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Abstract
We propose a Poisson mixture model for count data to determine the number of groups in a Group
Life insurance portfolio consisting of claim numbers or deaths. We take a non-parametric Bayesian
approach to modelling this mixture distribution using a Dirichlet process prior and use reversible
jump Markov chain Monte Carlo to estimate the number of components in the mixture. Unlike
Haastrup, we show that the assumption of identical heterogeneity for all groups may not hold as
88% of the posterior probability is assigned to models with two or three components, and 11% to
models with four or five components, whereas models with one component are never visited. Our
major contribution is showing how to account for both model uncertainty and parameter estimation
within a single framework.
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1. Introduction

Risk is a measure of possible variation of economic outcomes. It is a measure of the variation
between the actual outcome and the expected outcome. An individual is exposed to a significant
amount of risk associated with perils such as death, disability, fire, and so on. By purchasing an
insurance contract, the individual can transfer this risk or variability of possible outcomes to an
insurance company in exchange for a set of payments called premiums. This contract gives the individual
the right to make a claim on the insurance company to cover losses incurred. In life insurance, the risk is
associated with variability in the number of death claims, which is modelled by a probability frequency
distribution. In most property/casualty lines of insurance, not only is there frequency distribution of the
number of claims, but there is also severity or loss distribution for size of claim.

Claims are triggers that accrue costs against an insurer. The cost of a claim is the magnitude of the
effect associated with it. This may also be referred to as loss, size, or amount of damage. Thus,
modelling the number of claims is a critical part of loss reserving, pricing, and underwriting in
insurance companies. The precision of claims count estimation is therefore crucial to the successful
performance of an insurance company. Usually, count regression analysis is used that allows for risk
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factors to be identified, including the expected frequency of claims of policy holders. A common way
to calculate the premium is to obtain the conditional expectation of the claims count, given the risk
characteristics and combined it with the expected claim size. Jewell (1974) presents the Bayesian
credibility model for claim counts with a natural conjugate prior distribution. This model is widely
used in non-life insurance companies as part of the process of estimating and predicting the expected
claims count in upcoming periods using the past experience of claims of a particular risk class.

In this paper, we consider a mixed Poisson model for claims count data arising in Group Life insurance.
We present a Bayesian formulation to determine the number of groups in an insurance portfolio
consisting of claim numbers or deaths. We take a non-parametric Bayesian approach to modelling this
mixture distribution using a Dirichlet process prior and use reversible jumpMarkov chain Monte Carlo
(RJMCMC) to estimate the number of components in the mixture. The physical interpretation of the
model is that heterogeneity is assumed to be drawn from one of a finite number of possible groups, and
its proportion will be estimated using Markov chain Monte Carlo (MCMC). Unlike Haastrup (2000),
we show that the assumption of identical heterogeneity for all groups may not hold as 88% of the
posterior probability is assigned to models with two or three components, and 11% to models with four
or five components, whereas models with one component are never visited. We apply different
RJMCMC algorithms and show that the birth/death method is preferred. Our major contribution to the
actuarial literature is showing how to account for both model uncertainty and parameter estimation
within a single framework.

Dellaportas et al. (2000, 2003) describe Bayesian model and variable selection using Gibbs sampler and
MCMC. Ntzoufras & Dellaportas (2002) model outstanding insurance liabilities incorporating claims
count uncertainty using Bayesian analysis. Katsis &Ntzoufras (2005) and Ntzoufras et al. (2005) perform
Bayesian analysis of insurance claims count distribution using the Gibbs sampler and reversible jump
algorithm, respectively. Bermúdez & Karlis (2011) apply MCMC methods to Bayesian multivariate
regression Poisson models for the pricing of an insurance contract that contains different types of coverages,
which may be dependent, such as automobile insurance. Bermúdez & Karlis (2012) also apply a finite
mixture of bivariate Poisson regression models to insurance ratemaking. Verrall &Wüthrich (2012) use the
RJMCMCmethod for parameter reduction in claims reserving. Other Bayesian andMCMCmethods with
applications to claims reserving are also presented in England et al. (2011) and Donnelly & Wüthrich
(2012). Streftaris & Worton (2008) apply efficient and approximate Bayesian inference to insurance
claims data, whereas Gibbs sampler is used in the Bayesian modelling of financial guarantee insurance in
Puustelli et al. (2008). The reader is directed to Anastasiadis & Chukova (2012) for an extensive overview
of the recent literature on the modelling of insurance claims, and the processes associated with them.

The remainder of this paper is organised as follows: section 2 introduces and extends the Poisson
mixture model. Algorithms are presented in section 3. These include the reversible jump model
selection and the split and merge method of Dellaportas et al. (1997). We apply these algorithms to
count data obtained from a major Norwegian insurance company. Numerical results are presented
and analysed in section 4. We conclude in section 5.

2. Model and Data

In this section, we present a credibility model for heterogeneity along with data consisting of
exposures and deaths/claims count. The data arise from 1,125 groups insured during all, or part
of the period 1982–1985, by a major Norwegian insurance company. There are n = 72 groups
distinguished by occupation category. The heterogeneity model is used to model differences in each
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of the n groups. The ith group has risk exposure Ei, and observed number of deaths Di. The data are
also analysed in Haastrup (2000) and Norberg (1989). Let D1,… ,Dn denote the number of
observed deaths in each insured group. Associated with each group is the exposure, denoted as
E1,… , En, respectively, which is a measure of the propensity of that group to produce claims/deaths.
Let Dn denote the collection of all deaths for each group, where

Dn ¼ fD1; ¼ ;Dng
Similarly, let En denote the collection of all exposures for the groups. That is,

En ¼ fE1; ¼ ;Eng
Figure 1 shows a plot of the claim number for each group, whereas Figure 2 shows the claim
numbers normalised by their corresponding exposures.

The heterogeneity model is used to model differences in each of the n groups. For each group, the
exposures are recorded followed by the resulting number of deaths or claims. Haastrup (2000)
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Figure 1. Plot of the number of observed claims for each group.
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Figure 2. Plot of the number of observed claims per unit exposure.
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assumes that each group i has a unique heterogeneity parameter, denoted λi, and that the number of
deaths Di, follows a Poisson distribution with mean λiEi. The groups are assumed to be mutually
independent, given the heterogeneity parameters λ1, λ2,… , λn. Furthermore, Haastrup assumes that
this distribution is identical for each group. In practice, large values of Ei will account for large values
of Di, which will lead to similar values of λi for each i.

Thus,

Di � Poisson ðλiEiÞ; i ¼ 1; ¼ ; n

We take a fully Bayesian approach and assume that λi are i.i.d and follow a Gamma distribution with
parameters α and β, that is,

λi � Gamma ðα; βÞ

where α and β are also assumed to be unknown.

The advantage of using such mixed distributions is that it allows for overdispersion in the number of
occurrences as

E ðDiÞ ¼ E ðE ðDi j λÞÞ ¼ E Eλð Þ ¼ Eα=β

and

Var ðDiÞ ¼E ðVar ðDi j λÞÞ + Var ðE ðDi j λÞÞ

¼Eα=β + E2α=β2 >E ðDiÞ

2.1. Extending the basic model–mixture formulation

We now extend the model by proposing a Poisson mixture model formulation. We assume that Di,
given λj, has a Poisson distribution with mean λj Ei. We take a non-parametric Bayesian approach to
modelling this mixture distribution using a Dirichlet process prior, and use RJMCMC to estimate the
number of components in the mixture. In this case, the physical interpretation of the model is that the
heterogeneity is assumed to be drawn from one of k possible components, in proportions w1,… , wk.
The method we describe is essentially a classification problem where we assume that each observed
Di comes from only one of k components, where each component has a Poisson distribution. Thus,

Di j λj � Poisson ðEiλjÞ j ¼ 1; ¼ ; k; i ¼ 1; ¼ ; n

More general forms of the mixture Poisson model with covariates are discussed in Green &
Richardson (2002). Mixture models for grouped claim numbers are considered by Tremblay (1992)
and Walhin & Paris (1999, 2000). Dellaportas et al. (1997) considers count data in finance using
split/merge moves, whereas Viallefont et al. (2002) provide a more general discussion of mixtures of
Poisson distributions using both split/merge moves and birth/death moves. Other methods for
determining the number of components in a mixture are discussed by McLachlan & Peel (2000),
Phillips & Smith (1996), Carlin & Chib (1995), and Stephens (2000), who use Markov chains to
model jointly the number of components and component values. The advantage of the Bayesian
formulation is that we can place posterior probabilities on the order of the model.
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2.2. The likelihood function

Throughout our discussion, n will denote the number of data points and k the number of components
in the mixture formulation. For a finite mixture model, the observed likelihood function is

L ðDn j λ; w; EnÞ ¼
Yn
i¼ 1

Xk
j¼1

wjfj ðDi j λj; EiÞ (1)

where the weights are non-negative and
Pk

j¼ 1 wj ¼ 1. Even for moderate values of n and k, this takes
a long time to evaluate as there are kn terms when the inner sums are expanded (Casella et al., 2000).
Another form of the likelihood function will be derived shortly. Classical estimation procedures for
mixture models are described by Titterington et al. (1990) and McLachlan & Peel (2000).

Let zi be categorical random variables taking values in {1,… , k} with probabilities w1,… ,wk,
respectively, so that

p ðzi ¼ j j wÞ ¼ wj

Let fj (·) denote a Poisson density with parameter λj. Suppose that the conditional distribution of Di,
given zi = j, is Poisson (λj), j = 1,… , k. Then the unconditional density of Di is given by

f ðDiÞ ¼
Xk
j¼ 1

fi ðDi j zi ¼ j; λ; EnÞp ðzi ¼ jÞ

¼
Xk
j¼ 1

wjfi ðDi j λjEiÞ ð2Þ

With each pair (Di, Ei), we associate a latent variable zi, which is an indicator variable that indicates
which component of the mixture is associated with (Di, Ei). We have zi = j if the ith data point
(Di, Ei), comes from the jth component of the mixture. Thus, for each i, we have

zi j w � Mð1; w1; ¼ ; wkÞ
and

Di j zi � PðλziEiÞ
By incorporating the indicator variables zi, the complete data likelihood is then

LðDn j z; λ; EnÞ ¼
Yn
i¼1

f ðDi j λzi ; EiÞ

¼
Yk
j¼1

Y
fi:zi ¼ jg

f ðDi j λj; EiÞ ð3Þ

At times, especially for the fixed k case described below, it is more convenient to work with (3) as it
involves multiplications only, rather than additions and multiplications, as in (1). Note that the inclusion
of the categorical variables (zi) does not add to the complexity of the model. Instead, it results in a
simplification of the likelihood function from being a product of sums as in (1) to a product only, as in (3).

The convenience of using the missing data formulation is that the posterior conditional distribution
of the model parameters would be standard distributions. Moreover, the augmented variables zi
allow us to see the component of the mixture to which the data points are assigned.
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2.3. Gibbs updates for fixed k

We consider a mixture of Poissons, where conditional on there being k components in the mixture:

Di �
Xk
j¼ 1

wjf ð� j λj; EiÞ

The weights wj, sum to 1, and are non-negative. That is,

Xk
j¼ 1

wj ¼ 1 and wj ≥ 0 (4)

f (Di j λ, zi = j, Ei) ~ Poisson (λjEi) with allocations P(zi = j) = wj

and

w � Dðδ1; ¼ ; δkÞ
follows a Dirichlet distribution. We also make the additional assumption that the δj’s are equal to 1,
so that p(w) is a uniform distribution on the space described by (4). For the Poisson parameters λj, we
take Gamma priors, so that

λj � Gamma ða; bÞ; j ¼ 1; ¼ ; k

with the ordering constraint

λ1 < λ2 < � � �< λk (5)

to ensure that the components are identifiable. The ordering constraint is not necessary for the
Monte Carlo algorithm to work. However, it does avoid the problem of label switching, as other-
wise, any permutation of the indices {1,… , k} will result in the same posterior distribution. The
choice of objective priors is particularly difficult for finite mixture models, as common improper
priors will lead to improper posteriors; see subsection 3.2.2 of Frühwirth-Schnatter (2006) for a
discussion. Note that a Dirichlet distribution as the prior on the weights is conjugate so we also have
a Dirichlet posterior distribution for the weights but with updated parameters. In addition, we
choose identical priors on the hyperparameters λj so the model is invariant to ordering.

There are k! ways to order k distinct objects. Because of the ordering constraint in equation (5), and
the fact that the λs are i.i.d., the joint density of the collective λ is

p ðλ j α; β; kÞ ¼ k ! p ðλ1 j α; βÞ � � � p ðλk j α; βÞ Iλ1 < λ2 < ���<λk ðλÞ
When k is fixed and known, the factorial term k! does not affect the MCMC algorithm as it can be
absorbed into the normalising constant. However, in the variable k case, it must be noted, as it is a
factor in the reversible jump acceptance probability. The joint density of all unknowns is

π ðw; λ; z j DnÞ / p ðw j δÞp ðz j wÞp ðλ j α; βÞL ðDn j λ; z; EnÞ (6)

With the missing data formulation, the likelihood term L (Dn j λ, z, En) can be written as

L ðDn j λ; z; EÞ ¼
Yn
i¼1

e�λzi Ei ðλziEiÞDi

Di !

 !

and

p ðz j wÞ ¼
Yk
j¼ 1

wnj
j
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where nj = #{i j zi = j} is the number of observations allocated to component j. The prior distributions
are

p ðw j δÞ ¼
Γ Σk

j¼ 1δj
� �

Qk
j¼1 Γ ðδjÞ

Yk
j¼ 1

wδj �1
j

p ðλi j α; βÞ ¼ βα

Γ ðαÞ λ
α� 1
i e�βλi

Using Bayes’ theorem, we have the following posterior conditional distributions:

π ðλjÞ / λα� 1
j e�βλj ´ λ

Σi j zi ¼ jDi

j e�λjΣi j zi ¼ jEi Iðλj� 1; λj + 1Þ ðλjÞ

and

π ðw j δ; zÞ / pðw j δÞ p ðz j wÞ
so that

w � Dðδ1 + n1; ¼ ; δk + n
k
Þ

where nj = #{i | zi = j}. For z, we update the allocations using

P ðzi ¼ jÞ / wjf ðDi j λj; EiÞ i ¼ 1; ¼ ; n; j ¼ 1; ¼ ; k

so that

p ðzi ¼ jÞ ¼ wjf ðDi j λj; EiÞ
Σk
j¼1 wjf ðDi j λj; EiÞ

(7)

This follows from equation (2). The Gibbs algorithm for fixed k is then (Robert & Casella, 1999)

Step 1: Simulate zi from

p ðzi ¼ jÞ / wjf ðDi j λj; EiÞ for j ¼ 1; ¼ ; k

and compute nj; njDj; njEj from

nj ¼
X
ijzi ¼ j

ð1Þ njDj ¼
X
ijzi ¼ j

Di njEj ¼
X
ijzi ¼ j

Ei

Step 2: Simulate

λj � Gamma ðα + njDj; β + njEjÞ Iðλj� 1 ; λj + 1Þ ðλjÞ for j ¼ 1; ¼ ; k

Step 3: Simulate

w � Dðδ + n1; ¼ ; δ + nkÞ

3. The Algorithms

The analysis in the preceding sections assumed that the number of components in our mixture
formulation is fixed and known. We now extend the results to the case where k varies. That is, the
number of components of the mixture are not known in advance. This is a model selection problem
in which the objective is to select a model with the number of components that best describe our
data. The algorithms used in our model selection analysis now follow.
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3.1. RJMCMC

The reversible jump algorithm is an extension of the Metropolis–Hastings algorithm. We assume
there is a countable collection of candidate models, indexed by Mi 2 M ¼ fM1; M2; ¼ ;Mkg.
We further assume that for each model Mi, there exists an unknown parameter vector θi 2 Rni ,
where ni, the dimension of the parameter vector, can vary with i. Typically, we are interested
in finding which models have the greatest posterior probabilities, and also to obtain estimates
of the parameters. Thus, the unknowns in this modelling scenario will include the model index Mi,
as well as the parameter vector θi. We assume that the models and corresponding parameter
vectors have a joint density π(Mi, θi). The reversible jump algorithm constructs a reversible
Markov chain on the state space M ´ ∪Mi 2M Rni , which has π as its stationary distribution (Green,
1995). In many instances, and in particular for Bayesian problems, this joint distribution is of
the form

π ðMi; θiÞ ¼ π ðMi; θi j XÞ / LðX j Mi; θiÞ p ðMi; θiÞ

where the prior on (Mi, θi) is often of the form

p ðMi; θiÞ ¼ pðθi j MiÞp ðMiÞ

with p(Mi) being the density of some counting distribution.

Suppose we are at model Mi and a move to model Mj is proposed, with probability rij. The
corresponding move from θi to θj is achieved by using a deterministic transformation hij, such
that

ðθj; vÞ ¼ hij ðθi; uÞ (8)

where u and v are random variables introduced to ensure dimension matching necessary for
reversibility. To ensure dimension matching, it is necessary that

dim ðθjÞ + dim ðvÞ ¼ dim ðθiÞ + dim ðuÞ

For discussions about possible choices for the function hij, we refer the reader to Green (1995) and
Brooks et al. (2003b). Let

A ðθi; θjÞ ¼ π ðMj; θjÞ
π ðMi; θiÞ

q ðvÞ
q ðuÞ

rji
rij

∂hij ðθi; uÞ
∂ ðθi; uÞ

����
���� (9)

The acceptance probability for a proposed move from model (Mi, θi) to model (Mj, θj) is then

min f1; A ðθi; θjÞg

where q(u) and q(v) are the respective proposal densities for u and v, and j ∂hij (θi, u)/∂(θi, u) j is
the Jacobian of the transformation induced by hij. Green (1995) shows that the algorithm with
acceptance probability given above simulates a Markov chain that is reversible and follows from the
detailed balance equation

π ðMi; θiÞq ðuÞ rij ¼ πðMj; θjÞ q ðvÞ rji ∂hij ðθi; uÞ∂ ðθi; uÞ
����

����
Detailed balance is necessary to ensure reversibility and is a sufficient condition for the existence
of a unique stationary distribution. For the reverse move from model Mj to model Mi, it is easy
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to see that the transformation used is (θi, u) = h −1(θj, v) and the acceptance probability for such a
move is

min 1;
π ðMi; θiÞ
π ðMj; θj

q ðuÞ
q ðvÞ

rij
rji

∂hij ðθi; uÞ
∂ ðθi; uÞ

����
����
�1

( )
¼ min f1; A ðθi; θjÞ�1g

For inference regarding which model has the greater posterior probability, we can base our analysis
on a realisation of the Markov chain constructed above. The marginal posterior probability of model
Mi is

π ðMi j XÞ ¼ p ðMiÞ f ðX j MiÞ
ΣMj 2M p ðMjÞ f ðX j MjÞ

where

f ðX j MiÞ ¼
ð
L ðX j Mi; θiÞp ðθi j MiÞdθi

is the marginal density of the data, which is obtained by integrating over the unknown parameters θ.
In practice, we estimate π(Mi jX) by counting the number of times the Markov chain visits model Mi

in a single long run after reaching stationarity. These between-model moves described in this section
are also augmented with within-model Gibbs updates as given in section 2.3 to update model
parameters.

To assess convergence of the reversible jump algorithm, we use the method of Brooks & Giudici
(1999) in which they propose to run I≥2 chains in parallel and base their convergence diagnostic
on splitting the total variation not just between chains, but also between models. Their method
was extended by Brooks et al. (2003a) to include non-parametric techniques, including χ2 tests,
Kolmogorov–Smirnov tests, and direct convergence rate estimation.

Brooks et al. (2003a) suggest several methods for assessing convergence within the context of model
selection problems. In particular, for reversible jump algorithms, we can have some idea of how fast
the simulations approach stationarity by comparing the empirical stationary distribution with the
observed model orders. They propose specific test statistics based on the χ2 distribution and also
a Kolmogorov–Smirnov test for goodness of fit. The χ2 and Kolmogorov–Smirnov compare the
stationary distribution of each chain and computes p-values for the computed test statistics. A critical
value of 5% is used so that if the χ2 or Kolmogorov–Smirnov statistic is above this significance level
there is no reason to reject the chains as not being from the same stationary distribution. See Brooks
et al. (2003a) for further details.

3.2. Reversible jump model selection

To update the model order, and thereby increase or decrease the number of components in the
mixture, we use a combination of birth/death and split/merge moves as described below. We assume
a uniform prior on the number of components k, so that

k � U f1; ¼ ; kmaxg
where kmax is chosen to allow the algorithm to explore all feasible models. We set kmax = 72,
the number of groups, as under our hypothesis, this is the maximum number of components in
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the mixture. k = kmax only when the groups are all distinct. Setting kmax = 72 will allow for direct
comparison of the empirical Bayesian and the mixture model approach.

By introducing a prior on the number of components k, we extend the joint density (6) of all
parameters. This yields

π ðk; w; z; λ j DnÞ / p ðkÞp ðw j δ; kÞp ðλ j α; β; kÞ p ðz j kÞL ðDn j λ; zÞ (10)

Note that the densities of the other model parameters now depend on k. In sections 3.3 and 3.5, we
describe in detail two algorithms that are used to simulate from this density. These algorithms are
then combined with the fixed k updates of section 2.3 to simulate from the density in equation (10).
Modelling mixtures with and without the Dirichlet process prior is considered by Green &
Richardson (2001), who also consider the case of an unknown number of components. Alternatives
to the reversible jump algorithm exist in this context. For example, Dellaportas & Karlis (2001)
develop a semi-parametric sample-based method to approximate a mixing density g(θ), based on the
method of moments.

3.3. Split and merge moves

Note that the joint density in equation (10) now depends on k. We use the split/merge method of
Dellaportas et al. (1997) and Viallefont et al. (2002). Suppose we are at a configuration with k
components, with

θk ¼ fðλ1; w1Þ; ¼ ; ðλk; wkÞg
and suppose a move to increase the number of components is proposed. We select uniformly
one of the current k components to be split. Suppose the jth component (λj, wj) is selected to be
split into two components ðλj1 ; wj1Þ and ðλj2 ; wj2Þ such that j1 = j and j2 = j +1, the components
originally numbered j + 1,… , k are then renumbered j + 2,… , k + 1. The split is also designed
so that the first two moments of the split component remain the same as the original component.
Thus, we simulate u1 and u2 from densities defined on the interval [0, 1]. Usually, we use β densities
and set

wj1 ¼ wju1

wj2 ¼ wj ð1� u1Þ
λj1 ¼ λju2

λj2 ¼ λj ð1� u1u2Þ=ð1� u1Þ
Other choices for splitting and merging components are described in Viallefont et al. (2002).
The proposed parameter is then

θk +1 ¼fðλ1; w1Þ; ¼ ; ðλj�1; wj�1Þ; ðλj1 ; wj1Þ; ðλj2 ; wj2Þ
ðλj +1; wj + 1Þ; ¼ ; ðλk; wkÞg

If the ordering constraint in equation (5) is not satisfied, then the move is rejected immediately, as the
reverse move in which we merge two adjacent components would not be possible. We can compute
the Jacobian for this transformation as

∂θk+1
∂ ðθk; u1; u2Þ
����

���� ¼ ∂ ðwj1 ; wj2 ; λj1 ; λj2Þ
∂ ðwj; λj; u1; u2Þ

����
���� ¼ λjwj

1�u1
(11)

Experience rating with Poisson mixtures

313

https://doi.org/10.1017/S1748499515000019 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499515000019


For the reverse move, we select a pair of adjacent components j1 and j2. Combining them to get a
new component labelled j, we set

wj ¼ wj1 +wj2 ; λj ¼ wj1λj1 +wj2λj2
wj1 +wj2

by keeping the first two moments of the proposed and current configuration constant. We then
sample a new set of allocation variables according to equation (7). We also keep track of the
probability of each allocation, so that pa(z) represents the probability of a given allocation. To
compute pa(z), we first simulate zi using equation (7). For each i, the probability of that allocation is
given by

pa ðziÞ ¼ wzi f ðDi j λzi ; EiÞ
Σk
j¼1wjf ðDi j λj; EiÞ

Finally, we compute the probability of all allocations by

pa ðzÞ ¼
Yn
i¼1

pa ðziÞ

3.4. Acceptance probability

The acceptance probability of a move of type (k, θk) ⇒ (k′, θk′) is then min{1, Ak, k′}, where

Ak; k0 ¼
π ðk0; θk0 Þ
π ðk; θkÞ

´
p ðk0 ) kÞ
p ðk ) k0Þ ´

1
q ðu1Þq ðu2Þ ´

∂θk0
∂ ðθk; u1; u2Þ
����

����
Ak;k0 ¼

p ðk0Þp ðw0 j δ; k0Þp ðλ0 j α; β; k0ÞL ðDn j λ0; z0Þ
p ðkÞp ðw j δ; kÞp ðλ j α; β; kÞL ðDn j λ; zÞ

´
pðz0 j w0; k + 1Þ=pa ðz0Þ
p ðz j w; kÞ=pa ðzÞ ´

p ðk0 ) kÞ
p ðk ) k0Þ

1
q ðu1Þq ðu2Þ

∂θk0
∂ ðθk; u1; u2Þ
����

����
with k′ = k +1 this becomes

Ak;k +1 ¼ p ðk + 1Þ
p ðkÞ ´

p ðw0 j δ; k + 1Þ
p ðw j δ; kÞ ´

p ðλ0 j α; β; k + 1Þ
p ðλ j α; β; kÞ

´
L ðDn j λ0; w0Þ
L ðDn j λ; wÞ ´

p ðk + 1 ) kÞ
p ðk ) k + 1Þ ´

1
q ðu1Þq ðu2Þ

∂θk +1
∂ ðθk; u1; u2Þ
����

����
Now with a uniform prior on the number of components k and the weights w

Ak; k+ 1 ¼Γ ðk + 1Þ
Γ ðkÞ ´

ðk + 1Þp ðλj1 j α; βÞp ðλj2 j α; βÞ
p ðλj j α; βÞ

´
p ðz0 j w0; k + 1Þ=pa ðz0Þ

p ðz j w; kÞ=pa ðzÞ ´
L ðDn j λ0; z0Þ
L ðDn j λ; zÞ ´

mk+ 1

sk

´
1

q ðu1Þq ðu2Þ ´
∂θk +1

∂ ðθk; u1; u2Þ
����

����
where the ratio of Gamma terms comes from the ratio of the prior distributions on w 0 and w and

p ðk + 1 ) kÞ
p ðk ) k + 1Þ ¼

mk+ 1=ðk + 1�1Þ
sk=k

¼ mk+ 1

sk
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3.5. Birth and death moves

Suppose we are now at model Mk with k components, say

θk ¼ ðλ1; w1Þ; ¼ ; ðλk; wkÞf g (12)

If a move is proposed to increase the number of components by one, then we simulate

~w � Betað1; kÞ and ~λ � Gammaða; bÞ
independently. The proposed new component will then have weight ~w and the other weights are then
scaled by a factor of ð1�~wÞ, so that the sum of the weights remain equal to 1. The corresponding
Poisson parameter for the proposed component in ~λ. Note that ~λ is sampled from its prior distribution.
The proposed component is then

θk+ 1 ¼ ðλ1; w1=ð1�~wÞÞ; ¼ ; ðλk;wk
=ð1�~wÞÞ; ð~λ; ~wÞg (13)

Using this proposed value of θk+ 1, we also simulate proposed values for the allocations z0 with model
k+ 1. Using the general form of the reversible jump acceptance probability, see, for example, Green
(1995), the probability of changing the number of components to k + 1 is then min{1, Ak, k+ 1}, where

Ak;k +1 ¼ π ðk + 1; θk+ 1Þ
πðk; θkÞ

´
p ðk + 1 ) kÞ
p ðk ) k + 1Þ ´

1

q ð~wÞq ð~λÞ ´
∂θk +1

∂ ðθk; ~w; ~λÞ

����
����

Making the necessary substitutions yield

Ak;k +1 ¼ p ðk + 1Þp ðw0 j δ; k + 1Þp ðλ0 j α; β; k + 1ÞL ðDn j λ0; z0Þ
p ðkÞp ðw j δ; kÞp ðλ j α; β; kÞL ðDn j λ; zÞ

´
p ðz0 j w0; k + 1Þ=pa ðz0Þ
p ðz j w; k + 1Þ=pa ðzÞ ´

p ðk + 1 ) kÞ
p ðk ) k + 1Þ ´

1

q ð~wÞq ð~λÞ

´
∂θk+ 1

∂ ðθk; ~w; ~λÞ

����
���� ð14Þ

Using equations (12) and (13) we then have the Jacobian

∂θk+ 1
∂ ðθk; ~w; ~λÞ ¼ ð1�~wÞk�1

If we denote the probability of a birth when there are k components by bk, and the probability of a
death by dk, with bk +dk = 1, then

p ðk + 1 ) kÞ
p ðk ) k + 1Þ ¼

dk +1=ðk + 1Þ
bk

as for the move to be reversible we would then be able to kill k+ 1 components in the new
model, each with equal probability. Substituting these values in equation (14), the ratio Ak, k+ 1

reduces to

Ak; k+ 1 ¼Γ ðk + 1Þ
Γ ðkÞ ´ ðk + 1Þp ð~λÞ ´ L ðDn j λ0; z0Þ

L ðDn j λ; zÞ ´
p ðz0 j w0; k + 1Þ=pa ðz0Þ

p ðz j w; kÞ=pa ðzÞ

´
dk +1=ðk + 1Þ

bk

1

q ð~wÞq ð~λÞ ´ ð1�~wÞk�1

which on substituting qð~λÞ ¼ pð~λÞ and q ð~wÞ ¼ k ð1�~wÞk�1 further reduces to

Ak;k +1 ¼ p ðz0 j w0; k + 1Þ=pa ðz0Þ
p ðz j w; kÞ=pa ðzÞ

L ðDn j λ0; z0Þ
L ðDn j λ; zÞ ´

dk +1
bk

(15)
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For a proposed death move, the acceptance probability is then

minf1; A�1
k;k +1g

Although the algorithm simulates new values of the allocations when proposing to move, it is not
necessary to carry the allocations along. For between-model moves, we could replace the missing
data formulation by noting that

p ðz j w; kÞ
pa ðzÞ L ðDn j λ; zÞ ¼ L ðDn j λ; wÞ

4. Results

We now present some numerical results for this data set based on the model described in section 2.1,
and the algorithms described in section 3.2.

Table 1 shows the posterior model probabilities calculated from the reversible jump algorithm by
counting the proportion of time that the algorithm visits each model. A plot of the number of
components as the chain evolves is shown in Figure 3(a). The results clearly show that the number of
components has a posterior mode at k = 2. In addition, the model with k = 1 component is never
visited. Moreover, if the algorithm is started with k = 1, then immediately it jumps to k = 2, and
never returns to k = 1. As >88% of the posterior probability mass is placed on the models with two
or three components, we discuss those models in detail in section 4.2. The between-model acceptance
rates were 7.7% and 5.5% for the birth/death and split/merge moves, respectively. The total
acceptance rate when there is equal probability of proposing a birth/death move or a split/merge
move, is 6.6%. These results are tabulated in Table 2.

To assess convergence of the algorithm, we simulated four chains using different starting values and
different random number seeds for a total of 100,000 iterations. Both the χ2 and Kolmogorov–
Smirnov diagnostics are computed. These diagnostics are plotted in Figure 4.

4.1. Comparing the model move schemes

A comparison of the individual acceptance probabilities shows that the between-model moves
are accepted with a larger rate for the birth/death scheme compared with the split/merge scheme.

Table 1. Posterior model order.

Model order k Posterior probability π(k jDn, En)

1 0.00000
2 0.59485
3 0.29058
4 0.08588
5 0.02258
6 0.00448
7 0.00104
8 0.00034
9 0.00026
10 0.00000
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This might not always be true, as other split/merge schemes may be proposed (Viallefont et al., 2002).
However, it is interesting to note that although the birth and death rates are higher than the split and
merge rates, the combined scheme seems to mix better than either scheme implemented alone.
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Figure 3. Left: Model trace indicator. Right: Histogram of posterior model order. (a) Birth/death
and split/merge model trace. (b) Birth/death and split/merge histogram. (c) Birth/death model
trace. (d) Birth/death histogram. (e) Split/merge model trace. (f) Split/merge histogram.

Table 2. Acceptance rates.

Schemes Acceptance rates

Birth/death 0.077
Split/merge 0.055
Birth/death and split/merge 0.066
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Although the birth and death scheme has a higher acceptance rate for between-model moves, the
excursions away from the values of highest posterior density, k = 2 and k = 3, are longer than for
the combined scheme or the split and merge scheme. This is because when proposing parameters
independently from the prior, areas of low probability can be proposed, whereas with the split
and merge scheme, areas of low probability mass will generally be rejected. Based on the results
presented, the birth/death method would be the preferred algorithm.

4.2. Detailed results for k = 2 and k = 3

Recall the missing data formulation introduced in section 2.1 for the number of components
conditional on k = 2. We observed the posterior distribution of z at each iteration when k = 2.
A study of values of z will tell us how the data have been allocated to the components and therefore,
which data points have been generated from either the first Poisson distribution or the second Poisson
distribution. This information, along with further information from the portfolio, will help insurance
companies classify groups of life insurance portfolios. The parameter estimates are shown in Table 3.

Similar results for the posterior parameter estimates, conditional on there being three components in
the mixture, are given in Table 4.
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Figure 4. Convergence diagnostics. KS, Kolmogorov–Smirnov.

Table 3. Parameter estimates conditional on k = 2.

Estimates 95% HPD interval

λ1 0.731 (0.626, 0.839)
w1 0.636 (0.428, 0.821)
λ2 1.896 (1.557, 2.249)
w2 0.363 (0.178, 0.571)

Note: HPD, highest posterior density.
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Figure 5 shows the posterior probability of each data point being allocated to a particular component
of the mixture, conditional on k = 2 and k = 3, respectively.

5. Conclusion

We present a model for heterogeneity in Group Life insurance by proposing a Poisson mixture model
for count data to determine the number of groups in a portfolio consisting of claim numbers or
deaths. We take a non-parametric Bayesian approach to modelling this Poisson mixture distribution
using a Dirichlet process prior and use RJMCMC to estimate the number of components in the
mixture. We show that a mixture with two or three components works best, in that they result in the
highest posterior probabilities for parameters. In particular, 88% of the posterior probability is
assigned to models with two or three components, and 11% to models with four or five components,
whereas models with one component are never visited. In contrast to Haastrup (2000), we show that
the assumption of identical heterogeneity for all groups may not be valid. In this case, it is necessary to
put similar groups together for further analysis.

We contribute to the actuarial literature by showing how to account for both model uncertainty and
parameter estimation within a single framework. This research can be extended to the case where
claims are grouped, such as in Walhin & Paris (1999, 2000).

There are two main advantages of our model. First, it allows us to use the data to estimate the number of
groups within observed count data. This is much better than a priori assuming a fixed number of groups.
Our example confirms the absence of heterogeneity by proving that two or three components are much

Table 4. Parameter estimates conditional on k = 3.

Estimates 95% HPD interval

λ1 0.462 (0.000, 0.770)
w1 0.299 (0.000, 0.656)
λ2 1.115 (0.625, 1.692)
w2 0.495 (0.157, 0.797)
λ3 2.481 (1.570, 3.366)
w3 0.204 (0.002, 0.464)

Note: HPD, highest posterior density.
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Figure 5. Probability (vertical axis) of data from group i (horizontal axis) being assigned to
individual components conditional on k = 2 (a) and k = 3 (b).
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more likely than assuming a single heterogeneous group. The second advantage of our model is that it
allows ratemaking and further risk calculations to be done for each group.
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