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SUMMARY

Culicoides biting midges are of great importance as vectors of pathogens and elicitors of allergy. As an alternative for
the identification of these tiny insects, matrix-assisted laser desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) was evaluated. Protein mass fingerprints were determined for 4–5 field-caught reference (genetically
confirmed) individuals of 12 Culicoides species from Switzerland, C. imicola from France, laboratory-reared C. nubeculosus
and a non-biting midge. Reproducibility and accuracy of the database was tested in a validation study by analysing 108
mostly field-caught target Culicoidesmidges and 3 specimens from a non-target species. A reference database of biomarker
mass sets containing between 24 and 38 masses for the different species could be established. Automated database-based
identification was achieved for 101 of the 108 specimens. The remaining 7midges requiredmanual full comparison with the
reference spectra yielding correct identification for 6 specimens and an ambiguous result for the seventh individual.
Specimens of the non-target species did not yield identification. Protein profiling by MALDI-TOF, which is compatible
with morphological and genetic identification of specimens, can be used as an alternative, quick and inexpensive tool to
accurately identify Culicoides biting midges collected in the field.
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INTRODUCTION

Culicoides biting midges are the proven or sus-
pected biological vectors for a number of viruses,
including bluetongue virus, African horse sick-
ness virus, epizootic haemorrhagic disease virus
and Toggenburg orbivirus (Mellor et al. 2000;
Mellor and Hamblin, 2004; Paweska et al. 2005;
Meiswinkel et al. 2007; Carpenter et al. 2009;
Chaignat et al. 2009). In addition, they are a nuisance
pest and can cause insect bite hypersensitivity,
particularly in Equids (Hellberg et al. 2009; Sloet
van Oldruitenborgh-Oosterbaan et al. 2009). In
order to study the significance of the various
Culicoides species with regard to their role as vectors
or elicitors of allergy, tools for their rapid and easy
identification are required. The morphological
identification of these tiny (1–3mm) insects to species
level is very difficult in many cases (Goffredo and
Meiswinkel, 2004; Meiswinkel et al. 2008; www.
culicoides.net) requiring the time-consuming ana-
lyses of slide-mounted microscopical insect prep-
arations (Delécolle, 1985). Hence, in large

entomological surveys, trapped midges are grossly
separated based on morphological features of wing
patterns into Obsoletus group, Pulicaris group and
other Culicoides spp. (Goffredo and Meiswinkel,
2004). Several PCR-based tests have been developed
for the specific identification of a number of species,
in single- or multiplexed assays both in conventional
and in real-time PCR formats (compiled by
Kaufmann et al. 2011 and Wenk et al. 2011).

Matrix-assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS) has
emerged as an alternative technique for species
identification. This proteomic approach has come
of age for the high throughput, accurate and
reproducible identification of clinically relevant
microorganisms (bacteria, yeasts, filamentous fungi)
at low cost and minimal preparation time (Mellmann
et al. 2009; Santos et al. 2010; Sauer andKliem, 2010;
Stevenson et al. 2010; van Veen et al. 2010). This
technique has been described for the identification of
metazoans, namely fish species (Mazzeo et al. 2008),
plants (lentil varieties, Caprioli et al. 2010) and
insects (Drosophila fruit flies, Campbell, 2005;
Feltens et al. 2010; aphid species, Perera et al.
2005). In a recent study (Kaufmann et al. 2011), we
have demonstrated the suitability of MALDI-TOF
MS analysis to reproducibly identify biomarker
masses from laboratory-reared C. nubeculosus,
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independent of the insects’ sex, age and the duration
of their storage in 70% ethanol up to 102 days. The
only prerequisite was to remove the abdomen because
host blood in female midges blurred the spectra in the
first few days after the bloodmeal. Further, no
differences were found in the spectra from thoraxes
only or from thoraxes with head, legs and wings,
leaving these parts for other purposes, e.g. morpho-
logical and genetic identification.
With this study,weaimedat establishinga reference

database of biomarker masses of field-caught biting
midges and to evaluate this MALDI-TOF-based
identification system in a blind study.

MATERIALS AND METHODS

Insect origins and morphological and genetic
identification

Ceratopogonid midges were caught between 2008
and 2010 on 10 cattle farms in 3 regions of
Switzerland (Alps, Midland north of the Alps
with Atlantic climate, South of the Alps with
Mediterranean climate; Kaufmann et al. 2009)
using Onderstepoort UV-light suction traps as
described (Venter and Meiswinkel, 1994). Whole
insects were stored between 2 and up to 24 months in
70% ethanol at room temperature. Culicoides spp.
were identified under a stereo-microscope, based on
wing pattern and morphological features (Delécolle,
1985). Culicoides imicola specimens originated from
Corsica (France), and C. nubeculosus (initially pro-
vided by the Institute for Animal Health, Pirbright,
UK) were obtained from our in-house colony
maintained according to Boorman (1974), with the
exceptions that larvae were fed with pulverized
Tetramin® only and that blood feeding was achieved
through a Nescofilm®-membrane with fresh hepar-
inized sheep blood. The non-biting midges of
another ceratopogonid genus, Forcipomyia, were
selected from one of the trapping sites from the
Midland (Dittingen/BL; Kaufmann et al. 2009), and
individuals of the predominant morphotype of this
genus were used for the study.
Individuals were dissected using a stereo-

microscope as described (Kaufmann et al. 2011).
From the abdomens, DNA was isolated with a
kit (Qiamp DNA mini kit, Qiagen, Hildesheim,
Germany) according to the manufacturer’s instruc-
tion after mechanical homogenization as described
(Wenk et al. 2011).
Genetic species confirmation was done by PCR/

sequencing of 585 bp of the mitochondrial cyto-
chrome oxidase subunit I gene (mt COI). The
primers C1-J-1718-mod (5′-GGW GGR TTT
GGW AAY TGA YTA G-3′) and C1-N-2191-mod
(5′-AGHWCCAAA AGTTTCYTTTTTCC-3′)
were modified from previously described primers
(Dallas et al. 2003) and were devised to be specific for

insects, by considering the corresponding sequences
of Aedes aegypti, D. melanogaster, C. arakwae,
C. dewulfi and Homo sapiens (Wenk et al. 2011). In
addition, species conformation at a different locus
(rDNA internal transcribed spacer 1, ITS1) accord-
ing to Cêtre-Sossah and colleagues (2004) was
occasionally performed. Direct sequencing of the
amplicons was performed by a private company
(Synergene, Schlieren, Switzerland).

Sample preparation and MALDI-TOF MS
parameters

Thoraxes with head, wings and legs were manually
homogenized in 20 μl of formic acid (10%) and 5 μl
thereof were mixed with 7·5 μl of SA (saturated
solution of sinapic acid in 60% acetonitrile, 40%H2O,
0·3% trifluoroacetic acid; Sigma-Aldrich, Buchs,
Switzerland). One μl was spotted within a maximum
of 2 h onto a steel target plate in quadruplet for
reference spectra or in duplicate in the validation
study, and air-dried at room temperature. Protein
mass fingerprints were obtained using a MALDI-
TOF Mass Spectrometry Axima™ Confidence
machine (Shimadzu-Biotech Corp., Kyoto, Japan)
as described earlier (Stephan et al. 2010) with the
threshold apex peak detection being performed in
the dynamic threshold type setting using an offset to
0·020mV and a threshold response factor of 1·2. All
target plates were externally calibrated by Escherichia
coli DH5α as the reference strain.

Peak matrix generation for unsupervised
cluster analysis

Generated protein mass fingerprints were analysed
with SARAMIS software (Spectral Archive and
Microbial Identification System, AnagnosTec,
Potsdam-Golm, Germany). Binary matrix was gen-
erated using the SARAMIS SuperSpectrum tool and
exported to a text file. Intensity and error columns
were removed and average spectra were generated,
eliminating masses with a presence lower than 50%
within the 4 replicates. The adapted binary matrix
was imported into PAST freeware, and multivariate
cluster analysis was performed using the paired group
dice algorithm. The generated dendrogram was
exported in nexus file format, and the dendrogram
illustration was performed by the FigTree freeware.

Generation of MALDI-TOF MS biomarker mass sets

Protein mass fingerprints were determined in quad-
ruplets from the 69 referenceCulicoides bitingmidges
covering 14 species and one non-biting midge of
the genus Forcipomyia. Five genetically confirmed
specimens (only 4 for a cryptic species ofC. grisescens
denominatedC. grisescens II; Wenk et al. 2011) of the
following species were included (origin: A: Alps,
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M: Midland north of the Alps with Atlantic climate,
S: South of the Alps with Mediterranean climate):
(a) Obsoletus group: C. chiopterus (M and S);
C. obsoletus (M and S); C. scoticus (M); (b) Pulicaris
group: C. deltus (A); C. grisescens I (A); C. grisescens
II (A);C. lupicaris (M);C. pulicaris (M);C. punctatus
(M); (c) other Culicoides spp.: C. circumscriptus (S);
C. dewulfi (M); C. festivipennis (M and S); C. imicola
(Corsica, France); C. nubeculosus (from in-house
colony, only 2 specimens genetically analysed).

Only reads with at least 50 peaks were further
included. The peak lists were imported into
SARAMIS, trimmed to a mass range of 2–20 kDa,
and peaks with a relative intensity below 1% were
removed. Peak lists were binned and average bio-
marker masses were calculated using the SARAMIS
SuperSpectrum tool with an error of 800 ppm. The
specificity of these potential biomarker masses
was determined by comparison against the whole
SARAMIS spectral archive and additionalMabritec-
owned spectral data sets including more than 90 000
spectra covering >2700 different species of various
taxa (mostly bacteria, but also fungi, eukaryotic cell
lines, and a few insects; Kaufmann et al. 2011). In
accordance with the SARAMIS user guidelines, the
threshold for identification was set at 75% biomarker
matches based on the reference data set.

Validation study

For the validation of the biomarker mass sets, 111
Culicoides biting midges were analysed in duplicate
(blind study). These included midges caught in the
field in the 3 regions of Switzerland and morpho-
logically identified as belonging to one of the species
for which a biomarker mass set was generated
(C. chiopterus, n=3;C. circumscriptus, n=3;C. deltus,
n=5; C. dewulfi, n=2; C. festivipennis, n=3;
C. grisescens, n=2; C. lupicaris, n=2; C. obsoletus
(males), n=5; C. obsoletus/scoticus (females), n=37;
C. pulicaris, n=5; C. punctatus, n=22; C. scoticus
(males), n=8). In addition, C. imicola (n=1);
C. nubeculosus (n=10) from the colony and, as a
nontarget species, field-caught C. pallidicornis (n=3)
were included. All specimens from the validation
study were genetically analysed.

Generated mass fingerprints were imported into
SARAMS software for automated identification
against >3400 biomarker mass sets, including 16
insect species-specific sets and, if required, for
manual full spectra comparison against the 69
reference Culicoides biting midges.

RESULTS

Creating a reference database of biomarker masses

MALDI-TOF MS reference spectra were deter-
mined for 12 field-caught Culicoides biting midge

species from Switzerland, including a cryptic species
of C. grisescens (denominated C. grisescens II),
C. imicola from France, from laboratory-reared
C. nubeculosus as well as from 1 non-biting midge of
the ceratopogonid genus Forcipomyia. In general,
5 individuals per species (total 74 specimens),
morphologicallydeterminedandconfirmedbygenetic
analyses, were used to develop an MS reference
database. The protein profiles of these Culicoides
biting midges revealed between 50 and 169 peaks in
the mass range of 2 to 20 kDa with an average of 99
peaks per spectrum. In Fig. 1, profiles of individuals
belonging to 6 biting midge species (i.e. C. obsoletus,
C. scoticus, C. dewulfi, C. imicola, C. pulicaris, and
C. punctatus) are shown for the range between 5 and
10 kDa.

The total mass spectra of all 69 reference biting
midges and of 1 Forcipomyia specimen as outgroup
were used to generate a dendrogram (Fig. 2). Thus,
all individuals of a species clustered on discrete
branches. In particular, species that are indistin-
guishable by morphology (i.e. females ofC. obsoletus/
scoticus, the cryptic species C. grisescens I/II) are
clearly distinguished by MALDI-TOF MS.

Based on this clear-cut clustering of the species,
specific biomarker mass sets, containing between
24 and 38 masses for the different species (Fig. 1,
Table 1), could be generated using SARAMIS and be
used for automated Culicoides species identification.
The above mentioned morphologically similar
species had only few common biomarker masses,
namely 4 (from 26 and 38, respectively, ofC. obsoletus
and C. scoticus) or 7 (from 25 and 30 of C. grisescens
I/II) (Table 1).

Validation study

The reproducibility and accuracy of the reference
database were tested in a second step in a validation
study. Analyses against the biomarker mass sets of all
reference species were performed for 2 profiles per
individual. From 90 of the 108 specimens investi-
gated, both profiles allowed for an automated
identification. Eleven individuals yielded only 1
profile suitable for identification by automated
analysis, whereas the replicate had fewer than 75%
biomarker matches, requiring manual full spectra
comparison which in all these cases confirmed the
result of the automated classification. From 7midges,
both profiles were of lower quality (displaying fewer
masses and lower intensities), requiring manual
full spectra comparison which in 5 of these cases
consistently identified the species. In another case,
only 1 of the duplicates yielded an analysable
profile. The seventh of these specimens, morpho-
logically and genetically identified as C. deltus,
resulted in spectra which most closely resembled
those derived of the reference C. deltus specimens
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in one and of C. grisescens I in the other read.
Finally, all 3 specimens ofC. pallidicornis (non-target
species) did not yield identification neither by
automated biomarker identification nor by manual
comparison against the spectra of all reference
specimens.
Except for 1 specimen with an ambiguous result

(see above), all 107 biting midges from the evaluation
phase were correctly identified by MALDI-TOF
MS, either by automated biomarker identification
or by manual full spectra comparison. Initially,

discrepancies of the identification by morphology
and MALDI-TOF MS were obtained with 8
individuals. Genetic analyses of these insects were
always in accordance with the MALDI-TOF MS
results indicating that the morphological identifi-
cation was inaccurate. Thus, 2 of the 5 specimens
morphologically identified as C. deltus in fact were
C. pulicaris, 3 of 5 C. pulicaris were C. punctatus (2)
and C. lupicaris (1), respectively, 2 C. grisescens
turned out to be C. deltus and a specimen of
C. lupicaris was misidentified as C. punctatus.
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Fig. 1. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectra in the range of 5–10 kDa
of field-caught Culicoides insects. Biomarker masses as eventually determined by SARAMIS are highlighted by dashed
lines.
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DISCUSSION

MALDI-TOF MS using homogenates of whole
insects has been shown in proof-of-principle studies
by Campbell (2005) and Perera and colleagues (2005)
to be suitable for differentiation of the few species
they investigated (fruit flies, aphids). Feltens and
colleagues (2010) applied this proteomic approach
to discriminate 13 species of Drosophila, and the
suitability of MALDI-TOF MS to characterize a
haematophagous insect (C. nubeculosus) has recently
been demonstrated (Kaufmann et al. 2011). All these
investigations relied on laboratory-reared insects.
The study presented here is the first evaluation of
MALDI-TOFMS for species identification of field-
caught haematophagous insects. These included the
Culicoides species from the Obsoletus and Pulicaris
group that are the incriminated biological vectors of
the bluetongue virus in Europe, but also C. imicola,
the main vector in Africa, as well as other European
species.

Using a very crude sample preparation method
(mechanical grinding in 10% formic acid) it was
possible to obtain specific and discrete biomarker

mass sets for the 14 Culicoides spp. investigated, and
only few biomarker masses were shared by different
species, even among closely related ones such as
C. grisescens and a cryptic species (denominated
C. grisescens II). Thus, it seems feasible that this
approach can be expanded to include otherCulicoides
spp. Indeed, C. pallidicornis specimens, included in
the validation phase as non-target organism, were not
recognized by comparing with the spectra of these 14
species, and a unique biomarker mass set could also
be calculated for C. pallidicornis (not shown).

Also using a minimal sample preparation approach
(mechanical insect homogenization in water), the
discrimination of sibling species of Drosophila
by MALDI-TOF MS analyses has been reported
(Campbell, 2005). In contrast, when focusing on the
analyses of proteins/peptides purified by chromato-
graphy after mechanical homogenization under
protein-denaturing conditions (6 M urea), the differ-
entiation of closely related and laboratory-reared
Drosophila spp. (i.e. D. miranda, D. pseudoobscura,
belonging to the Obscura species group) was not
possible (Feltens et al. 2010). Between 168 and 390
protein and peptide peaks in the range of 1·8 to

2.0

Fig. 2. Dendrogram of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectra of
thoraxes from (4-) 5 individuals of 13 species of field-caught Culicoides biting midges and laboratory-reared
C. nubeculosus. One individual of a Forcipomyia sp. is included as outgroup.
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Table 1. MALDI-TOF MS reference biomarker masses for 14 Culicoides
spp. and Forcipomyia sp.
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2527                               
2541                               
2581                               
2616                               
2624                               
2646                               
2801                               
2831                               
2844                               
2904                               
3034                               
3191                               
3200                               
3227                               
3234                               
3243                               
3252                               
3258                               
3271                               
3312                               
3433                               
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3587                               
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3830                               
3962                               
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4174                               
4187                               
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5205                               
5218                               
5231                               
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Table 1 (Cont.)
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Table 1 (Cont.)
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16704                               
19379                               
19549                               

Total 25 27 28 31 24 30 25 34 34 33 26 36 26 38 28
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15 kDa, (average 236 peaks per spectrum) were
identified in that study (present study: 50 to 169
peaks in themass range of 2 to 20 kDawith an average
peak number of 99), but spectral heterogeneity
within species and a limited number of species-
specific peaks were noted. Feltens and colleagues
(2010) identified 18 potential protein markers by
electrospray ionization MS/MS, revealing that most
of them stem from muscle tissue like myosin heavy
chain, troponin, tropomyosin, flightin or from
mitochondria-like ATP synthase subunits alpha and
beta. In our study, mainly the muscle-containing
thorax (and the head) were used for protein extraction
because potential bloodmeal traces in the abdomen
were shown to impair the MALDI spectra quality
(Kaufmann et al. 2011). Thus, the spectra that we
generated have a lower average datacount as com-
pared to the study of Feltens and colleagues (2010)
but they cover most of the potential discriminative
and reproducible muscle tissue and mitochondrial
proteins.

Although no emphasis was laid on phylogenetic
analyses, the dendrogram shown in Fig. 2 reasonably
reflects the current comprehension of Culicoides
kinship. Thus, the species of the Obsoletus group
(C. chiopterus, C. obsoletus, C. scoticus) cluster to-
gether, also including C. dewulfi, which recently was
suggested not to be a member of this group, accord-
ing to genetic analyses at 3 loci (Schwenkenbecher
et al. 2009). The recognized species of the Pulicaris
group are grouped in 2 clusters (C. lupicaris,
C. pulicaris, C. punctatus; C. deltus, C. grisescens I).
Interestingly, the cryptic species denominated
C. grisescens II, which is morphologically indistin-
guishable from the type species C. grisescens I but
differs by approximately 10% at the barcode locus mt
COX I gene (Wenk et al. 2011), is not part of one of
the Pulicaris group clusters. Thus, more in-depth
investigations usingMALDI-TOFMS, as described
(Feltens et al. 2010), might be of value to address
taxonomic and phylogenetic questions in the genus
Culicoides.

In a previous studywithC. nubeculosus (Kaufmann
et al. 2011), male and female specimens had
very similar spectra allowing derivation of a set
of biomarker masses valid for both sexes. Similar
spectra of males and females ofD. melanogaster using
a crude sample preparation were also reported
(Campbell, 2005) whereas a differentiation of the
two sexes of this fruit fly species was achieved based
on mass analyses of purified proteins/peptides
(Feltens et al. 2010). In the present study, individuals
of both sexes of all but 2 species were included either
in the reference specimens or in those used in the
validation study, and no discrimination between
males and females was observed (data not shown).
Only females were available from C. deltus and
C. imicola. However, this is of minor importance
because only females are haematophagous and thus

act as vectors and because the commonly used
UV-traps primarily capture this gender. Further,
only males of the rare species C. pallidicornis, which
was used as the non-target species in the validation
phase, were available. Considering the findings with
the other species. i.e. gender does not matter with
regard to identification by MALDI-TOF patterns,
the eventually calculated biomarker mass sets of
these male specimens most probably are also valid to
accurately identify females of this species.

The insects used in this work were stored in 70%
EtOH which is considered suitable for subsequent
analyses by MALDI-TOF MS (Campbell, 2005;
Feltens et al. 2010), and it was experimentally proven
that such a storage up to around 3 months (102 days)
yielded stable mass spectrum results (Kaufmann
et al. 2011). In the present study, it was observed that
freshly caught species generated more data counts
(peaks) than species which were kept for a longer
period (>3 months) in 70% ethanol after trapping
(data not shown). Nevertheless, the biomarker
mass sets compiled from the data of the reference
specimens allowed reliable identification in the
blind study midges kept over 2 years in 70% ethanol
(at 4° C) (not shown).

Reproducibility and accuracy of the references
were tested in a blind study of 111 morphologically
identified biting midges mainly caught in the field all
over Switzerland. Thus, a correct and unambiguous
result was obtained in 110 of the 111 insects tested.
Initial discrepancies betweenmorphology on one side
and mass analysis/genotyping on the other side were
encountered in 8 individuals. All these morphologi-
cally misidentified specimens belong to species from
the Pulicaris group which are notoriously hard
to distinguish with certainty as they are known to
display natural variation in morphology as well as
overlapping characters. Thus, the accuracy of the
morphological characters employed in identification
keys might be re-evaluated according to MALDI-
TOF MS or genetic identifications. Further, long
storage in ethanol might have blurred morphological
features such as the wing patterns. Morphological
misidentifications as identified by genetic data also
were observed when selecting specimens for creating
the reference database, but these individuals were
excluded.

The application of MALDI-TOF MS for the
identification of insects has just begun, and further
investigations will generate more biomarker mass
sets which preferably should be united in a single
database. For Culicoides, a relatively low number
of very discrete biomarker masses were identified
(24–38) as compared to bacteria which usually are
characterized by 30–50 such masses. In addition, it is
not uncommon that more than 1 biomarker mass set
is available in databases for a single species, e.g. there
are >40 sets currently available for Staphylococcus
aureus in the SARAMIS library of Anagnostec.
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Larger datasets with Culicoides spp. might reveal
different sets for populations of a species from
different origins, although our limited data revealed
that individuals of 3 species (C. chiopterus,
C. festivipennis, C. obsoletus) that were collected at
either site of the Alpine crest could be integrated in
single sets each.
In conclusion, the presented results demonstrate

that protein profiling by MALDI-TOF can be used
as an alternative, quick and inexpensive tool to
accurately identify Culicoides biting midges collected
in the field, including cryptic species. MALDI-TOF
can be used complimentarily to other identification
techniques (morphology, genetics) as only part of the
insect need to be investigated. This approach has the
potential to become the method of choice for a
centralized, robust and high throughput screening of
midge populations in connection with the surveil-
lance of eventually emerging midge-transmitted
agents.
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