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Abstract In this paper, we give an explicit realization of the universal SL2-representation rings of free
groups by using ‘the ring of component functions’ of SL(2, C)-representations of free groups. We introduce
a descending filtration of the ring, and determine the structure of its graded quotients. Then we study
the natural action of the automorphism group of a free group on the graded quotients, and introduce
a generalized Johnson homomorphism. In the latter part of this paper, we investigate some properties
of these homomorphisms from a viewpoint of twisted cohomologies of the automorphism group of a free
group.
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1. Introduction

Let Fn be a free group of rank n generated by x1, . . . , xn. We denote by R(Fn) the
set Hom(Fn, SL(2, C)) of all SL(2, C)-representations of Fn. Let F(R(Fn), C) be the
set {χ : R(Fn) → C} of all complex-valued functions on R(Fn). Then we can regard
F(R(Fn), C) as a C-algebra in a natural way from the pointwise product. (See § 4 for
details.) For any x ∈ Fn and any 1 � i, j � 2, we define the element aij(x) of F(R(Fn), C)
to be

(aij(x))(ρ) := the (i, j)-component of ρ(x)

for any ρ ∈ R(Fn). We call the map aij(x) the (i, j)-component function of x, or simply a
component function of x. Let RQ(Fn) be the Q-subalgebra of F(R(Fn), C) generated by
all aij(x) for x ∈ Fn and 1 � i, j � 2. We call RQ(Fn) the ring of component functions
of SL(2, C)-representations of Fn over Q. The ring RQ(Fn) contains the ring of Fricke
characters of Fn as a subring. For any x ∈ Fn, the map trx := a11(x) + a22(x) is the
Fricke character of x. Let XQ(Fn) be the Q-subalgebra of F(R(Fn), C) generated by all
trx for x ∈ Fn. The ring XQ(Fn) is called the ring of Fricke characters of Fn. Classically,
Fricke characters were first studied by Fricke with respect to the classification problem
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of Riemann surfaces (see [5]). In the 1970s, Horowitz investigated algebraic properties
of XQ(Fn) by using combinatorial group theory [9,10]. In particular, he described a set
of finite generators of XQ(Fn) as a ring. Let AutFn be the automorphism group of Fn.
In 1980, Magnus [18] studied the action of AutFn on XQ(Fn) from a representation-
theoretic viewpoint. Using it he constructed faithful representations of braid groups. On
the other hand, the ring structure of XQ(Fn) itself is not well understood. One reason why
the ring structure of XQ(Fn) is complicated is that the number n+

(
n
2

)
+

(
n
3

)
of Horowitz’s

generators of XQ(Fn), which is minimal, is too large to handle in most situations. Due to
this combinatorial complexity, various computations in the study of XQ(Fn) do not work
well enough. To avoid this difficulty, we work with the larger ring RQ(Fn) of component
functions.

First, we show that aij(xl) for 1 � i, j � 2 and 1 � l � n generate RQ(Fn) as a ring.
Hence, RQ(Fn) is finitely generated, and is therefore Noetherian. Then we consider the
polynomial ring

P := Q[tij,l | 1 � i, j � 2, 1 � l � n]

of 4n indeterminates and the surjective homomorphism π : P → RQ(Fn) defined by

π(tij,l) := aij(xl).

Let I be the kernel of π. Set

sii,l := tii,l − 1 and sij,l := tij,l

for any 1 � i �= j � 2 and 1 � l � n. Consider the sij,l as new indeterminates of the
polynomial ring P. Let J̃ be the ideal of P generated by all sij,l for 1 � i, j � 2 and
1 � l � n. We will see later that I ⊂ J̃ . Set J := J̃/I and consider J as an ideal of
P/I ∼= RQ(Fn). Then we have the descending filtration J ⊃ J2 ⊃ J3 ⊃ · · · of RQ(Fn).
For any k � 1, denote by grk(J) the kth graded quotient Jk/Jk+1 of the filtration. In
the early part of this paper, we investigate the ring structure of RQ(Fn) through the
filtration {Jk} and the graded quotients grk(J). For any k � 1, set

Tk :=
{ n∏

l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod I)
∣∣∣∣ eij,l � 0,

n∑
l=1

(e11,l + e12,l + e21,l) = k

}
⊂ Jk.

We show the following.

Theorem 1.1.

(1) For each k � 1, Tk (mod Jk+1) forms a basis of grk(J) as a Q-vector space.

(2)
⋂

k�1 Jk = {0}.

(3) The ring RQ(Fn) is an integral domain. That is, the ideal I is prime.

(4) The ring RQ(Fn) is naturally isomorphic to the universal SL(2, C)-representation
ring of Fn.
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From part (3), we see that the algebraic set V (I) is an algebraic variety over Q, and
RQ(Fn) is its affine coordinate ring. From part (4), RQ(Fn) is one of the explicit real-
izations of the universal SL2-representation ring of Fn over Q. In general, the universal
SL2-representation ring of a group G plays an important role in the study of the clas-
sification of SL(2, R)-representations of G for any Q-algebra R. It is characterized by
the universality, and is constructed by generators and relations in a universal way. (For
details about the universal representation ring, see, for example, [16].) We remark that,
to the best of our knowledge, the problem of whether the ring XQ(Fn) of Fricke characters
of Fn is isomorphic to the universal SL2-character ring of Fn over Q or not is still open.
(See also the end of § 3 in [23].)

Now, AutFn naturally acts on the ideal J . For any k � 1, let

Dn(k) := Ker(AutFn → Aut(J/Jk+1)).

The groups Dn(k) define a descending filtration of AutFn. In the latter part of this paper,
we study the difference between the filtration {Dn(k)} and the Andreadakis–Johnson fil-
tration {An(k)} of AutFn. Historically, the Andreadakis–Johnson filtration of AutFn

was introduced by Andreadakis [1] in 1965. (For the definition, see § 3.) In the 1980s,
Johnson studied a descending filtration of the mapping class group of a surface in order
to investigate the group structure of the Torelli group in a series of works [11–14]. John-
son’s filtration is nothing but the intersections of An(k)s with the mapping class group. In
particular, he determined the abelianization of the Torelli group by introducing a certain
homomorphism. Today, his homomorphism is called the first Johnson homomorphism,
and it is generalized to higher degrees. Over the last two decades, the Johnson homomor-
phisms of the mapping class groups have been studied from various viewpoints by many
authors including Morita [20], Hain [6] and others. In [8], we introduced a descending
filtration {En(k)} of AutFn and certain homomorphisms. They are the Fricke character
analogues of the Andreadakis–Johnson filtration and the Johnson homomorphisms from
the graded quotients of the En(k)s. In particular, we showed that En(1) = An(2) · InnFn,
and that An(2k) ⊂ En(k) for any k � 1. However, the group structure of En(k) is quite
complicated to handle in general. In this paper, we study an RQ(Fn) version of our
previous works. We prove the following.

Theorem 1.2.

(1) The filtration {Dn(k)} is central.

(2) For each k � 1, An(k) ⊂ Dn(k). In particular, for 1 � k � 4, Dn(k) = An(k).

In order to show part (2), we give a sufficient condition for Dn(k) = An(k). At the
present stage, we do not know whether the condition always holds or not for any k � 5.
On the other hand, by introducing Johnson homomorphism analogues ηk (for definitions,
see § 5.2), we verify the following.

Proposition 1.3. For any n � 2,

(1) each grk(Dn) is torsion-free,

(2) dimQ(grk(Dn) ⊗Z Q) < ∞.
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Finally, we consider an extension of the homomorphism η1 to AutFn as a crossed
homomorphism. In [21] Morita showed that the first rational Johnson homomorphism of
the mapping class group, whose initial domain is the Torelli group, can be extended to the
mapping class group as a crossed homomorphism. He also showed that this extension is
unique up to one coboundary. Similar results for AutFn were obtained by Kawazumi [15].
Furthermore, Kawazumi constructed higher twisted cocycles of AutFn with the crossed
homomorphism. By restricting them to the mapping class group, he investigated relations
between the higher cocycles and the Morita–Mumford classes. In [27], we studied the
Fricke character analogue of these works. However, due to the combinatorial complexity
of the graded quotients of the filtration of XQ(Fn), we cannot study the crossed homo-
morphisms of AutFn well. In order to enhance the knowledge of twisted cohomology
theory in the study of XQ(Fn), it would be better to investigate those of RQ(Fn) first
since RQ(Fn) is much easier to handle than XQ(Fn).

In [26] we computed H1(AutFn, (H∗ ⊗Z Λ2H) ⊗Z Q) = Q⊕2 by using Nielsen’s pre-
sentation for AutFn, and described two cocycles that generate it. One of them is fK,
that being Kawazumi’s extension of the first rational Johnson homomorphism. The other
cocycle is fM, which is essentially constructed by Morita with the Magnus representation.
(For details, see [26].) From these results and the fact that Dn(k) = An(k) for 1 � k � 2,
we see that there exist crossed homomorphisms gM and gK from AutFn to the target
HomQ(gr1(J), gr2(J)) of η1, corresponding to fM and fK, respectively, under the equality
Dn(1)/Dn(2) = An(1)/An(2). In § 5.3, we show that the cohomology classes of gM and gK

are linearly independent in H1(AutFn, HomQ(gr1(J), gr2(J))). At the end of the paper,
we introduce twisted higher cohomology classes ζ∗

q (g⊗q
K ) ∈ Hq(AutFn, gr1(J)⊗q) for each

q � 1 according to Kawazumi’s construction of higher cohomology classes with the first
rational Johnson homomorphism of AutFn. In [15], by restricting them to the mapping
class group of a surface, Kawazumi studied a relation between these higher cohomology
classes and the Morita–Mumford classes. Here, we prove the following theorem.

Theorem 1.4. For any n � 4, the restrictions of ζ∗
1 (gK) ∪ ζ∗

1 (gK) and ζ∗
2 (g⊗2

K ) to IAn

are linearly independent in H2(IAn, gr1(J)⊗2).

2. Notation and conventions

Throughout the paper, we use the following notation and conventions. Let Fn be the free
group of rank n with a basis x1, . . . , xn, and let H be its abelianization H1(Fn, Z). Then
H is a free abelian group of rank n, and the coset classes of x1, . . . , xn form a basis of H

as a free abelian group. We also use the following notation.

• Let G be a group. The automorphism group AutG of G acts on G from the right.
For any σ ∈ AutG and x ∈ G, the action of σ on x is denoted by xσ.

• Let N be a normal subgroup of a group G. For an element g ∈ G, we also denote
the coset class of g by g ∈ G/N if there is no risk of confusion. Similarly, for a ring
R, an element f ∈ R and an ideal I of R, we also denote by f the coset class of f

in R/I if there is no risk of confusion.
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• For elements x and y in G, the commutator bracket [x, y] of x and y is defined to
be xyx−1y−1.

3. The Andreadakis–Johnson filtration of Aut Fn

In this section, we review the Andreadakis–Johnson filtration of AutFn without proofs.
The main purpose of the section is to fix the notation. For basic material concerning the
Andreadakis–Johnson filtration and the Johnson homomorphisms, see, for example, [25]
or [28].

For the free group Fn on n generators, we define the lower central series of Fn by the
rule

Γn(1) := Fn, Γn(k) := [Γn(k − 1), n], k � 2.

For any y1, . . . , yk ∈ Fn, the left-normed commutator

[[· · · [[y1, y2], y3], . . . ], yk]

of weight k is denoted by
[y1, y2, . . . , yk]

for simplicity. Then we have the following lemma.

Lemma 3.1 (see [19, §5.3]). For any k � 1, the group Γn(k) is generated by all
left-normed commutators of weight k.

Let ρ : AutFn → AutH be the natural homomorphism induced from the abelianization
of Fn. The kernel IAn of ρ is called the IA-automorphism group of Fn. Magnus [17]
showed that for any n � 3, IAn is finitely generated by automorphisms

Kij : xt �→
{

xj
−1xixj , t = i,

xt, t �= i,

for distinct 1 � i, j � n, and

Kijl : xt �→
{

xi[xj , xl], t = i,

xt, t �= i,

for distinct 1 � i, j, l � n and j < l. For any k � 1, the action of AutFn on each nilpotent
quotient group G/ΓG(k + 1) induces the homomorphism

ρk : AutFn → Aut(Fn/Γn(k + 1)).

We denote the kernel of ρk by An(k). Then the groups An(k) define a descending central
filtration

IAn = An(1) ⊃ An(2) ⊃ · · ·

of AutFn. We call it the Andreadakis–Johnson filtration of AutFn. Then we have

Theorem 3.2 (Andreadakis [1]). For any k, l � 1, [An(k),An(l)] ⊂ An(k + l).
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4. The rings of component functions of SL(2, C)-representations of free
groups

Let Fn be a free group of rank n generated by x1, . . . , xn. We denote by R(Fn) the
set Hom(Fn, SL(2, C)) of all SL(2, C)-representations of Fn. Let F(R(Fn), C) be the set
{χ : R(Fn) → C} of all complex-valued functions on R(Fn). Then F(R(Fn), C) has a
C-algebra structure by the operations defined by

(χ + χ′)(ρ) := χ(ρ) + χ′(ρ),

(χχ′)(ρ) := χ(ρ)χ′(ρ),

(λχ)(ρ) := λ(χ(ρ))

for any χ, χ′ ∈ F(R(Fn), C), λ ∈ C, and ρ ∈ R(Fn). The automorphism group AutFn of
Fn naturally acts on R(Fn) and F(R(Fn), C) from the right by

ρσ(x) := ρ(xσ−1
), ρ ∈ R(Fn) and x ∈ Fn

and
χσ(ρ) := χ(ρσ−1

), χ ∈ F(R(Fn), C) and ρ ∈ R(Fn)

for any σ ∈ AutFn.
For any x ∈ Fn and any 1 � i, j � 2, we define an element aij(x) of F(R(Fn), C) to be

(aij(x))(ρ) := an (i, j)-component of ρ(x)

for any ρ ∈ R(Fn). The action of an element σ ∈ AutFn on aij(x) is given by aij(xσ).
We have the relations

a11(x−1) = a22(x), a12(x−1) = −a12(x), a21(x−1) = −a21(x), a22(x−1) = a11(x)
(4.1)

and
a11(xy) = a11(x)a11(y) + a12(x)a21(y),

a12(xy) = a11(x)a12(y) + a12(x)a22(y),

a21(xy) = a21(x)a11(y) + a22(x)a21(y),

a22(xy) = a21(x)a12(y) + a22(x)a22(y)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.2)

for any x, y ∈ Fn. Let RQ(Fn) be the Q-subalgebra of F(R(Fn), C) generated by all
aij(x) for x ∈ Fn and 1 � i, j � 2. We call RQ(Fn) the ring of component functions
of SL(2, C)-representations of Fn over Q. We remark that for any x ∈ Fn, the map
trx := a11(x) + a22(x) is the Fricke character of x. Let XQ(Fn) be the Q-subalgebra
of F(R(Fn), C) generated by all trx for x ∈ Fn. The algebra RQ(Fn) contains XQ(Fn).
In [8], we investigated the behaviour of the natural action of AutFn on XQ(Fn). The
purpose of the paper is to study an RQ(Fn)-analogue of our previous results.

Let P be a rational polynomial ring

Q[tij,l | 1 � i, j � 2, 1 � l � n]
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of 4n indeterminates. Consider the ring homomorphism πn : P → RQ(Fn) defined by

πn(tij,l) := aij(xl).

We usually omit the subscript n, and write π for πn for simplicity. Then we have the
following proposition.

Proposition 4.1. The ring homomorphism π : P → RQ(Fn) is surjective.

Proof. Let R be the Q-subalgebra of RQ(Fn) generated by all aij(xl) for 1 � i, j � 2
and 1 � l � n. It suffices to show that R = RQ(Fn). Let x be a reduced word xe1

i1
xe2

i2
· · ·xer

ir

in Fn for some 1 � im � n and em = ±1. We show that aij(x) ∈ RQ(Fn) by induction
on r � 1. For r = 1, it is obvious that aij(x) ∈ R from (4.1). For r � 2, from (4.2) we
have

a11(x) = a11(xe1
i1

xe2
i2

· · ·xer−1
ir−1

)a11(xer
ir

) + a12(xe1
i1

xe2
i2

· · ·xer−1
ir−1

)a21(xer
ir

).

Hence, by the inductive hypothesis, we obtain a11(x) ∈ R. By the same argument, we
see that aij(x) ∈ R for any 1 � i, j � n. �

Now set

In := Ker(π) = {f ∈ P | f((aij(xl))(ρ)) = 0 for any ρ ∈ R(Fn)}.

For simplicity, we usually write I for In if there is no confusion. Then we have an isomor-
phism P/I ∼= RQ(Fn) induced from the homomorphism π. We identify them through
this isomorphism. The ideal I is non-trivial since

t11,lt22,l − t12,lt21,l − 1 ∈ I (4.3)

for any 1 � l � n. In order to investigate the ideal I and the algebra RQ(Fn), we
introduce a descending filtration of RQ(Fn). Set

sii,l := tii,l − 1 and sij,l := tij,l

for any 1 � i �= j � 2 and 1 � l � n. Consider the sij,l as new indeterminates of the
polynomial ring P. We can write any polynomial f ∈ P as a polynomial of the sij,l by
substituting tii = sii + 1 and tij = sij for 1 � i �= j � 2. Then the polynomial (4.3) is
rewritten as

s11,ls22,l − s12,ls21,l + s11,l + s22,l. (4.4)

Let J̃n be the ideal of P generated by all sij,l for 1 � i, j � 2 and 1 � l � n. For
simplicity, we usually write J̃ for J̃n if there is no risk of confusion.

Lemma 4.2. I ⊂ J̃ .

Proof. For any f ∈ I, by rewriting f as a polynomial of the sij,l, we have

f = a0 +
n∑

l=1

(a11,ls11,l + a22,ls22,l + a12,ls12,l + a21,ls21,l)

+ (terms with degree � 2)

for some a0, aij,l ∈ Q. By considering f(ε) for the trivial representation ε : Fn → SL(2, C),
we see that a0 = 0, and hence f ∈ J̃ . �
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Set J := J̃/I and consider J as an ideal of P/I. If we emphasize n, we write Jn instead
of J . For any n � 2, let Fn−1 be the free group of rank n − 1 with basis x1, . . . , xn−1,
and consider Fn−1 as a subgroup of Fn.

Lemma 4.3. The natural map ῑ : Jn−1 → Jn induced from the inclusion map
ι : J̃n−1 → J̃n is injective.

Proof. For some f ∈ J̃n−1, assume that ῑ(f (mod In−1)) = 0. Then ι(f) ∈ In, and
hence πn(ι(f))(ρ) = 0 for any representation ρ : Fn → SL(2, C). For any representation
μ : Fn → SL(2, C), define the representation ρ : Fn → SL(2, C) by

xi �→
{

μ(xi) if 1 � i � n − 1,

E2 if i = n,

where E2 denotes the 2 × 2 identity matrix. Then we have

0 = πn(ι(f))(ρ) = πn−1(f)(μ),

and hence f ∈ In−1. This shows that ῑ is injective. �

Consider the descending filtration J ⊃ J2 ⊃ J3 ⊃ · · · . For any k � 1, denote by grk(J)
the kth graded quotient Jk/Jk+1 of the filtration. We give a basis of grk(J) as a Q-vector
space. For any k � 1, set

Tk :=
{ n∏

l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod I)
∣∣∣∣ eij,l � 0,

n∑
l=1

(e11,l + e12,l + e21,l) = k

}
⊂ Jk.

Proposition 4.4. For each k � 1, Tk (mod Jk+1) forms a basis of grk(J) as a Q-vector
space.

Proof. Since grk(J) is generated by

n∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l s
e22,l

22,l (mod I) for
n∑

l=1

(e11,l + e12,l + e21,l + e22,l) = k,

by using (4.4) we see that Tk (mod Jk+1) generates grk(J). In order to show that the
Tk are linearly independent, assume that

∑′
a(e11,1, e11,2, . . . , e21,n)

( n∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod I)
)

≡ 0 (mod Jk+1),

where the above sum runs over all tuples (e11,1, e11,2, . . . , e21,n) such that e11,1 + e11,2 +
· · · + e21,n = k. Denote by f the left-hand side of the above equation, and consider f

as an element in π(J̃k+1) through the identification P/I ∼= RQ(Fn) induced from the
homomorphism π.

Now consider the interior of the unit disk in C:

D := {z ∈ C | zz̄ < 1}.

https://doi.org/10.1017/S0013091516000456 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000456


On the universal SL2-representation rings of free groups 981

For any zij,l ∈ D \ {0} for 1 � i, j � 2 and 1 � l � n except for (i, j) = (2, 2), we define
the representation ρ : Fn → SL(2, C) by

ρ(xl) :=

(
z11,l + 1 z12,l

z21,l (z11,l + 1)−1(1 + z12,lz21,l)

)
.

Then, from f ∈ π(J̃k+1), we see that

f(ρ) =
∑′

a(e11,1, e11,2, . . . , e21,n)
n∏

l=1

z
e11,l

11,l z
e12,l

12,l z
e21,l

21,l

can be written as a polynomial of z11,l, z12,l and z21,l with degree greater than k. Since we
can take zij,l arbitrary, a(e11,1, e11,2, . . . , e21,n) = 0 for any tuple (e11,1, e11,2, . . . , e21,n).

�

In order to show that the filtration Jk has trivial intersection, we prepare some lemmas.

Lemma 4.5. For any f ∈ P, f can be written as

f ≡ a(q)sq
22,n + a(q−1)sq−1

22,n + · · · + a(1)s22,n

+ b(q)sq
11,n + b(q−1)sq−1

11,n + · · · + b(1)s11,n + c (mod I),

where a(m), b(m) and c are polynomials among sij,l such that (i, j, l) �= (1, 1, n), (2, 2, n).

Proof. First, for any f ∈ P, write f as

f = C(q)sq
22,n + C(q−1)sq−1

22,n + · · · + C(1)s22,n + C(0)

with C(m) polynomials among sij,l for (i, j, l) �= (2, 2, n). The coefficient C(q) can be
written as

C(q) = D(q)(s11,n + 1) + a(q)

with D(q) polynomials among sij,l for (i, j, l) �= (2, 2, n), and with a(q) a polynomial
among sij,l for (i, j, l) �= (1, 1, n), (2, 2, n). Since

(s11,n + 1)s22,n = −s11,n + s12,ns21,n,

we have

f ≡ a(q)sq
22,n + C ′(q−1)

sq−1
22,n + · · · + C ′(1)s22,n + C ′(0) (mod I)

with C ′(m) polynomials among sij,l for (i, j, l) �= (2, 2, n). By an inductive argument as
above, we obtain

f ≡ a(q)sq
22,n + a(q−1)sq−1

22,n + · · · + a(1)s22,n + a(0) (mod I)

with a(0) a polynomial among sij,l for (i, j, l) �= (2, 2, n). Then a(0) can be written as

a(0) = b(r)sr
11,n + b(r−1)sr−1

11,n + · · · + b(1)s11,n + c

with b(m), c polynomials among sij,l for (i, j, l) �= (1, 1, n), (2, 2, n). If q > r (respectively,
r > q), by setting b(m) = 0 (respectively, a(m) = 0) for r + 1 � m � q (respectively,
q + 1 � m � r), we obtain the required result. �
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Lemma 4.6. For any 1 � l � n and m � 1, we have

s22,l ≡ −s11,l + s2
11,l − · · · + (−1)msm

11,l

+ s12,ls21,l − s11,ls12,ls21,l + s2
11,ls12,ls21,l − · · · + (−1)m−1sm−1

11,l s12,ls21,l

+ (−1)msm
11,ls22,l (mod I).

Proof. We can show this by induction on m � 1 using s22,l = −s11,l + s12,ls21,l −
s11,ls22,l. �

Lemma 4.7. Let n be an integer greater than 1. For some f ∈ J̃n−1 and m � 2, if
ι(f) (mod In) ∈ (Jn)m, then f (mod In−1) ∈ (Jn−1)m.

Proof. By using Lemmas 4.5 and 4.6, we can write f as

f ≡
∑
k�1

∑
e11,1+···+e21,n−1=k

α(e11,1, e12,1, e21,1, . . . , e21,n−1)

×
n−1∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod (Jn−1)m)

for some α(e11,1, e12,1, e21,1, . . . , e21,n−1) ∈ Q. Then, by considering ι(f) and observ-
ing the above equation modulo (Jn)m through ι, we obtain that all the α(e11,1, e12,1,

e21,1, . . . , e21,n−1) are equal to zero by applying Proposition 4.4 recursively. Therefore,
f ∈ (Jn−1)m. �

Lemma 4.8. For any 1 � l � n, q � 1 and m � 2(q + 1), if we set

sq
22,l ≡ A

(q)
q,0s

q
11,l + A

(q)
q+1,0s

q+1
11,l + · · · + A

(q)
m+1,0s

m+1
11,l

+ A
(q)
q−1,1s

q−1
11,l s12,ls21,l + A

(q)
q,1s

q
11,ls12,ls21,l + · · · + A

(q)
m−1,1s

m−1
11,l s12,ls21,l

+ A
(q)
q−2,2s

q−2
11,l s

2
12,ls

2
21,l + A

(q)
q−1,2s

q−1
11,l s

2
12,ls

2
21,l + · · · + A

(q)
m−3,1s

m−3
11,l s2

12,ls
2
21,l

...

+ A
(q)
1,q−1s11,ls

q−1
12,l s

q−1
21,l + A

(q)
2,q−1s

2
11,ls

q−1
12,l s

q−1
21,l

+ · · · + A
(q)
m−2q+3,q−1s

m−2q+3
11,l sq−1

12,l s
q−1
21,l (mod Jm+2),

then the coefficients A
(q+1)
∗,∗ of sq+1

22,l (mod Jm+2) are written as

A
(q+1)
q+k,0 = −A

(q)
q+k−1,0 + A

(q)
q+k−2,0 − · · · + (−1)kA

(q)
q,0,

A
(q+1)
q−1+k,1 = −A

(q)
q+k−2,1 + A

(q)
q+k−3,1 − · · · + (−1)kA

(q)
q−1,1

+ (A(q)
q+k−1,0 − A

(q)
q+k−2,0 + · · · + (−1)k−1A

(q)
q,0),

...

A
(q+1)
k,q = −A

(q)
k−1,q + A

(q)
k−2,q − · · · + (−1)kA

(q)
0,q

+ (polynomial among A
(q)
i,j with j � q − 1)

for any 1 � k � m − 2q + 1. In particular, A
(q)
q,0 = (−1)q.
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Proof. By observing the coefficients of the product sq
22,l × s22,l, we obtain this lemma

from a direct computation. �

As a corollary, we obtain the following.

Corollary 4.9. For any 1 � l � n, q � 1, 1 � u � q and q + 1 � r � m + 1, we have

A
(q+1)
r+1,0 = −A

(q)
r,0 − A

(q+1)
r,0 ,

A
(q+1)
r+1,u = −A(q)

r,u − A(q+1)
r,u + (a polynomial among A

(q)
i,j with j � u − 1).

Lemma 4.10. For any 1 � l � n, k � 1, we have∣∣∣∣∣∣∣∣∣∣∣

A
(1)
k+1,0 A

(1)
k+2,0 A

(1)
k+3,0 · · · A

(1)
2k,0

A
(2)
k+1,0 A

(2)
k+2,0 A

(2)
k+3,0 · · · A

(2)
2k,0

...
...

...
. . .

...

A
(k)
k+1,0 A

(k)
k+2,0 A

(k)
k+3,0 · · · A

(k)
2k,0

∣∣∣∣∣∣∣∣∣∣∣
= 1.

Proof. Recall that A
(1)
q,0 = (−1)q and A

(q+1)
r+1,0 = −A

(q)
r,0 − A

(q+1)
r,0 . By applying the ele-

mentary transformations

• add (k − 1)st column to kth column,

• add (k − 2)nd column to (k − 1)st column,

...

• add 1st column to 2nd column

in order, we see that∣∣∣∣∣∣∣∣∣∣∣

A
(1)
k+1,0 A

(1)
k+2,0 A

(1)
k+3,0 · · · A

(1)
2k,0

A
(2)
k+1,0 A

(2)
k+2,0 A

(2)
k+3,0 · · · A

(2)
2k,0

...
...

...
. . .

...

A
(k)
k+1,0 A

(k)
k+2,0 A

(k)
k+3,0 · · · A

(k)
2k,0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

A
(1)
k+1,0 0 0 · · · 0

A
(2)
k+1,0 A

(1)
k+1,0 A

(1)
k+2,0 · · · A

(1)
2k−1,0

...
...

...
. . .

...

A
(k)
k+1,0 A

(k−1)
k+1,0 A

(k−1)
k+2,0 · · · A

(k−1)
2k−1,0

∣∣∣∣∣∣∣∣∣∣∣

= (−1)k+1

∣∣∣∣∣∣∣∣
A

(1)
k+1,0 A

(1)
k+2,0 · · · A

(1)
2k−1,0

...
...

. . .
...

A
(k−1)
k+1,0 A

(k−1)
k+2,0 · · · A

(k−1)
2k−1,0

∣∣∣∣∣∣∣∣
.

By the inductive argument, we see that the determinant of the above matrix is equal to
(−1)(k+1)k = 1. �

Now we are ready to prove the main theorem of this section.

Theorem 4.11. For any n � 1, we have
⋂

k�1 Jk = {0}.
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Proof. We prove this theorem by induction on n � 1. Assume that n = 1 and
f ∈

⋂
k�1 Jk. By Lemma 4.5, we may assume that

f ≡ a(q)sq
22,1 + a(q−1)sq−1

22,1 + · · · + a(1)s22,1

+ b(q)sq
11,1 + b(q−1)sq−1

11,1 + · · · + b(1)s11,1 + c (mod I)

for some q � 1 and a(r), b(r), c ∈ Q[s12,1, s21,1]. We show that a(r) = b(r) = c = 0 for any
1 � r � q.

For any 1 � r � q, set
a(r) :=

∑
i,j�0

a
(r)
i,j si

12,1s
j
21,1

for a
(r)
i,j ∈ Q. We remark that the sum in the above definition runs over finitely many

tuples (i, j). Similarly, define b
(r)
ij and cij ∈ Q. Then we have

f ≡
q∑

r=1

( ∑
i,j�0

a
(r)
i,j si

12,1s
j
21,1

)
sr
22,1 +

q∑
r=1

( ∑
i,j�0

b
(r)
i,j si

12,1s
j
21,1

)
sr
11,1

+
∑

i,j�0

ci,js
i
12,1s

j
21,1 (mod I).

For sufficiently large m 
 2q, consider f ≡ 0 (mod Jm+2). Rewrite sr
22,1 as a polynomial

among s11,1, s12,1, s21,1 by Lemma 4.8. By Proposition 4.4, we see that the coefficients
of sr

11,1s
i
12,1s

j
21,1 are equal to zero for any r, i, j such that r + i + j � m + 2.

Consider the linear order �′ of N × N defined by

(i, j) �′ (k, l) ⇐⇒ i + j < k + l, or i + j = k + l and j � l.

For example, we have

(0, 0) �′ (1, 0) �′ (0, 1) �′ (2, 0) �′ (1, 1)′ �′ (0, 2) �′ · · · .

We show that all a
(r)
i,j are equal to zero by the induction on (i, j) with respect to the

above order. First, by observing the coefficients of sq+1
11,1, s

q+2
11,1, . . . , s

2q
11,1, we have

a
(1)
0,0A

(1)
q+1,0 + a

(2)
0,0A

(2)
q+1,0 + · · · + a

(q)
0,0A

(q)
q+1,0 = 0,

a
(1)
0,0A

(1)
q+2,0 + a

(2)
0,0A

(2)
q+2,0 + · · · + a

(q)
0,0A

(q)
q+2,0 = 0,

...

a
(1)
0,0A

(1)
2q,0 + a

(2)
0,0A

(2)
2q,0 + · · · + a

(q)
0,0A

(q)
2q,0 = 0.

From Lemma 4.10, we obtain

a
(1)
0,0 = a

(2)
0,0 = · · · = a

(q)
0,0 = 0.
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Assume that (i, j) >′ (0, 0). For any q + 1 � r � 2q, the coefficients of sr
11,1s

i
12,1s

j
21,1

satisfy

a
(1)
i,j A

(1)
r,0 + a

(2)
i,j A

(2)
r,0 + · · · + a

(q)
i,j A

(q)
r,0

+ a
(1)
i−1,j−1A

(1)
r,1 + a

(2)
i−1,j−1A

(2)
r,1 + · · · + a

(q)
i−1,j−1A

(q)
r,1

+ a
(1)
i−2,j−2A

(1)
r,2 + a

(2)
i−2,j−2A

(2)
r,2 + · · · + a

(q)
i−2,j−2A

(q)
r,2 + · · · = 0,

and hence
a
(1)
i,j A

(1)
r,0 + a

(2)
i,j A

(2)
r,0 + · · · + a

(q)
i,j A

(q)
r,0 = 0

by the inductive hypothesis. Thus we have

a
(1)
i,j = a

(2)
i,j = · · · = a

(q)
i,j = 0

by Lemma 4.10. Therefore, we see that a(r) = 0 for any 1 � r � q. Thus we have

f ≡ b(q)sq
11,1 + b(q−1)sq−1

11,1 + · · · + b(1)s11,1 + c (mod I) ∈
⋂
k�1

Jk.

By using Proposition 4.4 recursively, we can see that b(r) = c = 0 for any 1 � r � q, and
hence f = 0.

Next, assume that n � 2 and f ∈
⋂

k�1 Jk. Then we have f ≡ 0 (mod Jk) for any
k � 1. By Lemma 4.5, we may assume that

f = a(q)sq
22,n + a(q−1)sq−1

22,n + · · · + a(1)s22,n

+ b(q)sq
11,n + b(q−1)sq−1

11,n + · · · + b(1)s11,n + c (mod I) (4.5)

for some q � 1 and a(r), b(r), c ∈ Q[sij,l | (i, j, l) �= (1, 1, n), (2, 2, n)] as above. For any
1 � r � q, set

a(r) :=
∑

i,j�0

a
(r)
i,j si

12,nsj
21,n

for some a
(r)
i,j ∈ Q[sij,l | l �= n]. Similarly, define b

(r)
ij and cij ∈ Q.

Take any m � 1, and fix it. The indeterminates s22,l for 1 � l � n − 1 might appear
in the coefficients a

(r)
i,j . By using Lemma 4.6 and Proposition 4.4, we have

a
(r)
i,j ≡

∑
e11,1+···+e21,n−1<m

α
(r)
i,j (e11,1, . . . , e21,n−1)

n−1∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod (Jn−1)m),

b
(r)
i,j ≡

∑
e11,1+···+e21,n−1<m

β
(r)
i,j (e11,1, . . . , e21,n−1)

n−1∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod (Jn−1)m),

ci,j ≡
∑

e11,1+···+e21,n−1<m

γi,j(e11,1, . . . , e21,n−1)
n−1∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l (mod (Jn−1)m)
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for some α
(r)
i,j (e11,1, . . . , e21,n−1), β

(r)
i,j (e11,1, . . . , e21,n−1), γi,j(e11,1, . . . , e21,n−1) ∈ Q. Set

ã
(r)
i,j :=

∑
e11,1+···+e21,n−1<m

α
(r)
i,j (e11,1, . . . , e21,n−1)

n−1∏
l=1

s
e11,l

11,l s
e12,l

12,l s
e21,l

21,l .

Similarly, define b̃
(r)
i,j and c̃i,j .

We show that all ã
(r)
i,j are equal to 0. Consider f ≡ 0 (mod Jm+q+1

n ). By observing the
coefficients of sq+1

11,n, we obtain

(ã(1)
0,0A

(1)
q+1,0 + ã

(2)
0,0A

(2)
q+1,0 + · · · + ã

(q)
0,0A

(q)
q+1,0)s

q+1
11,n ≡ 0 (mod (Jn)m+q+1).

On the other hand, since ã
(1)
0,0A

(1)
q+1,0 + ã

(2)
0,0A

(2)
q+1,0 + · · · + ã

(q)
0,0A

(q)
q+1,0 is a polynomial of

degree at most m − 1 in Q[sij,l | l �= n], we see that

ã
(1)
0,0A

(1)
q+1,0 + ã

(2)
0,0A

(2)
q+1,0 + · · · + ã

(q)
0,0A

(q)
q+1,0 ≡ 0 (mod (Jn−1)m)

by using Proposition 4.4. By the same argument, we obtain

ã
(1)
0,0A

(1)
q+1,0 + ã

(2)
0,0A

(2)
q+1,0 + · · · + ã

(q)
0,0A

(q)
q+1,0 = 0,

ã
(1)
0,0A

(1)
q+2,0 + ã

(2)
0,0A

(2)
q+2,0 + · · · + ã

(q)
0,0A

(q)
q+2,0 = 0,

...

ã
(1)
0,0A

(1)
2q,0 + ã

(2)
0,0A

(2)
2q,0 + · · · + ã

(q)
0,0A

(q)
2q,0 = 0.

This shows that
ã
(1)
0,0 = ã

(2)
0,0 = · · · = ã

(q)
0,0 = 0,

and hence
a
(1)
0,0 ≡ a

(2)
0,0 ≡ · · · ≡ a

(q)
0,0 ≡ 0 (mod (Jn−1)m).

By using the same argument as that for the n = 1 case, we obtain a
(r)
i,j ≡ 0 (mod (Jn−1)m)

for any i, j � 0. Since we can take m � 1 arbitrarily, we see that

a
(r)
i,j ∈

⋂
k�1

(Jn−1)m.

By the inductive hypothesis, we obtain a
(r)
i,j = 0, and hence a(r) = 0. Thus,

f = b(q)sq
11,n + b(q−1)sq−1

11,n + · · · + b(1)s11,n + c (mod I).

By using Proposition 4.4 recursively, we can show that b(r) = c = 0. This means that
f = 0. Therefore, the induction proceeds. �

Theorem 4.12. The ideal I is generated by (4.3) as an ideal of P.

Proof. Let I ′ be the ideal generated by (4.3). It is clear that I ′ ⊂ I. For any f ∈ I, by
using (4.3) we can write f (mod I ′) as a form in (4.5). Since f (mod I) ∈

⋂
k�1 Jk, by

using the same argument as in the proof of Theorem 4.11, we can see that all coefficients
a(r), b(r), c are equal to zero by using elements in I ′. Thus f ∈ I ′. �
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For any f ∈ RQ(Fn) \ {0}, there exists some k � 1 such that f ∈ Jk and f /∈ Jk+1.
We call this k the weight of f , and denote it by wt(f). By using the weight, we show the
following.

Corollary 4.13. The ring RQ(Fn) is an integral domain. That is, the ideal I is prime.

Proof. For any f, g ∈ RQ(Fn) \ {0}, let k1 and k2 be the weights of f and g, respec-
tively. Then it is easily seen that the weight of fg is k1 +k2. This means that fg �= 0. �

Finally, we discuss the relation between RQ(Fn) and the universal SL2-representation
ring of Fn. Let AQ(Fn, SL(2, C)) be the quotient ring of Q[αij(x) | 1 � i, j � 2, x ∈ Fn]
with the ideal I0 generated by

αij(1) = δij , αij(xy) =
2∑

l=1

αil(x)αlj(y), det(αij(x)) = 1

for any 1 � i, j � 2 and x, y ∈ Fn. The ring AQ(Fn, SL2) is called the universal
SL2-representation ring of Fn over Q.

Theorem 4.14. The ring RQ(Fn) is naturally isomorphic to A(Fn, SL2).

Proof. From Theorem 4.12, the natural isomorphism π̄ : P/I → RQ(Fn) factors
through AQ(Fn, SL2) with the natural homomorphism ψ : P/I → AQ(Fn, SL2) defined
by sij,l �→ αij(xl). Since ψ is surjective, it must be the isomorphism. �

5. On the action of Aut Fn on RQ(Fn)

5.1. A descending filtration {Dn(k)} of Aut Fn

In this section, we always identify the ideal J in P/I with its image in RQ(Fn) through
the isomorphism P/I ∼= RQ(Fn) induced from π unless otherwise noted. Set a′

ii(x) :=
aii(x) − 1 ∈ RQ(Fn) for any 1 � i � 2 and x ∈ Fn. The indeterminates sii,l, s12,l and
s21,l correspond to a′

ii(xl), a12(xl) and a21(xl), respectively. For any k � 1, let

Dn(k) := Ker(AutFn → Aut(J/Jk+1))

be the kernel of the homomorphism AutFn → Aut(J/Jk+1) induced from the action of
AutFn on J/Jk+1. Then the groups Dn(k) define a descending filtration

Dn(1) ⊃ Dn(2) ⊃ · · · ⊃ Dn(k) ⊃ · · ·

of AutFn. In this section, we study this filtration. First, we show that this is a central
filtration of AutFn. For any f ∈ J and σ ∈ AutFn, set

sσ(f) := fσ − f ∈ J.

Then we have the following lemma.
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Lemma 5.1. For any f ∈ J and σ, τ ∈ AutFn,

(1) sστ (f) = (sσ(f))τ + sτ (f),

(2) s1Fn
(f) = 0,

(3) sσ−1(f) = −(sσ(f))σ−1
,

(4) s[σ,τ ](f) = {sτ (sσ(f)) − sσ(sτ (f))}σ−1τ−1
.

Proof. Parts (1), (2) and (3) are straightforward. Here we prove part (4). Using parts
(1) and (3), we obtain

s[σ,τ ](f)
(1)
= (sστ (f))σ−1τ−1

+ sσ−1τ−1(f)
(3)
= (sστ (f))σ−1τ−1 − (sτσ(f))σ−1τ−1

(1)
= {(sσ(f))τ + sτ (f) − (sτ (f))σ − sσ(f)}σ−1τ−1

= {sτ (sσ(f)) − sσ(sτ (f))}σ−1τ−1
.

This completes the proof of Lemma 5.1. �

Lemma 5.2. For any k, l � 1, f ∈ Jm and σ ∈ Dn(k), we have sσ(f) ∈ Jk+m.

Proof. It suffices to show the lemma for the case in which f is (the coset class of) a
monomial si1j1,l1si2j2,l2 · · · simjm,lm . Then we have

sσ(f) = fσ − f

= (si1j1,l1)
σ · · · (simjm,lm)σ − si1j1,l1 · · · simjm,lm

= (si1j1,l1 + sσ(si1j1,l1)) · · · (simjm,lm + sσ(simjm,lm)) − si1j1,l1 · · · simjm,lm .

By the definition of Dn(k), the elements sσ(si1j1,l1), . . . , sσ(simjm,lm) belong to Jk+1.
Therefore, we obtain sσ(f) ∈ Jk+m. This completes the proof of Lemma 5.2. �

Proposition 5.3. For any k, m � 1, [Dn(k),Dn(m)] ⊂ Dn(k + m).

Proof. For any σ ∈ Dn(k), τ ∈ Dn(m) and f ∈ J , by Lemmas 5.1 and 5.2, we see
that

s[σ,τ ](f) = {sτ (sσ(f)) − sσ(sτ (f))}σ−1τ−1

≡ 0 (mod Jk+m+1).

Hence, [σ, τ ] ∈ Dn(k + m). This completes the proof of Proposition 5.3. �

This proposition shows that the filtration Dn(k) is a central filtration of AutFn. Next,
we consider how different the filtration Dn(k) is from the Andreadakis–Johnson filtration
An(k) of AutFn.
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Proposition 5.4. For any n � 2, Dn(1) = IAn.

Proof. We remark that

{a′
11(xl), a12(xl), a21(xl) (mod J2) | 1 � l � n}

is a basis of J/J2 as a Q-vector space by Proposition 4.4. On the other hand, by using
(4.1) and (4.2), we can see that

a′
11(w) ≡ e1a

′
11(xi1) + · · · + era

′
11(xir ) (mod J2),

a12(w) ≡ e1a12(xi1) + · · · + era12(xir ) (mod J2),

a21(w) ≡ e1a21(xi1) + · · · + era21(xir ) (mod J2)

for any w = xe1
i1

· · ·xer
ir

∈ Fn. Hence, for any σ ∈ Dn(1) and any 1 � l � n, we have

xσ
l = xlcl

for some cl ∈ Γn(2). Thus, σ ∈ IAn. It is obvious that IAn ⊂ Dn(1). �

From Proposition 5.4, we see that the filtration {Dn(k)} contains the lower cen-
tral series {A′

n(k)} of IAn. Below, we show that the filtration {Dn(k)} contains the
Andreadakis–Johnson filtration {An(k)}. Namely, we will see that A′

n(k) ⊂ An(k) ⊂
Dn(k).

Lemma 5.5. For any k � 1 and y ∈ Γn(k), we have a′
11(y), a12(y), a21(y), a′

22(y) ∈ Jk.

Proof. Since Γn(k) is generated by all left-normed commutators, it suffices to show the
lemma in the case where y = [y1, y2, . . . , yk] for some y1, . . . , yk ∈ Fn. We use induction
on k � 1. If k = 1, the lemma is clear. Assume that k � 2 and set z := [y1, . . . , yk−1].
Then a′

ii(z), a12(z), a21(z) ∈ Jk−1 by the inductive hypothesis. Furthermore, from (4.1),
we see that a′

ii(z
−1), a12(z−1), a21(z−1) ∈ Jk−1. By using (4.2), we have

a′
11([z, yk]) = a′

11(zykz−1y−1
k )

= a′
11(zyk)a′

11(z
−1y−1

k ) + a12(zyk)a21(z−1y−1
k ) + a′

11(zyk) + a′
11(z

−1y−1
k )

≡ a′
11(yk)a′

11(y
−1
k ) + a12(yk)a21(y−1

k )

+ a′
11(z) + a′

11(yk) + a′
11(z

−1) + a′
11(y

−1
k ) (mod Jk)

≡ a′
11(z) + a′

11(z
−1) (mod Jk)

≡ 0 (mod Jk).

The last equation follows from

0 = a′
11(1) = a′

11(zz−1) ≡ a′
11(z) + a′

11(z
−1) (mod Jk).

Similarly, we can obtain that a12(y), a21(y), a′
22(y) ∈ Jk. �
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Lemma 5.6. For any k � 1, z ∈ Fn and y ∈ Γn(k), we have

a′
11(zy) ≡ a′

11(y) (mod Jk),

a12(zy) ≡ a12(y) (mod Jk),

a21(zy) ≡ a21(y) (mod Jk),

a′
22(zy) ≡ a′

22(y) (mod Jk).

Proof. This lemma follows from (4.2) and Lemma 5.5 immediately. �

From Lemma 5.6, we obtain the following theorem.

Theorem 5.7. For any k � 1, An(k) ⊂ Dn(k).

Next, we give a sufficient condition for An(k) = Dn(k). Consider the homomorphisms
α

(k)
ii and α

(k)
ij : Γn(k) → grk(J) defined by

x �→ a′
ii(x) and aij(x),

respectively. By Lemma 5.5, α
(k)
ii and α

(k)
ij naturally induce the GL(n, Z)-equivariant

homomorphisms Ln(k) → grk(J), which are also denoted by α
(k)
ii and α

(k)
ij , respectively,

with some abuse of notation.

Proposition 5.8. Let k be a positive integer. For any 1 � m � k, assume that

Ker(α(m)
11 ) ∩ Ker(α(m)

12 ) ∩ Ker(α(m)
21 ) ∩ Ker(α(m)

22 ) = {0}.

Then Dn(k) ⊂ An(k).

Proof. Assume that σ ∈ Dn(k) and σ /∈ An(k). Since Dn(k) ⊂ Dn(1) = An(1), there
exists some 1 � m � k − 1 such that σ ∈ An(m) \ An(m + 1). Thus, there exists some
1 � l � n such that x−1

l xσ
l ∈ Γn(m + 1) and x−1

l xσ
l /∈ Γn(m + 2). By the assumption, at

least one of a′
ii(x

−1
l xσ

l ) and aij(x−1
l xσ

l ) for i �= j does not belong to Jm+2. Without loss
of generality, we may assume that a′

11(x
−1
l xσ

l ) /∈ Jm+2. If we set γ := x−1
l xσ

l ∈ Γn(m+1),
then

a′
11(x

σ
l ) = a′

11(xlγ)

= a′
11(xl)a′

11(γ) + a12(xl)a21(γ) + a′
11(xl) + a′

11(γ)

≡ a′
11(xl) + a′

11(γ) (mod Jm+2).

On the other hand, since σ ∈ Dn(k), we have a′
11(x

σ
l ) − a′

11(xl) ∈ Jk+1 ⊂ Jm+2. This is
a contradiction. Therefore, σ ∈ An(k). �

Using Proposition 5.8, we can show that An(k) = Dn(k) for 1 � k � 4 by a straight-
forward calculation. Below, we give this by showing that α

(k)
11 is injective for 1 � k � 4.

At this stage, we do not know whether α
(k)
ii and α

(k)
ij : Ln(k) → grk(J) are injective or

not in general.
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Table 1. Basic commutators of weight less than 5.

m basic commutators

1 xi 1 � i � n

2 [xi, xj ] 1 � j < i � n

3 [xi, xj , xk] i > j � k

4 [xi, xj , xk, xl] i > j � k � l

[[xi, xj ], [xk, xl]] i > k > l, i > j

[[xi, xj ], [xi, xl]] i > j > l

Lemma 5.9. For any x, y, z, w ∈ Fn, we have

α
(2)
11 ([x, y]) = a12(x)a21(y) − a12(y)a21(x),

α
(3)
11 ([x, y, z]) = 2(a′

11(x)a12(y)a21(z) + a′
11(x)a12(z)a21(y)

− a′
11(y)a12(x)a21(z) − a′

11(y)a12(z)a21(x)),

α
(4)
11 ([x, y, z, w]) = 2a′

11(x)a12(y)a12(z)a21(w) − 2a′
11(y)a12(x)a12(z)a21(w)

− 4a′
11(x)a′

11(z)a12(y)a21(w) + 4a′
11(y)a′

11(z)a12(x)a21(w)

− 4a′
11(y)a′

11(z)a12(w)a21(x) + 4a′
11(x)a′

11(z)a12(w)a21(y)

+ 2a12(x)a12(w)a21(y)a21(z) − 2a12(y)a12(w)a21(x)a21(z),

α
(4)
11 ([[x, y], [z, w]]) = 4a′

11(x)a′
11(w)a12(y)a21(z) − 4a′

11(x)a′
11(z)a12(y)a21(w)

− 4a′
11(y)a′

11(w)a12(x)a21(z) + 4a′
11(y)a′

11(z)a12(x)a21(w)

− 4a′
11(y)a′

11(z)a12(w)a21(x) + 4a′
11(x)a′

11(z)a12(w)a21(y)

+ 4a′
11(y)a′

11(w)a12(z)a21(x) − 4a′
11(x)a′

11(w)a12(z)a21(y).

Proof. We can obtain these by direct computation. �

Proposition 5.10. For any 1 � m � 4, the homomorphism α
(m)
11 : Ln(m) → grm(J)

is injective.

Proof. First, we consider the Hall basis of Ln(m). By the theory of commutator
calculus due to Hall, the basic commutators of weight m form a basis of Ln(m). In
Table 1 we give a list of basic commutators of weight m � 4. (See also [7] for details on
the basic commutators of the free groups.) It suffices to show that the images of basic
commutators of weight m under the map α

(m)
11 are linearly independent. It is clear for

the case in which m = 1.

Case 1 (m = 2). Assume that

∑
i>j

cijα
(2)
11 ([xi, xj ]) =

∑
i>j

cij(a12(xi)a21(xj) − a12(xj)a21(xi)) = 0
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for some cij ∈ Q. We remark that a12(xi)a21(xj) and a12(xj)a21(xi) for i > j are members
of the basis of gr2(J) given in Proposition 4.4 such that there is no overlap between them.
Then we see that cij = 0 for any i > j.

Case 2 (m = 3). Assume that∑
i>j�k

cijkα
(3)
11 ([xi, xj , xk])

=
∑

i>j�k

2cijk(a′
11(xi)a12(xj)a21(xk) + a′

11(xi)a12(xk)a21(xj)

− a′
11(xj)a12(xi)a21(xk) − a′

11(xj)a12(xk)a21(xi))

= 0

for some cijk ∈ Q. We remark that a′
11(xi)a12(xj)a21(xk), a′

11(xi)a12(xk)a21(xj), a′
11(xj)

a12(xi)a21(xk) and a′
11(xj)a12(xk)a21(xi) for any i > j � k are members of the basis

of gr3(J) given in Proposition 4.4. On the left-hand side of the above equation, for any
distinct i, j, k such that i > j < k, the coefficient of a′

11(xi)a12(xj)a21(xk) is 2cijk. Sim-
ilarly, for any i > j, the coefficients of a′

11(xi)a12(xj)a21(xi) and a′
11(xi)a12(xj)a21(xj)

are 2ciji and 4cijj . Hence, cijk = 0 for any i > j � k.

Case 3 (m = 4). Assume that

∑
i>j�k�l

cijklα
(4)
11 ([xi, xj , xk, xl]) +

∑
i>k>l, i>j

dijklα
(4)
11 ([[xi, xj ], [xk, xl]])

+
∑

i>j>l

dijilα
(4)
11 ([[xi, xj ], [xi, xl]]) = 0

for some cijkl, dijkl ∈ Q. By an argument similar to above, we see the following. For any
i > j � k � l, the coefficient of a′

11(xi)a12(xj)a12(xk)a21(xl) on the left-hand side of the
above equation is 2cijkl. Hence, all cijkl are equal to zero. Next, for any distinct i, j, k, l

such that i > k > l and i > j, the coefficient of a′
11(xj)a′

11(xl)a12(xi)a21(xk) is −4dijkl.
For any i > k > j, the coefficient of a′

11(xj)a′
11(xj)a12(xi)a21(xk) is −4dijkj . For any

i > j > l, the coefficient of a′
11(xi)a′

11(xi)a12(xj)a21(xl) is −4dijil. Hence, all dijkl are
equal to zero. This completes the proof of Proposition 5.10. �

Then we have the following.

Corollary 5.11. For any 1 � k � 4, An(k) = Dn(k).

5.2. Graded quotients grk(Dn)

In this section we study some properties of the graded quotients grk(Dn) :=
Dn(k)/Dn(k + 1). Since each Dn(k) is a normal subgroup of AutFn, the group AutFn

naturally acts on grk(Dn) by conjugation from the right. Furthermore, since {Dn(k)} is a
central filtration, the action of Dn(1) = IAn on grk(Dn) is trivial. Hence, we can consider
each grk(Dn) as an AutFn/Dn(1) = GL(n, Z)-module.
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To begin with, we introduce analogues of Johnson homomorphisms to study the
GL(n, Z)-module structure of grk(Dn). To begin with, for any k � 1 and σ ∈ Dn(k),
define the map ηk(σ) : gr1(J) → grk+1(J) to be

ηk(σ)(f) := sσ(f) = fσ − f ∈ grk+1(J)

for any f ∈ J . That the map ηk(σ) is well defined follows from Lemma 5.2. It is easily
seen that ηk(σ) is a homomorphism. Then we have the map

ηk : grk(Dn) → HomQ(gr1(J), grk+1(J))

defined by σ �→ ηk(σ). For any σ, τ ∈ Dn(k), from Lemma 5.1 (1), and from Lemma 5.2,
we see that

sστ (f) = (sσ(f))τ + sτ (f) ≡ sσ(f) + sτ (f) (mod Jk+2).

This shows that ηk is a homomorphism. By definition, each ηk is injective. Furthermore,
we have the following lemma.

Lemma 5.12. For each k � 1, the homomorphism ηk is a GL(n, Z)-equivariant homo-
morphism.

Proof. It suffices to show that ηk is an AutFn-equivariant homomorphism. For any
σ ∈ AutFn and τ ∈ Dn(k), we see that

ηk(τ · σ)(f) = ηk(σ−1τσ)(f) = sσ−1τσ(f),

(ηk(τ) · σ)(f) = (ηk(τ)(fσ−1
))σ = sτ (fσ−1

)σ

= (fσ−1τ − fσ−1
)σ = fσ−1τσ − f = sσ−1τσ(f)

for any f ∈ J . Hence, we have ηk(τ ·σ) = ηk(τ) ·σ. This means that ηk is an AutFn-equi-
variant homomorphism. �

By using the homomorphisms ηk, we see that grk(Dn) is an GL(n, Z)-submodule of the
Q-vector space HomQ(gr1(J), grk+1(J)), and hence we obtain the following proposition.

Proposition 5.13. For any n � 2,

(1) each grk(Dn) is torsion-free,

(2) dimQ(grk(Dn) ⊗Z Q) < ∞.

If Dn(k) = An(k), then the above facts follow immediately from Andreadakis’s result
for the Andreadakis–Johnson filtration in [1].
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Table 2. Nielsen generators of Aut Fn.

x1 x2 x3 · · · xn−1 xn

P x2 x1 x3 · · · xn−1 xn

Q x2 x3 x4 · · · xn x1

S x−1
1 x2 x3 · · · xn−1 xn

U x1x2 x2 x3 · · · xn−1 xn

5.3. An extension of η1 to Aut Fn as a crossed homomorphism

Here we consider the first homomorphism η1 and its extension to AutFn as a crossed
homomorphism. We can easily calculate the images of Magnus generators Kij and Kijl

of IAn by η1 as

η1(Kij) = s∗
11,i ⊗ (s12,is21,j − s12,js21,i) + 2s∗

12,i ⊗ (s11,is12,j − s11,js12,i)

+ 2s∗
21,i ⊗ (s21,is11,j − s11,is21,j),

η1(Kijl) = s∗
11,i ⊗ (s12,js21,l − s12,ls21,j) + 2s∗

12,i ⊗ (s11,js12,l − s11,ls12,j)

+ 2s∗
21,i ⊗ (s21,js11,l − s11,js21,l).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.1)

Recall that H is the abelianization of Fn. It is easily seen that the image of the first
Johnson homomorphism τ1 is H∗ ⊗Z Λ2H. From independent works of Cohen and
Pakianathan [2, 3], Farb [4] and Kawazumi [15], it is known that τ1 is the abelian-
ization of IAn. In other words, An(2) coincides with the commutator subgroup of IAn.
Hence, the abelianization of IAn is the free abelian group with basis Magnus generators.
Let V be the rationalization (H∗ ⊗Z Λ2H) ⊗Z Q of H∗ ⊗Z Λ2H. In [26], we computed

H1(AutFn, V ) = Q⊕2

for any n � 5, and showed that H1(AutFn, V ) is generated by Morita’s cocycle fM and
Kawazumi’s cocycle fK. They are crossed homomorphisms of Aut Fn defined with the
Magnus representation and the Magnus expansion, respectively. In particular, fK is an
extension of the rational first Johnson homomorphism

IAn → gr1(An) τ1−→ H∗ ⊗Z Λ2H
⊗ZQ−−−→ V.

Since Dn(k) = An(k) for 1 � k � 2 from Corollary 5.11, and since HomQ(gr1(J), gr2(J))
is a Q-vector space, it turns out that there exist crossed homomorphisms gM and gK,
corresponding to fM and fK, respectively, such that gK is an extension of the homomor-
phism

IAn → gr1(Dn)
η1−→ HomQ(gr1(J), gr2(J)).

We give the images of Nielsen’s generators of Aut Fn by gK. Let P , Q, S and U be
automorphisms of Fn given by specifying its images of the basis x1, . . . , xn as shown in
Table 2.
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In 1924, Nielsen [22] showed that AutFn is generated by P , Q, S and U , and gave
finitely many relations among them. In [26], we gave the images of P , Q, S and U by
fM and fK explicitly. From this, we see that

gM(σ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=2

(s∗
11,i ⊗ (s12,is21,1 − s12,1s21,i)

+ 2s∗
12,i ⊗ (s11,is12,1 − s11,1s12,i)

+ 2s∗
21,i ⊗ (s11,1s21,i − s11,is21,1)), σ = S,

0, σ = P, Q, U

and

gK(σ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− s∗
11,1 ⊗ (s12,1s21,2 − s12,2s21,1)

− 2s∗
12,1 ⊗ (s11,1s12,2 − s11,2s12,1)

− 2s∗
21,1 ⊗ (s11,2s21,1 − s11,1s21,2), σ = U,

0, σ = P, Q, S.

In the following, we show that gM and gK are linearly independent in the first cohom-
ology group H1(AutFn, HomQ(gr1(J), gr2(J))). In order to do this, to begin with, we
determine the GL(n, Z)-module structure of grk(J) for any k � 1. Recall that GL(n, Z)
is identified with AutFn/IAn induced from the abelianization of Fn. Let H be the abelian-
ization of Fn, and consider H as an additive group here. We have Ln(1) ∼= H, and write
αij for α

(1)
ij for simplicity. Then, for any y1, . . . , yl ∈ H, we can consider αij(y1) · · ·αij(yl)

as an element in grl(J). Set HQ := H ⊗Z Q.

Proposition 5.14. For any k � 1 we have

grk(J) ∼=
⊕

e11+e12+e21=k

Se11HQ ⊗Q Se12HQ ⊗Q Se21HQ.

Proof. Let M be the right-hand side of the above equation. First, for any 1 � i, j � 2
and e � 1, the homomorphism fe

ij : SeHQ → gre(J) defined by

xl1
1 xl2

2 · · ·xln
n �→ αij(x1)l1αij(x2)l2 · · ·αij(xn)ln (mod Je+1)

for l1 + l2 + · · · + ln = e is Aut Fn-equivariant. In fact, for any Nielsen generators σ =
P, Q, S and U of AutFn, we can check that fe

ij(x
σ) = (fe

ij(x))σ for any x = xl1
1 xl2

2 · · ·xln
n .

For example, we see that

fe
ij((x

l1
1 xl2

2 · · ·xln
n )U ) = fe

ij((x1 + x2)l1xl2
2 · · ·xln

n )

= fe
ij

( l1∑
t=0

(
l1
t

)
xt

1x
l1−t
2 xl2

2 · · ·xln
n

)

≡
l1∑

t=0

(
l1
t

)
αij(x1)tαij(x2)l1−t+l2 · · ·αij(xn)ln (mod Je+1)
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≡ αij(x1x2)l1αij(x2)l2 · · ·αij(xn)ln (mod Je+1)

= (fe
ij(x

l1
1 xl2

2 · · ·xln
n ))U .

Hence, we obtain a surjective GL(n, Z)-equivariant homomorphism F : M → grk(J)
defined by

∑
e11+e12+e21=k

ae11,e12,e21Xe11 ⊗ Xe12 ⊗ Xe21

�→
∑

e11+e12+e21=k

ae11,e12,e21f
e11
11 (Xe11)f

e12
12 (Xe12)f

e21
21 (Xe21)

for any Xeij
∈ Seij HQ and ae11,e12,e21 ∈ Q. The surjectivity of F follows from Proposi-

tion 4.4. In fact, for any element

Y :=
n∏

l=1

α11(xl)e11,lα12(xl)e12,lα21(xl)e21,l

in the basis Tk of grk(J), if we set

X :=
∑

e11,1+···+e21,n=k

(xe11,1
1 · · ·xe11,n

n ) ⊗ · · · ⊗ (xe21,1
1 · · ·xe21,n

n ) ∈ M,

then we have Y = F (X).
Next, we prove that F is an isomorphism by showing that the dimensions of M and

grk(J) as Q-vector spaces are equal. The basis Tk can be rewritten as

Tk =

{ ∏
1�i,j�2

(i,j) �=(2,2)

s
eij,1
ij,1 · · · seij,n

ij,n

∣∣∣∣
n∑

l=1

(e11,l + · · · + e21,l) = k

}

=

{ ∏
1�i,j�2

(i,j) �=(2,2)

s
eij,1
ij,1 · · · seij,n

ij,n

∣∣∣∣ eij,1 + · · · + eij,n = eij , e11 + e12 + e21 = k

}
.

From the last term of the above equation, we see that the number of elements in Tk is
equal to dimQ M. This completes the proof of Proposition 5.14. �

Now we show the following.

Proposition 5.15. For any n � 3, the natural homomorphism

ι : H1(AutFn, Im(η1) ⊗Z Q) → H1(AutFn, HomQ(gr1(J), gr2(J)))

induced from the inclusion Im(η1) ⊗Z Q ↪→ HomQ(gr1(J), gr2(J)) is injective.

https://doi.org/10.1017/S0013091516000456 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000456


On the universal SL2-representation rings of free groups 997

Proof. From Proposition 5.14, we have

gr1(J) ∼= H⊕3
Q , gr2(J) ∼= (S2HQ)⊕3 ⊕ (H⊗2)⊕3.

Thus, we have a GL(n, Q)-equivariant isomorphism

HomQ(gr1(J), gr2(J))
∼=−→ (HomQ(HQ, S2HQ))⊕9 ⊕ (HomQ(HQ, H⊗2

Q ))⊕9.

Let
pr : HomQ(gr1(J), gr2(J)) → HomQ(HQ, H⊗2

Q )

be the projection map defined by

∑′ n∑
l,l1,l2=1

αij(xl)∗ ⊗ αi1j1(xl1)αi2j2(xl2) �→
n∑

l,l1,l2=1

α11(xl)∗ ⊗ α12(xl1)α21(xl2),

where the αij(xl)∗s are the dual basis of the αij(xl)s, and the sum
∑′ runs over all

1 � i, i1, i2, j, j1, j2 � 2 such that

(i, j), (i1, j1), (i2, j2) �= (2, 2) and (i1, j1) �lex (i2, j2).

Here �lex denotes the usual lexicographic ordering. Let

pr : H1(AutFn, HomQ(gr1(J), gr2(J))) → H1(AutFn, HomQ(HQ, H⊗2
Q ))

be the homomorphism induced from pr. Then the cohomology classes of gM and gK in
H1(AutFn, HomQ(gr1(J), gr2(J))) are mapped to those of g′

M and g′
K in H1(AutFn,

HomQ(HQ, H⊗2
Q )) by pr ◦ ι such that

g′
M(σ) :=

⎧⎪⎨
⎪⎩

n∑
i=2

s∗
11,i ⊗ (s12,is21,1 − s12,1s21,i), σ = S,

0, σ = P, Q, U,

and

g′
K(σ) :=

{
−s∗

11,1 ⊗ (s12,1s21,2 − s12,2s21,1), σ = U,

0, σ = P, Q, S.

If we identify the submodule of H⊗2
Q generated by

{x ⊗ y − y ⊗ x | x, y ∈ HQ}

with the exterior product Λ2HQ of HQ of degree 2, then we see that the image of
pr ◦ ι is contained in H1(AutFn, HomQ(HQ, Λ2HQ)) by observing the images of g′

M
and g′

K. Furthermore, it turns out that the cohomology classes of g′
M and g′

K gener-
ate H1(AutFn, HomQ(HQ, Λ2HQ)) ∼= Q⊕2 from our previous result in [26]. Therefore,
we obtain the required result. This completes the proof of Proposition 5.15. �
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We remark that in our forthcoming paper [29], we compute

H1(AutFn, H∗
Q ⊗Q S2HQ) ∼= Q.

Thus, by using the result

H1(AutFn, H∗
Q ⊗Q Λ2HQ) ∼= Q⊕2

in [26], we see that

H1(AutFn, HomQ(gr1(J), gr2(J)))
∼= H1(AutFn, H∗

Q ⊗Q S2HQ)⊕9 ⊕ H1(AutFn, H∗
Q ⊗Q H⊗2

Q )⊕9

= Q⊕36.

5.4. Twisted second cohomology classes

In this section we introduce twisted higher cohomology classes by using the crossed
homomorphism gK, according to Kawazumi’s construction of higher cohomology classes
with the first Johnson homomorphism τ1 in [15]. Then, in particular, we study its second
cohomology class.

First, we study the image of η1. For any 1 � i1, j1, i2, j2 � 2, set

t(i1j1,i2j2)(p, q) := si1j1(xp)si2j2(xq) − si1j1(xq)si2j2(xp). (5.2)

Let T be the submodule of gr1(J) generated by

{t(i1j1,i2j2)(p, q) | (i1, j1, i2, j2) = (1, 1, 1, 2), (1, 2, 2, 1), (2, 1, 1, 1), 1 � q < p � n}.

Clearly, T is an AutFn-invariant module. From (5.1), the image of η1 is contained in
gr1(J)∗ ⊗Q T . From Proposition 4.4, we see that (5.2) is a basis of T as a Q-vector space.
Define the Q-linear map T → gr1(J) ⊗Q gr1(J) by

t(i1j1,i2j2)(p, q) �→ si1j1(xp) ⊗ si2j2(xq) − si1j1(xq) ⊗ si2j2(xp).

It is easily seen that this map is Aut Fn-equivariant injective. Consider T as an AutFn-
invariant submodule of gr1(J) ⊗Q gr1(J) through this map. Then we can consider that
Im(η1) is contained in

V := gr1(J)∗ ⊗Q (gr1(J))⊗2,

and hence gK is a crossed homomorphism from Aut Fn to V.
For any q � 1, define a map ζq : V⊗q → gr1(J)∗ ⊗Q gr1(J)⊗q+1 by

u1 ⊗ · · · ⊗ uq �→ (u1 ⊗ 1⊗q−1) ◦ (u2 ⊗ 1⊗q−2) ◦ · · · ◦ (uq−1 ⊗ 1) ◦ uq.

By considering the cup product, we have the induced homomorphism

ζ∗
q : H1(AutFn,V)⊗q → Hq(AutFn, gr1(J)∗ ⊗Q gr1(J)⊗q+1)
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from ζq. Let C12 : gr1(J)∗ ⊗Q gr1(J)⊗q+1 → gr1(J)⊗q be the contraction homomorphism
defined by

f∗ ⊗ (f1 ⊗ · · · ⊗ fq+1) �→ f∗(f1)f2 ⊗ · · · ⊗ fq+1.

Then C12 induces the homomorphism

ζ∗
q : H1(AutFn,V)⊗q → Hq(AutFn, gr1(J)⊗q).

By using the above homomorphisms, we can obtain higher twisted cohomology classes
ζ∗
q (g⊗q

K ) and ζ∗
q (g⊗q

K ) for any q � 1, where ζ∗
1 (gK) = gK. This is an analogue of

Kawazumi’s construction of higher cohomology classes of AutFn with the first John-
son homomorphism.

Next we consider the case in which q = 2. We show that H2(IAn, gr1(J)⊗2) has a two-
dimensional Q-vector subspace whose generating set contains the restriction of ζ∗

2 (g⊗2
K )

to IAn. First, consider H1(AutFn, gr1(J)). In [24] we computed H1(AutFn, H) = Z for
any n � 2. This induces H1(AutFn, HQ) = Q. On the other hand, by Proposition 4.4 we
see that the Aut Fn-equivariant homomorphism

α11 ⊕ α12 ⊕ α21 : H⊕3
Q → gr1(J)

is an isomorphism. Hence, we have H1(AutFn, gr1(J)) ∼= Q⊕3. By observing the images
of Nielsen’s generators, we can see that

(n − 1)ζ∗
1 (gK) + 2ζ∗

1 (gM) = 0 ∈ H1(AutFn, gr1(J)).

Now, we have two two-cohomology classes ζ∗
1 (gK) ∪ ζ∗

1 (gK) and ζ∗
2 (g⊗2

K ) in H2(AutFn,

gr1(J)⊗2), where ∪ denotes the cup product. We can see that they are linearly indepen-
dent from the following theorem.

Theorem 5.16. For any n � 4, the restrictions of ζ∗
1 (gK) ∪ ζ∗

1 (gK) and ζ∗
2 (g⊗2

K ) to
IAn are linearly independent in H2(IAn, gr1(J)⊗2).

Proof. Assume that

λ(ζ∗
1 (gK) ∪ ζ∗

1 (gK)) + μζ∗
2 (g⊗2

K ) = δ1(ϕ)

for some λ, μ ∈ Q and some map ϕ : IAn → gr1(J)⊗2. Since n � 4, we can take distinct
indices i, j, k and l. Then we have

(ζ∗
1 (gK) ∪ ζ∗

1 (gK))(Kij , Kkl) = 4(a′
11(xj) − a′

11(xi)) ⊗ (a′
11(xl) − a′

11(xi)),

ζ∗
2 (g⊗2

K )(Kij , Kkl) = 0.

On the other hand, since [Kij , Kkl] = 1, we have

4(a′
11(xj) − a′

11(xi)) ⊗ (a′
11(xl) − a′

11(xi))

= λ(ζ∗
1 (gK) ∪ ζ∗

1 (gK))(Kij , Kkl) + μζ∗
2 (g⊗2

K )(Kij , Kkl)
= ϕ(Kkl) − ϕ(KijKkl) + ϕ(Kij)
= ϕ(Kij) − ϕ(KklKij) + ϕ(Kkl)

= λ(ζ∗
1 (gK) ∪ ζ∗

1 (gK))(Kkl, Kij) + μζ∗
2 (g⊗2

K )(Kkl, Kij)
= 4(a′

11(xl) − a′
11(xi)) ⊗ (a′

11(xj) − a′
11(xi)).

This shows that λ = 0.
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Next, consider the relation [Kik, KijKkj ] for distinct i, j and k. Then we have

2μ(a12(xk) ⊗ a21(xj) + a21(xk) ⊗ a12(xj) + 2a′
11(xk) ⊗ a′

11(xj))

= μζ∗
2 (g⊗2

K )(Kik, KijKkj)

= ϕ(KijKkj) − ϕ(KikKijKkj) + ϕ(Kik)

= ϕ(Kik) − ϕ(KijKkjKik) + ϕ(KijKkj)

= μζ∗
2 (g⊗2

K )(KijKkj , Kik)

= 2μ(a12(xj) ⊗ a21(xk) + a21(xj) ⊗ a12(xk) + 2a′
11(xj) ⊗ a′

11(xk)).

This shows that μ = 0. �

As further research, it would be interesting to describe a relation among cup prod-
ucts of ζ∗

1 (gK) and ζ∗
q (g⊗q

K ) as well as to determine the twisted cohomology groups
Hq(AutFn, gr1(J)⊗q).
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