The fate of plutonium, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs in the Antarctic ecosystem

GUOGANG JIA^{1,*}, C. TRIULZI², F. NONNIS MARZANO², M. BELLI³ and M. VAGHI²

¹China Institute of Atomic Energy, PO Box 275-83, Beijing, China ²Department of Evolutive and Functional Biology, Parma University, 43100 Parma, Italy ³National Agency for Environmental Protection, 00144 Roma, Italy *Corresponding author

Abstract: A radioecological survey around Terra Nova Bay showed that ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs activities were detectable in nearly all the samples. The ²³⁹⁺²⁴⁰Pu and ²⁴¹Am concentrations in seawater were slightly lower than those in the northern Pacific Ocean. The activity level of ²³⁹⁺²⁴⁰Pu, ²⁴¹Am and ¹³⁷Cs in Antarctic sediments (Ross Sea) was *c*. 5–20 times lower than in northern Adriatic sediments (Mediterranean Sea), but the ²³⁸Pu activities were relatively high. The ⁹⁰Sr concentrations in all the sediment samples from both the Ross and Adriatic seas tended to be low which might be due to an easier exchange of ⁹⁰Sr in seawater. On the other hand, high concentrations were detected in Antarctic mosses, lichens and algae and their activity levels are comparable to those in central Italy. The radionuclide ratio analyses show that the major part of ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs is the result of nuclear weapon tests. A higher ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratio might be due to the fallout of earlier atmospheric nuclear tests. The ²³⁸Pu/²³⁹⁺²⁴⁰Pu ratio in the Antarctic matrices is about seven times higher than in the Northern Hemisphere and this could suggest that the major part of ²³⁸Pu originated from the SNAP-9A satellite accident.

Received 11 February 1999, accepted 1 February 2000

Key words: Antarctica, 241 Am, 137 Cs, 238 Pu, 239 Pu, 240 Pu, 90 Sr

Introduction

Antarctica has long been believed to be one of the cleanest areas in the world because of the low level of human activity (Wolff 1990). Research on environmental radioactivity in the Antarctic ecosystems is of great interest for estimating global environmental pollution caused by nuclear weapon tests and nuclear accidents. In particular, radioecological studies can be helpful for understanding the long range water and atmospheric transport of anthropogenic substances and for exploring the mineral resources. For these purposes, the environmental radioactivity investigations started in 1987 in the framework of the Italian National Program for Antarctic Research. The major part of previous radioecological studies has concentrated on ¹³⁷Cs and natural ⁴⁰K, ²³²Th and ²³⁸U concentrations in different environmental components of the Antarctic ecosystems (Triulzi et al. 1989, 1991, 1995, Nonnis Marzano & Triulzi 1994a, 1997). The aim of this study is to provide further information on the concentration level, distribution and association of highly toxic and long-lived artificial radionuclides, (238Pu, 239+240Pu, 241Am, 90Sr and 137Cs), in some abiotic (seawater, sea sediment and lake sediment) and biotic (fish, algae, lichen and moss) samples. Such data should be important as a base-line for the estimation of the future impact of such radioactive pollution on this remote area from any nuclear weapon test or accidental release.

Materials and methods

Apparatus

Plutonium and americium were determined by alpha spectrometry (Silena, Italy) with a counting efficiency of 31%, a background of $< 6 \cdot 10^{-6} \text{ s}^{-1}$ over the energy regions of interest and a resolution (FWHM) of 15–25 keV (²⁴²Pu). The ⁹⁰Y sources for ⁹⁰Sr determination were measured by a flow-gas low background (6.2 \cdot 10^{-3} s^{-1}) beta counter (Canberra-2404, USA) with a counting efficiency of 23%. Gamma spectrometry used a multichannel analyser and a high purity germanium detector with an absolute counting efficiency of 0.95–2.1% at different geometry and a resolution of 1.8 keV for the 661.6 keV line of ^{137m}Ba in equilibrium with its parent ¹³⁷Cs.

Site

The sampling area is located in the Ross Sea region of Antarctica surrounding the Italian Terra Nova Base. The geographic data of the sampling sites are given in Table I.

Sampling and pretreatment

A number of sample types were collected during the various scientific expeditions to different coastal and offshore sites from 1989–96. Superficial lacustrine and marine sediments

Table I.	Sampling	sites.
----------	----------	--------

Sample	Sample code	Sampling date	Latitude (S)	Longitude (E)
Sea water	SW1 (UF)	15 Jan 1996	74°41'	164°25'
	SW2 (MnO,)	23 Jan 1996	74°41'	164°10'
	SW3 (MnO_2)	3 Feb 1996	*	*
Lacustrine sediment	LS8	15 Jan 1991	74°20'	165°07'
	LS17	15 Jan 1991	74°43'	164°01'
	LS12	15 Jan 1992	74°59'	162°33'
	LS15A	1994–95	74°20'	165°07'
	LS15A	1995-96	74°20'	165°07'
Marine sediment	MS38	7 Jan 1991	74°58'	164°49'
	MS22	29 Dec 1990	74°00'	169°12'
	MS77	2 Feb 1995	75°50'	177°44'W
	MS104	10 Feb 1995	71°30'	174°00'
	MSC	25 Jan 1995	74°43'	164°09'
Terrestrial soil	TS8-1	1991–9 2	74°20'	165°07'
	TS8-2	199192	74°20'	165°07'
Moss	M1	15 Jan 1989	74°20'	165°07'
	M2	15 Jan 1989	74°20'	165°07'
	M3	15 Jan 1989	74°20'	165°07'
	M15	15 Jan 1989	74°20'	165°07'
	M14	15 Jan 1991	74°04'	165°19'
Lichen	L1	15 Jan 1989	74°47'	163°38'
Marine algae	A12	15 Jan 1991	74°59'	162°33'
	A17	15 Jan 1991	74°43'	164°01'
	A15	15 Jan 1996	74°20'	165°07'
Fish flesh	FF	15 Jan 1989	74°43'	164°09'
Fish bone	FB	15 Jan 1990	74°41'	164°08'

*collected during navigation.

were collected by grab, while soils were sampled by hand using plastic and metal tools as appropriate. Most of the sediment and soil samples are sandy with a low content of organics and clay. Detailed soil descriptions for Terra Nova Bay can be found elsewhere (Campbell & Claridge 1987, Bettoli *et al.* 1991). Soil was carefully removed from the lichen and moss collections. The lichen species *Usnea antarctica*, *Candelaria* sp., *Lepraria* sp. and *Umbilicaria* sp. were treated as a single biological type. Mosses and algae were not identified. Fish samples were *Pagothenia bernacchii* and *Adamussium colbecki*. All samples were oven-dried at 105°C to constant weight and ground before analysis. All results refer to dry weight.

The superficial seawater samples collected in some inshore and offshore sites for ¹³⁷Cs, plutonium and ²⁴¹Am determination were pretreated as follows:

To concentrate ¹³⁷Cs in the laboratory the unfiltered (UF) seawater sample was treated by the ammonium phosphomolybdate [AMP: $(NH_d)_3PO_4$ ·12MoO₃·H₂O] technique. 100 l unfiltered seawater were acidified with HCl to pH l and 60 mg Cs carrier and 10 Bq of ¹³⁴Cs spike were added to evaluate the radiochemical separation yield. After a 15–20 min stirring to reach an isotopic

equilibrium, 60 g AMP powder was introduced into the solution. After a 3 h slow stirring and a 48 h settling the clarified supernate was carefully siphoned off. The AMP fraction was then centrifuged and the solid residue was oven-dried at 105°C and stored in a standard Plexiglas container for gamma spectrometry counting.

To concentrate Pu and Am, the unfiltered seawater sample was treated by co-precipitation with iron (II) hydroxide. In this technique, 1501 of unfiltered seawater were acidified with 250 ml 6 M HCl to pH 2 and standard ²⁴²Pu and ²⁴³Am tracers together with 10 ml of Fe³⁺ carrier (50 mg Fe³⁺ ml⁻¹) were added. After 30 min stirring to reach an isotopic equilibrium, 100 ml of 2 M sodium hydrogen sulphite were added. After another 30 min stirring, a second 100 ml of the sulphite solution was added. Then the solution was adjusted to pH 10 with concentrated ammonia solution. The solution was well mixed and the precipitate was allowed to settle overnight. The main fraction of the supernate was carefully siphoned off and the hydroxide slurry was centrifuged. After centrifugation, the remaining supernate was discarded and the precipitate was dissolved with 150 ml 7.5 M HNO, The valence adjustment and further separation were carried out with the corresponding radioanalytical procedure given below.

A different technique was used during the 1995 expedition to simultaneously concentrate ¹³⁷Cs, plutonium and ²⁴¹Am from large volumes (3 m³) of seawater filtered with Millipore filter paper (HAWP14250, 0.45 μ m). This sampling device pumped the filtered seawater through a NCFC [ammonium hexacyanocobalt (II) ferrate (II)] and MnO₂ beds at a flow rate of 51 min⁻¹. The resin beds werc sent to the laboratory for ¹³⁷Cs determination in NCFC by means of direct gamma spectrometry, and for plutonium and ²⁴¹Am separation from MnO₂ by the radioanalytical procedure described below.

In order to assess the differences in activity levels for the relevant radionuclides in sediments from both northern and southern hemispheres, six superficial sediment samples collected in northern Adriatic Sea were also analysed. The sampling was performed at the border of the Italian and Croatian international waters in 1990–96. Detailed information about the sampling sites and sediment characters are in Nonnis Marzano & Triulzi (1994b).

Radioanalytical methods

 ^{137}Cs determination. All the moss, lichen, soil and sediment samples were counted for ^{137}Cs activity by gamma spectrometry before any radiochemical separation.

Plutonium determination. After ¹³⁷Cs determination, 30-120 g samples were taken and ashed in a muffle furnace at 600° C; then 20 mg Sr^{2+} , 10 mg Y^{3+} , 2 mg Te^{4+} as the carriers and known

activities of ²⁴²Pu and ²⁴³Am (10–30 mBq) were added and two leachings were carried out with 7.5 M HNO₃ + 0.2 M HF. The leaching solutions were centrifuged and combined. Plutonium was reduced to Pu (III) with NH₂OH·HCl and then oxidized to Pu (IV) with NaNO₂. After mineralization and filtration through a Millipore filter paper (0.1 μ m), the leaching solution was passed through a column consisting of Microthene (microporous polyethylene) supporting TNOA (tri-n-octylamine) for Pu (IV) retention. The effluent was collected for ⁹⁰Sr and ²⁴¹Am analyses. Then the column was washed with 10 M HCl and 7.5 M HNO₃ and plutonium was eluted by a 0.025 MH₂C₂O₄+0.15 M HNO₃ solution, electrodeposited on a stainless steel disk at pH 1.5–2.0 and counted by alpha spectrometry.

⁹⁰Sr determination. ⁹⁰Sr, ⁹⁰Y and ²⁴¹Am were co-precipitated as the oxalates at pH 3 by adding oxalic acid and concentrated ammonia to the HNO, effluent. After filtration the precipitate was ashed at 800°C. 1 mg of Bi3+ carrier was added to the residue which was then dissolved by concentrated HCl and 30% H₂O₂. The solution in 2 M HCl was passed through a Microthene-TNOA column to eliminate bismuth, polonium and the remaining iron. The effluent was adjusted to pH0.5-1.0and passed through a KL-HDEHP [di(2-ethylhexyl) phosphoric acid] resin column to retain yttrium. The column was first washed with 1 MHNO,, then washed with 1 MHCl and finally eluted with 6 M HNO₃. The effluent and the first washing solution were collected for ²⁴¹Am determination. The yttrium in the elution solution was precipitated as the oxalate which was then filtered and counted by a low background beta counter. The chemical yield of yttrium was obtained by complexometric titration with EDTA and Zn²⁺ solutions. For the calculation of the ⁹⁰Sr concentration, see Jia (1994).

²⁴¹Am determination. The americium portion was adjusted to pH 2 with concentrated ammonia and passed through a KL-HDEHP resin column. After washing with 0.1 M HNO₃, ²⁴¹Am was eluted with 0.07 M diethylenetriamminopentacetic acid + 1 M L-(+)-lactic acid solution (pH 3), purified by extraction with 0.05 M 1-phenyl-3-methyl-4-benzoyl-5pyrazolone + 0.025 M tri-octyl-phosphine oxide in cyclohexane, electrodeposited from a 0.025 M H₂C₂O₄ + 0.1 M HNO₃ solution at pH 1.5–2.0 on a stainless steel disk and counted by alpha spectrometry (Jia *et al.* 1998).

Analytical quality control and detection limits. The procedure was checked by analysing three certified samples supplied by IAEA (IAEA/soil-6, IAEA-367 sediment, IAEA-368 sediment) and the results were in good agreement with the recommended values (Jia *et al.* 1998). In the routine analyses the detection limits of the procedure for 120 g sample and 2–10 day counting were 0.3 mBq kg⁻¹ for ²³⁹⁺²⁴⁰Pu and ²³⁸Pu, 0.4 mBq kg⁻¹ for ²⁴¹Am and 0.10 Bq kg⁻¹ for ⁹⁰Sr and that for ¹³⁷Cs (500 g sample) was 0.12 Bq kg⁻¹.

Results and discussion

The measured ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs concentrations in seawater, mosses, lichens, algae, fish, soils and lacustrine and marine sediments are summarized in Table II. Errors cited in the table consist only of the 1 σ error due to the counting statistics. Antarctica and the surrounding ocean have long been considered as unpolluted areas, but the five radionuclides are detectable in most of the matrices at low levels. The concentrations of these radionuclides from different samples are quite varied perhaps due to the very different types of samples. Such radionuclides have probably been trapped with different efficiencies by the different matrices. Higher concentrations are detected in some biological specimens which could be considered as bioindicators.

Plutonium, ²⁴¹Am and ¹³⁷Cs concentrations in seawater

As shown in Table II, the ²³⁹⁺²⁴⁰Pu and ²³⁸Pu concentrations in an unfiltered seawater sample (SW1) are about 4-6 times higher than the reported values $(^{239+240}$ Pu: 2.0 mBq m^{-3, 238}Pu: $0.3 \,\mathrm{mBg}\,\mathrm{m}^{-3}$) in the same region and are lower than those in the northern Pacific Ocean (²³⁹⁺²⁴⁰Pu: 4-30 mBg m⁻³) (Hashimoto et al. 1989). Unfortunately, in the cited reference the authors did not clarify whether their seawaters was filtered or not, so an explanation of the differences is not possible. The ¹³⁷Cs concentration is comparable to the previously reported value (0.07-0.4 Bq m⁻³) for Terra Nova Bay (Nonnis Marzano & Triulzi 1994a). However, no relevant ²⁴¹Am results were found for comparison. In contrast, the ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am and ¹³⁷Cs concentrations in the filtered scawater samples (SW2 and SW3) are about 5-10 times lower than in SW1. This difference could be attributed to filtration. It could be inferred that most of these radionuclides are combined with or adsorbed onto the solid matrices and only about 10% of them are in the soluble form. This is in good agreement with the observations by Kempe & Nies (1987) who reported that soluble isotopes, like 137Cs, sink to the sea floor in contact with faster sinking particles. The Southern Ocean is certainly very rich in particles during the summer (Holdgate 1970).

Plutonium, ²⁴¹*Am*, ⁹⁰*Sr and* ¹³⁷*Cs activity level in sediments and soils*

The mean ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs concentrations in lacustrine sediments are 0.0441 ± 0.0424, 0.0072 ± 0.0072, 0.0183 ± 0.0169, 0.44 ± 0.22 and 1.67 ± 1.67 Bq kg⁻¹ respectively and the corresponding values in marine sediments are 0.0207 ± 0.0341, 0.0038 ± 0.0052, 0.0122 ± 0.0180, 0.13 ± 0.05 and 0.39 ± 0.40 Bq kg⁻¹. It appears that the concentrations in lacustrine sediments are a little higher than in marine sediments. The ¹³⁷Cs values agree very well with the previous studies in the region (Triulzi *et al.* 1989, 1991, 1995, Bettoli *et al.* 1991, Nonnis Marzano & Triulzi 1994a). For comparison, Table III shows the concentrations in the sediment samples

Table II. 2194240 Pu, 238 Pu, 241 Am, 90 Sr and 137 Cs concentrations (Bq kg ⁻¹) in environmental matrices collected from Antarctica in 1989–96 (data for seawater in mBq m ⁻¹	Table II. 239+2	²⁴⁰ Pu, ²³⁸ Pu, ²⁴¹ Am	, 90Sr and 137Cs concentration	(kg ⁻¹) in environmental matrices collected from Antarctica in 1989–9	(data for seawater in mBq	n-3)
---	-----------------	---	--------------------------------	---	---------------------------	------

Sample code	Pu yield %	²³⁹⁺²⁴⁰ Pu	²³⁸ Pu	²³⁸ Pu/ ²³⁹⁺²⁴⁰ Pu	Am yield %	²⁴¹ Am	²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu	Y yield %	90Sr	⁹⁰ Sr/ ²³⁹⁺²⁴⁰ Pu	¹³⁷ Cs	¹³⁷ Cs/ ²³⁹⁺²⁴⁰ Pu
SW1	36.2	8.1 ± 1.0	1.7 ± 0.6	0.21	96.1	2.5 ± 0.5	0.43	-	n a		390 ± 250	48
SW2	60.1	0.64 ± 0.07	0.12 ± 0.03	0.19	37.2	0.29 ± 0.07	0.45	-	n a	•	90 ± 20	141
SW3	90.0	0.71 ± 0.09	0.13 ± 0.04	0.18	79.2	0.53 ± 0.12	0.75	-	n a	-	64 ± 30	90
LS8	75.3	0.0969 ± 0.0068	0.0171 ± 0.0029	0.18	68.8	0.0298 ± 0.0030	0.308	60.9	0.56 ± 0.09	5.8	$\textbf{2.87} \pm \textbf{0.36}$	29.6
LS17	87.1	0.0051 ± 0.0010	0.0018 ± 0.0007	0.35	75.7	0.0036 ± 0.0008	0.70	100	0.31 ± 0.04	61	0.27 ± 0.19	53
LS12	80.5	0.0057 ± 0.0009	0.0019 ± 0.0006	0.33	45.6	0.0023 ± 0.0009	0.40	100	0.41 ± 0.04	72	0.14 ± 0.09	24
LS15A	81.7	0.0327 ± 0.0029	0.0081 ± 0.0015	0.25	70.5	0.0144 ± 0.0020	0.440	100	0.18 ± 0.05	5.5	1.16 ± 0.07	35.5
LS15A	82.5	0.0801 ± 0.0065	0.0199 ± 0.0028	0.25	61.1	0.0412 ± 0.0047	0.514	98.4	0.76 ± 0.09	9.5	3.93 ± 0.35	49.1
MS38	91.4	0.0169 ± 0.0022	0.0044 ± 0.0012	0.26	74.5	0.0074 ± 0.0014	0.44	48.4	0.16 ± 0.05	9.5	0.36 ± 0.04	21
MS22	76.9	0.0056 ± 0.0017	0.0014 ± 0.0008	0.25	83.5	0.0066 ± 0.0014	1.2	67.2	0.21 ± 0.08	38	0.96 ± 0.08	171
MS77	90.2	< 0.0003	< 0.0003	-	74.2	0.0024 ± 0.0013	>1	63.8	<0.10	-	< 0.10	-
MS104	90.7	< 0.0003	<0.0003	-	66.4	0.0008 ± 0.0005	>1	55.5	<0.10	-	<0.17	-
MSC	85.0	0.0806 ± 0.0051	0.0125 ± 0.0021	0.16	69.0	0.0440 ± 0.0028	0.546	90.0	<0.18	-	0.40 ± 0.04	5.0
TS8-1	84.8	0.0190 ± 0.0020	0.0030 ± 0.0009	0.16	72.8	0.0103 ± 0.0016	0.542	83.4	0.20 ± 0.04	10.5	1.40 ± 0.08	73.7
TS8-2	90.7	0.0010 ± 0.0004	0.0003 ± 0.0003	0.30	78.8	0.0010 ± 0.0005	1.0	100	0.08 ± 0.04	80	<0.12	-
M1	92.6	0.908 ± 0.096	0.140 ± 0.049	0.15	81.6	0.614 ± 0.084	0.676	99.4	16.2 ± 1.9	17.8	41.4 ± 2.5	45.6
M2	77.6	0.788 ± 0.096	0.206 ± 0.051	0.26	68.6	0.216 ± 0.049	0.274	98.9	14.5 ± 2.2	18.4	29.2 ± 9.4	37.0
M3	61.0	0.435 ± 0.061	0.122 ± 0.034	0.28	40.8	0.210 ± 0.042	0.483	54.3	24.4 ± 3.2	56.1	49.9 ± 3.7	115
M15	82.8	0.637 ± 0.028	0.104 ± 0.012	0.16	55.8	0.276 ± 0.012	0.433	31.4	18.8 ± 1.3	29.5	20.7 ± 2.0	32.5
M14	96.5	0.328 ± 0.007	0.0452 ± 0.0025	0.14	64.4	0.178 ± 0.013	0.543	77.8	9.21 ± 0.49	28.1	11.3 ± 1.7	34.4
L1	54.6	4.64 ± 0.38	0.747 ± 0.092	0.16	30.9	1.94 ± 0.14	0.418	-	n a	-	162 ± 4	34.9
A12	93.2	0.658 ± 0.026	0.150 ± 0.013	0.23	59.0	0.305 ± 0.023	0.464	90.6	3.30 ± 0.34	5.0	37.2 ± 2.6	56.5
A17	42.2	0.201 ± 0.009	0.0365 ± 0.0045	0.18	30.4	0.040 ± 0.014	0.20	-	n a	-	10.4 ± 0.41	51.7
A15	83.5	0.417 ± 0.019	0.118 ± 0.010	0.28	69.6	0.149 ± 0.013	0.357	96.6	9.31 ± 0.90	22.3	17.6 ± 2.2	42.2
FF	92.2	0.0455 ± 0.0054	0.0132 ± 0.0027	0.29	44.3	0.0087 ± 0.0026	0.191	97.5	0.11 ± 0.08	2.4	0.97 ± 0.30	21.3
FB	20.4	0.0010 ± 0.0005	<0.0003	-	74.7	0.0006 ± 0.0004	0.60	99.8	0.08 ± 0.03	80	0.30 ± 0.15	300

n a = not analysed.

Table III. ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs concentrations (Bq kg⁻¹) in the sediment samples collected in the northern Adriatic Sea in 1990–96

Sample code	Pu Yield %	²³⁹⁺²⁴⁰ Pu	²³⁸ Pu	²³⁸ Pu/ ²³⁹⁺²⁴⁰ Pu	Am Yield %	²⁴¹ Am	²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu	Y Yield %	90Sr	⁹⁰ Sr/ ²³⁹⁺²⁴⁰ Pu	¹³⁷ Cs	¹³⁷ Cs/ ²³⁹⁺²⁴⁰ Pu
MS 303A	81.5	0.334 ± 0.026	0.014 ± 0.004	0.042	64.6	0.132 ± 0.015	0.395	78.0	< 0.32	 -	1.55 ± 0.16	4.6
MS 107A	76.0	0.528 ± 0.029	0.022+0.004	0.042	62.4	0.170 ± 0.018	0.322	95.7	0.51 ± 0.16	1.0	2.94 ± 0.29	5.6
MS 209A	84.8	0.387 ± 0.022	0.012 ± 0.003	0.031	60.9	0.148 ± 0.017	0.382	92.3	< 0.32	-	2.31 ± 0.25	6.0
MS 103A	77.8	0.683 ± 0.025	0.018 ± 0.004	0.026	47.8	0.188 ± 0.016	0.275	87.1	< 0.16	-	3.66 ± 0.31	5.4
MS COR	86.8	0.132 ± 0.013	0.005 ± 0.001	0.038	69.7	0.036 ± 0.008	0.273	81.8	0.33 ± 0.06	2.5	17.5 ± 2.1	132
MS GOR	84.0	0.277 ± 0.015	0.010 ± 0.003	0.036	35.9	0.075 ± 0.008	0.271	90.1	0.22 ± 0.08	0.8	12.7 ± 0.9	46
MS ADA	89.0	0.190 ± 0.011	0.004 ± 0.002	0.021	47.9	0.038 ± 0.005	0.200	98.2	0.18 ± 0.06	0.9	17.2 ± 0.8	90
Mean $\pm \sigma$	82.8 ± 4.7	0.362 ± 0.192	0.012 ± 0.006	0.034 ± 0.008	55.6 ± 12.0	0.090 ± 0.066	0.302 ± 0.069	89.0 ± 7.3	0.24 ± 0.13	1.3 ± 0.8	8.3 ± 7.2	41 ± 51

145

collected in the Adriatic Sea. The ²³⁹⁺²⁴⁰Pu, ²⁴¹Am and ¹³⁷Cs activity level in Antarctic sediments is 5–20 times lower than in the Adriatic sediments. As expected, the ²³⁸Pu concentrations in Antarctic sediments are relatively higher and similar to those from the Adriatic.

The ⁹⁰Sr concentrations in Antarctic sediments are also similar to the Adriatic. However, it is noticed that the ⁹⁰Sr concentrations in all the sediments of both sites tend to be very low, i.e. either lower than the detection limit or just above. The radionuclide activity level in sediment mainly depends on the behaviour of the radionuclides and the physico-chemical form of deposition matrices. It is reported that when 90Sr is leached from condensed fallout particles, the amount of exchangeable strontium increases with the time elapsed from the deposition and it reaches an almost constant value (about 40-75%) after three years (Belli & Tikhomirov 1996). Its binding to soil components is less strong than that of plutonium and ¹³⁷Cs (Taylor 1968, Killey 1982, Coughtrey & Thorne 1983, Desmet 1997). Radiostrontium is characterized by an almost totally reversible sorption in which the main process is ion exchange. This property of easy exchange leads to a low 90Sr activity in sediments. It is reported that the ⁹⁰Sr activity on the surface soil in the north temperate zone (latitude: 43°43'30", longitude: 12°53'00") is about 20 times higher than ^{239 + 240}Pu (Jia et al. 1999). Therefore, from the ⁹⁰Sr concentrations in the sediments in Table III, it can be inferred that more than 90% of ⁹⁰Sr in the fallout has been leached out by seawater during sedimentation (Coughtrey & Thorne 1983). The determination of ⁹⁰Sr in seawater is thus more important than that in sediment.

Only two terrestrial soil samples were analysed. The concentrations of the radionuclides were comparable to those in sediments possibly because of leaching by meltwater.

Plutonium, ²⁴¹*Am*, ⁹⁰*Sr and* ¹³⁷*Cs activity level in mosses, lichens and algae*

The mean ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs concentrations in mosses are 0.619 ± 0.241 , 0.123 ± 0.058 , 0.299 ± 0.180 , 16.6 ± 5.6 and 30.5 ± 15.5 Bq kg⁻¹ respectively. High ¹³⁷Cs concentrations (8.9–39.0 Bq kg⁻¹) in mosses from this region were also found by other researchers (Battiston et al. 1991, Triulzi et al. 1995). If compared with the activity in samples collected in central Italy, these values are 3-10 times higher than those in the terrestrial mosses ($^{239+240}$ Pu: 0.188 Bq kg⁻¹; ²³⁸Pu: 0.0117 Bq kg⁻¹; ²⁴¹Am: 0.0518 Bq kg⁻¹) and nearly the same level as those in tree trunk mosses with the exception of lower ¹³⁷Cs concentration (²³⁹⁺²⁴⁰Pu: 1.39 Bq kg⁻¹; ²³⁸Pu: 0.088 Bq kg⁻¹; 241 Am: 0.653 Bq kg⁻¹; 90 Sr: 16.7 Bq kg⁻¹; 137 Cs: 272 Bq kg¹). Only one bulked lichen sample was analysed and its ²³⁹⁺²⁴⁰Pu, ²³⁸Pu and ²⁴¹Am concentrations are 4-8 times higher and its ¹³⁷Cs concentration at the same level if compared with the values for tree trunk lichens collected in central Italy (²³⁹⁺²⁴⁰Pu: 1.13 Bq kg⁻¹; ²³⁸Pu: 0.097 Bq kg⁻¹; ²⁴¹Am: 0.436 Bq kg^{1} , ¹³⁷Cs: 291 Bq kg⁻¹). The results show that both mosses and lichens are highly efficient accumulators of these radionuclides, which are taken up from meltwaters, substrate solutions, deposited aerosols, water vapour and rain or snow. The high radionuclide concentrations in mosses and lichens could be due to their large surface area per unit dry weight, their propensity for collecting nutrients from the atmosphere, their slow growth rate and long life. Therefore, both mosses and lichens can be recommended as very good biological indicators of radionuclide pollution caused by nuclear weapon tests and nuclear facility accidents.

The mean ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs concentrations in marine algae are 0.425 \pm 0.229, 0.102 \pm 0.058, 0.165 \pm 0.133, 6.30 \pm 4.25 and 21.7 \pm 13.9 Bq kg⁻⁴ respectively and they are nearly the same levels as those in mosses. If compared with the activity level in algae collected in Adriatic Sea (²³⁹⁺ ²⁴⁰Pu: 0.034 Bq kg⁻¹, ²³⁸Pu: 0.002 Bq kg⁻¹, ²⁴¹Am: 0.016 Bq kg⁻¹; ⁹⁰Sr: 0.10 Bq kg⁻¹, ¹³⁷Cs: 3.71 Bq kg⁻¹), the values in Antarctica are 6–10 times higher for ²³⁹⁺²⁴⁰Pu, ²⁴¹Am and ¹³⁷Cs and about 50 times higher for ²³⁸Pu and ⁹⁰Sr. This fact could be due to the lower growth rate of algae in Antarctica, and in particular, to a very peculiar morphology of these species with high surface/volume ratio that increases the capturing area (Bargagli *et al.* 1993).

Plutonium, ³⁴¹Am, ⁹⁰Sr and ¹³⁷Cs concentrations in fishes

As shown in Table II, the $^{239+240}$ Pu and 137 Cs concentrations in fish flesh seem comparable to those obtained by Roos *et al.* (1993) ($^{239+240}$ Pu: 0.001–0.012 Bq kg⁻¹; 137 Cs: 0.1–4.1 Bq kg⁻¹) in the same region, but no 238 Pu, 241 Am and 90 Sr results are available for comparison. The corresponding values for these radionuclides in fish bone are lower than in fish flesh.

Radionuclide ratios and correlation analyses

The radionuclide activity ratios in these matrices can be utilized to identify the different sources of release. Correlations between concentrations of the analysed radionucleides were tested by Pearson's statistical analysis method.

If the ²³⁸Pu concentrations in soils, sediments, mosses, lichens and algae are plotted against the 239+240Pu concentrations (Fig. 1), the correlation equation is found to be $[^{238}Pu] =$ $0.185[^{239+240}Pu]^{0.930}$, (r = 0.993, n = 19, P < 0.05), showing a statistically significant correlation. For comparison, the correlation of ²³⁸Pu to ^{239 + 240}Pu concentration in Adriatic Sea sediments { $[^{238}Pu] = 0.0337[^{239+240}Pu]^{1.022}$, (r = 0.915, n = 7, P < 0.05 is also given in Fig. 1. The mean concentration ratio of 238 Pu / ${}^{239 \pm 240}$ Pu in these Antarctic samples is 0.23 ± 0.06 which agrees well with Hashimoto et al. (1989). This value is about seven times higher than that (0.034) in Adriatic Sea sediments and in soils of central Italy (Jia et al. 1999) and indicates the different ²³⁸Pu origin. The ²³⁸Pu situation in Antarctica is complex. It was reported that the ratio of bomb test fallout ²³⁸Pu/^{239 + 240}Pu in the Antarctic was slightly lower than in the Northern Hemisphere (Roos et al. 1994). Therefore, the major part (90%) of the ²³⁸Pu in Antarctica could be a result

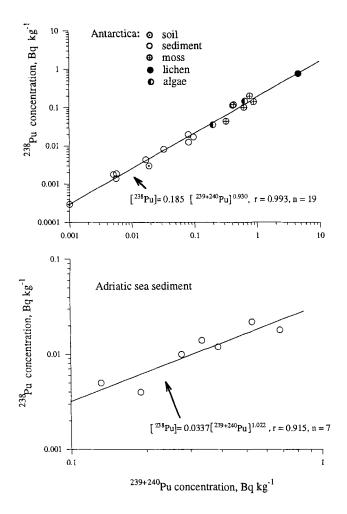


Fig. 1. Correlation between ²³⁸Pu and ²³⁹⁺²⁴⁰Pu concentrations in soils, sediments, mosses, lichens and algae collected from Antarctica and Adriatic Sea.

of ²³⁸Pu release from accidental re-entry burn-up of SNAP-9A satellite in the atmosphere of the Southern Hemisphere in 1964. The evidence shows how a failed nuclear-powered device in space provides a potential risk of world-wide radioactive contamination.

A significant correlation between ²⁴¹Am and ^{239 + 240}Pu concentrations in the Antarctic samples was also found (Fig. 2). The equation is $[^{241}Am] = 0.382[^{239 + 240}Pu]^{0.904}$, (r = 0.985, n = 19, P < 0.05). The high correlation coefficient can be explained by the fact that these nuclides only originate from nuclear explosion tests. The mean ²⁴¹Am/^{239 + 240}Pu ratio is 0.52 \pm 0.24, which is about 73% higher than that $(0.30 \pm$ 0.07) in the Adriatic Sea sediments in Fig. 2 { $[^{241}Am] =$ 0.361[$^{239 + 240}$ Pu]^{1.174}, (r = 0.953, n = 7, P < 0.05)} and 49% higher than that (0.35 \pm 0.05) in the soils of central Italy. It is interesting to point out that in one soil and one marine sediment the ²⁴¹Am concentrations are higher than ^{239 + 240}Pu and in the other two marine sediments the ^{239 + 240}Pu activities are not even detectable but the ²⁴¹Am activities are. ²⁴¹Am is not produced directly by nuclear explosions, but is the decay product of the

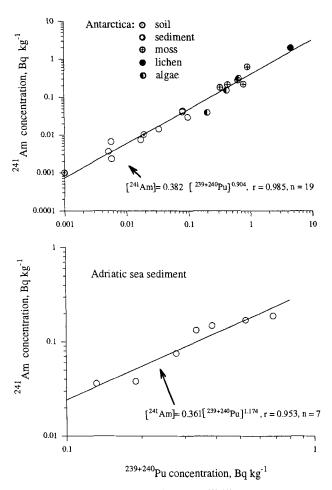


Fig. 2. Correlation between ²⁴¹Am and ²³⁹⁺²⁴⁰Pu concentrations in soils, sediments, mosses, lichens and algae collected from Antarctica and Adriatic Sea.

fallout beta emitter ²⁴¹Pu (T_{yz} : 14.4 y). It is reported that the global fallout ratio of ²⁴¹Pu^{/239 + 240}Pu in 1962 ranged from 12-16. According to this ratio, it is calculated that the ²⁴¹Am/ ^{239 + 240}Pu ratio up to 1997 can be increased to a range of 0.32-0.42 due to the ²⁴¹Pu decay. This estimated ²⁴¹Am/²³⁹⁺ ²⁴⁰Pu ratio has been confirmed by a number of radioecological studies in the Northern Hemisphere (Jia et al. 1997, 1999), but it seems not to be the case in Antarctica according to our observation. It is reported that high yield US nuclear weapon tests in 1953 (primarily Mike Ivy and Bravo Castle) were characterized by a very high ²⁴¹Pu/²³⁹⁺²⁴⁰Pu ratio (~27) (Koide et al. 1981, 1982). The calculations showed that fallout plutonium during 1952-56 constituted about 30% of the total inventory on the Ross Ice Shelf (Koide et al. 1979, Roos et al. 1994). If the ${}^{241}Pu/{}^{239+240}Pu$ ratio is 27, then the ${}^{241}Am/{}^{239+240}Pu$ ratio up to 1997 should be 0.75. The higher ²⁴¹Am concentrations and the observed ²⁴¹Am/²³⁹⁺²⁴⁰Pu ratio difference between Antarctic and Adriatic samples could therefore be the result of earlier fallout deposition. Of course, the ²⁴¹Am/²³⁹⁺ ²⁴⁰Pu ratio differences could also be caused by the fallout composition, also further complicated by other factors, such

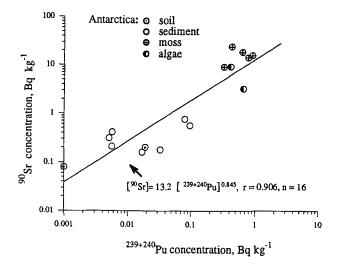


Fig. 3. Correlation between ⁹⁰Sr and ²³⁹⁺²⁴⁰Pu concentrations in soils, sediments, mosses and algae collected from Antarctica.

as the different exchangeability and mobility of americium and plutonium.

The correlation between 90Sr and 239+240Pu concentrations in Antarctic samples is shown in Fig. 3 and can be expressed as $[^{90}$ Sr] = 13.2[²³⁹⁺²⁴⁰Pu]^{0.845}, (r = 0.906, n = 16, P < 0.05). The mean 90 Sr/ ${}^{239+240}$ Pu ratio is 29 ± 25 with a range of 5–80. The wide variation of the ratios is perhaps due to the low ⁹⁰Sr concentrations in lacustrine and marine sediments and to the easy exchange of ⁹⁰Sr in these matrices. In contrast, the reported ⁹⁰Sr/²³⁹⁺²⁴⁰Pu ratios in soils in the Northern Hemisphere were relatively constant (Jia et al. 1999) and they ranged from 5.4 to 17.8 with a mean value of 9.5 ± 3.0 . Some of the 90 Sr/ ²³⁹⁺²⁴⁰Pu ratios in the Antarctic samples coincide well with the reported values, but most of them, especially in mosses, show higher values. The reason for such a difference is not yet known. Sr is one of the major nutrient elements for biological species. Due to its relatively high mobility, running meltwater may thus transport and deposit the ⁹⁰Sr-rich fallout on more organic- or clay-rich ground where mosses are situated. No significant correlation was found between ⁹⁰Sr and ^{239 + 240}Pu concentrations in Adriatic Sea sediments {[90Sr]=0.514[239+ ²⁴⁰Pu]^{0.419}, (r = 0.538, n = 4, P > 0.05).

Figure 4 shows the correlation between ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu concentrations in the Antarctic samples with a correlation equation [¹³⁷Cs] = $38.6[^{239+240}Pu]^{0.978}$, (r = 0.938, n = 18, P < 0.05). The mean ¹³⁷Cs/²³⁹⁺²⁴⁰Pu ratio is 51 ± 38 with a range of 5–171. These values are comparable with those obtained for Adriatic Sea sediments in Table III (mean: 41 ± 51 , range: 5–132) and for central Italian soils (mean: 78 ± 34 , range: 35-155) (Jia *et al.* 1999). The fluctuation of the ¹³⁷Cs/²³⁹⁺²⁴⁰Pu ratios could be attributed mainly to the localized transport processes immediately following the deposition of ¹³⁷Cs. However, the correlation between ¹³⁷Cs] = $1.19[^{239+240}Pu]^{-1.33}$, (r = -0.741, n = 7, P > 0.05) is not statistically significant.

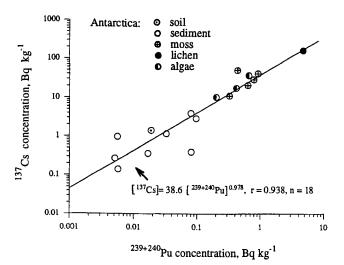


Fig. 4. Correlation between ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu concentrations in soils, sediments, mosses, lichens and algae collected from Antarctica.

After carefully examining the samples in Table III, it was found that the first four sediments with low ratios were collected in June 1990 and the last three with high ratios in July 1996. Therefore, the ¹³⁷Cs concentrations in the first four samples perhaps were less influenced by the fallout from Chernobyl nuclear accident.

As shown in Table II, the mean yields of plutonium, americium and yttrium in soils, sediments, mosses, lichen and algae are $81.0 \pm 13.5\%$, $63.9 \pm 15.3\%$ and $79.8 \pm 21.8\%$ respectively. These data indicate that the sequential separation and determination procedure for plutonium, ²⁴¹Am and ⁹⁰Sr in these matrices worked very satisfactorily.

Acknowledgements

We wish to thank Professor C. Testa and his co-workers for help and use of some instruments and materials at the General and Inorganic Chemistry Institute of Urbino University. Thanks should also be given to the editors and unknown referees for their valuable comments on the paper. Part of the work was financially supported by the Italian National Program for Antarctic Research (PNRA). Dr Guogang Jia undertook this work in Parma University, Italy.

References

- BARGAGLI, R., BATTISTI, E., FOCARDI, S. & FORMICHI, P. 1993. Preliminary data on environmental distribution of Hg in Northern Victoria Land, Antarctica. Antarctic Science, 5, 3–8.
- BATTISTON, G.A., DEGETTO, S., GERBASI, R. & SBRIGNADELLO, G. 1991. Radionuclide content in various samples collected near the Italian bases in Antarctica. Annali di Chimica, 81, 469-475.
- BETTOLI, M.G., CANTELLI, L., TOSITTI, L., TUBERTINI, O. & VALCHER, S. 1991. Distribution of ¹³⁷Cs in lake sediments and surrounding soils at Terra Nova Bay, Antarctica. Annali di Chimica, 81, 541-548.

- BELLI, M. & TIKHOMIROV, F. 1996. Behaviour of radionuclides in natural and semi-natural environments. Luxembourg: EUR 16531 EN, 87-93.
- CAMPBELL, I.B. & CLARIDGE, G.G.C. 1987. Antarctica: soils, weathering processes and environment. Amsterdam: Elsevier Science Publishers, 368 pp.
- COUGHTREY, P.J. & THORNE, M.C. 1983. Radionuclide distribution and transport in terrestrial and aquatic ecosystems: a critical review of data. Rotterdam: A.A. Balkema, 212–222.
- DESMET, G., BLUST, R.J., COMANS, R.N.J., FERNANDEZ, J.A., HILTON, J. & BETTENCOURT, A.D. 1997. Studies in environmental science 68. Freshwater and estuarine radioecology. Proceedings of an international seminar, Lisbon, Portugal, 21–25 March 1994. Amsterdam: Elsevier, 87–95.
- HASHIMOTO, T., MORIMOTO, T., IKEUCHI, Y., YOSHIMIZU, K., TORII, T. & KOMURA, K.A. 1989. Survey of artificial radionuclides in the Antarctic. Radioisotopes, 35, 209-218.
- HOLDGATE, M.W. 1970. Antarctic marine ecosystems. In HOLDGATE, M.W., ed. Antarctic ecology, vol. 1. London: Academic Press, 70-75.
- JIA GUOGANG. 1994. A rapid and accurate method for determination of ⁹⁰Sr in environmental soils. *Journal of Radioanalytical and Nuclear Chemistry*, **185**, 255–264.
- JIA GUOGANG, DESIDERI, D., GUERRA, F., MELLI, M.A. & TESTA, C. 1997. Concentration and vertical distribution of plutonium and americium in Italian mosses and lichens. *Journal of Radioanalytical and Nuclear Chemistry*, 222, 3-9.
- JIA GUOGANG, TESTA, C., DESIDERI, D., GUERRA, F. & ROSELLI, C. 1998. Sequential separation and determination of plutonium, ²⁴¹Am and ⁹⁰Sr in soils and sediments. *Journal of Radioanalytical and Nuclear Chemistry*, 230, 21–27.
- JIA GUOGANG, TESTA, C., DESIDERI, D., GUERRA, F., MELI, M.A., ROSELLI, C. & BELLI, M. 1999. Soil concentration, vertical distribution and inventory of plutonium, ²⁴¹Am, ⁹⁰Sr and ¹³⁷Cs in Marche region of Central Italy. *Health Physics*, 77, 52–61.
- KEMPE, S. & NIES, H. 1987. Chernobyl nuclide record from a North Sea sediment trap. Nature, 329, 828–831.
- KILLEY, R. 1982. Long-term ⁹⁰Sr behaviour in a sand aquifer. Proceedings series of environmental migration of long-lived radionuclides. Vienna: IAEA, IAEA-SM-257/86P, 86 pp.
- KOIDE, M., MICHEL, R. & GOLDBERG, E.D. 1979. Depositional history of artificial radionuclides in the Ross Ice Shelf, Antarctica. *Earth* and Planetary Science Letters, 44, 205-223.

- KOIDE, M. & GOLDBERG, E.D. 1981. ²⁴¹Pu/²³⁹⁺²⁴⁰Pu ratios in polar glaciers: Antarctica. Earth and Planetary Science Letters, 54, 239-247.
- KOIDE, M., MICHEL, R., GOLDBERG, E.D. & HERRON, M.M. 1982. Characterization of radioactive fallout from pre- and post-moratorium tests to polar ice caps. *Nature*, 296, 544-547.
- NONNIS MARZANO, F. & TRIULZI, C. 1994a. Radioecological research on the marine environment facing the Italian Base in Antarctica (1989-91). International Journal of Environmental Analytical Chemistry, 55, 243-252.
- NONNIS MARZANO, F. & TRIULZI, C. 1994b. Radioecological survey of Northern and Middle Adriatic Sea before and after Chernobyl event (1979–1990). Marine Pollution Bulletin, 28, 244–253.
- NONNIS MARZANO, F. & TRIULZI, C. 1997. Antarctic marine radioactivity survey at Terra Nova Bay, Ross Sea. Radioprotection Collogues, 32, 35–40.
- ROOS, P., HOLM, E., PERSSON, R.B.R., AARKROG, A. & NIELSEN, S.P. 1993. Environmental radioactivity in the Antarctic Peninsula area. Proceedings of International Conference on Environmental Radioactivity in the Arctic and Antarctic, 23-27 August, Kirkenes (Norway), 183-194.
- ROOS, P., HOLM, E., PERSSON, R.B.R., AARKROG, A. & NIELSEN, S.P. 1994. Deposition of ²¹⁰Pb, ¹³⁷Cs, ²¹⁹⁺²⁴⁰Pu, ²³⁸Pu and ²⁴¹Am in the Antarctic Peninsula area. Journal of Environmental Radioactivity, 24, 235–251.
- TAYLOR, A. 1968. Strontium retention in acid soils of the North Carolina coastal plain. Soil Science, 106, 440-447.
- TRIULZI, C., MANGIA, A., CASOLI, A., ALBERTAZZI, S. & NONNIS MARZANO, F. 1989. Artificial and natural radionuclides, alkaline and earthalkaline elements in some environmental abiotic samples of Antarctica. Annali di Chimica, 79, 723-733.
- TRIULZI, C., NONNIS MARZANO, F., MORI, A., CASOLI, A. & VAGHI, M. 1991. Presence of radionuclides in biotic and abiotic matrixes collected in the environment around the Italian base in Antarctica. Annali di Chimica, 81, 549-561.
- TRIULZI, C., NONNIS MARZANO, F., CASOLI, A., MORI, A. & VAGHI, M. 1995. Radioactive and stable isotopes in abiotic and biotic components of Antarctic ecosystems surrounding the Italian Base. International Journal of Environmental Analytical Chemistry, 61, 225-230.
- WOLFF, E.W. 1990. Signals of atmospheric pollution in polar snow and ice. Antarctic Science, 2, 189–205.