constant errors are added to the fourth, sixth and eighth satellite measure-
ments. Again, the fault stage is from 600 s to 900 s. The detection results of the four
methods are shown in Figure 8. Here, the fault detection functions of S4, S6 and S8 are
given for M2, M3 and M4.

It can be seen from Figure 8(a) that when different size faults occur on several measure-
ments at the same time, although the value of the fault on each measurement is not very
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Figure 8. Fault detection function of four methods: Test 3, multiple faults at the same time. (a) M1; (b) M2,
M3 and M4 for the fourth, sixth and eighth satellites.

large, as the combined effect of faults on all the measurements is large enough, M1 can
still identify the fault accurately. Figure 8(b) shows the fault detection function of the other
three methods. It can be concluded that all three methods have a lot of missed detection
phenomena for small faults, and the larger the fault, the less the missed detection phenom-
ena. But for M2, the detection function value of S6 is larger than threshold for a long time
after the fault disappears at 900 s, which results in a large number of false alarms. Com-
pared with M2, M3 and M4 has better performance and less missed detection phenomena,
and M4 has the best detection performance.

Test 4: The above three tests all aimed to verify the fault detection performance of the
proposed method regarding abrupt faults. In practical applications, as well as abrupt faults,
gradual faults are of common occurrence and difficult to detect. So, in order to prove the
validity and superiority of the proposed method in detecting gradual faults, assume that
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Figure 9. Fault detection function of four methods: Test 4, gradual fault. (a) M1 and M2; (b) M3 and M4.

Table 1. Comparison of fault detection results of four methods under four tests.

Missed detection rate False alarm rate

M1 M2 M3 M4 M1 M2 M3 M4

Test 1 0 0 0 0 0·01 0·0013 0·0013 0·0018
Test 2 0·91 0·89 0·76 0·46 0·013 0·0018 0·0016 0·0028
Test 3 3·3e-5 / / / 0·01 / / /

S4 / 0·91 0·76 0·46 / 0·003 0·0016 0·0028
S6 / 0·61 0·11 0·10 / 0·121 0·0015 0·0036
S8 / 0·002 0·004 0·004 / 0·0016 0·0013 0·0032

Test 4 0·44 0·40 0·35 0·26 0·014 0·0013 0·0013 0·0024

a gradual fault whose slope is 0 · 5 m/s occurs on the fourth satellite measurement in the
period of 600∼800 s. The detection results of the four methods are shown in Figure 9.

It can be seen from Figure 9 that it takes a long time for all the four methods to detect
the gradual fault. The fault detection time delay of each method is about 110 s, 100 s, 70 s
and 60 s, respectively. This means that the proposed method can detect the gradual fault
the fastest and has less missed detection phenomena. The reason is that the influence of
undetected faults on filter estimation is reduced in M4, whose fault detection sensitivity is
better than those of M1, M2 and M3.

The false alarm rate and missed detection rate are usually used to measure the perfor-
mance of the fault detection method, and the navigation precision is usually measured by
the root mean square error (RMSE). To further illustrate the performance of the proposed
fault detection method, a 100-run Monte Carlo simulation of the four methods in each test
was conducted to obtain statistical results. The comparison of fault detection results and
the root mean square of horizontal position errors of the four methods under four tests are
shown in Table 1 and Figure 10, respectively.

In test 3, faults occur on three satellites’ measurements, so the fault detection results of
S4, S6 and S8 are listed in Table 1 for M2, M3 and M4, while the global fault detection
results are given for M1 as a result of being a system-level method. From Table 1, it can be
seen that all the four methods have good fault detection performance when the value of the
fault is large enough. When a small size of fault occurs, the performance of the traditional
residual chi-square detection method and the local test is poor, and the missed detection
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Figure 10. RMSE of horizontal position errors of four methods in the four tests. (a) Test 1; (b) Test 2;
(c) Test 3; (d) Test 4.

rate is higher than 80%. With the aid of robust estimation, the missed detection rate will
be reduced by 16%, but there is still a large number of missed detection phenomena. The
proposed method can effectively improve the fault detection performance, and the missed
detection rate can be reduced by 49% compared with the conventional method. For the false
alarm rate, the given theoretical value of M1 is 0.01, while that of the other three methods
can be calculated as 0.0013 according to Equation (23). It can be seen from Table 1 that the
false alarm rate of the proposed method is higher than those of the traditional methods due
to the higher sensibility of fault detection, but the value is tolerated and the increase of false
alarm rate has little impact on the continuity and reliability of the integration. Therefore,
the proposed method has better performance of fault detection.

It can be seen from Figure 10 that the proposed method M4 has high precision under all
four tests. When a large size of fault occurs, although the faulty measurement is isolated
by M1, the position error would accumulate till the fault disappears because the error of
one-step prediction increases with time. For M2, M3 and M4, the faulty measurements are
isolated and other normal measurements are used for the state estimation, therefore, they
have higher precision. When a small fault or gradual fault occurs, as there is a high rate of
missed detection for M1, M2 and M3, the position error is still rather large, while M4 has
better fault detection and tolerance performance, so it has higher precision.
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Table 2. Comparison of mean RMSE of horizontal position errors during fault period.

Mean RMSE of latitude error (m) Mean RMSE of longitude error (m)

Test number M1 M2 M3 M4 M1 M2 M3 M4

1 5·50 1·42 1·65 1·83 5·68 1·46 1·66 1·78
2 11·8 10·9 4·76 2·05 15·8 14·6 6·68 2·29
3 5·86 15·8 6·11 2·99 5·56 17·5 7·24 2·63
4 10·8 5·28 2·68 1·88 16·2 6·55 3·31 2·08

The mean RMSEs of the four methods during the fault period are shown in Table 2.
It can be seen that when a small fault or a gradual fault occurs, the proposed method has
higher navigation accuracy compared with the other three methods, and the positioning
accuracy is obviously superior to the traditional methods M1 and M2. When the value of
the fault is large enough, as in test 1, for M3, as the result of adopting the robust esti-
mation, the weight of the normal measurement will be reduced, therefore, the navigation
accuracy is a little lower than the conventional method M2. For the proposed method M4,
because of combining the robust estimation and sliding window test, the weight of normal
measurement will be further reduced, so the position precision of M4 is a little lower than
that of M3. Besides, when multiple faults occur in test 3, although the value of the fault
on each measurement is not very large, M1 still has good performance at fault detection
due to being a global detection method. However, M2 is a local test method, and the faulty
measurements are difficult to detect because the value of fault is small, which results in
missed detection and the decrease of the filtering precision, so the RMSE of M2 is larger
than that of M1. Compared with M2, M3 and M4 have better performance of fault detec-
tion and tolerance for small size of fault because of adopting the robust estimation method.
Therefore, they have higher filtering precision than M2. For M3, as a result of the large
number of missed detection phenomena, the performance of fault detection and tolerance
for small size of fault is still a little poor, so it has a larger RMSE than M1.

In practical application, the uncertainty of the fault model will have a great influence on
the performance of the fault detection method. From the above simulation results, it can be
seen that the proposed method has better adaptability for the fault model and this would be
of great importance to improve the reliability and robustness of the navigation system.

5. CONCLUSIONS. Aiming at the drawbacks of residual chi-square detection method
in INS/GNSS integration fault detection, an improved fault detection method combin-
ing fault detection and robust estimation is proposed. The fault detection and isolation is
achieved by the local test with two thresholds. When the fault detection function is between
the two thresholds, a robust estimation is adopted to adjust the gain matrix adaptively,
which could reduce the influence of undetected small fault on the navigation precision
and improve the fault detection performance of the local test in return. Besides, a sliding
window test is used to replace the local test based on current measurement as the fault
detection method of next epoch. The performance of the proposed method is verified by
four simulation tests with different fault models. The results show that the large size of
fault can be detected and isolated accurately. When there is small size of fault on the mea-
surement, the fault detection performance and navigation precision can be improved by
this method. Compared with the traditional methods, the method proposed in this paper has
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better adaptability for sensor fault models and can be regarded as a reference for improving
the reliability of navigation systems in complex situations.
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