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Logic underlies many fundamental techniques in computer science. It helps us to

rigorously formalize these techniques and prove them correct. The last decade has

witnessed a growing interest in the use of computational logic methods for program

verification. It has attracted researchers from both computational logic and program

verification communities, giving rise to a fruitful exchange of ideas and experiences.

One of the most successful approaches in this area considers (some form of) Horn

clauses as an intermediate representation, where different analysis and verification

methods can be defined; see, e.g., the papers by (Bjørner et al. 2015) and (Gange

et al. 2015). For instance, programs written in different programming languages

(e.g., functional, imperative, object oriented, concurrent) can be translated into

Constrained Horn Clauses (CHCs) so that the same tools for CHC verification can

be used for all these programs. Furthermore, the extensive literature on analysis

and transformation techniques for Constraint Logic Programs (CLPs) (Jaffar and

Maher 1994), a particular case of CHCs, can now be also applied to improve CHC

verification tools (Gallagher and Kafle 2014).

For this special issue, we have selected four papers that contain cutting-edge

research results on the use of computational logic for program verification.

The paper “Predicate Pairing for Program Verification” by E. De Angelis, F.

Fioravanti, A. Pettorossi and M. Proietti considers a general setting in which the

verification of partial correctness properties for imperative programs is reduced

to the satisfiability problem for sets of CHCs. In this context, some CHC solvers

may fail to verify the satisfiability of a set of CHCs because they cannot find an

A-definable model (i.e., a model that is definable in a given class A of constraints).

The paper thus introduces a transformation based on the well-known unfold/fold

transformation framework (Tamaki and Sato 1984; Pettorossi and Proietti 1994),

called predicate pairing, that may increase the number of sets of CHCs that can

be proved satisfiable by finding an A-definable model. In particular, the authors

prove that the predicate pairing strategy cannot worsen the effectiveness of the

CHC solver. They have also implemented an algorithm for predicate pairing on the

VeriMAP transformation and verification system (De Angelis et al. 2014) and have

evaluated its effectiveness on a benchmark of over 160 problems encoding relational

properties of small, yet nontrivial C-like programs. The results show that the use
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of predicate pairing as a preprocessor greatly improves the ability of the Z3 CHC

solver (de Moura and Bjørner 2008) to prove satisfiability.

The paper “Interval-based Resource Usage Verification by Translation into Horn

Clauses and an Application to Energy Consumption” by P. López-Garcı́a, L.

Darmawan, M. Klemen, U. Liqat, F. Bueno and M. V. Hermenegildo also considers

a setting in which different programming languages can be translated into an

intermediate language based on Horn clauses (Méndez-Lojo et al. 2008). It presents

a configurable framework for static resource usage verification where specifications

can include data size-dependent resource usage functions, expressing both lower and

upper bounds. In particular, the framework allows the definition of preconditions

expressing intervals within which the input data size of a program is supposed

to lie. Both the analysis and the specifications may include different kinds of

functions (e.g., polynomial, exponential, summatory or logarithmic functions) and

the authors propose sound methods to compare them during the verification process.

Experimental results with a prototype implementation of the general framework

suggest that the proposed techniques are feasible and accurate in practice. Finally,

the applicability of the framework is shown by considering programs written in

the XC language and running on the XMOS XS1-L architecture (Watt 2009) w.r.t.

some energy consumption specifications. The example illustrates how the verification

system can prove whether energy consumption specifications are met or not, or infer

particular conditions under which the specifications hold.

The paper “Tree dimension in verification of constrained Horn clauses” by B.

Kafle, J. P. Gallagher and P. Ganty shows how the notion of tree dimension can be

used in the verification of CHCs. The dimension of a tree is a numerical measure

of the tree’s branching complexity. This notion, originally introduced to analyse

flows in rivers and other tree structures found in nature (Esparza et al. 2014), has

recently found several applications in program analysis and verification (Esparza et

al. 2010; Reps et al. 2016). Here, the authors apply the notion of tree dimension

to measure the complexity of Horn clause derivation trees. In this context, they

introduce two algorithms that are based on decomposing a set of CHCs into sets

whose derivations have dimension at most k and at least k + 1 for some given k.

Experimental results on a set of non-linear Horn clause verification problems show

its feasibility and its usefulness, both for proving safety as well as for finding bugs in

programs.

The paper “A Concurrent Constraint Programming Interpretation of Access

Permissions” by C. Olarte, E. Pimentel and C. Rueda proposes the use of linear

concurrent constraint (lcc) programming (Fages et al. 2001) for the verification of

programs annotated with Access Permissions (APs). Concurrent constraint program-

ming (Saraswat 1993) subsumes and extends both concurrent logic programming

(Shapiro 1989) and CLP (Jaffar and Maher 1994). Essentially, APs are abstractions

about the aliased access to an object content (Boyland et al. 2001); they allow

a direct control of the access to the mutable state of an object, thus facilitating

verification and enabling code parallelization. The authors have implemented a tool

called Alcove, which allows both to animate the AP behavior of a given program

and to formally verify properties such as the absence of deadlocks or the correctness
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w.r.t. a given specification. The technique is based on a declarative interpretation

of APs as lcc programs. The authors exploit the underlying constraint system of

lcc as well as the logical nature of the language to represent in a natural way the

semantics of AP specifications. Furthermore, the declarative reading of lcc agents as

formulas in intuitionistic linear logic makes it possible to define effective verification

techniques.

Finally, I would like to express my gratitude to M. Truszczynski, Editor-in-Chief

of Theory and Practice of Logic Programming, as well as to Cambridge University

Press for their support in editing the special issue. I would also like to thank the

reviewers for their feedback and suggestions for improving the papers, as well as the

authors of the selected papers for their high-quality submissions.
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