
TLP 12 (1–2): 97–126, 2012. C© Cambridge University Press 2011

doi:10.1017/S1471068411000433 First published online 12 September 2011

97

The BinProlog experience: Architecture and
implementation choices for continuation passing

Prolog and first-class logic engines

PAUL TARAU

Department of Computer Science and Engineering,

University of North Texas, Denton, Texas 76203-6886, USA

(e-mail: tarau@cs.unt.edu)

submitted 10 October 2009; revised 28 February 2010; accepted 2 February 2011

Abstract

We describe the BinProlog system’s compilation technology, runtime system and its extensions

supporting first-class Logic Engines while providing a short history of its development, details

of some of its newer re-implementations as well as an overview of the most important

architectural choices involved in their design. With focus on its differences with conventional

Warren Abstract Machine (WAM) implementations, we explain key details of BinProlog’s

compilation technique, which replaces the WAM with a simplified continuation passing runtime

system (the “BinWAM”), based on a mapping of full Prolog to binary logic programs. This is

followed by a description of a term compression technique using a “tag-on-data” representation.

Later derivatives, the Java-based Jinni Prolog compiler and the recently developed Lean Prolog

system refine the BinProlog architecture with first-class Logic Engines, made generic through

the use of an Interactor interface. An overview of their applications with focus on the ability

to express at source level a wide variety of Prolog built-ins and extensions covers these newer

developments.

KEYWORDS: Prolog, logic programming system, continuation passing style compilation,

implementation of Prolog, first-class logic engines, data-representations for Prolog runtime

systems

1 Introduction

At the time when we started work on the BinProlog compiler, around 1991, Warren

Abstract Machine (WAM)-based implementations (Warren 1983; Aı̈t-Kaci 1991) had

reached already a significant level of maturity. The architectural changes occurring

later can be seen mostly as extensions for constraint programming and runtime or

compile-time optimizations.

BinProlog’s design philosophy has been minimalistic from the very beginning.

In the spirit of Occam’s razor, while developing an implementation as an iterative

process, this meant not just trying to optimize for speed and size, but also to actively

look for opportunities to refactor and simplify.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

98 P. Tarau

The guiding principle, at each stage, was seeking answers to questions like:

• what can be removed from the WAM without risking significant, program

independent, performance losses?

• what can be done to match, within small margins, performance gains result-

ing from new WAM optimizations (like read/write stream separation and

instruction unfolding) while minimizing implementation complexity and code

size?

• can one get away with uniform data representations (e.g. no special tags for

lists) instead of extensive specialization, without major impact on performance?

• when designing new built-ins and extensions, can we use source-level transfor-

mations rather than changes to the emulator?

The first result of this design, BinProlog’s BinWAM abstract machine has been

originally implemented as a C emulator based on a program transformation

introduced in Tarau and Boyer (1990).

While describing it, we assume familiarity with the WAM and focus on the

differences between the two abstract machines. We refer to Aı̈t-Kach (1991) for a

tutorial description of the WAM, including its instruction set, runtime areas and

compilation of unification and control structures.

The BinWAM replaces the WAM with a simplified continuation passing logic

engine (Tarau 1991) based on a mapping of full Prolog to binary logic programs

(binarization). Its key assumption is that as conventional WAM’s environments are

discarded in favor of a heap-only runtime system, heap garbage collection and

efficient term representation become instrumental as means to ensure ability to run

large classes of Prolog programs.

The second architectural novelty, present to some extent in the original BinProlog

and a key element of its newer Java-based derivatives Jinni Prolog (Tarau 1999a;

Tarau 2008b) and Lean Prolog (still under development), is the use of Interactors

(and first-class Logic Engines, in particular) as a uniform mechanism for the source-

level specification (and often actual implementation) of key built-ins and language

extensions (Tarau 2000, 2008a; Tarau and Majumdar 2009).

We first explore various aspects of the compilation process and the runtime

system. Next we discuss source-level specifications of key built-ins and extensions

using first-class Logic Engines.

Sections 2 and 3 provide an overview BinProlog’s key source-to-source transfor-

mation (binarization) and its use in compilation.

Section 4 introduces BinProlog’s unusual “tag-on-data” term representation (Sec-

tion 4.1) and studies its impact on term compression (Section 4.2).

Section 5 discusses optimizations of the runtime system like instruction compres-

sion and the implicit handling of read–write modes.

Section 6 introduces Logic Engines seen as implementations of a generic Interactor

interface and describes their basic operations.

Section 7 applies Interactors to implement, at source level, some key Prolog

built-ins, exceptions (Section 7.5) and higher order constructs (Section 7.6).

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 99

Section 8 applies the logic engine API to specify Prolog extensions ranging from

dynamic database operations (Section 8.1) and backtracking if-then-else (Section

8.2) to predicates comparing alternative answers in Section 8.3.1 and mechanisms to

encapsulate infinite streams in Section 8.3.2.

Section 9 gives a short historical account of BinProlog and its derivatives.

Section 10 discusses related work and Section 11 concludes the paper.

2 The binarization transformation

We start by reviewing the program transformation that allows compilation of logic

programs towards a simplified WAM specialized for the execution of binary programs

(called BinWAM from now on). Binary programs consist of facts and binary clauses

that have only one atom in the body (except for some inline “built-in” operations

like arithmetics) and therefore they need no “return” after a call. A transformation

introduced in Tarau and Boyer (1990) allows the emulation of logic programs with

operationally equivalent binary programs.

Before defining the binarization transformation, we describe two auxiliary trans-

formations, commonly used by Prolog compilers.

The first transformation converts facts into rules by giving them the atom true

as body. For example the fact p is transformed into the rule p :- true.

The second transformation eliminates metavariables (i.e. variables representing

Prolog goals only known at runtime), by wrapping them in a call/1 predicate, e.g.

a clause like and(X,Y):-X,Y is transformed into and(X,Y) :- call(X),call(Y).

The binarization transformation (first described in Tarau and Boyer 1990) adds

continuations as the last argument of predicates in a way that preserves first

argument indexing.

Let P be a definite program and Cont a new variable. Let T and E = p(T1, . . . , Tn)

be two expressions (i.e. atoms or terms). We denote by ψ(E,T) the expression

p(T1, . . . , Tn, T). Starting with the clause

(C) A : −B1, B2, . . . , Bn.

we construct the clause

(C’) ψ(A,Cont) : −ψ(B1, ψ(B2, . . . , ψ(Bn, Cont))).

The set P ′ of all clauses C’ obtained from the clauses of P is called the binarization

of P .

The following example shows the result of this transformation on the well-known

“naive reverse” program:

app([],Ys,Ys,Cont):-true(Cont).

app([A|Xs],Ys,[A|Zs],Cont):-app(Xs,Ys,Zs,Cont).

nrev([],[],Cont):-true(Cont).

nrev([X|Xs],Zs,Cont):-nrev(Xs,Ys,app(Ys,[X],Zs,Cont)).

Note that true(Cont) can be seen as a specialized version of Prolog’s call/1

that executes the goals stacked in the continuation variable Cont. Its semantics is

expressed by the following clauses

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

100 P. Tarau

true(app(X,Y,Z,Cont)):-app(X,Y,Z,Cont).

true(nrev(X,Y,Cont)):-nrev(X,Y,Cont).

true(true).

which together with the code for nrev and app run the binarized query

?- nrev([1,2,3],R,true).

in any Prolog, directly, returning R=[3,2,1].

Prolog’s inference rule (called LD-resolution) executes goals in the body of a clause

left-to-right in a depth first order. LD-resolution describes Prolog’s operational

semantics more accurately than order-independent SLD-resolution (Lloyd 1987).

The binarization transformation preserves a strong operational equivalence with

the original program with respect to the LD-resolution rule, which is reified in the

syntactical structure of the resulting program, where the order of the goals in the

body becomes hardwired in the representation (Tarau and De Bosschere 1993b).

This means that each resolution step of an LD-derivation on a definite program

P can be mapped to an LD-resolution step of the binarized program P ′. More

precisely, let G be an atomic goal and G′ = ψ(G, true). Then, the answers computed

using LD-resolution obtained by querying P with G are the same as those obtained

by querying P ′ with G′. Note also that the concepts of SLD- and LD-resolution

overlap in the case of binary programs.

3 Binarization-based compilation and runtime system

BinProlog’s BinWAM virtual machine specializes the WAM to binary clauses,

and therefore, it drops WAM’s environments. Alternatively, assuming a two stack

WAM implementation, the BinWAM can be seen as an OR-stack-only WAM.

Independently, its simplifications of the indexing mechanism and a different “tag-

on-data” representation are the most important differences with conventional WAM

implementations. The latter also brings opportunities for a more compact heap

representation that is discussed in Section 4.

Note also that continuations become explicit in the binary version of the program.

We refer to Tarau and Dahl (1994) for a technique to access and manipulate them by

modifying BinProlog’s binarization preprocessor. This results in the ability to express

constructs like a backtracking sensitive variant of catch/throw at source level. We

focus in this section only on their uses in BinProlog’s compiler and runtime system.

3.1 Metacalls as built-ins

The first step of our compilation process simply wraps metavariables inside a

predicate call/1, and adds true/0 as a body for facts, as most Prolog compilers

do. The binarization transformation then adds a continuation as last arguments of

each predicate and a new predicate true/1 to deal with unit clauses. During this

step, the arity of all predicates increases by 1 so that, for instance call/1 becomes

call/2.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 101

Although we can add the special clause true(true), and for each functor f

occurring in the program, clauses like

true(f(...,Cont)):-f(...,Cont).

call(f(...),Cont):-f(...,Cont).

as an implementation of true/1 and call/2, in practice it is simpler and more

efficient to treat them as built-ins (Tarau 1991).

The built-in corresponding to true/1 looks up the address of the predicate

associated to f(...,Cont) and throws an exception if no such predicate is found.

The built-in corresponding to call/2 adds the extra argument Cont to f(...),

looks up whether a predicate definition is associated to f(...,Cont) and throws

an exception if no definition is found. In both cases, when predicate definitions are

found, the BinWAM fills up the argument registers and proceeds with the execution

of the code of those predicates.

Note that the predicate look-ups are implemented efficiently by using hashing

on a <symbol, arity> pair stored in one machine word. Moreover, they happen

relatively infrequently. For the case of call/2-induced look-ups, as in ordinary

Prolog compilation, they are generated only when metavariables are used. As calls

to true/1 only happen when execution reaches a “fact” in the original program, they

also have a relatively little impact on performance, for typical recursion intensive

programs.

3.2 Inline compilation of built-ins

Demoen and Mariën pointed out in Demoen and Mar̈ıen (1992) that a more

implementation oriented view of binary programs can be very useful: a binary

program is simply one that does not need an environment in the WAM. This view

leads to inline code generation (rather than binarization) for built-ins occurring

immediately after the head. For instance something like

a(X):-X>1,b(X),c(X).

is handled as:

a(X,Cont) :- inline_code_for(X>1),b(X,c(X,Cont)).

rather than

a(X,Cont) :- ’>’(X,1,b(X,c(X,Cont))).

Inline expansion of built-ins contributes significantly to BinProlog’s speed and

supports the equivalent of WAM’s last call optimization for frequently occurring

linear recursive predicates containing such built-ins, as unnecessary construction of

continuation terms on the heap is avoided for them.

3.3 Handling CUT

Like in the WAM, a special register cutB contains the choice point address up to

where choice points need to be popped off the stack on backtracking. In clauses like

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

102 P. Tarau

a(X):-X>1,!,b(X),c(X).

CUT can be handled inline (by a special instruction PUSH CUT, generated when the

compiler recognizes this case), after the built-in X>1, by trimming the choice point

stack right away. On the other hand, in clauses like

a(X):-X>1,b(X),!,c(X).

a pair of instructions PUT CUT and GET CUT is needed. During the BinWAM’s term

creation, PUT CUT saves to the heap the register cutB. This value of cutB is used

by GET CUT when the execution of the instruction sequence reaches it, to trim the

choice point stack to the appropriate level.

3.4 Term construction in the absence of the AND-stack

The most important simplification in the BinWAM in comparison with the standard

WAM is the absence of an AND-stack. Clearly, this is made possible by the fact

that each binary clause has (at most) one goal in the body.

In procedural and call-by-value functional languages featuring only deterministic

calls, it was a typical implementation choice to avoid repeated structure creation by

using environment stacks containing only the variable bindings. The WAM (Warren

1983) follows this model based on the assumption that most logic programs are

deterministic.

This is one of the key points where the execution models between the WAM and

BinWAM differ. A careful analysis suggests that the choice between

• the standard WAM’s late and repeated construction with variables of each

goal in the body pushed on the AND stack

• the BinWAM’s eager early construction on the heap (once) and reuse (by

possibly trailing/untrailing variables)

favors different programming styles, with “AND-intensive”, deterministic, possibly

tail-recursive programs favoring the WAM while “OR-intensive”, nondeterministic

programs reusing structures through trailing/untrailing favoring the BinWAM. The

following example illustrates the difference between the two execution models. In

the clause

p(X) :- q(X,Y), r(f(X,Y)).

binarized as

p(X,C) :- q(X,Y,r(f(X,Y),C)).

the term f(X,Y) is created on the heap by the WAM as many times as the number

of solutions of the predicate q. On the other hand, the BinWAM creates it only once

and reuses it by undoing the bindings of variables X and Y (possibly trailed). This

means that if q fails, the BinWAM’s “speculative” term creation work is wasted.

And it also means that if q is nondeterministic and has a large number of solutions,

then the WAM’s repeated term creation leads to a less efficient execution model.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 103

P ⇒ next clause address

H ⇒ saved top of the heap

TR ⇒ saved top of the trail

AN+1 ⇒ continuation argument register

AN ⇒ saved argument register N

... ...

A1 ⇒ saved argument register 1

Fig. 1. A frame on BinProlog’s OR-stack.

3.5 A minimalistic BinWAM instruction set

A minimalistic BinWAM instruction set (as shown for two simple C and Java

implementations at http://www.binnetcorp.com/OpenCode/free_prolog.html)

consists of the following subset of the WAM: GET STRUCTURE, UNIFY VARIABLE,

UNIFY VALUE, EXECUTE, PROCEED, TRY ME ELSE, RETRY ME ELSE, TRUST ME, as

well as the following instructions, which the reader will recognize as mild variations

of their counterparts in the “vanilla” WAM instruction set (Äıt-Kaci 1991).

• MOVE REGISTER (simple register-to-register move)

• NONDET (sets up choice-point creation when needed)

• SWITCH (simple first-argument indexing)

• PUSH CUT, PUT CUT, GET CUT (cut handling instructions for binary

programs, along the lines of Demoen and Mariën 1992)

Note that specializations for CONSTANTs, LISTs as well as WRITE-mode variants

of the GET and UNIFY instructions can be added as obvious optimizations.

3.6 The OR-stack

A simplified OR-stack having the layout shown in Figure 1 is used only for (one-

level) choice point creation in nondeterministic predicates. No link pointers between

frames are needed as the length of the frames can be derived from the arity of the

predicate.

Given that variables kept on the local stack in conventional WAM are now

located on the heap, the heap consumption of the program increases. It has been

shown that, in some special cases, partial evaluation at source level can deal with

the problem (Demoen 1992; Neumerkel 1992) but as a more practical solution, the

impact of heap consumption has been alleviated in BinProlog by the use of an

efficient copying garbage collector (Demoen et al. 1996).

3.7 A simplified clause selection and indexing mechanism

As the compiler works on a clause-by-clause basis, it is the responsibility of the

loader (that is part of the runtime system) to index clauses and link the code. The

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

104 P. Tarau

runtime system uses a global < key1, key2 >→ value hash table seen as an abstract

multipurpose dictionary. This dictionary provides the following services:

• indexing compiled code, with key1 as the functor of the predicate and key2 as

the functor of the first argument

• implementing multiple dynamic databases, with key1 as the name of the

database and key2 the functor of a dynamic predicate

• supporting a user-level storage area (called “blackboard”) containing global

terms indexed by two keys

A 1-byte mark-field in the table is used to distinguish between load-time use when

the kernel (including built-ins written in Prolog and the compiler itself) is loaded,

and runtime use (when user programs are compiled and loaded) to protect against

modifications to the kernel and for fast cleanup. Sharing of the global multipurpose

dictionary, although somewhat slower than the small key → value hashing tables

injected into the code-space of the standard WAM, keeps the implementation as

simple as possible. Also, with data areas of fixed size (as in the original BinProlog

implementation), one big dictionary provides overall better use of the available

memory by sharing the hashing table for different purposes.

Predicates are classified as single-clause, deterministic and nondeterministic. Only

predicates having all first-argument functors distinct are detected as deterministic and

indexed.

In contrast to the WAM’s fairly elaborate indexing mechanism, indexing of

deterministic predicates in the BinWAM is done by a unique SWITCH instruction.

If the first argument dereferences to a nonvariable, SWITCH either fails or finds

the one-word address of the unique matching clause in the global hash-table, using

the predicate and the functor of the first argument as a two-word key. Note that the

basic difference with the WAM is the absence of intensive tag analysis. This is related

also to our different low-level data representation that we discuss in Section 4.

A specialized JUMP-IF instruction deals with the frequent case of two clause

deterministic predicates. To reduce the interpretation overhead, SWITCH and

JUMP IF are combined with the preceding EXECUTE and the following

GET STRUCTURE or GET CONSTANT instruction, giving EXEC SWITCH and

EXEC JUMP IF. This not only avoids dereferencing the first argument twice, but

also reduces unnecessary branching logic that breaks the processor’s pipeline.

Note also that simplification of the indexing mechanism, in combination with

smaller and unlinked choice points, helps making backtracking sometimes faster in

the BinWAM than in conventional WAMs, as in the case of simple (but frequent!)

predicates having only a few clauses.

However, as mentioned in Section 3.4, backtracking performance in the BinWAM

also benefits from sharing structures occurring in the body of a clause in the OR-

subtree it generates, instead of repeated creation as in conventional WAM. This

property of binarized programs (see example in Section 3.4) was first pointed out in

Demoen and Mar̈ıen (1992) as the typical case when binarized variants are faster

than the original programs.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 105

Our original assumption when simplifying the WAM’s indexing instructions was

that, for predicates having a more general distribution of first arguments, a source-

to-source transformation, grouping similar arguments into new predicates, can be

used.

Later in time, while noticing that often well-written Prolog code tends to be either

“database type” (requiring multiple argument indexing) or “recursion intensive”

(with small predicates having a few clauses, fitting well this simplified first argument

indexing mechanism), it became clear that it makes sense to handle these two

problems separately. As a result, we have kept this simplified indexing scheme (for

“recursion intensive” compiled code) unchanged through the evolution of BinProlog

and its derivatives. On the other hand, our newest implementation, Lean Prolog

handles “database type” dynamic code efficiently using a very general multiargument

indexing mechanism.

3.8 Binarization: Some infelicities

We have seen that binarization has helped building a simplified abstract machine that

provides good performance with help from a few low-level optimizations. However,

there are some “infelicities” that one has to face, somewhat similar to what any

program transformation mechanism induces at runtime – and DCG grammars come

to one’s mind in the Prolog world.

For instance the execution order in the body is reified at compile time into a

fixed structure. This means that things like dynamic reordering of the goal in a

clause body or AND-parallel execution mechanisms become trickier. Also, inline

compilation of constructs like if-then-else becomes more difficult – although one

can argue that using a source-level technique, when available (e.g. by creating small

new predicates) is an acceptable implementation in this case.

4 Data representation

We review here an unconventional data representation choice that turned out to

also provide a surprising term-compression mechanism, which can be seen as a

generalization of “CDR-coding” (Clark and Green 1977) used in LISP/Scheme

systems.

4.1 Tag-on-pointer versus tag-on-data

When describing the data in a cell with a tag, we have basically two possibilities.

We can put a tag in the pointer to the data or in the data cell itself.

The first possibility, probably most popular among WAM implementors, allows

one to check the tag before deciding if and how it has to be processed. We choose

the second possibility as in the presence of indexing, unifications are more often

intended to succeed propagating bindings, rather than being used as a clause selection

mechanism. This also justifies why we have not implemented the WAM’s traditional

SWITCH_ON_TAG instruction.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

106 P. Tarau

./2 a ./2 b ./2 c ./2 []

Fig. 2. Compressed list representation of [a,b,c].

w: t/2 1 → t/2 2 → t/2 3 n/0

t/2 1 ↓
t/2 2 ↓

t/2 3 n/0

bw:

t/2 1 t/2 2 t/2 3 n/0

Fig. 3. Term compression. w: WAM, bw: BinWAM.

We found it very convenient to precompute a functor in the code-space as a word

of the form <arity,symbol-number,tag>1 and then simply compare it with objects

on the heap or in registers. In contrast, in a conventional WAM, one compares the

tags, finding out that they are almost always the same, then compares the functor-

names and finally compares the arities – an unnecessary but costly if-logic. This is

avoided with our tag-on-data representation, while also consuming as few tag bits

as possible. Only 2 bits are used in BinProlog for tagging variables, integers and

functors/atoms2. With this representation, a functor fits completely in one word.

As an interesting consequence, as we have found out later, when implementing a

symbol garbage collector for a derivative of BinProlog, the “tag-on-data” represen-

tation makes scanning the heap for symbols (and updating them in place) a trivial

operation.

4.2 Term compression

If a term has a last argument containing a functor, with our tag-on-data representa-

tion, we can avoid the extra pointer from the last argument to the functor cell and

simply make them collapse. Obviously, the unification algorithm must take care of

this case, but the space savings are important, especially in the case of lists, which

become contiguous vectors with their Nth element directly addressable at offset

2*sizeof(term)*N+1 bytes from the beginning of the list, as shown in Figure 2.

The effect of this last argument overlapping on t(1,t(2,t(3,n))) is represented

in Figure 3.

This representation also reduces the space consumption for lists and other

“chained functors” to values similar or better than in the case of conventional

WAMs. We refer to Tarau and Neumerkel (1993) for the details of the term-

compression related optimizations of BinProlog.

1 This technique is also used in various other Prologs, e.g. SICStus, Ciao.
2 This representation limits arity and available symbol numbers – a problem that went away with the

newer 64-bit versions of BinProlog.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 107

5 Optimizing the runtime system

We give here an overview of the optimizations of the runtime system. Most of them

are, at this point in time, “folklore” and shared with various other WAM-based

Prolog implementations.

Instruction compression. It happens very often that a sequence of consecutive instruc-

tions share some WAM state information (Nässén et al. 2001). For example two

consecutive unify instructions have the same mode as they correspond to arguments

of the same structure. Moreover, due to our very simple instruction set, some

instructions have only a few possible other instructions that can follow them. For

example after an EXECUTE instruction, we can have a single, a deterministic or

a nondeterministic clause. It makes sense to specialize the EXECUTE instruction

with respect to what has to be done in each case. This gives, in the case of calls

to deterministic predicates, the instructions EXEC SWITCH and EXEC JUMP IF

as mentioned in the section on indexing. On the other hand, some instructions are

simply so small that just dispatching them can cost more than actually performing

the associated WAM-step.

This in itself is a reason to compress two or more instructions taking less than

a word in one instruction. This optimization has been part of WAM-based Prolog

systems like Quintus, SICStus, Ciao as well. Also, having a small initial instruction set

reduces the number of combined instructions needed to cover all cases. For example

by compressing our UNIFY instructions and their WRITE-mode specializations,

we get the new instructions:

UNIFY_VARIABLE_VARIABLE

WRITE_VARIABLE_VARIABLE

...

This gives, in the case of the binarized version of the recursive clause of append/3,

the following code:

append([A |Xs],Ys,[A |Zs],Cont):-append(Xs,Ys,Zs,Cont).

TRUST_ME_ELSE ∗/4, % keeps also the arity = 4

GET_STRUCTURE X1, ./2

UNIFY_VARIABLE_VARIABLE X5, A1

GET_STRUCTURE X3, ./2

UNIFY_VALUE_VARIABLE X5, A3

EXEC_JUMP_IF append/4 % actually the address of append/4

The choice of candidates for instruction compression was based on

low-level profiling (instruction frequencies) and possibility of sharing of common

work by two successive instructions and frequencies of functors with various

arities.

BinProlog also integrates the preceding GET STRUCTURE instruction into the

double UNIFY instructions and the preceding PUT STRUCTURE into the double

WRITE instructions. This gives another 16 instructions but it covers a large majority

of uses of GET STRUCTURE and PUT STRUCTURE.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

108 P. Tarau

GET_UNIFY_VARIABLE_VARIABLE

...

PUT_WRITE_VARIABLE_VALUE

....

Reducing interpretation overhead on those critical, high-frequency instructions

definitely contributes to the speed of our emulator. As a consequence, in the

frequent case of structures of arity=2 (lists included), mode-related IF-logic is

completely eliminated, with up to 50% speed improvements for simple predicates like

append/3.

The following example shows the effect of this transformation:

a(X,Z):-b(X,Y),c(Y,Z). ⇒binary form⇒ a(X,Z,C):-b(X,Y,c(Y,Z,C)).

BinProlog BinWAM code, without compression

a/3:

PUT_STRUCTURE X4<-c/3

WRITE_VARIABLE X5

WRITE_VALUE X2

WRITE_VALUE X3

MOVE_REG X2<-X5

MOVE_REG X3<-X4

EXECUTE b/3

BinProlog BinWAM code, with instruction compression

PUT_WRITE_VARIABLE_VALUE X4<-c/3, X5,X2

WRITE_VALUE X3

MOVE_REGx2 X2<-X5, X3<-X4

EXECUTE b/3

Note that instruction compression is usually applied inside a procedure. As

BinProlog has a unique primitive EXECUTE instruction instead of standard WAM’s

CALL, ALLOCATE, DEALLOCATE, EXECUTE, PROCEED, we can afford to

do instruction compression across procedure boundaries with very little increase

in code size due to relatively few different ways to combine control instructions.

Interprocedural instruction compression can be seen as a kind of “hand-crafted”

partial evaluation at implementation language level, intended to optimize the main

loop of the WAM-emulator. It has the same effect as partial evaluation at source

level that also eliminates procedure calls. At the global level, knowledge about

possible continuations can also remove the runtime effort of address look-up for

metavariables in predicate positions and of useless trailing and dereferencing.

(Most of) the benefits of two-stream compilation for free. Let us point out here that

in the case of GET * * instructions we have the benefits of separate READ and

WRITE streams (for instance avoidance of mode checking) on some high-frequency

instructions without actually incurring the compilation complexity and emulation

overhead in generating them. As terms of depth 1 and functors of low arity dominate

statistically Prolog programs, we can see that our instruction compression scheme

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 109

actually behaves as if two separate instruction streams were present, most of the

time!

6 Logic engines as interactors

We now turn the page to a historically later architectural feature of BinProlog

and its newer derivatives. While orthogonal to the BinWAM architecture, it shares

the same philosophy: proceed with a fundamental system simplification on purely

esthetic grounds, independently of short-term performance concerns, and hope that

overall elegance will provide performance improvements for free, later3.

BinProlog’s Java-based re-implementation, Jinni has been mainly used in various

applications (Tarau 1998, 1999a, 1999b, 2004a) as an intelligent agent infrastructure,

by taking advantage of Prolog’s knowledge processing capabilities in combination

with a simple and easily extensible runtime kernel supporting a flexible reflexion

mechanism (Tyagi and Tarau 2001). Naturally, this has suggested to investigate

whether some basic agent-oriented language design ideas can be used for a refac-

toring of pure Prolog’s interaction with the external world.

Agent programming constructs have influenced design patterns at “macro level”,

ranging from interactive Web services to mixed initiative computer human inter-

action. Performatives in Agent communication languages (FIPA 1997) have made

these constructs reflect explicitly the intentionality, as well as the negotiation process

involved in agent interactions. At the same time, it has been a long tradition of

logic programming languages (Hermenegildo 1986; Lusk et al. 1993) to use multiple

Logic Engines for supporting concurrent execution.

In this context, the Jinni Prolog agent programming framework (Tarau 2004b)

and the recent versions of the BinProlog system (Tarau 2006) have been centered

around logic engine constructs providing an API that supports reentrant instances

of the language processor. This has naturally led to a view of Logic Engines

as instances of a generalized family of iterators called Fluents (Tarau 2000),

which have allowed the separation of the first-class language interpreters from the

multithreading mechanism, while providing, at the same time, a very concise source-

level reconstruction of Prolog’s built-ins. Later, we have extended the original Fluents

with a few new operations (Tarau and Majumdar 2009) supporting bidirectional,

mixed-initiative exchanges between engines.

The resulting language constructs, which we have called Interactors, express

coroutining, metaprogramming and interoperation with stateful objects and external

services. They complement pure Horn Clause Prolog with a significant boost in

expressiveness, to the point where they allow emulating at source-level virtually all

Prolog built-ins, including dynamic database operations.

In a wider programming language implementation context, a yield statement

supports basic coroutining in newer object oriented languages like Ruby C# and

3 Even in cases when such hopes do not materialize, indirect consequences of such architectural
simplifications often lower software risks and bring increased system reliability while keeping
implementation effort under control.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

110 P. Tarau

Python but it goes back as far as Conway (1963) and the Coroutine Iterators

introduced in older languages like CLU (Liskov et al. 1981).

6.1 Logic Engines as answer generators

Our Interactor API, a unified interface to various stateful objects interacting with

Prolog processors, has evolved progressively into a practical Prolog implementation

framework starting with Tarau (2000) and continued with Tarau (2008a) and Tarau

and Majumdar (2009). We summarize it here while instantiating the more general

framework to focus on interoperation of Logic Engines. We refer to Tarau and

Majumdar (2009) for the details of an emulation in terms of Horn Clause Logic of

various engine operations.

An Engine is simply a language processor reflected through an API that allows

its computations to be controlled interactively from another Engine very much the

same way a programmer controls Prolog’s interactive top-level loop: launch a new

goal, ask for a new answer, interpret it, react to it. A Logic Engine is an Engine

running a Horn Clause Interpreter with LD-resolution (Tarau and Boyer 1993) on

a given clause database, together with a set of built-in operations. The command

new_engine(AnswerPattern,Goal,Interactor)

creates a new Horn Clause solver, uniquely identified by Interactor, which shares

code with the currently running program and is initialized with Goal as a starting

point. AnswerPattern is a term, usually a list of variables occurring in Goal, of which

answers returned by the engine will be instances. Note however that new engine/3

acts like a typical constructor, no computations are performed at this point, except

for allocating data areas.

In our newer implementations, with all data areas dynamic, engines are lightweight

and engine creation is fast and memory efficient4 to the point where using them as

building blocks for a significant number of built-ins and various language constructs

is not always prohibitive in terms of performance.

6.2 Iterating over computed answers

Note that our Logic Engines are seen, in an object oriented-style, as implementing

the interface Interactor. This supports a uniform interaction mechanism with a

variety of objects ranging from Logic Engines to file/socket streams and iterators

over external data structures.

The get/2 operation is used to retrieve successive answers generated by an

Interactor, on demand. It is also responsible for actually triggering computations in

the engine. The query

get(Interactor,AnswerInstance)

4 The additional operation load engine(Interactor,AnswerPattern,Goal) that clears data areas
and initializes an engine with AnswerPattern,Goal has also been available as a further optimization,
by providing a mechanism to reuse an existing engine.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 111

tries to harvest the answer computed from Goal, as an instance of AnswerPattern.

If an answer is found, it is returned as the(AnswerInstance), otherwise the

atom no is returned. As in the case of the Maybe Monad in Haskell, returning

distinct functors in the case of success and failure, allows further case analy-

sis in a pure Horn Clause style, without needing Prolog’s CUT or if-then-else

operation.

Note that bindings are not propagated to the original Goal or AnswerPattern

when get/2 retrieves an answer, i.e. AnswerInstance is obtained by first stan-

dardizing apart (renaming) the variables in Goal and AnswerPattern, and then,

backtracking over its alternative answers in a separate Prolog interpreter. Therefore,

backtracking in the caller does not interfere with the new Interactor’s iteration

over answers. Backtracking over the Interactor’s creation point, as such, makes it

unreachable and therefore subject to garbage collection.

An Interactor is stopped with the

stop(Interactor)

operation that might or might not reclaim resources held by the engine. In our later

implementation Lean Prolog, we are using a fully automated memory management

mechanism where unreachable engines are automatically garbage collected. While

this API clearly refers to operations going beyond Horn Clause logic, it can be

shown that a fairly high-level pure Prolog semantics can be given to them in a

style somewhat similar to what one would do when writing a Prolog interpreter in

Haskell, as shown in Section 4 of Tarau and Majumdar (2009).

So far, these operations provide a minimal API, powerful enough to switch tasks

cooperatively between an engine and its “client”5 and emulate key Prolog built-ins

like if-then-else and findall (Tarau 2000), as well as higher order operations like

fold and best of (Tarau and Majumdar 2009). We give more details on emulations

of these constructs in Section 7.

6.3 A yield/return operation

The following operations provide a “mixed-initiative” interaction mechanism, allow-

ing more general data exchanges between an engine and its client.

First, like the yield return construct of C# and the yield operation of Ruby

and Python, our return/1 operation

return(Term)

saves the state of the engine and transfers control and a result Term to its client. The

client receives a copy of Term when using its get/2 operation.

Note that an Interactor returns control to its client either by calling return/1 or

when a computed answer becomes available. By using a sequence of return/get

operations, an engine can provide a stream of intermediate/final results to itsclient,

5 Another Prolog engine using and engine’s services.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

112 P. Tarau

without having to backtrack. This mechanism is powerful enough to implement a

complete exception handling mechanism simply by defining

throw(E):-return(exception(E)).

When combined with a catch(Goal,Exception,OnException), on the client side,

the client can decide, upon reading the exception with get/2, if it wants to handle

it or to throw it to the next level.

6.4 Coroutining logic engines

Coroutining has been in use in Prolog systems mostly to implement constraint

programming extensions. The typical mechanism involves attributed variables holding

suspended goals that may be triggered by changes in the instantiation state of the

variables. We discuss here a different form of coroutining, induced by the ability to

switch back and forth between engines.

The operations described so far allow an engine to return answers from any point

in its computation sequence. The next step is to enable an engine’s client6 to inject

new goals (executable data) to an arbitrary inner context of another engine. Two

new primitives are needed:

to_engine(Engine,Data)

that is called by the client to send data to an Engine, and

from_engine(Data)

that is called by the engine to receive a client’s Data.

A typical use case for the Interactor API looks as follows:

(1) the client creates and initializes a new engine

(2) the client triggers a new computation in the engine, parameterized as follows:

(a) the client passes some data and a new goal to the engine and issues a get

operation that passes control to it

(b) the engine starts a computation from its initial goal or the point where it has

been suspended and runs (a copy of) the new goal received from its client

(c) the engine returns (a copy of) the answer, then suspends and returns control

to its client

(3) the client interprets the answer and proceeds with its next computation step

(4) the process is fully reentrant and the client may repeat it from an arbitrary point

in its computation

Using a metacall mechanism like call/17, one can implement a close equivalent

of Ruby’s yield statement as follows:

6 Another engine that uses an engine’s services.
7 Which, interestingly enough, can itself be emulated in terms of engine operations (Tarau 2000) or

directly through a source level transformation (Tarau and Boyer 1990).

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 113

ask_engine(Engine,(Answer:-Goal), Result):-

to_engine(Engine,(Answer:-Goal)),

get(Engine,Result).

engine_yield(Answer):-

from_engine((Answer:-Goal)),

call(Goal),

return(Answer).

The predicate ask engine/3 sends a query (possibly built at runtime) to an engine,

which, in turn, executes it and returns a result with an engine yield operation. The

query is typically a goal or a pattern of the form AnswerPattern:-Goal in which

case the engine interprets it as a request to instantiate AnswerPattern by executing

Goal before returning the answer instance.

As the following example shows, this allows the client to use, from outside,

the (infinite) recursive loop of an engine as a form of updatable persistent

state.

sum_loop(S1):-engine_yield(S1⇒S2),sum_loop(S2).

inc_test(R1,R2):-new_engine(_,sum_loop(0),E),

ask_engine(E,(S1⇒S2:-S2 is S1+2),R1),

ask_engine(E,(S1⇒S2:-S2 is S1+5),R2).

?- inc_test(R1,R2).

R1=the(0⇒2), R2=the(2⇒7).

Note also that after parameters (the increments 2 and 5) are passed to the engine,

results dependent on its state (the sums so far 2 and 7) are received back. Moreover,

note that an arbitrary goal is injected in the local context of the engine where it is

executed. The goal can then access the engine’s state variables S1 and S2. As engines

have separate garbage collectors (or in simple cases as a result of tail recursion),

their infinite loops run in constant space, provided that no unbounded size objects

are created.

7 Source level extensions through new definitions

To give a glimpse of the expressiveness of the resulting Horn Clause + Engines

language, first described in Tarau (2000) we specify a number of built-in predicates

known as “impossible to emulate” in Horn Clause Prolog (except by significantly

lowering the level of abstraction and implementing something close to the virtual

machine itself).

7.1 Negation, first solution/3, if then else/3

These constructs are implemented simply by discarding all but the first solution

produced by an engine. The predicate first solution (usable to implement

once/1), returns the(X) or the atom no as first solution of goal G:

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

114 P. Tarau

first_solution(X,G,Answer):-

new_engine(X,G,E),

get(E,R),stop(E),

Answer=R.

not(G):-first_solution(_,G,no).

The same applies to an emulation of Prolog’s if-then-else construct, shown here

as the predicate if then else/3, which, if Cond succeeds, calls Then, keeping the

bindings produced by Cond and otherwise calls Else after undoing the bindings of

the call to Cond.

if_then_else(Cond,Then,Else):-

new_engine(Cond,Cond,E),

get(E,Answer), stop(E),

select_then_else(Answer,Cond,Then,Else,Goal),

Goal.

select_then_else(the(Cond),Cond,Then,_Else,Then).

select_then_else(no,_,_,_Then,Else,Else).

Note that these operations require the use of CUT in typical Prolog library implemen-

tations. While in the presence of engines, one can control the generation of multiple

answers directly and only use the CUT when more complex control constructs

are required (like in the case of embedded disjunctions), given the efficient WAM-

level implementation of CUT and the frequent use of Prolog’s if-then-else construct,

emulations of these built-ins can be seen mostly as an executable specification of

their faster low-level counterparts.

7.2 Reflective meta-interpreters

A simple Horn Clause+Engines meta-interpreter metacall/1 just reflects backtrack-

ing through element of/2 over deterministic engine operations.

metacall(Goal):-

new_engine(Goal,Goal,E),

element_of(E,Goal).

element_of(E,X):-get(E,the(A)),select_from(E,A,X).

select_from(_,A,A).

select_from(E,_,X):-element_of(E,X).

We can see metacall/1 as an operation that fuses two orthogonal language features

provided by an engine: computing an answer of a Goal, and advancing to the next

answer, through the source level operations element of/2 and select from/3 which

“borrow” the ability to backtrack from the underlying interpreter. The existence of

the simple meta-interpreter defined by metacall/1 indicates that first-class engines

lift the expressiveness of Horn Clause logic significantly.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 115

7.3 All-solution predicates

All-solution predicates like findall/3 can be obtained by collecting answers through

recursion. The (simplified) code consists of findall/3 that creates an engine and

collect all answers/3 that recurses while new answers are available.

findall(X,G,Xs):-

new_engine(X,G,E),

get(E,Answer),

collect_all_answers(Answer,E,Xs).

collect_all_answers(no,_,[]).

collect_all_answers(the(X),E,[X |Xs]):-get(E,Answer),
collect_all_answers(Answer,E,Xs).

Note that after the auxiliary engine created for findall/3 is discarded, heap space is

needed only to hold the computed answers, as it is also the case with the conventional

implementation of findall. Note also that the implementation handles embedded

uses of findall naturally and that no low-level built-ins are needed.

7.4 Term copying and instantiation state detection

As standardizing variables in the returned answer is part of the semantics of get/2,

term copying is just computing a first solution to true/0. Implementing var/1 uses

the fact that only free variables can have copies unifiable with two distinct constants.

copy_term(X,CX):-first_solution(X,true,the(CX)).

var(X):-copy_term(X,a),copy_term(X,b).

The previous definitions have shown that the resulting language subsumes (through

user provided definitions) constructs like negation as failure, if-then-else, once,

copy term, findall – this suggests calling this layer Kernel Prolog. As Kernel

Prolog contains negation as failure, following Deransart et al. (1996) we can, in

principle, use it for an executable specification of full Prolog.

It is important to note here that the engine-based implementation serves in some

cases just as a proof of expressiveness and that, in practice, operations like var/1 for

which even a small overhead is unacceptable are implemented directly as built-ins.

Nevertheless, the engine-based source-level definitions provide in all cases a reference

implementation usable as a specification for testing purposes.

7.5 Implementing exceptions

While it is possible to implement an exception mechanism at source level as shown

in Tarau and Dahl (1994), through a continuation passing program transformation

(binarization), one can use engines for the same purpose. By returning a new answer

pattern as indication of an exception, a simple and efficient implementation of

exceptions is obtained.

We have actually chosen this implementation scenario in the BinProlog compiler,

which also provides a return/1 operation to exit an engine’s emulator loop with an

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

116 P. Tarau

arbitrary answer pattern, possibly before the end of a successful derivation. The

(somewhat simplified) code is as follows:

throw(E):-return(exception(E)).

catch(Goal,Exception,OnException):-

new_engine(answer(Goal),Goal,Engine),

element_of(Engine,Answer),

do_catch(Answer,Goal,Exception,OnException,Engine).

do_catch(exception(E),_,Exception,OnException,Engine):-

(E=Exception→
OnException % call action if matching

; throw(E) % throw again otherwise

), stop(Engine).

do_catch(the(Goal),Goal,_,_,_).

The throw/1 operation returns a special exception pattern, while the catch/3

operation stops the engine, calls a handler on matching exceptions or rethrows

nonmatching ones to the next layer. If engines are lightweight, the cost of using

them for exception handling is acceptable performance-wise, most of the time.

However, it is also possible to reuse an engine (using load engine/3) – for instance

in an inner loop, to define a handler for all exceptions that can occur, rather than

wrapping up each call into a new engine with a catch.

7.6 Interactors and higher order constructs

As a glimpse at the expressiveness of the Interactor API, we implement, in the

tradition of higher order functional programming, a fold operation. The predicate

efoldl can be seen as a generalization of findall connecting results produced

by independent branches of a backtracking Prolog engine by applying to them a

closure F using call/4:

efoldl(Engine,F,R1,R2):-get(Engine,X),efoldl_cont(X,Engine,F,R1,R2).

efoldl_cont(no,_Engine,_F,R,R).

efoldl_cont(the(X),Engine,F,R1,R2):-call(F,R1,X,R),efoldl(Engine,F,R,R2).

Classic functional programming idioms like reverse as fold are then implemented

simply as:

reverse(Xs,Ys):-

new_engine(X,member(X,Xs),E),

efoldl(E,reverse_cons,[],Ys).

reverse_cons(Y,X,[X |Y]).

Note also the automatic deforestation effect (Wadler 1990) of this programming

style – no intermediate list structures need to be built, if one wants to aggregate the

values retrieved from an arbitrary generator engine with an operation like sum or

product.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 117

8 Extending the Prolog kernel using interactors

We review here a few typical extensions of the Prolog kernel showing that using

first-class Logic Engines results in a compact and portable architecture that is built

almost entirely at source level.

8.1 Emulating dynamic databases with interactors

The gain in expressiveness coming directly from the view of Logic Engines as

iterative answer generators (i.e. Fluents (Tarau 2000)) is significant. The notable

exception is Prolog’s dynamic database, requiring the bidirectional communication

provided by interactors.

The key idea for implementing dynamic database operations with interactors is

to use a logic engine’s state in an infinite recursive loop.

First, a simple difference-list based infinite server loop is built:

queue_server:-queue_server(Xs,Xs).

queue_server(Hs1,Ts1):-

from_engine(Q),server_task(Q,Hs1,Ts1,Hs2,Ts2,A),return(A),

queue_server(Hs2,Ts2).

Next, we provide the queue operations, needed to maintain the state of the database.

To keep the code simple, we only focus in this section on operations resulting in

additions at the end of the database.

server_task(add_element(X),Xs,[X |Ys],Xs,Ys,yes).
server_task(queue,Xs,Ys,Xs,Ys,Xs-Ys).

server_task(delete_element(X),Xs,Ys,NewXs,Ys,YesNo):-

server_task_delete(X,Xs,NewXs,YesNo).

Then, we implement the auxiliary predicates supporting various queue operations.

server_task_delete(X,Xs,NewXs,YesNo):-

select_nonvar(X,Xs,NewXs),!,

YesNo=yes(X).

server_task_delete(_,Xs,Xs,no).

select_nonvar(X,XXs,Xs):-nonvar(XXs),XXs=[X |Xs].
select_nonvar(X,YXs,[Y |Ys]):-nonvar(YXs),YXs=[Y |Xs],
select_nonvar(X,Xs,Ys).

Next, we put it all together, as a dynamic database API.

We can create a new engine server providing Prolog database operations:

new_edb(Engine):-new_engine(done,queue_server,Engine).

We can add new clauses to the database

edb_assertz(Engine,Clause):-

ask_engine(Engine,add_element(Clause),the(yes)).

and we can return fresh instances of asserted clauses

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

118 P. Tarau

edb_clause(Engine,Head,Body):-

ask_engine(Engine,queue,the(Xs-[])),

member((Head:-Body),Xs).

or remove them from the database

edb_retract1(Engine,Head):-Clause=(Head:-_Body),

ask_engine(Engine,delete_element(Clause),the(yes(Clause))).

Finally, the database can be discarded by stopping the engine that hosts it:

edb_delete(Engine):-stop(Engine).

Externally implemented dynamic databases can also be made visible as Interactors

and reflection of the interpreter’s own handling of the Prolog database becomes

possible. As an additional benefit, multiple databases can be provided. This simplifies

adding module, object or agent layers at source level. By combining database and

communication Interactors, support for mobile code and autonomous agents can be

built as shown in Tarau and Dahl (2001). Encapsulating external stateful objects like

file systems, external database or Web service interfaces as Interactors can provide

a uniform interfacing mechanism and reduce programmer learning curves in Prolog

applications.

A note on practicality is needed here. While indexing can be added at source

level by using hashing on various arguments, the relative performance compared

to compiled code, of this emulated database is 2–3 orders of magnitude slower.

Therefore, in our various Prolog systems, we have used this more as an executable

specification rather than the default implementation of the database.

8.2 Refining control: A backtracking if-then-else

Various Prolog implementations also provide a variant of if-then-else (called

*->/3 in SWI-Prolog and if/3 in SICStus-Prolog) that either backtracks over

multiple answers of its guard Cond (and calls its Then branch for each) or it switches

to the Else branch if no such answers of Cond are found. With the same API, we

can implement it at source level as follows:

if_any(Cond,Then,Else):-

new_engine(Cond,Cond,Engine),

get(Engine,Answer),

select_then_or_else(Answer,Engine,Cond,Then,Else).

select_then_or_else(no,_,_,_,Else):-Else.

select_then_or_else(the(BoundCond),Engine,Cond,Then,_):-

backtrack_over_then(BoundCond,Engine,Cond,Then).

backtrack_over_then(Cond,_,Cond,Then):-Then.

backtrack_over_then(_,Engine,Cond,Then):-

get(Engine,the(NewBoundCond)),

backtrack_over_then(NewBoundCond,Engine,Cond,Then).

8.3 Simplifying algorithms: Interactors and combinatorial generation

Various combinatorial generation algorithms have elegant backtracking implemen-

tations. However, it is notoriously difficult (or inelegant, through the use of ad-hoc

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 119

side effects) to compare answers generated by different OR-branches of Prolog’s

search tree.

8.3.1 Comparing alternative answers

Optimization problems, selecting the “best” among answers produced on alternative

branches can easily be expressed as follows:

• running the generator in a separate logic engine

• collecting and comparing the answers in a client controlling the engine

The second step can actually be automated, provided that the comparison criterion

is given as a predicate

compare_answers(Comparator,First,Second,Best)

to be applied to the engine with an efold operation:

best_of(Answer,Comparator,Generator):-

new_engine(Answer,Generator,E),

efoldl(E,compare_answers(Comparator),no,Best),

Answer=Best.

compare_answers(Comparator,A1,A2,Best):-

(A1\==no,call(Comparator,A1,A2)→Best=A1

; Best=A2

).

?-best_of(X,>,member(X,[2,1,4,3])).

X=4

Note that in the call to compare answers, the closure compare answers(Comparator)

gets the extra arguments A1 and A2 out of which, depending on the comparison,

Best is selected at each step of efoldl.

8.3.2 Encapsulating infinite computation streams

An infinite stream of natural numbers is implemented as:

loop(N):-return(N),N1 is N+1,loop(N1).

The following example shows a simple space efficient generator for the infinite

stream of prime numbers:

prime(P):-prime_engine(E),element_of(E,P).

prime_engine(E):-new_engine(_,new_prime(1),E).

new_prime(N):- N1 is N+1,

(test_prime(N1) → true ; return(N1)),

new_prime(N1).

test_prime(N):-M is integer(sqrt(N)),between(2,M,D),N mod D =:=0

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

120 P. Tarau

Note that the program has been wrapped, using the element of predicate to provide

one answer at a time through backtracking. Alternatively, a forward recursing client

can use the get(Engine) operation to extract primes one at a time from the

stream.

9 A short history of BinProlog and its derivatives

The first iteration of BinProlog goes back to around 1990. Along the years, it

has pioneered some interesting architectural choices while adopting a number of

new (at the time) implementation ideas from others. From 1999 on, we have also

released a Java port of BinProlog called Jinni Prolog, using essentially the same

runtime system and compiler as BinProlog and resulting in some new developments

happening either on the Java or C side. Some of BinProlog’s features are interesting

to mention mostly for historical reasons – as they either became part of various

Prolog systems, when genuinely practical, or, on the contrary, have turned out to

have only limited, program-specific benefits. Among features for which BinProlog

has been either a pioneer or an early adopter in the world of Prolog implementations

that have not been covered in this paper are:

• an efficient implementation of findall using a heap splitting technique

resulting in a single copy operation (Tarau 1992)

• a multithreading API using native threads under explicit programmer control

(around 1992–1993)

• a blackboard architecture using Linda coordination between threads (Tarau

and De Bosschere 1993a; De Bosschere and Tarau 1996)

• backtrackable global variables (around 1993)

• a mechanism for “partial compilation” to C (Tarau et al. 1994, 1996)

• using continuations to implement Prolog extensions, including catch/throw

(Tarau and Dahl 1994)

• cyclic terms (originating in Prolog III) and subterm-sharing implemented using

a space efficient value trailing mechanism (around 1993)

• memoing of goal-independent answer substitutions for deterministic calls

(Tarau and De Bosschere 1993b; Tarau et al. 1997)

• a DCG variant using backtrackable state updates (Dahl et al. 1997)

• on the fly compilation of dynamic code, based on runtime call/update statistics

(around 1994–1995) (a technique similar to the HotSpot compilation now

popular in Java VMs)

• segment preserving copying GC (Demoen et al. 1996)

• assumption grammars – a mechanism extending Prolog grammar with hypo-

thetical reasoning (Dahl et al. 1997)

• strong mobility of code and data by transporting live continuations between

Prolog processes (Tarau and Dahl 1998, 2001)

• Prolog-based shared virtual worlds supporting simple natural language inter-

actions (Tarau et al. 1999)

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 121

Elements of the BinProlog continuation passing implementation model have been

successfully reused in a few different Prolog systems:

• jProlog (http://www.cs.kuleuven.be/~bmd/PrologInJava/) written in Java,

mostly by Bart Demoen with some help from Paul Tarau in 1997, used a Prolog

to Java translator with binarization as a source to source transformation

• Jinni Prolog, written in Java by Paul Tarau (http://www.binnetcorp.com/

Jinni) actively developed since 1998, first as continuation passing interpreter

and later as a BinWAM compiler

• A Java port of Free Prolog (a variant of BinProlog 2.0) by Peter Wilson

http://www.binnetcorp.com/OpenCode/free_prolog.html (around 1999)

with additions and fixes by Paul Tarau

• Kernel Prolog, a continuation passing interpreter written in Java by Paul Tarau

(http://www.binnetcorp.com/OpenCode/kernelprolog.html) around 1999

• PrologCafe (http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/), a fairly

complete Prolog system derived from jProlog implemented by Mutsunori

Banbara and Naoyuki Tamura

• P# derived from PrologCafe, written in C# by Jon Cook (http://homepages.

inf.ed.ac.uk/jcook/)
• Carl Friedrich Bolz’s Python-based Prolog interpreter and JIT compiler, using

AND+OR-continuations directly, without a program transformation (Bolz

et al. 2010)

• Lean Prolog – a new first-class Logic Engines based lightweight Prolog system

using two identical C and Java-based BinWAM runtime systems to balance

performance and flexibility implemented by Paul Tarau (work in progress,

started in 2008)

10 Related work

Most modern Prolog implementations are centered around the WAM (Warren

1983; Aı̈t-Kaci 1991), which has stood amazingly well the test of time. In this

sense, BinProlog’s BinWAM is no exception although its overall “rate of mutations”

with respect to the original WAM is probably comparable to systems like Neng-Fa

Zhou’s TOAM or TOAM-Jr (Zhou et al. 1990; Zhou 2007) or Jan Wielemaker’s SWI-

Prolog (Wielemaker 2003) and definitely higher, if various extensions are factored

out, than the basic architecture of systems like GNU-Prolog (Diaz and Codognet

2001), SICStus Prolog (Carlsson et al.), Ciao (Carro and Hermenegildo 1999), YAP

(da Silva and Costa 2006) or XSB (Swift and Warren 1994). We refer to Van Roy

(1994) and Demoen and Nguyen (2000) for extensive comparisons of compilation

techniques and abstract machines for various logic programming systems.

Techniques for adding built-ins to binary Prolog are first discussed in Demoen

and Mar̈ıen (1992), where an implementation-oriented view of binary programs that

a binary program is simply one that does not need an environment in the WAM is

advocated. Their paper also describes a technique for implementing Prolog’s CUT

in a binary Prolog compiler. Extensions to BinProlog’s AND-continuation passing

transformation to also cover OR-continuations are described in Lindgren (1994).

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

122 P. Tarau

Multiple Logic Engines have been present in one form or another in various

parallel implementation of logic programming languages (Ueda 1985; Shapiro 1989).

Among the earliest examples of parallel execution mechanisms for Prolog, AND-

parallel (Hermenegildo 1986) and OR-parallel (Lusk et al. 1993) execution models

are worth mentioning.

However, with the exception of this author’s papers on this topic (Tarau 1999a,

1999c, 2000, 2008a, 2011; Tarau and Dahl 2001; Tarau and Majumdar 2009), we have

not found an extensive use of first-class Logic Engines as a mechanism to enhance

language expressiveness, independently of their use for parallel programming, with

maybe the exception of Casas et al. (2007) where such an API is discussed for parallel

symbolic languages in general. In combination with multithreading (Tarau 2011), our

own engine-based API bears similarities with various other Prolog systems, notably

(Carro and Hermenegildo 1999; Wielemaker 2003) while focusing on uncoupling

“concurrency for performance” and “concurrency for expressiveness”.

The use of a garbage collected, infinitely looping recursive program to encapsulate

state goes back to early work in logic programming and it is likely to be common in

implementing various server programs. However, an infinitely recursive pure Horn

Clause program is an “information sink” that does not communicate with the

outside world on its own. The minimal API (to engine/2 and from engine/1)

described in this paper provides interoperation with such programs, in a generic

way.

11 Conclusion

At the time of writing, BinProlog has been around for almost 20 years. As

mostly a single-implementor system, BinProlog has not kept up with systems that

have benefited from a larger implementation effort in terms of optimizations and

extensions like constraints or tabling, partly also because our research interests have

diverged towards areas as diverse as natural language processing, logic synthesis

or computational mathematics. On the other hand, re-implementations in Java and

a number of experimental features make it still relevant as a due member of the

unusually rich and colorful family of Prolog systems.

Our own re-implementations of BinProlog’s virtual machine have been extended

with first-class Logic Engines that can be used to build on top of pure Prolog

a practical Prolog system, including dynamic database operations, entirely at

source level. In a broader sense, interactors can be seen as a starting point

for rethinking fundamental programming language constructs like Iterators and

Coroutining in terms of language constructs inspired by performatives in agent-

oriented programming. Along these lines, we are currently building a new BinWAM-

based implementation, Lean Prolog, which combines a minimal WAM kernel with

an almost entirely source-level interactor-based implementation of Prolog’s built-

ins and libraries. We believe that under this new incarnation some of BinProlog’s

architectural choices are likely to have an interesting impact on the design and

implementation of future logic programming languages.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 123

Acknowledgements

We are thankful to Marı́a Garcı́a de la Banda, Bart Demoen, Manuel Hermenegildo,

Joachim Schimpf and D.S. Warren and to the anonymous reviewers for their careful

reading and thoughtful comments on earlier drafts of this paper.

Special thanks go to Koen De Bosschere, Bart Demoen, Geert Engels, Ulrich

Neumerkel, Satyam Tyagi and Peter Wilson for their contribution to the implemen-

tation of BinProlog and Jinni Prolog components.

Richard O’Keefe’s public domain Prolog parser and writer have been instrumental

in turning BinProlog into a self-contained Prolog system quickly.

Fruitful discussions with Hassan Äıt-Kaci, Patrice Boizumault, Michel Boyer,

Mats Carlsson, Jacques Cohen, Veronica Dahl, Bart Demoen, Thomas Lindgren,

Arun Majumdar, Olivier Ridoux, Kostis Sagonas, Sten-Åke Tärnlund, D. S. Warren,

Neng-Fa Zhou and comments from a large number of BinProlog users helped

improving its design and implementation.

References

Aı̈t-Kaci, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,

Cambridge, MA, USA. ISBN: 0-262-51058-8 978-0-262-51058-5.

Bolz, C. F., Leuschel, M. and Schneider, D. 2010. Towards a Jitting VM for Prolog

execution. In Proc. of the 12th International ACM SIGPLAN Symposium on Principles and

Practice of Declarative Programming (PPDP ’10). ACM, New York, NY, USA, 99–108.

Carlsson, M., Widen, J., Andersson, J., Andersson, S., Boortz, K., Nilsson, H. and

Sjoland, T. 2009. SICStus Prolog user’s manual. SICS, Kista, Sweden.

Carro, M. and Hermenegildo, M. V. 1999. Concurrency in Prolog using threads and a

shared database. In Proc. of the International Conference on Logic Programming (ICLP),

320–334.

Casas, A., Carro, M. and Hermenegildo, M. 2007. Towards a high-level implementation

of flexible parallelism primitives for symbolic languages. In Proc. of the 2007 International

Workshop on Parallel Symbolic Computation. ACM, New York, NY, USA, 93–94.

Clark, D. W. and Green, C. C. 1977. An empirical study of list structure in Lisp.

Communications of the ACM 20, 78–87.

Conway, M. E. 1963. Design of a separable transition-diagram compiler. Communications of

the ACM 6, 7, 396–408.

Dahl, V., Tarau, P. and Li, R. 1997. Assumption grammars for processing natural language.

In Proc. of the 14th International Conference on Logic Programming, L. Naish, Ed. MIT

Press, Cambridge, MA, USA, 256–270.

da Silva, A. F. and Costa, V. S. 2006. The design and implementation of the yap compiler:

An optimizing compiler for logic programming languages. In Proc. of the International

Conference on Logic Programming (ICLP), S. Etalle and M. Truszczynski, Eds. Lecture

Notes in Computer Science, vol. 4079. Springer, Berlin, Heidelberg, 461–462.

De Bosschere, K. and Tarau, P. January 1996. Blackboard-based extensions in Prolog.

Software—Practice and Experience 26, 1, 49–69.

Demoen, B. 1992. On the transformation of a prolog program to a more efficient

binary program. In Proc. of the International Workshop on Logic Program Synthesis and

Transformation (LOPSTR), 242–252.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

124 P. Tarau

Demoen, B., Engels, G. and Tarau, P. 1996. Segment preserving copying garbage collection

for WAM based Prolog. In Proc. of the 1996 ACM Symposium on Applied Computing. ACM

Press, Philadelphia, PA, USA, 380–386.

Demoen, B. and Mariën, A. 1992. Implementation of Prolog as binary definite programs.

In Proc. of the First Russian Conference on Logic Programming (RCLP), A. Voronkov,

Ed. Lecture Notes in Artificial Intelligence, vol. 592. Springer-Verlag, Berlin, Heidelberg,

165–176.

Demoen, B. and Nguyen, P.-L. 2000. So many WAM variations, so little time. In Proc. of the

First International Conference on Computational Logic (CL ’00). Springer-Verlag, London,

UK, 1240–1254.

Deransart, P., Ed-Dbali, A. and Cervoni, L. 1996. Prolog: The Standard, Springer-Verlag,

Berlin. ISBN: 3-540-59304-7.

Diaz, D. and Codognet, P. 2001. Design and implementation of the GNU Prolog system.

Journal of Functional and Logic Programming 2001, 6, 1–29.

FIPA. 1997. FIPA 97 specification part 2: Agent communication language. Version 2.0.

Hermenegildo, M. V. 1986. An abstract machine for restricted and-parallel execution of logic

programs. In Proc. of the Third International Conference on Logic Programming. Springer-

Verlag, New York, NY, USA, 25–39.

Lindgren, T. 1994. A continuation-passing style for prolog. In Proc. of the 1994 International

Symposium on Logic programming (ILPS ’94). MIT Press, Cambridge, MA, USA, 603–617.

Liskov, B., Atkinson, R. R., Bloom, T., Moss, J. E. B., Schaffert, C., Scheifler, R. and

Snyder, A. 1981. CLU Reference Manual. Lecture Notes in Computer Science, vol. 114.

Springer, Berlin, Heidelberg.

Lloyd, J. 1987. Foundations of Logic Programming (Symbolic Computation/Artificial

Intelligence), 2nd ed. Springer-Verlag, Berlin. .

Lusk, E., Mudambi, S., Gmbh, E. and Overbeek, R. 1993. Applications of the aurora

parallel Prolog system to computational molecular biology. In Proc. of the Post-Conference

Joint Workshop on Distributed and Parallel Implementations of Logic Programming Systems

(JICSLP ’92), Washington DC. MIT Press.

Nässén, H., Carlsson, M. and Sagonas, K. 2001. Instruction merging and specialization

in the sicstus prolog virtual machine. In Proc. of the 3rd ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming (PPDP ’01). ACM, New

York, NY, USA, 49–60.

Neumerkel, U. 1992. Specialization of Prolog Programs with Partially Static Goals and

Binarization. PhD Thesis, Technische Universität Wien.

Shapiro, E. 1989. The family of concurrent logic programming languages. ACM Computing

Serveys 21, 3, 413–510.

Swift, T. and Warren, D. S. 1994. An abstract machine for SLG resolution:

Definite programs. In Proc. of the 1994 International Symposium on Logic Programming,

M. Bruynooghe, Ed. MIT Press, Massachusetts Institute of Technology, 633–652.

Tarau, P. 1991. A simplified abstract machine for the execution of binary metaprograms. In

Proc. of the Logic Programming Conference ’91. ICOT, Tokyo, 119–128.

Tarau, P. 1992. Ecological memory management in a continuation passing Prolog engine. In

Proc. of the International Workshop on Memory Management(IWMM ’92), Y. Bekkers and

J. Cohen, Eds. Lecture Notes in Computer Science, vol. 637. Springer, Berlin, Heidelberg,

344–356.

Tarau, P. 1998. Towards inference and computation mobility: The Jinni experiment. In

Proc. of the European Workshop on Logics in Artificial Intelligence (JELIA ’98), J. Dix and

U. Furbach, Eds. Lecture Notes in Artificial Intelligence, vol. 1489. Springer, Dagstuhl,

Germany, 385–390. Invited talk.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

The BinProlog experience 125

Tarau, P. 1999a. Inference and computation mobility with jinni. In The Logic Programming

Paradigm: A 25 Year Perspective, K. Apt, V. Marek and M. Truszczynski, Eds. Springer,

Berlin, Heidelberg, 33–48. ISBN 3-540-65463-1.

Tarau, P. 1999b. Intelligent Mobile Agent Programming at the Intersection of Java and Prolog.

In Proc. of the Fourth International Conference on the Practical Application of Intelligent

Agents and Multi-Agents, London, UK, 109–123.

Tarau, P. 1999c. Multi-engine horn clause Prolog. In Proc. of the Workshop on Parallelism

and Implementation Technology for (Constraint) Logic Programming Languages, Las Cruces,

NM, USA, G. Gupta and E. Pontelli, Eds.

Tarau, P. 2000. Fluents: A refactoring of Prolog for uniform reflection and interoperation

with external objects. In Proc. of the First International Conference on Computational Logic

(CL ’00), J. Lloyd, Ed. Lecture Notes in Computer Science, vol. 1861. Springer-Verlag,

London, UK.

Tarau, P. 2004a. Agent oriented logic programming constructs in jinni 2004. In Proc. of

the 20th International Conference on Logic Programming (ICLP ’04), B. Demoen and

V. Lifschitz, Eds. Lecture Notes in Computer Science, vol. 3132. Springer, Saint-Malo,

France, 477–478.

Tarau, P. 2004b. Orthogonal language constructs for agent oriented logic programming. In

Proc. of the Fourth Colloquium on Implementation of Constraint and Logic Programming

Systems (CICLOPS ’04), M. Carro and J. F. Morales, Eds. Springer, Saint-Malo, France.

Tarau, P. 2006. BinProlog 11.x Professional Edition: Advanced BinProlog Programming and

Extensions Guide. Technical Report. BinNet Corp.

Tarau, P. 2008a. Logic engines as interactors. In Proc. of the 24th International Conference

on Logic Programming, M. Garcia de la Banda and E. Pontelli, Eds. Lecture Notes in

Computer Science. Springer, Udine, Italy, 703–707.

Tarau, P. 2008b. The Jinni Prolog Compiler: A fast and flexible Prolog-in-

Java [online]. Accessed 2008. URL: http://www.binnetcorp.com/download/jinnidemo/

JinniUserGuide.html

Tarau, P. 2011. Concurrent programming constructs in multi-engine prolog. In Proc. of the

ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming (DAMP ’11).

ACM, New York, NY, USA.

Tarau, P. and Boyer, M. 1990. Elementary logic programs. In Proc. of the Programming

Language Implementation and Logic Programming, P. Deransart and J. Maluszyński, Eds.

Lecture Notes in Computer Science, vol. 456. Springer, Berlin, Heidelberg, 159–173.

Tarau, P. and Boyer, M. 1993. Nonstandard answers of elementary logic programs. In

Constructing Logic Programs, J. Jacquet, Ed. J. Wiley, Hoboken, NJ, 279–300.

Tarau, P. and Dahl, V. 1994. Logic programming and logic grammars with first-order

continuations. In Proc. of the International Workshop on Logic Program Synthesis and

Transformation (LOPSTR ’94), Lecture Notes in Computer Science. Springer, Pisa.

Tarau, P. and Dahl, V. 1998. Mobile threads through first order continuations. In Proc. of

the APPAI-GULP-PRODE ’98, Coruna, Spain.

Tarau, P. and Dahl, V. May 2001. High-level networking with mobile code and first order

AND-continuations. Theory and Practice of Logic Programming 1, 3, 359–380. Cambridge

University Press.

Tarau, P. and De Bosschere, K. 1993a. Blackboard based logic programming in BinProlog. In

Proc. of the Fifth University of New Brunswick Artificial Intelligence Symposium, L. Goldfarb,

Ed. Fredericton, NB, 137–147.

Tarau, P. and De Bosschere, K. 1993b. Memoing with abstract answers and Delphi lemmas.

In Logic Program Synthesis and Transformation, Y. Deville, Ed. Springer-Verlag, Louvain-

la-Neuve, 196–209.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

126 P. Tarau

Tarau, P., De Bosschere, K., Dahl, V. and Rochefort, S. March 1999. LogiMOO:

An extensible multi-user virtual world with natural language control. Journal of Logic

Programming 38, 3, 331–353.

Tarau, P., De Bosschere, K. and Demoen, B. November 1996. Partial translation:

Towards a portable and efficient Prolog implementation technology. Journal of Logic

Programming 29, 1–3, 65–83.

Tarau, P., De Bosschere, K. and Demoen, B. February 1997. On Delphi lemmas and other

memoing techniques for deterministic logic programs. Journal of Logic Programming 30, 2,

145–163.

Tarau, P., Demoen, B. and De Bosschere, K. 1994. The power of partial translation: An

experiment with the C-ification of binary Prolog. In Proc. of the First COMPULOG-NOE

Area Meeting on Parallelism and Implementation Technology, Madrid/Spain, M. Garcı́a de la

Banda, J. and M. Hermenegildo, Eds, Bordeau, France, 3–17.

Tarau, P. and Majumdar, A. 2009. Interoperating logic engines. In Proc. of the 11th

International Symposium on Practical Aspects of Declarative Languages (PADL ’09). Lecture

Notes in Computer Science, vol. 5418. Springer, Savannah, Georgia, 137–151.

Tarau, P. and Neumerkel, U. November 1993. Compact Representation of Terms and

Instructions in the BinWAM. Technical Report 93-3, Department of d’Informatique,

Université de Moncton. Available by ftp from clement.info.umoncton.ca

Tyagi, S. and Tarau, P. 2001. A most specific method finding algorithm for reflection based

dynamic Prolog-to-Java interfaces. In Proc. of the International Symposium on Practical

Aspects of Declarative Languages (PADL ’01), I. Ramakrishan and G. Gupta, Eds.

Springer-Verlag, Las Vegas, NV, USA.

Ueda, K. 1985. Guarded horn clauses. In Proc. of the Fourth Conference on Logic

Programming, Tokyo, Japan, July 1-3, 1985, E. Wada, Ed. Lecture Notes in Computer

Science, vol. 221. Springer, 168–179.

Van Roy, P. 1994. 1983-1993: The wonder years of sequential prolog implementation. Journal

of Logic Programming 19, 20, 385–441.

Wadler, P. 1990. Deforestation: Transforming programs to eliminate trees. Theoretical

Computer Science 73, 2, 231–248.

Warren, D. H. D. October 1983. An abstract Prolog instruction set. Technical Note 309, SRI

International.

Wielemaker, J. 2003. Native preemptive threads in SWI-Prolog. In Proc. of the International

Conference on Logic Programming (ICLP), C. Palamidessi, Ed. Lecture Notes in Computer

Science, vol. 2916. Springer, 331–345.

Zhou, N.-F. 2007. A register-free abstract prolog machine with jumbo instructions. In Proc.

of the International Conference on Logic Programming (ICLP), V. Dahl and I. Niemelä,

Eds. Lecture Notes in Computer Science, vol. 4670. Springer, Berlin, Heidelberg, 455–457.

Zhou, N.-F., Takagi, T. and Ushijima, K. 1990. A matching tree oriented abstract machine

for Prolog. Logic Programming. MIT Press, Cambridge, MA, USA, 159–173. ISBN: 0-262-

73090-1.

https://doi.org/10.1017/S1471068411000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000433

