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Abstract. In this paper we develop a generalization of foliated manifolds in the context
of metric spaces. In particular we study dendritations of surfaces that are defined as
maximal atlases of compatible upper semicontinuous local decompositions into dendrites.
Applications are given in modeling stable and unstable sets of topological dynamical
systems. For this purpose new forms of expansivity are defined.

1. Introduction
In this paper we develop a Theory of Foliations from the viewpoint of Continuum Theory.
We define and study what we call continuumwise foliations or simply cw-foliations and as
a special case dendritations. These are generalizations of foliations of smooth manifolds,
laminations, singular pseudo-Anosov foliations and the generalized foliations used by
Hiraide to study expansive homeomorphisms. The idea is to consider monotone upper
semicontinuous decompositions as local charts. We will not assume that the plaques are
distributed as a product structure as in standard foliation theory. Moreover, two plaques in
a common local chart have not even to be homeomorphic.

As we will show in Theorem 5.1.2, cw-foliations are a conceptual framework to
understand the distribution of local stable and unstable continua in the dynamical systems
that we will consider. A motivation is to classify cw-expansive surface homeomorphisms.
We say that f is cw-expansive (continuum-wise expansive) [23] if there is δ > 0 such
that if diam( f n(A)) < δ for all n ∈ Z and A is connected then card(A)= 1, i.e. A is a
singleton. Important examples of cw-expansive dynamics are Anosov diffeomorphisms of
a compact manifold of arbitrary dimension and pseudo-Anosov maps of compact surfaces
with singular points and 1-prongs.

For an Anosov diffeomorphism, local stable sets form foliated charts (at least C0, see
[19]). If we consider an expansive homeomorphism of a compact surface, via [18, 30], we
know that local stable sets form a singular foliation. Recall that a homeomorphism f is
expansive if there is δ > 0 such that if dist( f n(x), f n(y)) < δ for all n ∈ Z then y = x .
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In fact, Hiraide and Lewowicz independently proved that expansive homeomorphisms
of compact surfaces are conjugate to pseudo-Anosov diffeomorphisms. If we consider
cw-expansivity on a compact surface we have that local stable sets may be far from
determining foliations in the standard sense. Moreover, a local stable set may not even be
a finite union of arcs. For example, in [5], a cw-expansive homeomorphism is constructed
on a compact surface with a fixed point whose local stable set is connected but not locally
connected, see §2.2.4. This example suggests that the goal of classifying all the cw-
expansive surface homeomorphisms requires new technology.

In §2.1, we introduce some definitions located between expansivity and cw-expansivity
that will be called cwN-expansivity, which is, in a sense, a version of N -expansivity
from the viewpoint of continuum theory. Recall that, given N ≥ 1, we say that f is N-
expansive [36] if there is δ > 0 such that if A ⊂ X (an arbitrary subset) and diam( f n(A))≤
δ for all n ∈ Z then card(A)≤ N (i.e. A has at most N points). We will say, see
Definition 2.1.2, that a homeomorphism is cwN-expansive if there is δ > 0 such that
if A, B ⊂ X are continua, diam( f n(A)) < δ for all n ≥ 0 and diam( f n(B)) < δ for all
n ≤ 0 then card(A ∩ B)≤ N . Also, a homeomorphism is cwF-expansive (where the F
means finite) if there is δ > 0 such that if A, B ⊂ X are continua, diam( f n(A)) < δ for all
n ≥ 0 and diam( f n(B)) < δ for all n ≤ 0 then A ∩ B is a finite set. These new forms of
expansivity allow us to prove the local connection of stable sets and to conclude that they
are dendrites. See Theorem 6.7.1. Recall that a dendrite is a Peano continuum containing
no simple closed curve, a continuum is a compact connected metric space and a Peano
continuum is a locally connected continuum. It is known, see Theorem 2.3.3, that such
dendrites (the stable and unstable local sets mentioned above) have a uniform size, i.e.
there is δ > 0 such that for all x in the surface the stable and the unstable dendrites of x
meet the boundary of the disk centered at x with radius δ. In this way we arrive naturally
to the concept of dendritic decomposition, see §3.2.1.

The topic of topological decompositions has a long literature, see for example [13, 14,
38, 43, 45]. For applications in dynamical systems the reader is referred to [5, 7, 12, 25, 41].
A celebrated result proved by Moore in [34] states that the quotient space of an upper
semicontinuous decomposition of the two-dimensional sphere in non-separating continua
is again the sphere (assuming that the decomposition has at least two elements, in other
cases the quotient is a point). In some sense, Moore’s decompositions are a generalization
of zero-dimensional foliations, i.e. the decomposition in singletons. A standard foliated
chart of [0, 1] × [0, 1] by horizontal lines has two properties: each plaque is an arc and
the quotient space is an arc. By Proposition 6.2.2, a local chart of a dendritation has the
following properties: each plaque is a dendrite and the quotient space is a dendrite. The
mentioned properties of a standard foliated chart do not characterize the foliated chart, see
Example 6.4.6. In §6.4 we give necessary and sufficient conditions for a decomposition
to be a standard foliated chart. In Corollary 6.6.3 we conclude that a continuous and C-
smooth dendritation is a standard foliation. The terms continuous and C-smooth have a
special meaning in this paper, see Definitions 6.6.1 and 3.2.14.

In [17] Hiraide considered generalized foliations for the study of expansivity from
a topological viewpoint (see §4.4). However, this definition seems to be useful jointly
with the pseudo orbit tracing property, and not in our case. For example, pseudo-Anosov
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singular foliations are not generalized foliations in the sense of Hiraide and they are our
main examples of dendritations. Our generalization of a foliation is designed to accompany
cw-expansivity.

The concept of cwN -expansivity appears naturally in the deep study of the articles
[18, 30]. In these papers, expansive homeomorphisms of surfaces are classified. A careful
reading reveals that several arguments can be made assuming cw1-expansivity instead
of expansivity. The concept of cw1-expansivity was previously considered in [44] where
some topological properties of stable sets were proved. In Theorem 6.8.5 we show that
every cw1-expansive homeomorphism of a compact surface is expansive. The key of
this proof is Theorem 5.3.4 where we give sufficient conditions for a cw1-expansive
homeomorphism of a compact metric space to be expansive. In Example 5.3.2 we show
that cw1-expansivity does not imply expansivity on arbitrary compact metric spaces
(this space is not locally connected). In §2.2.1 we show that there is a cw2-expansive
homeomorphism of the two-dimensional sphere that is not 2-expansive. It is a pseudo-
Anosov with 1-prongs.

We obtain some general results on surface dendritations. In Theorem 6.2.7 we show
that for every dendritation of a closed surface there is a residual set of points without
ramifications. In particular, generic leaves are one-dimensional submanifolds. This is a
consequence of another result by Moore [35], saying that at most a countable number of
disjoint triods can be embedded in a plane. In Theorem 6.7.1 we consider a cwF-expansive
homeomorphism of a compact surface. We show that stable and unstable continua form
dendritations. We also prove that: no leaf is a Peano-continuum; generic leaves are
non-compact one-dimensional manifolds; and, in a dense subset of the surface, stable
and unstable leaves are topologically transverse. One can feel that this result gives a
nice generic picture of what a cwF-expansive homeomorphism of a compact surface is.
However, we think that the goal of classifying a surface cwF-expansive homeomorphism
is far from the scope of the present paper, not to mention cw-expansivity.

A brief sketch of the paper is as follows. In §2 we introduce new forms of expansivity
and we study the topology of stable and unstable sets. In §3 we recall the main results
from continuum theory that will be needed and study decompositions, the local charts of
our foliations. In §4 we define and study cw-foliations on metric spaces. They are defined
via atlases of upper semicontinuous decompositions. We study the induced partition of
the space into leaves. The contents of §§2 and 4 are independent. In §5 the results of
the previous sections are joined to study the stable and the unstable cw-foliations defined
by a cw-expansive homeomorphism of a metric space. In §6 we study some special
cases of dendritations of surfaces. We give sufficient conditions to prove that they are
(singular) foliations. Also, some properties of the stable and the unstable dendritations
of a homeomorphism with some kind of expansivity are derived. Throughout the paper
several open problems are given.

2. Variations of expansivity
We start by presenting general results of cw-expansive homeomorphisms on Peano
continua. In §2.1 we introduce cwN -expansivity and we summarize the main variations
of expansivity that will be considered in this paper. In §2.2 we present some examples
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that will be used to illustrate our results in subsequent sections. In particular, in §2.2.1 we
give an example of a cw2-expansive homeomorphism on the two-dimensional sphere that
is not 2-expansive. In §2.3 basic topological properties of stable sets are stated. We recall
the Invariant Continuum Theorem for such dynamics. In §2.4 we introduce capacitors as
a tool to understand what happens with unstable continua between two close stable plates.
In §2.5 we give another form of expansivity, called partial expansivity, that generalizes
partial hyperbolicity of diffeomorphisms. We do not develop this concept in the paper,
however we think that it could be of interest. In §2.6 we consider the relationship between
stable sets and stable continua. Also, we give sufficient conditions for a cwN -expansive
homeomorphism to be N -expansive. For these purposes we introduce expansivity modulo
an equivalence relation.

2.1. CwN-expansivity. Let f : X→ X be a homeomorphism of a compact metric space
(X, dist). We say that A ⊂ X is a subcontinuum if A is compact and connected. Denote by
C(X) the space of subcontinua of X

C(X)= {A ⊂ X : A is a non-empty continuum}.

In C(X) we consider the Hausdorff metric. It is usually called a hyperspace of Xand has
the remarkable properties of being compact (if X is compact) and arc-connected (provided
that X is connected), see [37, 38]. For δ > 0 define the sets

Cδ = {A ∈ C(X) : diam(A)≤ δ},

Cs
δ = {A ∈ C(X) : f n(A) ∈ Cδ for all n ≥ 0},

Cu
δ = {A ∈ C(X) : f n(A) ∈ Cδ for all n ≤ 0}.

The continua in Cs
δ are called δ-stable and those in Cu

δ are δ-unstable. We also consider the
sets

Cs
= {As

∈ C(X) : limn→+∞ diam( f n(As))= 0},
Cu
= {Au

∈ C(X) : limn→−∞ diam( f n(Au))= 0}.
(1)

The continua in Cs are called stable and those in Cu are unstable.

Remark 2.1.1. The sets Cδ, Cs
δ and Cu

δ are closed in C(X).

Definition 2.1.2. Given N ≥ 1 we say that f is cwN-expansive if there is δ > 0 such
that if As

∈ Cs
δ and Au

∈ Cu
δ then card(As

∩ Au)≤ N . In this case δ is a cwN-expansivity
constant. We say that f is cwF-expansive if there is δ > 0 such that if As

∈ Cs
δ and Au

∈ Cu
δ

then As
∩ Au is a finite set.

In Table 1 the main variations of expansivity considered in this paper are summarized.

2.2. Examples. In this section we explain the examples that we had in mind while
developing this paper. We start with the following three classical families for which there
are well established theories for modeling stable and unstable sets.
(1) Anosov diffeomorphisms. These diffeomorphisms are defined on smooth manifolds

and are characterized by the uniform hyperbolicity on the tangent bundle.
Considering the distribution of stable and unstable sets, they are the most regular
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TABLE 1. Hierarchy of some generalizations of expansivity. The implications indicated by the arrows are easy to
prove and hold for homeomorphisms on metric spaces.

expansivity ⇔ 1-exp ⇒ cw1-exp
⇓ ⇓

2-exp ⇒ cw2-exp
⇓ ⇓

. . . . . .
⇓ ⇓

N-exp ⇒ cwN -exp
⇓

cwF-exp ⇒ cw-expansivity

kind of expansive homeomorphisms because they form continuous foliations (see
[19]).

(2) Smale spaces. These are expansive homeomorphisms of compact metric spaces
with local product structure (equivalently, canonical coordinates or the pseudo-
orbit tracing property). The category includes Smale’s basic sets of Axiom
A diffeomorphisms. Stable and unstable sets can be modeled with Hiraide’s
generalized foliations (see §4.4).

(3) Pseudo-Anosov diffeomorphisms. These diffeomorphisms are defined on compact
surfaces. They have local product structure except for a finite number of points called
singular. Stable and unstable sets form singular foliations (see for example [18]).

Next we describe other examples that will be essential in the development of the paper.
Except for the first one, we assume that the reader is familiar with Smale’s derived from
Anosov diffeomorphisms (which in particular are an interesting example of a Smale space).

2.2.1. A pseudo-Anosov diffeomorphism with 1-prongs. The dynamics of pseudo-
Anosov diffeomor-phisms is not simple, at least from this author’s viewpoint. In this
section we wish to discuss in detail some properties of a special example, a pseudo-Anosov
diffeomorphism with 1-prongs of the sphere. This example has been considered several
times in the literature. It has some properties that may not be easy to predict at first sight.
In [47, Example 1, p. 140] Walters considered it to show that a factor of an expansive
homeomorphism may not be expansive. In [39, §2.4] it is proved that the local stable set
of some points is not locally connected. In [40], Pacifico and Vieitez show that it is not
entropy expansive; in fact they show that there are arbitrarily small horseshoes. We will
show that it is cw2-expansive but not N -expansive, for all N ≥ 1.

The example is as follows. Let T 2
= S1

× S1 be the two-dimensional torus where S1
=

R/Z. Consider the equivalence relation p ∼−p for p ∈ T 2. The quotient space is a two-
dimensional sphere S2

= T 2/∼. Denote by π : T 2
→ S2 the canonical projection. On

the torus consider the Anosov diffeomorphism f̃ : T 2
→ T 2 defined by f̃ (x, y)= (2x +

y, x + y). Define f : S2
→ S2 by f (π(p))= π( f̃ (p)) for all p ∈ T 2. For a more detailed

construction the reader is referred to the works mentioned above.

PROPOSITION 2.2.1. The homeomorphism f is cw2-expansive.
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FIGURE 1. The unstable arc of p (left) and a neighborhood of the 1-prong q (right). Stable and unstable arcs are
indicated with s and u, respectively.

Proof. Denote by F s and Fu the stable and the unstable singular foliations of f ,
respectively. These are transverse foliations except at the singularities. Singular points
are 1-prongs and the foliations look as in Figure 1. Then, a small arc of the stable foliation
intersects in at most two points an unstable arc. Thus, the proof is reduced to showing
that every stable continuum is contained in a stable leaf. Arguing by contradiction, let
C ⊂ S2 be a stable continuum that it is not contained in a stable leaf. Then there is
a hyperbolic periodic point p ∈ S2 such that F s(p) ∩ C 6= ∅, where F s(p) denotes the
stable leaf through p. Since p is hyperbolic we see that diam( f n(C)) cannot go to zero as
n→+∞ because C is not contained in F s(p). This contradiction proves that every stable
continuum is contained in a stable leaf. �

As usual we define local stable and unstable sets as

W s
ε (p)= {x ∈ S2

: dist( f n(p), f n(x))≤ ε for all n ≥ 0},

W u
ε (p)= {x ∈ S2

: dist( f n(p), f n(x))≤ ε for all n ≤ 0},

respectively. The next result can be derived from [40], however, since we think that more
details can be given, a proof is included. The author learned this proof from J. Vieitez and
J. Lewowicz. We will use the notation A for the closure of A.

PROPOSITION 2.2.2. For all ε > 0 there is a Cantor set C such that diam( f n(C))≤ ε for
all n ∈ Z, in particular f is not N-expansive for all N ≥ 1.

Proof. Let q ∈ S2 be a 1-prong of f . Take p ∈ S2 such that the orbit { f n(p) : n ≥ 0}
is dense in S2. A point with this property will be called transitive. Consider ε > 0. We
will show that W s

ε (p) contains a Cantor set contained in the unstable arc of p. Consider
n ≥ 0 such that there is x1 6= f n(p) with x1 ∈W s

ε/2( f n(p)) ∩W u
ε/2( f n(p)). We have that

p1 = f −n(x1) ∈W s
ε/2(p) ∩W u

ε/2(p). Also we can assume that p1 is in the unstable arc of
p, see Figure 1. Since f n(p) and f n(p1) are in a stable arc and p is transitive we have
that p1 is transitive too.

Denote C1 = {p, p1}. For each x ∈ C1 take a transitive point y in the unstable arc
of p with y ∈W s

ε/4(x). Define C2 as the set containing C1 and these two new points.
Again, for each x ∈ C2 take a transitive point y in the unstable arc of p with y ∈W s

ε/8(x).
Inductively we define a sequence of sets {Cn : n ≥ 1} with |Cn| = 2n+1. By construction
each Cn is contained in W s

ε (p). Denote C =
⋃

n≥1 Cn . Since W s
ε (p) is closed we have
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that C ⊂W s
ε (p). Also, C has no isolated point and it cannot contain an arc because f is

cw-expansive (in fact cw2-expansive as we proved). Then, C is a Cantor set contained in
the unstable arc of p and in W s

ε (p). �

2.2.2. Quasi-Anosov diffeomorphisms. By definition, a quasi-Anosov diffeomorphism
is a C1 diffeomorphism f : M→ M of a compact manifold such that {‖d f n(v)‖ : n ∈ Z}
is unbounded for every non-vanishing tangent vector v, where d f n is the differential of f n

and ‖ · ‖ is the norm induced by a Riemannian metric on M . They were characterized by
Mañé [31] as Axiom A diffeomorphisms with quasi-transverse stable and unstable spaces.
Recall that Axiom A means that the non-wandering set is hyperbolic and periodic points are
dense in the non-wandering set. For an Axiom A diffeomorphism, at every point x ∈ M
the tangent space contains a contracting subspace E s

x and an expanding subspace Eu
x . The

quasi-transversality condition means that E s
x ∩ Eu

x = 0 for all x ∈ M .

We proceed to sketch the construction of a particular quasi-Anosov diffeomorphism that
is not Anosov [16]. Consider two derived from Anosov diffeomorphisms fi : Mi → Mi ,
i = 1, 2, where Mi is an n-torus, f1 is conjugate to f −1

2 and f1 presents a codimension-one
shrinking repeller and a sink fixed point p1. Consequently, f2 presents a codimension-
one expanding attractor and a source fixed point p2. Let Bi , i = 1, 2, be an open
ball around pi such that B1 ⊂ f −1

1 (B1) and B2 ⊂ f2(B2). Consider the manifolds with

boundary Ni = Mi\Bi and a diffeomorphism ϕ : f −1
1 (B1)\B1→ f2(B2)\B2 such that

M = N1 ∪ N2/x ∼ ϕ(x) is a closed manifold and there is a diffeomorphism f : M→ M
extending the dynamics of f1 and f2.

In [16] it is proved that, for n = 3, there is a diffeomorphism ϕ making f quasi-Anosov.
As we said, the non-wandering set is hyperbolic. At wandering points stable and unstable
manifolds are one-dimensional and their tangent lines are quasi-transverse. Since M is
three-dimensional, they are not transverse and f is not Anosov.

2.2.3. Qr -Anosov diffeomorphisms. In [4] the construction of §2.2.2 was considered
for the simpler case n = 2. On a surface there is not enough space to construct a quasi-
Anosov diffeomorphism (not being Anosov). However, the construction can be performed.
In this case the map ϕ will introduce tangencies between stable and unstable manifolds
at wandering points. Assuming that f is of class Cr , if these tangencies are of order at
most r ≥ 2 we say that f is Qr -Anosov. In [4] it is shown that the set of Qr -Anosov
diffeomorphisms of a closed surface is an open set (in the Cr topology) of r -expansive
diffeomorphisms, where r -expansive means N -expansive with N = r . These examples are
Axiom A and show that (N + 1)-expansivity does not imply N -expansivity.

2.2.4. Anomalous cw-expansivity. In [5], another variation of quasi-Anosov cw-
expansivity was considered. On a surface, as in §2.2.3, a cw-expansive homeomorphism
is defined with what we called an anomalous saddle. This is a fixed point whose stable
set is connected but not locally connected. Let us give a brief description. Let E ⊂ R2

be the set ({1} ∪ {1+ 1/n}n≥2)× [0, 1]. It is a countable union of vertical segments.
Consider the auxiliary map T : R2

→ R2 defined as T (p)= p/2. Define F s
= (R×
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{0})
⋃

n≥0 T n(E) and Fu
= {0} × R. The anomalous saddle in this case is the origin. In

[5], a homeomorphism is constructed around (0, 0) such that its local stable set is F s and
the unstable set is Fu (intersecting with a neighborhood of the origin). This anomalous
saddle is inserted in a Qr -Anosov diffeomorphism of the previous section. In the example,
the intersection of local stable and unstable sets is totally disconnected, thus implying
cw-expansivity.

2.3. Invariant continua. Our interest is centered on dynamical systems at surfaces,
but some fundamental results on cw-expansivity hold for homeomorphisms on Peano
continua, i.e. a connected, locally connected and compact metric space. In this setting,
Theorem 2.3.3 plays the role of the Invariant Manifold Theorem [19] for hyperbolic
diffeomorphisms on smooth manifolds.

The following result is a characterization of cw-expansivity in terms of stable and
unstable continua. The direct part is known [23, §2]. The converse may be new, however
it is quite direct from the definitions.

PROPOSITION 2.3.1. A homeomorphism f : X→ X of a compact metric space is cw-
expansive if and only if there is ε∗ > 0 such that:
(1) Cσε∗ ⊂ Cσ ; and
(2) for all ε > 0 there is δ > 0 such that Cσ ∩ Cδ ⊂ Cσε
for σ = s and σ = u.

Proof. Direct. Let ε∗ be such that if A ⊂ X is connected and diam( f n(A))≤ ε∗ for all
n ∈ Z then A is a singleton. Suppose that σ = s and take A ∈ Cs

ε∗ , that is, diam( f n(A))≤
ε∗ for all n ≥ 0. If this diameter does not converge to zero, then there are r > 0 and nk→

+∞ such that diam( f nk (A)) > r for all k ≥ 0. Since C(X) is compact we can assume that
f nk (A)→ C in the Hausdorff metric. We will show that

diam( f n(C))≤ ε∗ for all n ∈ Z. (2)

Since nk→+∞, given n ∈ Z there is k0 such that nk + n ≥ 0 for all k ≥ k0. Then,
diam( f nk+n(A))≤ ε∗ for all k ≥ k0. Since f nk+n(A)= f n( f nk (A)) and f nk (A)→ C we
conclude (2). Since diam(C)≥ r > 0 we have that C is not a singleton. This contradicts
the cw-expansivity of f and proves that Cs

ε∗ ⊂ Cσ .
To prove the next part we argue by contradiction. Suppose that there is ε > 0 and a

sequence Ak ∈ Cs such that diam(Ak)→ 0 and diam( f mk (Ak)) > ε for all k ≥ 0 where
mk ≥ 0. Note that mk→+∞ and that we can assume that ε < ε∗. Since Ak ∈ Cs there is
nk ≥ mk such that diam( f n(Ak))≤ ε for all n ≥ nk . We can take a subcontinuum Ck ⊂ Ak

and another divergent sequence m′k such that diam( f m′k (Ck))= ε and diam( f n(Ck))≤ ε

for all n ≥ 0. Then, arguing as in the proof of (2), we conclude that a limit continuum of
f m′k (Ck) contradicts the cw-expansivity.

Converse. Let us show that ε∗ is a cw-expansivity constant. Suppose that
diam( f n(A))≤ ε∗ for all n ∈ Z. Assume, by contradiction, that there is ε ∈ (0, diam(A)).
For this value of ε there is δ > 0 such that Cs

∩ Cδ ⊂ Cs
ε . Since A ∈ Cu

ε∗ and Cu
ε∗ ⊂ Cu there

is m ≤ 0 such that diam( f m(A)) < δ. Then f m(A) ∈ Cs
∩ Cδ . As diam(A) > ε we have

that f m(A) /∈ Cs
ε . This is a contradiction that finishes the proof. �
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The next theorem states the existence of non-trivial stable and unstable continua through
each point of the space. Moreover, these continua have diameter bounded away from
zero. Their invariance is in fact given by Proposition 2.3.1. The result was first proved
independently by Hiraide and Lewowicz in [18, 30] for the classification of expansive
homeomorphisms on compact surfaces. It was generalized by Kato in [24, Theorem 1.6]
for cw-expansivity. A partial result was previously given by Mañé in [32] to prove that
minimal expansive homeomorphisms can only exist on totally disconnected spaces.

Remark 2.3.2. For the study of cw-expansive homeomorphisms it is essential to assume
some kind of connection of the space. To illustrate this point consider that every
homeomorphism of a Cantor set is cw-expansive. It turns out that local connection is
a good property to exploit the cw-expansivity. There is a minor loss of generality if,
in addition, we assume that the space is a Peano continuum. Indeed, if X is a locally
connected compact metric space then it has a finite number of components. Therefore, a
homeomorphism f of X will permute these components and, taking a power of f , we will
have a finite number of homeomorphisms of Peano continua.

For a set C∗ ⊂ C(X), as Cδ, Cσ and Cσε , define C∗(x)= {A ∈ C∗ : x ∈ A}.

THEOREM 2.3.3. (Invariant Continuum Theorem) If f is a cw-expansive homeomorphism
of a Peano continuum X then for all ε > 0 there is δ > 0 such that

Cσε (x)\Cδ(x) 6= ∅ (3)

for all x ∈ X and σ = s, u.

This theorem has the following direct consequences.

Remark 2.3.4. (Uniform size of stable continua) Note that (3) implies that for all x ∈ X
there are stable and unstable continua through x of diameter greater than δ. Consequently,
these continua meet the boundary of the ball Bδ/2(x).

Remark 2.3.5. (No stable points) From the Invariant Continuum Theorem we see that if
f is a cw-expansive homeomorphism of a Peano continuum X then neither stable nor
unstable continua have interior points. This is because if A ⊂ X is a stable set with an
interior point x then we can take an unstable continuum contained in A that contradicts the
cw-expansivity. In particular there are no Lyapunov stable trajectories.

Remark 2.3.6. (Surfaces with a boundary) Let us explain why we do not consider surfaces
with a boundary. Suppose that f : S→ S is a cw-expansive homeomorphism of a compact
surface with a boundary. By Brouwer’s theorem on the invariance of a domain [21] we
know that ∂S is invariant by f . Then, the restriction f : ∂S→ ∂S is cw-expansive. This
gives a contradiction because, on one hand there are non-trivial stable continua in ∂S, and
on the other hand every non-trivial continuum of ∂S has interior points (relative to ∂S).
This is the argument proving that the circle admits no expansive homeomorphisms that the
author learned from Lewowicz.

Problem 2.3.7. Do cw-expansive homeomorphisms of compact manifolds with a non-
empty boundary exist? For example, does there exist a cw-expansive homeomorphism
of the 3-ball? Does the 3-sphere admit expansive or cw-expansive homeomorphisms?
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We say that C ⊂ X separates X if X\C is not connected. We will show in
Theorem 2.3.9, under a natural assumption on the Peano space X , that no stable set
separates. First, we prove a topological lemma.

LEMMA 2.3.8. If X is a continuum and every point has arbitrarily small neighborhoods
with connected boundaries, then for all ε > 0 there is δ > 0 such that if A ⊂ X is a
closed set that separates X and diam(A) < δ then there is a component V of X\A with
diam(V ) < ε.

Proof. Given ε > 0 consider a finite open cover U of X such that diam(U ) < ε for all
U ∈ U and ∂U is connected. Take δ > 0 such that if diam(A) < δ then there is U ∈ U such
that A ⊂U . Suppose that A ⊂ X is closed, separates X and diam(A) < δ. Take U∗ ∈ U
such that A ⊂U∗.

Let us show that C = X\U∗ is connected. By contradiction, suppose that C = A ∪ B
is the union of disjoint, closed, non-empty sets. Since ∂U∗ is connected, we can assume
that ∂U∗ ⊂ A. Then, B and A ∪U∗ disconnect X , a contradiction that proves that X\U∗
is connected.

Let V∗ be the component of X\A containing X\U∗. Since A separates X , there is at
least another component. This component is contained in U∗ and has diameter smaller
than ε. �

THEOREM 2.3.9. If f is a cw-expansive homeomorphism of the Peano continuum X and
every point of X has arbitrarily small neighborhoods with connected boundary then no
stable closed set separates X.

Proof. Arguing by contradiction assume that A ⊂ X is a closed stable set separating X .
As f is a homeomorphism, every iterate of A separates X . Since it is stable, taking a
positive iterate, we can suppose that it is as small as we want. By Lemma 2.3.8 there is
a small component U of its complement. By Theorem 2.3.3 each point of U has a stable
continuum meeting ∂U . Since ∂U ⊂ A we have that ∂U is stable, therefore U is a stable
set. Since U has interior points we have a contradiction with Remark 2.3.5. �

Remark 2.3.10. If a Peano continuum has no locally separating points then every point has
arbitrarily small neighborhoods with connected boundaries. See [22] for a proof.

Remark 2.3.11. Theorem 2.3.9 holds if X is a compact manifold with or without a
boundary. In the one-dimensional case, intervals do not have connected boundaries, but
since there are no cw-expansive homeomorphisms on one-dimensional manifolds the
theorem holds true.

The following example shows that in Theorem 2.3.9 we need to assume that every point
has arbitrarily small neighborhoods with connected boundaries.

Example 2.3.12. Consider two copies of an Anosov diffeomorphism of the two-
dimensional torus identifying two fixed points. The gluing point has no arbitrarily small
neighborhoods with connected boundaries. Also, this point forms a stable set and it (locally
and globally) separates.
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FIGURE 2. A capacitor of separation ε and radius r in the plane.

2.4. Capacitors. The following technical definition is based on the arguments of the
proof of [30, Lemma 2.3].

Definition 2.4.1. Given x ∈ X , ε, r > 0, an (ε, r, x)-capacitor is a triple (A, G, B) such
that:
(1) A, B, G ⊂ X , A and B are disjoint continua, x ∈ G, G is open;
(2) (∂G) ∩ Br (x)⊂ A ∪ B;
(3) there is a continuum γ ⊂ G ∩ Br/2(x) meeting A and B;
(4) G ⊂ Bε(A) or G ⊂ Bε(B).
In this case A and B are the plates of the capacitor, ε is the separation of the plates and r
is the radius. See Figure 2. We say that a capacitor has stable plates if A, B are stable sets
for the homeomorphism f : X→ X .

In the next result we study unstable continua between two close stable plates. It
generalizes [30, Lemma 2.3] and it will be applied in Theorem 6.7.1 for the study of
cwF-expansivity on surfaces.

THEOREM 2.4.2. Assume that f : X→ X is a cw-expansive homeomorphism of a Peano
continuum X. Then, for all r > 0 small there is ε > 0 such that if (A, G, B) is an (ε, r, x)-
capacitor with stable plates then:
(1) for all y ∈ Br/2(x) ∩ G there is an unstable continuum from y to A ∪ B contained in

G ∩ Br (x);
(2) there is an unstable continuum C ⊂ G ∩ Br (x) meeting A and B.

Proof. Arguing by contradiction assume that there are r > 0, a sequence of (1/n, r, xn)-
capacitors (An, Gn, Bn) with stable plates and yn ∈ Br/2(xn) ∩ Gn with no unstable
continuum from yn to An ∪ Bn contained in Gn ∩ Br (xn). Since X is a Peano continuum,
by Theorem 2.3.3 for each n there is an unstable continuum Cn ⊂ Br (xn) containing yn

and intersecting the boundary of Br (xn). Since (∂Gn) ∩ Br (xn)⊂ An ∪ Bn we conclude
that Cn ⊂ Gn . Taking subsequences, we can assume that An→ A and Cn→ C in the
Hausdorff metric. By definition of capacitor we have that Gn ⊂ B1/n(An) which implies
that C ⊂ A. Therefore C is a continuum that is stable and unstable. Since diam(C) > 0 we
have a contradiction with the cw-expansivity of f .
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Given r > 0 consider ε > 0 satisfying the first item. Let (A, G, B) be an (ε, r, x)-
capacitor. By definition, there is a continuum γ ⊂ Br/2(x) and points pA, pB with
pA
∈ A ∩ γ and pB

∈ B ∩ γ . Define

γ A
= {y ∈ γ : ∃ an unstable continuum from y to A contained in G ∩ Br (x)},

γ B
= {y ∈ γ : ∃ an unstable continuum from y to B contained in G ∩ Br (x)}.

The sets γ A and γ B are non-empty because they contain pA and pB , respectively. They
are closed sets and, as we have shown, they cover γ . Since γ is connected, there is a point
z ∈ γ A

∩ γ B . �

Remark 2.4.3. Let f : M→ M be an expansive homeomorphism of a compact three-
manifold. In [46] it is shown that local stable sets are locally connected if f is smooth
and without wandering points. By Theorem 2.4.2 we know that a stable set of f cannot be
homeomorphic to the closure of the set

C = {(x, y, z) : −1≤ x ≤ 1, 0< z ≤ 1, y = sin(1/z)}.

2.5. Partial expansivity. Consider a homeomorphism f : X→ X of a compact metric
space. We will use some concepts of topological dimension. We refer the reader to [21] for
the definitions and basic properties.

Definition 2.5.1. Given an integer d ≥−1, we say that f is partially expansive with
central dimension d and expansivity constant ε > 0 if for every non-trivial compact set
C ⊂ X with dim(C) > d there is k ∈ Z such that diam( f k(C))≥ ε.

As usual, we say that f is sensitive to initial conditions if there is ρ > 0 such that for all
x ∈ M and for all r > 0 there are y ∈ Br (x) and n ∈ Z such that dist( f n(y), f n(x)) > ρ.

PROPOSITION 2.5.2. For a homeomorphism f : X→ X the following hold:
(1) f is expansive if and only if it is partially expansive with d =−1;
(2) f is cw-expansive if and only if it is partially expansive with d = 0;
(3) if in addition X is a compact manifold of dimension n then f is sensitive to initial

conditions if and only if f is partially expansive with central dimension d = n − 1.

Proof. Since the arguments are quite direct we only give the details that we consider more
relevant. To prove the first part, note that by definition (see [21]) the condition dim(C) >
−1 means C 6= ∅. Then, C ⊂ X with dim(C) >−1 is non-trivial if and only if it has at
least two points. To conclude the stated equivalence one has to note that diam({x, y})=
dist(x, y).

The statement related to cw-expansivity follows because positive dimension is
equivalent to containing a non-trivial continuum.

For the last part we recall [21, Corollary 1, p. 46] that if X is a compact n-dimensional
manifold and C ⊂ X then dim(C)= n if and only if C has non-empty interior. �

Let φ : R× X→ X be a continuous flow. We consider the following weak form of
expansivity. We say that a flow φ is separating [3] if there is δ > 0 (a separating constant)
such that if dist(φt (x), φt (y)) < δ for all t ∈ R then y = φs(x) for some s ∈ R. Examples
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of separating flows are expansive flows in the sense of Bowen and Walters [8] and k∗-
expansive flows as defined by Komuro [26].

PROPOSITION 2.5.3. If φ is a separating flow then for all T 6= 0 the homeomorphism
φT : X→ X is partially expansive with d = 1.

Proof. Let σ > 0 be a separating constant and take δ > 0 such that if C ⊂ X is a continuum
and diam(C) < δ then diam(φs(C)) < σ for all s ∈ [−T, T ]. Then, if diam(φnT (C)) < δ
for all n ∈ Z we have that diam(φs(C)) < σ for all s ∈ R. Therefore, C is an orbit segment
and consequently dim(C)≤ 1. �

2.6. Relative expansivity. Given a homeomorphism f : X→ X it is usual to define the
stable set of x ∈ X as

W s(x)=
{

y ∈ X : lim
n→+∞

dist( f n(x), f n(y))= 0
}

and the unstable set

W u(x)=
{

y ∈ X : lim
n→−∞

dist( f n(x), f n(y))= 0
}
.

Consider the equivalence relation x ∼s y, x, y ∈ X , if there is a continuum C ⊂ X such
that x, y ∈ C and diam( f n(C))→ 0 as n→+∞. Similarly we define ∼u (taking n→
−∞). The equivalence class of x will be denoted as F s(x) (and Fu(x)). We will give
conditions that allow us to prove that W s

= F s and W u
= Fu .

Definition 2.6.1. Let F be a partition of X . We say that f is separating mod F if there is
δ > 0 such that if dist( f n(x), f n(y)) < δ for all n ≥ 0 then y ∈ F(x)

PROPOSITION 2.6.2. If f is separating mod F s then W s
= F s .

Proof. Assume that f is separating mod F s with δ as in the definition. Suppose
that dist( f n(x), f n(y))→ 0 as n→+∞. Take k such that for all n ≥ k it holds that
dist( f n(x), f n(y)) < δ. Then there is a stable continuum C containing f k(x), f k(y). This
implies that x, y are in the stable continuum f −k(C). Then W s

= F s . �

Problem 2.6.3. Assuming that f is cw-expansive, does the condition F s
=W s imply that

it is separating mod F s?

PROPOSITION 2.6.4. The pseudo-Anosov diffeomorphism with 1-prongs on the two-
dimensional sphere given in §2.2.1 is not separating mod F s .

Proof. By Proposition 2.2.2, for all ε > 0 there is a Cantor set C contained in an unstable
arc and contained in W s

ε (p) for some p in this unstable arc. Since F s(p) cuts the unstable
arc in a countable set, there is a ∈ C that is not in F s(p). This proves that f is not
separating mod F s . �

Problem 2.6.5. Does the example in §2.2.1 satisfy W s
= F s? The solution could be

simple but we were not able to solve it.
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Definition 2.6.6. We say that f is expansive mod F s if for all ε > 0 there is δ > 0 such that
if dist( f n(x), f n(y)) < δ for all n ≥ 0 then x and y are in a common ε-stable continuum.

Note that every homeomorphism expansive mod F s is separating mod F s .

PROPOSITION 2.6.7. If f : X→ X is a cwN-expansive homeomorphism of a Peano
continuum and f is expansive mod F s and f −1 is expansive mod Fu then f is N-
expansive.

Proof. Let α > 0 be a cwN -expansivity constant for f and take ε = α/2. Consider δ from
Definition 2.6.6 and suppose that diam( f n(C)) < δ for all n ∈ Z. For x, y ∈ C we have
that dist( f n(x), f n(y)) < δ for all n ≥ 0. Then, there is an ε-stable continuum containing
x, y. We have that there is a 2ε-stable continuum containing C . Similarly, there is a 2ε-
unstable continuum containing C . Since 2ε = α is a cwN -expansivity constant for f we
have that card(C)≤ N . This proves that δ is an N -expansivity constant for f . �

Problem 2.6.8. It seems that pseudo-Anosov diffeomorphisms of surfaces without 1-
prongs are expansive mod F s . We know that the pseudo-Anosov diffeomorphism with
1-prongs of §2.2.1 is not expansive mod F s . Are the examples in §§2.2.3 and 2.2.4
expansive mod F s? It would be interesting to understand which cw-expansive surface
homeomorphisms are expansive mod F s .

3. Continuum theory and decompositions
In this section we review some results from continuum theory that will be used throughout
the article. Also, we study decompositions that will play the role of foliated charts in the
next section.

3.1. Background to continuum theory. We recall that a continuum is a compact
connected metric space. General references for continuum theory are [27, 28, 38].

3.1.1. Partitions and monotone restrictions. Let (X, dist) be a compact metric space
and denote by P(X) the set of subsets of X . A partition of X is a function Q : X→ P(X)
such that:
(1) x ∈ Q(x) for all x ∈ X ;
(2) y ∈ Q(x) if and only if x ∈ Q(y); and
(3) x ∈ Q(y) and y ∈ Q(z) imply x ∈ Q(z).
A partition Q is monotone if each Q(x) is connected. Given Y ⊂ X and x ∈ Y , denote by
Compx (Y ) the component of Y containing x . For a partition Q : X→ P(X) and Y ⊂ X ,
define the monotone restriction Q|mY : Y → P(Y ) as

Q|mY (x)= Compx (Q(x) ∩ Y ) (4)

for all x ∈ Y .

PROPOSITION 3.1.1. If Q is a partition of X and Z ⊂ Y ⊂ X then

(Q|mY )|
m
Z = Q|mZ .
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Proof. From the definition (4) we see that we have to show that

Compx (Compx (Q(x) ∩ Y ) ∩ Z)= Compx (Q(x) ∩ Z)

for all x ∈ Z . To prove the inclusion ⊃ consider a connected set C ⊂ Q(x) ∩ Z such that
x ∈ C . Since Z ⊂ Y we have that C ⊂ Q(x) ∩ Y . Then, C ⊂ Compx (Q(x) ∩ Y ) because
x ∈ C . Given that C ⊂ Z we conclude that C ⊂ Compx (Compx (Q(x) ∩ Y ) ∩ Z). Then
Compx (Q(x) ∩ Z)⊂ Compx (Compx (Q(x) ∩ Y ) ∩ Z). The converse inclusion is easier
to prove. It follows from the fact that Compx (Q(x) ∩ Y )⊂ Q(x). �

We say that a partition Q is upper semicontinuous if for all x ∈ X and every open set U
containing Q(x) there is a neighborhood V of x such that if y ∈ V then Q(y)⊂U .

Remark 3.1.2. Q is upper semicontinuous if and only if given xn→ x such that
Q(xn)→ C in the Hausdorff metric then C ⊂ Q(x). The upper semicontinuity of Q
implies that each Q(x) is a closed subset of X .

We say that a partition Q is continuous at x ∈ X if for every xn→ x we have that
Q(xn)→ Q(x) in the Hausdorff metric. We say that Q is continuous if it is continuous at
every x ∈ X . A set G ⊂ X is residual if it is a countable intersection of open and dense
subsets of X .

PROPOSITION 3.1.3. If Q is an upper semicontinuous partition of X then:
(1) [28, pp. 70–71] there is a residual subset G ⊂ X such that Q is continuous at every

x ∈ G;
(2) [38, Theorem 3.9] if in addition X is a continuum then X/Q with its quotient

topology is a continuum†.

3.1.2. Local connection. A continuum is hereditarily locally connected if every
subcontinuum is locally connected. A convergence continuum A of a compact metric space
X is a non-trivial subcontinuum of X for which there is a sequence of continua Ai ⊂ X
such that Ai → A in the Hausdorff metric, Ai ∩ A = ∅ and Ai ∩ A j = ∅ for all i 6= j .

THEOREM 3.1.4. [38, Theorem 10.4] A continuum X is hereditarily locally connected if
and only if X contains no convergence continuum.

THEOREM 3.1.5. [20, Theorem 3-17] Every connected, locally connected, complete
metric space is arc-connected.

THEOREM 3.1.6. (Sierpiński’s theorem [27, p. 218]) A continuum C is Peano if and only
if for all ε > 0 there is a finite cover C1, . . . , Cn of C by connected sets of diameter less
than ε.

† It is clear that X/Q is compact and connected since it is the quotient of the continuum X . In [38, Theorem 3.9]
it is shown that X/Q is metrizable.
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3.1.3. Unicoherence. A continuum C is unicoherent if given subcontinua A, B ⊂ C
such that A ∪ B = C then A ∩ B is connected. A continuum is hereditarily unicoherent if
every subcontinuum is unicoherent. To show the difference between these concepts, and
for future reference, let us recall the following result.

THEOREM 3.1.7. (Janisewski’s theorem [28, p. 506]) The union of two subcontinua A, B
of the 2-sphere disconnects the sphere if and only if A ∩ B is disconnected.

By Janisewski’s theorem we see that the 2-sphere is a unicoherent continuum. It is not
hereditarily unicoherent because it contains a circle, which is not unicoherent.

3.1.4. Dendrites. A dendrite is a Peano continuum X containing no simple closed
curve. The points of a dendrite are classified as: an end point if its complement is
connected, a ramification or a branch point if its complement has at least three components,
a regular point if its complement has two components. The following results from [38,
§10] summarize several properties of dendrites.

THEOREM 3.1.8. Every subcontinuum of a dendrite is a dendrite.

THEOREM 3.1.9. The set of all the ramification points of a dendrite is countable.

THEOREM 3.1.10. If X is a compact metric space then the following statements are
equivalent:
(1) X is a dendrite;
(2) X is an hereditarily unicoherent Peano continuum;
(3) X is connected and any two points of the continuum are separated by a third point.

THEOREM 3.1.11. Every dendrite can be embedded in the plane. Moreover, Wazewski’s
universal dendrite is a dendrite in R2, which contains a topological copy of any dendrite.

3.2. Decompositions. The standard theory of foliations is based on a special kind
of local partition in plaques, i.e. foliated charts. On a surface S, a C0 foliated chart
is a homeomorphism ϕ :U ⊂ S→ (0, 1)× (0, 1) where U ⊂ S is an open subset. If
ϕ = (ϕ1, ϕ2) then the plaques of U are ϕ−1

2 (y) for all y ∈ (0, 1). We can define a map
Q :U → C(S) as Q(p)= ϕ−1

2 (ϕ(p)). This map Q is a continuous monotone partition
of U .

For a pseudo-Anosov diffeomorphism, the stable and unstable sets form singular
foliations. At a singular point, an n-prong with n > 2, it is not possible to define a local
chart as above where the plaques are the local stable sets. The partition in local stable
sets in a neighborhood of a singularity is monotone and upper semicontinuous. The (full)
continuity is lost at the singularity. This is the idea we have in mind for the next definition
of decomposition, which is a standard concept in continuum theory.

Given a compact metric space X , we will consider a compact subset Y ⊂ X . We can
think that Y is the closure of the open set U in the surface considered above. However,
the theory is developed in such a way that Y may not be connected and may have empty
interior.
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Definition 3.2.1. A decomposition of Y is a monotone upper semicontinuous partition
Q : Y → C(Y ). The sets Q(x) are the plaques of the decomposition.

Example 3.2.2. (Extremal examples) For a compact metric space Y define Qmin(x)= {x}
and Qmax(x)= Compx (Y ). It holds that Qmin and Qmax are decompositions of Y , a
proof can be found in [34, Theorem 24]. For every decomposition Q of Y we have that
Qmin(x)⊂ Q(x)⊂ Qmax(x) for all x ∈ Y .

For standard foliations, the restriction of a foliated chart to an arbitrary subset may not
be a foliated chart. This is because the product structure may be lost. Next we show that
the restriction of a decomposition is a decomposition.

PROPOSITION 3.2.3. If Q is a decomposition of the compact set Y and Z ⊂ Y is compact
then Q|mZ is a decomposition.

Proof. By definition (4) Q|mZ is monotone. Suppose that xn→ x and Q|mZ (xn)→ C .
Taking a subsequence we can also assume that Q(xn)→ D for some subcontinuum
D ⊂ X . Since Q|mZ (xn)⊂ Q(xn) and Q is upper semicontinuous we have that C ⊂ D ⊂
Q(x) and, as C is a continuum contained in Z ∩ Q(x), we conclude that C ⊂ Q|mZ (x).
This proves that Q|mZ is upper semicontinuous. �

Example 3.2.4. Let P be a continuum and consider a compact metric space Z . Define
Y = P × Z and Q : Y → C(Y ) as Q(p, z)= P × {z}. If we consider the product topology
on Y then Q is a continuous decomposition of Y .

Definition 3.2.5. Given two decompositions Qi : Yi → C(Yi ), i = 1, 2, we say that Q1

and Q2 are equivalent if there is a homeomorphism h : Y1→ Y2 such that h(Q1(p))=
Q2(h(p)) for all p ∈ Y1. We say that a decomposition is a product structure if it is
equivalent to a decomposition as in Example 3.2.4.

PROPOSITION 3.2.6. A decomposition Q1 of a continuum Y is a product structure if and
only if there is a decomposition Q2 of Y such that

card(Q1(x) ∩ Q2(y))= 1 (5)

for all x, y ∈ Y .

Proof. If Q1 is a product structure, we can assume that Y = P × Z . Since Y is a
continuum we have that P and Z are continua. If Q1(p, z)= P × {z} we can define
Q2(p, z)= {p} × Z . Then

Q1(p1, z1) ∩ Q2(p2, z2)= {(p2, z1)}

for all (p1, z1), (p2, z2) ∈ P × Z .
To show the converse note that by Proposition 3.1.3 we know that Y/Q1 and Y/Q2 are

continua. Consider h : Y → Y/Q1 × Y/Q2 defined by

h(x)= (Q1(x), Q2(x)).

The condition (5) implies that h is bijective. Since we consider quotient topology, the
projections onto Y/Q1 and Y/Q2 are continuous and h is continuous. Since Y is compact
we have that h−1 is continuous. Given that h(Q1(x))= {Q1(x)} × Y/Q2 the proof
ends. �
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Definition 3.2.7. We say that a compact subset K ⊂ Y is a representative set of the
decomposition Q if Q(x) ∩ K 6= ∅ for all x ∈ Y . If K is a representative set we say that Q
is a decomposition of (Y, K ).

We will consider decompositions of (U , ∂U ), with U an open set, because for a cw-
expansive homeomorphism we know that the diameter of the stable and the unstable sets
are bounded away from zero. Therefore, if U is small, each stable plaque in U meets the
boundary of U .

PROPOSITION 3.2.8. If Q is a decomposition of (Y, K ), U ⊂ Y is open and U ∩ K = ∅
then Q|m

U
is a decomposition of (U , ∂U ).

Proof. From Proposition 3.2.3 we know that Q′ = Q|m
U

is a decomposition. Given x ∈U
the fact that Q′(x) ∩ ∂U 6= ∅ follows by [20, Theorem 2-16] or [15, 6.1.25]. �

In the following subsections we study some particular types of decompositions.
Applications will be given in §6 for the study of decompositions of two-dimensional disks.

3.2.1. Dendritic decompositions. Let Q : Y → C(Y ) be a decomposition of the
continuum Y .

Definition 3.2.9. We say that Q is dendritic if Q(x) is a dendrite for all x ∈ Y . We say that
Q is codendritic if Y/Q is a dendrite with the quotient topology.

Dendritic decompositions are a generalization of one-dimensional foliated charts.
Codendritic decompositions generalize codimension-one foliated charts. In §6.1 we will
study codendritic and dendritic decompositions of a two-dimensional disk. Some general
properties can be derived in the generality of a continuum Y .

PROPOSITION 3.2.10. If Q : Y → C(Y ) is a codendritic decomposition whose plaques
have empty interior then there is a residual subset G ⊂ Y such that Y\Q(x) has 1 or 2
components for all x ∈ G.

Proof. From Theorem 3.1.9 we have that the set of ramification points of the quotient
dendrite Y/Q is at most countable. Let Q1, Q2, . . . be the ramification points of Y/Q.
We have that Y\Qi is open in Y . It is dense in Y because no Qi has interior points. Define
G = Y\ ∪ Qi . Since for every point x of the residual set G we know that Q(x) is not a
ramification point, we conclude that Y\Q(x) has one or two components. �

In the hypothesis of Proposition 3.2.10 we cannot conclude that Y\Q(x) has two
components for all x in a residual subset of Y (as could seem natural). See Example 6.2.5.

With respect to the next proposition, if we think that Q1 represents stable continua
and Q2 unstable continua, then the condition Q1(z) ∩ Q2(z)= {z} is related with cw1-
expansivity (recall that for cw1-expansivity we require that local stable and unstable
continua intersect in at most one point).

PROPOSITION 3.2.11. Let Q1, Q2 be decompositions of the continuum Y such that
Q1(z) ∩ Q2(z)= {z} for all z ∈ Y . If Q1 is codendritic then Q2 is dendritic.
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Proof. Given x ∈ Y consider f : Q2(x)→ Y/Q1 defined as f (y)= Q1(y). With the
quotient topology on Y/Q1 we have that f is continuous because it is the restriction of
the decomposition map Q1. The condition Q1(z) ∩ Q2(z)= {z} for all z ∈ Y gives us
that f is injective. Since Q2(x) is compact, f is a homeomorphism onto its image. The
image of f is a subcontinuum of the quotient dendrite Y/Q1. Then, the result follows by
Theorem 3.1.8 (every subcontinuum of a dendrite is a dendrite). �

Remark 3.2.12. The converse of Proposition 3.2.11 is not true. Take two one-dimensional
foliations on a three-dimensional ball. Both foliations are dendritic but neither is
codendritic.

3.2.2. Smooth and unicoherent decompositions. Our motivation for including the
following kind of decompositions is to include the example of §2.2.4 (the anomalous
saddle) in the theory. The example presents local stable sets that are not locally connected
but hereditarily unicoherent.

Definition 3.2.13. A decomposition is hereditarily unicoherent if each plaque is
hereditarily unicoherent.

If P is an hereditarily unicoherent continuum then given x, y ∈ P there is a unique
minimal continuum containing x and y. If Q is an hereditarily unicoherent decomposition
and y ∈ Q(x), this minimal continuum will be denoted by Q(x, y).

We remark that in continuum theory the term smooth has a particular meaning that is not
related with any class of differentiability (or at least the author cannot see any connection).
To avoid confusions we will call it C-smooth.

Definition 3.2.14. A decomposition Q of a continuum Y is C-smooth if it is hereditarily
unicoherent and if xn→ x , yn ∈ Q(xn) and yn→ y then Q(xn, yn)→ Q(x, y) in the
Hausdorff metric.

PROPOSITION 3.2.15. Every C-smooth decomposition is dendritic.

Proof. By Theorem 3.1.10 it is sufficient to prove that each plaque is locally
connected. If P is a non-locally connected plaque then there is x ∈ P without
arbitrarily small and connected neighborhoods. Let ε > 0 be such that Compx
(Bε(x) ∩ P) is not a neighborhood of x in P . Then we can take xn ∈ P such that xn→ x
and Compxn

(Bε(x) ∩ P) is disjoint from Compx (Bε(x) ∩ P). Then, diam(Q(x, xn)) is
bounded away from zero. But xn→ x and Q(x, x)= x . This contradicts that Q is C-
smooth and finishes the proof. �

PROPOSITION 3.2.16. If Q is a C-smooth decomposition of a continuum Y and Z ⊂ Y is
compact then Q|mZ is C-smooth.

Proof. Since each plaque of Q is hereditarily unicoherent we have that each plaque of Q|mZ
is hereditarily unicoherent. Note that if Q(x, y)⊂ Z then Q(x, y)= Q|mZ (x, y). Suppose
that xn→ x , yn ∈ Q|mZ (xn) and yn→ y. We know that Q(xn, yn)→ Q(x, y). Since
Q(xn, yn)= Q|mZ (xn, yn) and Q(x, y)= Q|mZ (x, y) we have that Q|mZ is C-smooth. �
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TABLE 2. Hierarchy of C-foliations. Dendritations, see §6, are Peano cw-foliations of surfaces.

dendritation ⇒ Peano foliation
⇓ ⇓

cw-foliation ⇒ C-foliation

4. Foliations from continuum theory
In this section we present a detailed exposition of our foliations from the viewpoint of
continuum theory. Since we were not able to find this concept in the literature we develop
the theory from the most basic concepts.

In the standard theory of foliations† there are at least two main viewpoints for the
definition of foliation.
(1) A partition of the manifold into leaves (satisfying certain conditions). This approach

seems to be preferred in dynamical systems as it appears in [9, §5.13] and [2, §6.7].
(2) A maximal atlas of foliated charts. This definition is usual in texts on foliations such

as [10, 11].

Leaves–atlas equivalence. [11, Theorem 1.2.18] Both definitions of foliation coincide.
Roughly speaking, the proof is as follows. Given an atlas, we construct chains of

plaques, and then the leaves. For the converse implication, one needs to recover the plaques
from the leaves. A plaque is defined as the component of the intersection of a leaf with a
local chart.

In this section we introduce some levels of generalizations of foliations. Table 2
summarizes the definitions and their implications.

As we will see in §4.2.1, C-foliations do not satisfy leaves–atlas equivalence. This
depends on the local connection of plaques. Then, we introduce Peano foliations as C-
foliations with locally connected plaques. In Theorem 4.2.2 we show that Peano foliations
satisfy the leaves–atlas equivalence, see Equation (6). For the study of cw-expansive
homeomorphisms we introduce cw-foliations.

4.1. C-foliations. Let (X, dist) be a compact metric space and denote by τ the topology
of X . Given two closed sets Y1, Y2 ⊂ X and we say that two decompositions Qi of Yi ,
i = 1, 2, are compatible if

Q1|
m
Y1∩Y2

= Q2|
m
Y1∩Y2

.

Recall that U denotes the closure of U .

Definition 4.1.1. An atlas is a collection of compatible decompositions

A= {QU :U → C(U )}U∈ U ,

where U is an open cover of X . In this case we say that A is an atlas over U .

Atlases can be ordered by inclusion, and by Zorn’s lemma we have that every atlas is
contained in a maximal atlas.

† For precision, fix the meaning of this expression to ‘the theory developed in [11]’.
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Definition 4.1.2. A C-foliation is a maximal atlas.

A basis U of the topology of X is complete if V ∈ U and U ⊂ V is open, then U ∈ U .

PROPOSITION 4.1.3. Every C-foliation is defined over a complete basis.

Proof. Let F be a C-foliation over U . Let U be an open set contained in V ∈ U .
Define QU = QV |

m
U

. To show that U ∈ U we will show that QU is compatible with the
decompositions of F . If W ∈ U then

QU |
m
U∩W
= (QV |

m
U
)|m

U∩W
= QV |

m
U∩W
= QW |

m
U∩W

,

where the second equality follows by Proposition 3.1.1 and the last one is the compatibility
of the decompositions of V and W . �

Notice that the decompositions QU are defined on the closures of the open sets of U .
We will consider QU = QU |

m
U for U ∈ U .

Definition 4.1.4. An open plaque is a set of the form QU (x) for x ∈U ∈ U .

PROPOSITION 4.1.5. If A is an atlas over the complete basis U then the set of open
plaques {QU (x) : x ∈U ∈ U} is a basis of a topology τA of X. If A1 ⊂A2 are two of
such atlases then τA1 = τA2 ⊂ τ .

Proof. Since U is a cover of X , the open plaques cover X . Given x ∈ QU (y) ∩ QV (z),
U, V ∈ U , notice that QU (y) ∩ QV (z)= QU (x) ∩ QV (x) and QU∩V (x)⊂ QU (x) ∩
QV (x). Since U is complete U ∩ V ∈ U , and QU∩V (x) is an open plaque. This proves
that the open plaques form a basis of a topology. Since U =

⋃
x∈U QU (x) for all U ∈ U ,

it holds that τA ⊂ τ .
Suppose that A1 ⊂A2 are atlases over U1 ⊂ U2, respectively. It is clear that τA1 ⊂

τA2 . Given x ∈U ∈ U2 take V ∈ U1 such that x ∈ V ⊂U . Then, QV (x)⊂ QU (x) and
τA2 ⊂ τA1 . �

Definition 4.1.6. The topology τA will be called the plaque topology. Since it does not
depend on the atlas A (over a complete basis) representing the C-foliation F it will also be
denoted as τF .

4.1.1. Chains of plaques. Let A be an atlas over a complete basis U of the compact
metric space (X, dist). A chain of A-plaques is a sequence P1, . . . , Pn of open plaques
of A such that Pi ∩ Pi+1 6= ∅ for all i = 1, . . . , n − 1. Given x ∈ P1 and y ∈ Pn we say
that the chain goes from x to y.

Definition 4.1.7. For a point x ∈ X the A-leaf of x is the set A(x) defined by y ∈A(x) if
there is a chain of open plaques from x to y.

PROPOSITION 4.1.8. Every component of (X, τA) is contained in a A-leaf.

Proof. This follows because the A-leaves form a partition of X in τA-open sets. �
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We will define a metric on X defining the topology τA. Define distA : X × X→ R as

distA(x, y)= inf
n∑

i=1

diam(Pi ),

where the infimum is taken over all the chains of open plaques P1, . . . , Pn , n ≥ 1, with
x ∈ P1 and y ∈ Pn . If x and y are in different leaves we set distA(x, y)=+∞. It is
standard to prove that distA is a metric on X .

LEMMA 4.1.9. If U ∈ U , P1, . . . , Pn is a chain of open plaques contained in U and
x ∈ P1 then each Pi ⊂ QU (x).

Proof. Suppose that Pi = QUi (xi ) with Ui ∈ U . Define Vi =U ∩Ui . Since Pi ⊂U ,
by Proposition 3.1.1 we have that Pi = QVi (xi ) and P1 ⊂ QU (x). As P1 ∩ P2 6= ∅ we
conclude that P2 ⊂ QU (x). By induction, each Pi ⊂ QU (x). �

PROPOSITION 4.1.10. The topology defined by distA is τA.

Proof. Given x ∈U ∈ U , consider δ > 0 such that Bδ(x)⊂U . Take y ∈ X such that
distA(x, y) < δ. We will show that y ∈ QU (x). Since distA(x, y) < δ there is a chain
of plaques Pi , i = 1, . . . , n, such that x ∈ P1, y ∈ Pn and

∑n
i=1 diam(Pi ) < δ. Then

diam(
⋃n

i=1 Pi ) < δ and
⋃n

i=1 Pi ⊂U . By Lemma 4.1.9 we conclude that
⋃n

i=1 Pi ⊂

QU (x). Consequently y ∈ QU (x). To prove the converse consider a ball B = {y ∈ X :
distA(x, y) < r}, r > 0 and x ∈ X . Taking U ∈ U with x ∈U and diam(U ) < r we see
that QU (x)⊂ B and B ∈ τA. �

PROPOSITION 4.1.11. Every leaf and X itself are complete (as metric spaces) with respect
to distA.

Proof. Let xn be a Cauchy sequence with respect to distA. The definition of the metric
allows us to assume that the sequence is contained in a leaf. Also, its limit (which exists,
as we shall prove) must be in this leaf. Thus, the proof is reduced to showing that X is
complete.

Since dist≤ distA, xn is a Cauchy sequence with respect to dist. Then, there is x ∈ X
such that dist(xn, x)→ 0. Take ε > 0 such that U = Bε(x) ∈ U . Take l ≥ 1 such that
distA(xn, xl) < ε/2 and dist(xn, x) < ε/2 for all n ≥ l. Consider a sequence of open
plaques Pn such that xl , xn ∈ Pn and diam(Pn) < ε/2. Take Un ∈ U such that Un ⊂U
and QUn (xl)= Pn . We know that QUn (xl)⊂ QU (xl). Since xn ∈ QUn (xl) and xn→ x (in
dist) we conclude that x ∈ QU (xl). Therefore, xn ∈ QU (x) for all n ≥ l. This proves that
distA(xn, x)→ 0. �

4.2. Peano foliations. Let X be a compact metric space with topology τ .

Definition 4.2.1. An atlas A is a Peano atlas if its open plaques are locally connected in
τ . A Peano foliation is a maximal Peano atlas.

By maximal Peano atlas we mean maximal among all Peano atlases, see Example 5.1.7
for a maximal Peano atlas that is not maximal among all the atlases. Every Peano atlas is
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contained in a Peano foliation and every Peano foliation is defined over a complete basis.
Given a topology τ∗ on X and Y ⊂ X , denote by τ∗|Y the relative topology on Y induced
by τ∗.

THEOREM 4.2.2. If F is a Peano foliation over U then:
(1) for every open plaque P it holds that τ |P = τF |P ;
(2) every open plaque is connected in τF ;
(3) (X, τF ) is locally connected;
(4) every leaf is arc-connected in both topologies τF and τ ;
(5) every leaf is a component of (X, τF );
(6) for every leaf L, U ∈ U and x ∈ L ∩U it holds that

Compx (L ∩U )= QU (x). (6)

Proof. Let P be an open plaque. By Proposition 4.1.5 we know that τ ⊂ τF and then
τ |P ⊂ τF |P . To show that τF |P ⊂ τ |P , it is sufficient to prove that if P ′ is another
open plaque then P ∩ P ′ ∈ τ |P . Take x ∈ P ∩ P ′ and suppose that P = QU (x) and
P ′ = QV (x) with U, V ∈ U . Since U is a complete basis of τ there is W ∈ U such
that x ∈W ⊂U ∩ V and P ∩W is connected (P is locally connected at x). Then P ∩
W = Compx (P ∩W )= Compx (QU (x) ∩W )= QW (x). Since W ⊂U ∩ V we can apply
Proposition 3.1.1 to conclude that QW (x)⊂ P ∩ P ′. Given that QW (x)= P ∩W ∈ τ |P
we conclude that τF |P ⊂ τ |P . Then τ |P = τF |P .

By definition, every open plaque is connected in τ and then we have that P is connected
in τF . Given that open plaques form a basis for τF , we conclude that (X, τF ) is locally
connected.

To prove that the leaves are arc-connected we first show that they are τF -connected.
Take x, y in a leaf L . We know that there is a chain of plaques P1, . . . , Pn from x to y.
Since each plaque is τF -connected,

⋃
i=1,...,n Pi is τF -connected. Fixing x and varying

y ∈ L we conclude that L is τF -connected. Then, we know that each leaf L is connected
and locally connected in τF . In addition, by Proposition 4.1.11, we know that (L , distF ) is
a complete metric space. Then, we can apply Theorem 3.1.5 to conclude the arc-connection
of L . This implies that every leaf is contained in a component of (X, τF ). The converse
inclusion follows by Proposition 4.1.8.

To prove (6), take a leaf L , U ∈ U , x ∈ L ∩U and define C = Compx (L ∩U ). By the
definition of a leaf, it is clear that QU (x)⊂ C . We will show the converse inclusion. For
this purpose, since C is a union of open plaques, we can write

C =
⋃
j∈J

Pj

with Pj = QU j (x j ) and some index set J . By Proposition 3.1.1 we can suppose that
U j ⊂U for all j ∈ J . Define

J1 = { j ∈ J : Pj ∩ QU (x) 6= ∅}

and J2 = J\J1. Since QU j = QU |
m
U j

, if j ∈ J1 then Pj ⊂ QU (x)⊂ C . Define V1 =⋃
j∈J1

Pj and V2 =
⋃

j∈J2
Pj . Define V ′1 = V1 ∩ QU (x) and V ′2 = V2 ∩ QU (x). Then

QU (x)⊂ V ′1 ∪ V ′2. Since QU (x) is locally connected with respect to τ , we conclude that
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FIGURE 3. In this continuum the topology τA is not locally connected around the origin.

V ′1, V ′2 ∈ τ |QU (x). Since V ′1 ∩ V ′2 = ∅, V ′1 6= ∅ and QU (x) is connected in τ we conclude
that V ′2 = ∅. Then QU (x)⊂

⋃
j∈J1

QU j (x j ). Since QU j (x j )⊂ QU (x) for all j ∈ J1 we
conclude that QU (x)=

⋃
j∈J1

QU j (x j ). That is, QU (x)= C = Compx (L ∩U ). �

We will give two examples of C-foliations with particular properties to show the
necessity of the hypothesis of Theorem 4.2.2. First we show that a leaf may not be
connected in the plaque topology (for a non-Peano foliation).

Example 4.2.3. Consider the plane continuum X = X1 ∪ X2 where X1 = {0} × [−1, 1]
and X2 = {(x, sin(1/x)) : x ∈ (0, 1]}. On X consider the complete basis U = τ (the
relative open subsets of the plane with its usual topology). Let F be the C-foliation defined
as QU (x)= Compx (U ) for every U ∈ τ . We have only one leaf L = X . We see that this
leaf is not connected in τF since it has two components X1 and X2. Note that X itself is an
open plaque that is not locally connected. Then F is not a Peano foliation. It is an exercise
for the interested reader to check which conclusions of Theorem 4.2.2 are satisfied in this
example. In Example 6.3.3 we give a decomposition of a square with a leaf like the set X .

In the following variation of the previous example we show that (X, τA) may not be
locally connected.

Example 4.2.4. For n a non-negative integer define

Xn = {(x, (3+ sin(1/x))/4n) ∈ R2
: x ∈ (0, 1]}

and X = ({0} × [0, 1]) ∪ ([0, 1] × {0}) ∪
⋃

n≥0 Xn . See Figure 3. As in the previous
example consider the C-foliation defined by QU (x)= Compx (U ) for every U ∈ τ . We
have that (0, 0) has no connected neighborhoods in the plaque topology.

We think that the following result is interesting because it allows us to characterize
Peano foliations in terms of the plaque topology.

COROLLARY 4.2.5. For an atlas A over a complete basis the following statements are
equivalent:
(1) A is a Peano atlas;
(2) τ |P = τA|P for every open plaque P.
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Proof. The direct part follows by Theorem 4.2.2. To prove the converse, let P be an open
plaque. We have to prove that P is locally connected in τ . Given x ∈ P we can take a
small neighborhood U ∈ U of x . By definition, the plaque QU (x) is connected in τ . Also,
QU (x) is a neighborhood of x in the plaque topology. Since, by hypothesis, τ |P = τA|P ,
we conclude that QU (x) is a (connected) neighborhood of x in τ |P . Then, P is locally
connected with respect to τ . �

We say that a leaf is plaque-compact if it is compact in the plaque topology.

THEOREM 4.2.6. Let F be a Peano foliation. An F-leaf is plaque-compact if and only if
it is a Peano continuum in the relative topology of τ .

Proof. Assume that L is a plaque-compact leaf. Since the plaque topology is finer than the
relative topology, Proposition 4.1.5, we have that L is compact in the relative topology.
Given ε > 0 we define the complete basis

Uε = {U ∈ τ : diam(U ) < ε}. (7)

We assume that ε is so small that Uε ⊂ U , where U is the complete basis of F . Consider
the following cover of L:

UL = {QU (x) : x ∈ L ∩U,U ∈ Uε}.

Since L is plaque-compact, there is a finite subcover. The plaques of this subcover have
diameter smaller than ε. Applying Sierpiński’s Theorem 3.1.6 we conclude the local
connection of L in the relative topology.

Converse. Assume that the leaf L is a Peano continuum in τ . Take a cover UL = {Pi }i∈I

of L by open plaques. Given x ∈ L take Ux ∈ U such that x ∈ Pi = QUx (x). Since L is
locally connected and U is a complete basis there is Vx ∈ U such that x ∈ Vx ⊂Ux and
Vx ∩ L is connected. Then, by Theorem 4.2.2, QVx (x)= Vx ∩ L . Since {Vx ∩ L : x ∈ L}
is a cover of L by relative open sets of L and L is compact we can take x1, . . . , xn such
that Vx1 , . . . , Vxn cover L . Since Vx ⊂Ux , we have that {QUx1

(x1), . . . , QUxn (xn)} is a
finite subcover of UL . This proves that L is compact in the plaque topology. �

Remark 4.2.7. In Example 4.2.3 we see that a compact leaf (in the relative topology) may
not be plaque-compact (it fails to be locally connected).

Remark 4.2.8. A locally connected leaf may not be compact. Take a plane flow (with X
a compact invariant annulus) with limit cycles. An orbit converging to a cycle is locally
connected but it is not compact.

Note that the examples given above (Examples 4.2.3 and 4.2.4) are not Peano foliations
but they satisfy (6) in Theorem 4.2.2. The next subsection is devoted to describing an
example of a C-foliation not satisfying (6).

4.2.1. Devil’s backgammon. In Theorem 4.2.2 we proved that, for Peano foliations, if
L is a leaf then for every U ∈ U and x ∈ L ∩U it holds that Compx (L ∩U ) is the plaque
of x in U . That is, knowing the leaves and the basis U we can recover the plaques. This is
the leaves–atlas equivalence mentioned at the beginning of this section. The next example
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FIGURE 4. The Devil’s backgammon continuum is obtained from the square by deleting the dark open triangles.
Each triangle is determined by Ix and Iy if g(x)= g(y) and x 6= y.

shows that a maximal atlas (with non-locally connected plaques) can contain strictly more
information than the leaves and the basis, i.e. does not satisfy (6).

We start constructing a continuum X ⊂ [0, 1] × [0, 1]. Let K ⊂ [0, 1] be the ternary
Cantor set. A point x ∈ K can be expressed as x =

∑
i 2/3ni for some increasing sequence

ni of integers. Consider the function g : K → [0, 1] such that if x =
∑

i 2/3ni ∈ K then
g(x)=

∑
i 1/2ni . For each y ∈ [0, 1] there are one or two preimages by g. For x ∈ K let

Ix be the closed segment line from (x, 0) to (g(x), 1). Define

X = ([0, 1] × {0}) ∪
⋃
x∈K

Ix .

We have that X is an arc-connected continuum. Note that it is not locally connected. It can
also be obtained by deleting open triangles from the square, as shown in Figure 4.

Consider the open sets

U = {(x, y) ∈ X : y < 2/3},

V = {(x, y) ∈ X : y > 1/3}.

Define QU (x, y)=U for all (x, y) ∈U . Given p ∈ V suppose that p ∈ Ia . Define

Jp =

{
Ia if g−1(g(a))= {a},
Ia ∪ Ib if g−1(g(a))= {a, b}

and QV (p)= Compp(Jp ∩ V ). The decompositions QU , QV define a C-foliation F . It is
clear that it is not a Peano foliation since it has non-locally connected open plaques. Note
that there is only one leaf, namely L = X .

In this example we see that for p ∈ V we have that Compp(L ∩ V )= L ∩ V and it is
not QV (p). As we said, this means that the plaques cannot be recovered by the leaves and
the basis.

4.3. Cw-foliations. It must be recalled that we have in mind the study of the distribution
of stable and unstable continua of cw-expansive homeomorphisms on surfaces and Peano
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continua. This guides us in selecting the properties that we require in the following
definition.

Recall that a subset of X is meagre if it can be expressed as the union of countably many
nowhere dense subsets of X . A set is nowhere dense if its closure has empty interior.

Definition 4.3.1. An atlas A is a cw-atlas if its A-leaves:
(1) are a countable union of open plaques;
(2) are meagre sets; and
(3) have diameter bounded away from zero.
A cw-foliation is a C-foliation with a cw-atlas.

More observations about this definition must be given.

Remark 4.3.2. Note that requiring that a leaf is a countable union of plaques does not
imply that the leaf has a countable basis. The plaques in this countable union may not be
small.

Remark 4.3.3. A foliation of a compact manifold M in the standard sense is a cw-foliation
if and only if the dimension of the leaves is positive and less than dim(M). On a surface,
this means one-dimensional.

In the standard theory of foliations the leaves are immersed submanifolds and have a
countable basis for its leaf topology. Also, the intersection of a leaf with a local chart is a
countable number of plaques. For Peano cw-foliations these properties can be recovered.
A Peano cw-foliation is a Peano foliation with a cw-atlas.

THEOREM 4.3.4. If F is a Peano cw-foliation then:
(1) τF |L has a countable basis for every leaf L;
(2) for every leaf L and every U ∈ τ the set L ∩U has a countable number of

components with respect to both topologies τ and τF .

Proof. Since X is a compact metric space it has a countable basis. By Theorem 4.2.2
we know that τ |P = τF |P , for every open plaque P . We conclude that each plaque has a
countable basis. Consequently, as every leaf is a countable union of plaques, we have that
each leaf has a countable basis.

Consider a leaf L and U ∈ τ . We know that L ∈ τF . From Proposition 4.1.5 we have
that U ∈ τF . Then U ∩ L ∈ τF . We know that τF |L has a countable basis. Therefore,
τF |U∩L has a countable basis. By Theorem 4.2.2, knowing that U ∩ L ∈ τF , we conclude
that U ∩ L is locally connected with respect to τF . Then† U ∩ L has a countable number
of components with respect to τF . Since τ ⊂ τF , the same holds for τ . �

For future reference (Proposition 6.1.7) we give one more result. Recall from (7) that
Uδ is the complete basis containing all the open sets of diameter smaller than δ.

† Every locally connected topological space with a countable basis has at most a countable number of
components. This can be proved as follows. Since the space is locally connected, its components are open and
given that the space has a countable basis each component contains an open set of the countable basis. As the
components are disjoint, there is at most a countable number of components.
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PROPOSITION 4.3.5. If A is a cw-atlas over the complete basis U of X then there is δ > 0
such that for all x ∈U ∈ Uδ it holds that:
(1) QU (x) ∩ ∂U 6= ∅; and
(2) x is not a τ -interior point of QU (x).

Proof. From the definition of cw-atlas we know that there is δ > 0 such that every leaf has
diameter greater than δ. Take x ∈U ∈ Uδ . Since the leaf of x has diameter greater than δ
there is y /∈U in the leaf of x . Consider a chain of plaques P1, . . . , Pn from x to y. Let
Pm be the first of these plaques that is not contained in U . By Lemma 4.1.9 the plaques
P1, . . . , Pm−1 are contained in QU (x). Take z ∈ Pm−1 ∩ Pm . Since Pm is connected we
have that Compz(Pm ∩U ) cuts ∂U . Given that Compz(Pm ∩U )⊂ QU (x) we have that
QU (x) ∩ ∂U 6= ∅.

Since each leaf is a meagre set, no plaque has interior points. �

The next example shows that the converse of Proposition 4.3.5 is not true.

Example 4.3.6. Let K ⊂ [0, 1] be a Cantor set. Define X = K × [0, 1] × [0, 1] ∪ [0, 1] ×
[0, 1] × {0}. Define the projection π : X ⊂ R3

→ R given by π(x, y, z)= y and the
decomposition F as F(x, y, z)= π−1(y). For δ ∈ (0, 1/2) and the Euclidean metric on
X , define QU (p)= F |mU (p). It defines an atlas over Uδ . No leaf has interior points and
every leaf has diameter greater than δ. But this atlas does not define a cw-foliation because
the leaves are not a countable union of plaques.

4.4. Continuous atlas. We say that an atlas A over a complete basis U is continuous if
the set

{U ∈ U : QU is continuous}

is a basis of the topology of X . The continuity of QU means the continuity of the map
QU :U → C(QU ) with respect to the Hausdorff metric.

Remark 4.4.1. The stable foliation of a pseudo-Anosov diffeomorphism with 1-prongs (as
in §2.2.1) defines a continuous atlas. In Theorem 6.6.2 we will show that continuous Peano
cw-foliations of compact surfaces (i.e. continuous dendritations), are in fact foliations (in
the standard sense) with a finite number of 1-prongs.

Example 4.4.2. (Hiraide’s generalized foliations) Let (X, dist) be a Peano continuum. A
partition F of X is a generalized foliation [2, 17] if for all x ∈ X there are non-trivial arc-
connected subsets D, K ⊂ X with D ∩ K = {x}, a connected open neighborhood N of x
in X and a homeomorphism φx : D × K → N such that:
(1) φx (y, x)= y for all y ∈ D, φx (x, z)= z for all z ∈ K ;
(2) for every leaf L there is an at most countable set B ⊂ K such that N ∩ L = φx

(D × B).
Generalized foliations are a main concept for the study of expansive homeomorphisms
with canonical coordinates. Notice that the stable foliation of the pseudo-Anosov
diffeomorphism of §2.2.1 is not a generalized foliation. We can show that every
generalized foliation defines a continuous atlas as follows. Given x ∈ X consider a local
coordinate φ : D × K → N around x . Take D′ and K ′ compact neighborhoods of x in D
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and K , respectively. Let U be an open set containing x such that U = φ(D′ × K ′). Since
on D × K we consider the product topology, we have that F |m

U
is continuous.

5. Expansivity and cw-foliations
The results that we have obtained will now be applied in the study of the stable and unstable
cw-foliations determined by a cw-expansive homeomorphism. Also, we will give sufficient
conditions for cw1-expansivity to imply expansivity.

5.1. Stable and unstable cw-foliations. Let f : X→ X be a homeomorphism of a
compact metric space. Recall the definitions of stable and unstable continua given in (1).

Definition 5.1.1. A decomposition of a closed subset of X is stable if every plaque is
stable. An atlas A is stable if each decomposition is stable. A Cs-foliation is a maximal
stable atlas. The unstable versions of these definitions are analogous.

As before, maximal stable atlas means maximal among all the stable atlases, see
Example 5.1.7. For a closed subset Y ⊂ X define Qs

Y : Y → P(Y ) by y ∈ Qs(x) if there
is a stable continuum C ⊂ Y such that x, y ∈ C . For every homeomorphism f and closed
subset Y ⊂ X we have that Qs

Y is a monotone partition of Y . Similarly we define Qu
Y

considering unstable continua. Define:

U s
=
{
U ∈ τ : Qs

U
is a stable decomposition

}
,

As
=
{

Qs
U
:U ∈ U s}. (8)

Note that U s and As depend on f . The sets Uu and Au are defined similarly considering
the inverse of f .

We will show that if f is cw-expansive then Uσ is a cover of X and that in this case
Aσ is a stable atlas of a cw-foliation. By definition it is clear that Aσ is a maximal
stable (unstable) atlas. We define the stable and unstable cw-foliations of f as F s , Fu ,
respectively.

An atlas A over U is invariant if:
• f n(U ) ∈ U ; and
• Q f n(U )( f n(x))= f n(QU (x)) for all x ∈U
for all n ∈ Z and all U ∈ U . The purpose of this section is to prove the following result.

THEOREM 5.1.2. If f is a cw-expansive homeomorphism of a Peano continuum then
F s, Fu are invariant cw-foliations without plaque-compact leaves.

The proof is developed in some lemmas that do not assume that f is cw-expansive.

LEMMA 5.1.3. If Qσ
Y is a stable (unstable) decomposition, σ = s, u, and Z ⊂ Y is closed

then
Qσ

Z = Qσ
Y |

m
Z .

Proof. Take x ∈ Z and y ∈ Qs
Z (x). Then there is a stable continuum C such that x, y ∈

C ⊂ Z . Since Z ⊂ Y , we have that C ⊂ Qs
Y (x). Since x ∈ C and C is connected we have

that C ⊂ Qs
Y |

m
Z (x). Consequently y ∈ Qs

Y |
m
Z (x) and Qs

Z (x)⊂ Qs
Y |

m
Z (x).
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Let us show the converse inclusion. Take x ∈ Z and y ∈ Qs
Y |

m
Z (x). Recall that

Qs
Y |

m
Z (x)= Compx (Q

s
Y (x) ∩ Z). Since Qs

Y is a stable decomposition we have that
Compx (Q

s
Y (x) ∩ Z) is a stable continuum. Given that Compx (Q

s
Y (x) ∩ Z)⊂ Z we have

that Compx (Q
s
Y (x) ∩ Z)⊂ Qs

Z (x) and y ∈ Qs
Z (x). Then Qs

Y |
m
Z (x)⊂ Qs

Z (x). �

LEMMA 5.1.4. If Uσ covers X, σ = s, u, then:
(1) Aσ is a stable atlas over the complete basis Uσ ;
(2) every stable (unstable) continuum is contained in an open Aσ -plaque;
(3) Qσ

X (x) is the Aσ -leaf of x for all x ∈ X;
(4) every Aσ -leaf is a countable union of open Aσ -plaques.

Proof. Assume that U s covers X . By Lemma 5.1.3 we know that U s is a complete basis.
Consequently, As is a stable atlas. Let C ⊂ X be a stable continuum. Since U s covers
X we can take n ≥ 0 and U ∈ U such that f n(C)⊂U ∈ U s . Then C ⊂ Qs

f −n(U )(x) for all
x ∈ C . Since U s is f -invariant, Qs

f −n(U )(x) is a stable open plaque containing C . It is clear
that the leaf of x is contained in Qs

X (x). The converse inclusion follows by the previous
item.

Let us show that each leaf is a countable union of open plaques. Take δ > 0 such that
every open subset of diameter smaller than δ belongs to U s . Then Bδ/2(x) ∈ U s for all
p ∈ X and we can consider the open plaque Qs

Bδ/2(x)
(x). For x ∈ X and n ≥ 0 define

Pn = f −n(Qs
Bδ/2( f n(x))( f n(x))).

We have that Pn is a stable open plaque. We have proved that the leaf of x is Qs
X (x).

Then Pn ⊂ Qs
X (x) for all n ≥ 0. Given y ∈ Qs

X (x) let us show that there is k ≥ 0 such
that y ∈ Pk . If y ∈ Qs

X (x) then there is a stable continuum C containing x and y. Since
C is stable, there is k ≥ 0 such that diam( f k(C)) < δ/2. Given that f k(x) ∈ f k(C) and
that f k(C) is a stable continuum we have that f k(C)⊂ Qs

Bδ/2( f k (x))( f k(x)). Then y ∈ Pk .

This proves that Qs
X (x)=

⋃
n≥0 Pn , a countable union of plaques. �

LEMMA 5.1.5. If f is a homeomorphism of a compact metric space X and there are
ε, δ > 0 such that Cσ ∩ Cδ ⊂ Cσε and Cσ2ε ⊂ Cσ for σ = s, u, then Uσ covers X.

Proof. We give the proof for σ = s. Let Y ⊂ X be a compact subset with diam(Y )≤ δ.
We will show that Qs

Y is a stable decomposition of Y . Take x ∈ Y . By definition we have
that Qs

Y (x) is connected for all x ∈ Y . We have that Qs
Y (x) is the union of all the stable

continua C contained in Y and containing x . Since Cs
∩ Cδ ⊂ Cs

ε and diam(Y )≤ δ we have
that each C ∈ Cs

ε . This implies that

diam( f k(Qs
Y (x)))≤ 2ε for all k ≥ 0. (9)

Since Cs
2ε ⊂ Cs we have that Qs

Y (x) is a stable continuum. Take xn→ x in Y with
Qs

Y (xn)→ C . From (9) we know that diam( f k(C))≤ 2ε for all k ≥ 0. Therefore, we
conclude that C is stable. Then, C ⊂ Qs

Y (x) and the proof ends. �

Proof of Theorem 5.1.2. By Proposition 2.3.1 we know that f satisfies the hypothesis
of Lemma 5.1.5. Then Uσ covers X . Applying Lemma 5.1.4 we conclude that Uσ is a
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complete basis, that Aσ is an atlas and that every Aσ -leaf is a countable union of open Aσ -
plaques. By Theorem 2.3.3 we know that Cσε (x)\Cδ(x) 6= ∅. Then, every leaf has diameter
greater than δ. The cw-expansivity and the condition Cσε (x)\Cδ(x) 6= ∅ imply that each
stable plaque has empty interior. Therefore, stable and unstable leaves are meagre sets.
This proves that Fσ are cw-foliations.

Suppose that L is a plaque-compact leaf of As . Let {Pi }i∈I be a cover of L by stable
plaques. Since L is plaque-compact we can assume that I is finite. Then diam( f n(L))→ 0
as n→+∞. This gives us stable leaves of arbitrarily small diameter, a contradiction to
Theorem 2.3.3. �

Remark 5.1.6. The quasi-Anosov diffeomorphism §2.2.2 is expansive and Theorem 5.1.2
can be applied. In this example we see that the plaques of F s and Fu may not have constant
dimension. There are stable plaques of dimension one and two.

Example 5.1.7. (One-dimensional expanding attractor) Let g : T 2
→ T 2 be a derived from

Anosov diffeomorphism of the two-dimensional torus and denote by X ⊂ T 2 the non-
trivial basic set (an expanding attractor). Let f : X→ X be the restriction of g. We have
that X is locally a product of a Cantor set and an arc and every leaf is dense in X . The
dynamics of f on X expands the length of each arc contained in X and every proper
subcontinuum is an unstable arc. That is, given an open set U ⊂ X , such that U 6= X ,
the unstable plaque of x ∈U is, simply, its component in U (an arc). Then, the unstable
cw-foliation is a Peano foliation. It is remarkable that in this case, the unstable atlas
is compatible with the trivial decomposition Q : X→ C(X) given by Q(x)= X for all
x ∈ X . However, X , as a plaque of this decomposition Q, is neither unstable nor locally
connected. Then, a maximal atlas extending a Peano unstable atlas may not be neither
unstable nor Peano.

Problem 5.1.8. For a cw-expansive homeomorphism of a Peano continuum, is it true that
every continuum contained on a stable leaf is stable?

Problem 5.1.9. Can a stable leaf of a cw-expansive homeomorphism of a Peano continuum
be compact in the relative topology? By Theorem 5.1.2 we only know that it cannot be
plaque-compact.

5.2. Generating pairs. If U1 and U2 are complete bases then U1
∩ U2 is a complete

basis. If Ai
= {Qi

U :U ∈ U i
} is an atlas over the complete basis U i , i = 1, 2, then both

atlases are defined in a common complete basis, namely U = U1
∩ U2.

The following concept is the key to proving in §6.8.5 that cw1-expansivity implies
expansivity on a compact surface.

Definition 5.2.1. Given two atlases A1 and A2 of the continuum X , we say that they
generate (the topology of X) if for all Bε(x) ∈ U there is δ > 0 such that if y ∈ Bδ(x) then
Qi

Bε(x)(x) ∩ Q j
Bε(x)(y) 6= ∅ for {i, j} = {1, 2}.

Example 5.2.2. A pair of transverse foliations of a smooth manifold (with the standard
meaning of these concepts) form a generating pair of cw-foliations. Another example is
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FIGURE 5. A non-generating pair of plane cw-foliations.

formed by the stable and the unstable singular foliations of a pseudo-Anosov map of a
compact surface, even with singularities and 1-prongs†.

Remark 5.2.3. For r > 0 and x ∈ X define

sur (x)= {y ∈ X : ∃As
∈ Cs

r (y), Au
∈ Cu

r (x) with Au
∩ As

6= ∅}.

Also define y ∈ usr (x) if x ∈ sur (y). If f : X→ X is cw-expansive then the cw-foliations
As and Au generate if and only if suε(x) ∩ usε(x) is a neighborhood of x , for all x ∈ X
and for all ε > 0. The proof follows by the definitions.

Remark 5.2.4. Notice that, for pseudo-Anosov singular foliations, the size of the ball
covered by sur (x) is not uniform. For x close to a singularity, the maximal ball contained
in sur (x) is small.

Example 5.2.5. (Quadratic tangencies) Let F1 be the foliation of R2 whose leaves are
horizontal lines y = c for c ∈ R. Define F2 by y = x2

+ c for c ∈ R. It is easy to prove
that these foliations do not generate at tangency points of the foliations. These kinds of
tangencies are present in the wandering set of the Qr -Anosov diffeomorphisms of §2.2.3.

Example 5.2.6. Consider the vertical cw-foliation F1 of the plane and a cw-foliation F2

as in Figure 5. In this case, for a point x as in the figure, it holds that F2
|
m
Bε(x)(x) ∩

F1
|
m
Bε(x)(y) 6= ∅ for all y close to x . But, exchanging the foliations, we can find points y

arbitrarily close to x such that F1
|
m
Bε(x)(x) ∩ F

2
|
m
Bε(x)(y)= ∅. This kind of non-generating

point appears: (1) at the non-wandering set of the examples in §2.2.3; and (2) at wandering
points in the example of §2.2.4.

PROPOSITION 5.2.7. If sur (x) is a neighborhood of x, for all x ∈ X and for all r > 0 then
X is locally connected.

Proof. Given x ∈ X and a neighborhood U of x , take ρ > 0 such that Bρ(x)⊂U . Take
r ∈ (0, ρ/2). We know that sur (x) is a neighborhood of x . For each y ∈ sur (x) there are

† We were tempted to say transversal instead of generating pair in Definition 5.2.1, but at 1-prongs the foliations
look closer to a tangency than to a transversal point, at least from this author’s viewpoint.
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FIGURE 6. A non-expansive but cw1-expansive homeomorphism on a continuum that is not locally connected.
An Anosov diffeomorphism acts on each torus.

Cs
∈ Cs

r and Cu
∈ Cu

r such that x ∈ Cu , y ∈ Cs and Cu
∩ Cs

6= ∅. Then, diam(Cs
∪ Cu)≤

2r and dist(x, y) < ρ. Then sur (x)⊂ Bρ(x). Since sur (x) is a union of connected sets
Cs
∪ Cu , with a common point x , we conclude that sur (x) is connected. This proves the

local connection of X at x . Since x is arbitrary, X is locally connected. �

5.3. Cw1-expansivity versus expansivity. We now investigate the following question.

Problem 5.3.1. Does cw1-expansivity imply the expansivity of a homeomorphism f on a
Peano continuum X?

The answer is affirmative in the examples known to the author and in Proposition 2.6.7
we gave some information on this problem. In Theorem 6.8.5 we will prove it for X
a compact surface. On a Cantor set X the identity is (trivially) cw1-expansive but not
expansive. Even assuming the connection of X , the local connection of X is needed in the
question because of the following example.

Example 5.3.2. Let f1 : T 2
→ T 2 be an Anosov diffeomorphism with a fixed point

p. Denote by X2 the closure of {1/n : n ∈ Z+} in the usual topology of R. Define
Y = T 2

× X2 and g : Y → Y as g(x, y)= ( f1(x), y). Now, collapsing the fixed points
{(p, 0), (p, 1), (p, 1/2), . . . } to a single point we obtain a continuum X , see Figure 6.
Also, we have a homeomorphism f : X→ X induced by g. We have that f is not
expansive because the distance dist( f n(x, 1/k), f n(x, 1/ l)) is small for all n ∈ Z
whenever k and l are sufficiently large. By construction, f is cw1-expansive. Notice that
X is a non-locally connected continuum.

Under a certain hypothesis, see Theorem 5.3.4, we can prove that cw1-expansivity
implies expansivity. The following lemma is a part of its proof, it is separated in order
to simplify the notation. We assume that f is not expansive because we will argue by
contradiction.

LEMMA 5.3.3. If f is not expansive and usr (x) is a neighborhood of x for all x ∈ X and
for all r > 0, then for all ε > 0 there are x, y ∈ X such that x 6= y, dist( f n(x), f n(y)) < ε
for all n ∈ Z and x, y ∈ A with A ∈ Cs

ε ∪ Cu
ε .

Proof. For ε > 0 given, consider δ1 > 0 and a finite set Z ⊂ X such that Bδ1(z)⊂ usε/3(z)
for each z ∈ Z and X =

⋃
z∈Z Bδ1(z). Take δ2 ∈ (0, ε/3) such that if v, w ∈ X and
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dist(v, w) < δ2 then v, w ∈ Bδ1(z) for some z ∈ Z . Since f is not expansive there are
v, w ∈ X such that dist( f n(v), f n(w)) < δ2 for all n ∈ Z and v 6= w. Take z ∈ Z such that
v, w ∈ Bδ1(z). Then v, w ∈ suε/3(z). By the definitions, we can take As

v, As
w ∈ Cs

ε/3 and
Au
v , Au

w ∈ Cu
ε/3 such that z ∈ As

v ∩ As
w, As

v ∩ Au
v 6= ∅, As

w ∩ Au
w 6= ∅, v ∈ Au

v and w ∈ Au
w.

Take v1 ∈ As
v ∩ Au

v and w1 ∈ As
w ∩ Au

w. Since As
v, As

w ∈ Cs
ε/3 with a common point,

namely z, their union is a 2ε/3-stable continuum. Since v1, w1 ∈ As
v ∪ As

w we have that

dist( f n(v1), f n(w1)) < 2ε/3 for all n ≥ 0. (10)

Also dist( f n(v1), f n(w1)) is less than or equal to

dist( f n(v1), f n(v))+ dist( f n(v), f n(w))+ dist( f n(w), f n(w1)).

For n ≤ 0 we have that

dist( f n(v1), f n(v))≤ ε/3,

dist( f n(v), f n(w)) < δ2 < ε/3 and

dist( f n(w), f n(w1))≤ ε/3.

Therefore dist( f n(v1), f n(w1)) < ε for all n ≤ 0. Recalling (10) we conclude that

dist( f n(v1), f n(w1)) < ε

for all n ∈ Z.
Recall that As

v ∪ As
w is a 2ε/3-stable continuum containing v1 and w1. If v1 6= w1 then

we take x = v1, y = w1 and the ε-stable continuum A = As
v ∪ As

w. If v1 = w1 then we take
x = v, y = w and the 2ε/3-unstable continuum A = Au

v ∪ Au
w. �

Notice that by Remark 5.2.3 and Proposition 5.2.7 the hypothesis of the next result
implies that X is locally connected.

THEOREM 5.3.4. If f : X→ X is a cw1-expansive homeomorphism of a continuum X
and F s, Fu is a generating pair, then f is expansive.

Proof. Take γ > 0 such that

if As
∈ Cs

γ and Au
∈ Cu

γ then card(As
∩ Au)≤ 1. (11)

Consider δ ∈ (0, γ /3) such that

if diam(A)≤ 2δ then diam( f ±1(A)) < γ/3 (12)

for every A ⊂ X . Consider ε ∈ (0, δ) such that

if dist(a, b) < ε then there is z ∈ X such that a, b ∈ suδ(z) ∩ usδ(z) (13)

for any a, b ∈ X . Assume by contradiction that f is not expansive. From Lemma 5.3.3
there are x, y ∈ X and As

0 ∈ C
s
ε such that x 6= y, dist( f n(x), f n(y)) < ε for all n ∈ Z and

x, y ∈ As
0. If the lemma gives an ε-unstable continuum then change f to f −1 in what

follows.
In this paragraph we will show that there is n ≥ 0 such that f −n(x) and f −n(y) are

not in a common 2δ-stable continuum. Arguing by contradiction, assume that for each
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n ≥ 0 there is As
n ∈ Cs

2δ containing f −n(x) and f −n(y). Since f is cw-expansive and δ is
small, we have that diam( f n(As

n))→ 0 as n→∞. Since x, y ∈ f n(As
n) we conclude that

dist(x, y)= 0, contradicting that x 6= y.
Let n0 be the first positive number satisfying the condition proved in the previous

paragraph. Then f −n0+1(x) and f −n0+1(y) are in a common 2δ-stable continuum As
n0−1.

From (12) we have that diam( f −1(As
n0−1)) < γ/3. Define a = f −n0(x), b = f −n0(y) and

As
∗ = f −1(As

n0−1). We have that As
∗ is a γ /3-stable continuum containing a and b. Also,

a and b are not in a common 2δ-stable continuum.
Since dist(a, b) < ε we can apply condition (13) to conclude that there is z ∈ X such

that a, b ∈ suδ(z). Then, there are As
a, As

b ∈ C
s
δ and Au

a, Au
b ∈ C

u
δ such that z ∈ Au

a ∩ Au
b ,

a ∈ As
a , b ∈ As

b, As
a ∩ Au

a 6= ∅ and As
b ∩ Au

b 6= ∅. We have that As
a ∩ As

b = ∅ because a and
b are not in a common 2δ-stable continuum. Therefore, we can take p ∈ As

a ∩ Au
a and q ∈

As
b ∩ Au

b such that p 6= q. Since δ < γ/3 we have that p and q are in a γ -stable continuum,
namely As

a ∪ As
∗ ∪ As

b. Also, p and q are in the 2δ-unstable continuum Au
a ∪ Au

b . This
contradicts (11) and proves that f is expansive. �

Remark 5.3.5. The quasi-Anosov diffeomorphism of §2.2.2 is expansive but it does not
satisfy the hypothesis of Theorem 5.3.4. In this case, the set suδ(x) ∩ usδ(x) is not a
neighborhood of a wandering point x . This means, if it is true that cw1-expansivity implies
expansivity on a Peano continuum, then new arguments will be needed for its proof.

6. Dendritations of surfaces
In this section we will study cw-foliations of compact surfaces. Applications to cw-
expansive surface homeomorphisms will be given.

6.1. Cw-decompositions of disks. Let D be a metric space homeomorphic to the
Euclidean disk

{(x, y) ∈ R2
: x2
+ y2

≤ 1}.

As usual, ∂D is the boundary of the disk.

Definition 6.1.1. A decomposition of D is a cw-decomposition if it is codendritic and
hereditarily unicoherent. That is, the quotient space is a dendrite and each plaque is
hereditarily unicoherent.

We say that Q is n-dimensional if dim Q(x)= n for all x ∈ D\∂D. As in §2.5, dim
denotes the topological dimension.

PROPOSITION 6.1.2. If Q is a decomposition of D then the following statements are
equivalent:
(1) Q is a cw-decomposition;
(2) Q(x) ∩ ∂D 6= ∅ and Q is one-dimensional for all x ∈ D.

Proof. (1→ 2). Arguing by contradiction, suppose that Q(x) ∩ ∂D = ∅ for some x ∈ D.
Since Q is codendritic there is y ∈ D close to x such that the plaque Q(y) separates D and
Q(y) ∩ ∂D = ∅. By Janisewski’s Theorem 3.1.7 Q(y) is not unicoherent, contradicting
that Q is a cw-decomposition. To prove that Q is one-dimensional, note that each plaque
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FIGURE 7. The plaque Q(z) separates Q(x) from Q(y).

Q(x) has dimension zero, one or two. If some plaque has dimension two then it has interior
points and then it is not hereditarily unicoherent. For an interior point x of the disk it holds
that dim(Q(x)) 6= 0, because it is a continuum meeting ∂D.

(2→ 1). Let us first show that Q is hereditarily unicoherent. Arguing by contradiction
suppose that Q(x) is not hereditarily unicoherent. Then there are two continua A, B such
that Q(x)= A ∪ B and A ∩ B is disconnected. By Janisewski’s theorem, Q(x) separates
D. Let U be a component of D\Q(x) disjoint from ∂D. This implies that U ⊂ Q(x),
contradicting that Q(x) is one-dimensional.

Now we prove that Q is codendritic. First we show that if x, y ∈ D and Q(x)∩
Q(y)= ∅ then there is z ∈ D such that Q(z) separates Q(x) from Q(y). Let I, J be two
arcs contained in ∂D such that Q(x) ∩ ∂D ⊂ I and Q(y) ∩ ∂D ⊂ J . Suppose that I, J
are minimal with this property. Since Q(x) and Q(y) are disjoint we have that I ∩ J = ∅.
Denote by α and β the open arcs in ∂D\(I ∪ J ). Take an arc 0 ⊂ D from a ∈ α to b ∈ β
separating Q(x) and Q(y) as in Figure 7.

Define the sets

0α = {u ∈ 0 : Q(u) ∩ α 6= ∅},

0β = {u ∈ 0 : Q(u) ∩ β 6= ∅}.

We have that a ∈ 0α and b ∈ 0β , which implies that they are non-empty. Since 0 is disjoint
from Q(x) and Q(y), the upper semicontinuity of Q implies that 0α and 0β are closed,
recall Remark 3.1.2. As every plaque intersects ∂D we have that 0 = 0α ∪ 0β . Given that
0 is connected, we find z ∈ 0α ∩ 0β . Therefore, Q(z) separates Q(x) from Q(y).

By Proposition 3.1.3 we know that D/Q is a continuum and from Theorem 3.1.10 we
conclude that Q is codendritic. �

PROPOSITION 6.1.3. If Q is a cw-decomposition and x1, x2, x3 ∈ D are such that Q(xi )

does not separate Q(x j ) from Q(xk) for {i, j, k} = {1, 2, 3} then there is x ∈ D such that
Q(x1), Q(x2), Q(x3) are in different components of D\Q(x).

Proof. Knowing that D/Q is a dendrite, the result follows by general properties of such
spaces. �
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FIGURE 8. The quotient dendrite has the shape of the letter H .

Remark 6.1.4. On a dendrite there can be four points that cannot be separated
simultaneously with a single point. Consider for example a dendrite with the shape of
the letter H and try to separate with one single point the four ends. It is easy to construct a
decomposition Q such that D/Q has this topology. See Figure 8.

Remark 6.1.5. It seems that given any tree T (i.e. a dendrite with a finite number of
ramification points) there is a decomposition Q of D such that D/Q is homeomorphic
to T . It also seems that this is still true for an arbitrary dendrite T , but a proof is not so
clear to this author.

Remark 6.1.6. In the study of complex dynamics, several definitions of laminations can
be found. Following [33], a lamination is a closed equivalence relation on ∂D such that
the convex hull of different equivalence classes is disjoint. The convex hull is considered
with respect to (a differentiable structure and) a Riemannian metric on D that makes it
isometric with a Euclidean disk. There is a strong link between cw-decompositions and
laminations: if Q is a cw-decomposition of D then the restriction of Q to the boundary of
D is a lamination.

PROPOSITION 6.1.7. If A is a cw-foliation over the complete basis U of a closed surface
S, then there is δ > 0 such that QU is a cw-decomposition for all U ∈ U with diam(U ) < δ.

Proof. It follows by Propositions 4.3.5 and 6.1.2. �

6.2. Dendritations and generic leaves. The following is the main definition of the
paper. It combines the properties of Peano foliations, cw-foliations and the plane topology.

Definition 6.2.1. A dendritation is a Peano cw-foliation of a compact surface.

By Remark 2.3.6 we know that compact surfaces with non-empty boundaries admit
no cw-expansive homeomorphisms. Then, we will assume that the surface has empty
boundary. Recall from (7) the definition of the complete basis Uδ .

PROPOSITION 6.2.2. If A= {QU :U ∈ U} is an atlas of a dendritation, δ > 0 is
sufficiently small, U ∈ Uδ and D =U is a disk then each plaque Q D(x) is a dendrite
and the quotient D/Q D is a dendrite.
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Proof. By definition, we know that A is a cw-atlas. Take δ from Proposition 6.1.7 such
that Q D is a cw-decomposition. By the definition of cw-decomposition we know that
D/Q D is a dendrite and that each plaque is an hereditarily unicoherent continuum. By
hypothesis, the plaques are locally connected. Applying Theorem 3.1.10 we conclude the
plaques are dendrites. �

Remark 6.2.3. Knowing that each plaque is a dendrite it is natural to look for more
topological information given that they are contained in the plane. Unfortunately, we must
deal with the worst kind of dendrites because every dendrite can be embedded in the plane.
Recall Wazewski’s universal dendrite, Theorem 3.1.11. However, generic dendrites in a
dendritation are nice, as we will now explain.

We will study the properties of the plaque of a point in a residual subset of the disk.
A property is generic if it holds in a residual subset. For this purpose we recall that in
[35] Moore proved that every family of mutually disjoint triods of the plane is countable.
An alternative proof can be found in [42]. Recall that a triod is a union of three arcs,
homeomorphic to ([−1, 1] × {0}) ∪ ({0} × [0, 1]) in the plane (three segments with a
common end point).

PROPOSITION 6.2.4. If Q is a cw-decomposition of the disk D then there is a residual set
G ⊂ D such that card(Q(x) ∩ ∂D)≤ 2 for all x ∈ G.

Proof. First we show that there is a residual set G1 ⊂ D such that Q(x) ∩ ∂D is totally
disconnected for all x ∈ G1. Let A ⊂ ∂D be a countable dense subset. If Q(x) ∩ ∂D
contains a non-trivial arc then A ∩ Q(x) 6= ∅. Therefore, at most a countable family of
plaques intersects ∂D in a non-totally-disconnected set. The complement of the union of
such plaques gives our residual set G1.

By Proposition 6.1.2 we know that Q is codendritic. Then, by Proposition 3.2.10 there
is a residual set G2 ⊂ D such that D\Q(x) has one or two components for all x ∈ G2.
By Janisewski’s theorem this implies that Q(x) ∩ ∂D has one or two components. For
x ∈ G = G1 ∩ G2 we have that Q(x) ∩ ∂D has one or two points. �

In the examples of decompositions defined from stable sets of cw-expansive
homeomorphisms known to the author, it is true that card(Q(x) ∩ ∂D)= 2 on a residual
set. In general, for arbitrary decompositions, this is not true as the next example shows.

Example 6.2.5. We will construct a cw-decomposition Q of a disk D such that for every
residual set G ⊂ D there is x ∈ G whose dendrite Q(x) does not separate D. Consider
a pseudo-Anosov diffeomorphism on a hyperbolic surface. Denote by U = {(x, y) ∈ R2

:

x2
+ y2 < 1} the universal cover of the surface and denote by F̃ s the lifting to U of the

stable singular foliation of the pseudo-Anosov diffeomorphism. On the closed disk D′ =U
(the closure in the usual topology of R2) consider the dendritic decomposition where Q′(p)
is the closure of F̃ s(p). Consider the annulus A = {(x, y) ∈ R2

: 1≤ x2
+ y2

≤ 2} and the
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disk D =U ∪ A. We will extend Q′ to D. For p ∈ ∂U define Ap = {λp : 1≤ λ≤ 2} a line
segment from p to ∂D contained in the line through p and the origin. For p ∈ D′ define

Q(p)= Q′(p) ∪
⋃

q∈Q′(p)∩∂D′
Aq .

It is easy to prove that Q defines a dendritic decomposition on D.
Let us show that for a generic point p ∈ A we have that Q(p) is a non-separating arc.

The proof follows the ideas in [1, Lemma 3.1]. Let Dn be the closed disk of radius 1− 1/n
centered at the origin. Define Tn = Q−1(Q(Dn)). Notice that

∞⋃
Tn = {p ∈ D : Q(p) separates D}.

Also A\Tn is open and dense in A. Define G = A\(
⋃
∞ Tn). Therefore, G is residual in

A and for all p ∈ A the plaque Q(p) is an arc of the form Aq (containing p), and this arc
does not separate D.

A decomposition is arc-connected if each plaque is arc-connected.

PROPOSITION 6.2.6. If Q is an arc-connected cw-decomposition on D then there is a
residual set G ⊂ D such that Q(x) is an arc for all x ∈ G.

Proof. If a plaque is not an arc then it has a ramification point and contains a triod. By
Moore’s theorem [35], at most a countable number of disjoint triods can be embedded
in the plane. Then, the set of plaques with ramification points is countable. Denote by
Q1, Q2, . . . such plaques. Since each Qn is closed and has empty interior, its complement
in the disk D, Un = D\Qn , is an open and dense subset of D. Then, G = ∩n≥1Un is a
residual set of points x such that Q(x) is an arc. �

If F is a dendritation of a surface we say that y ∈ F(x) is a ramification point if
F(x)\{y} has at least three components in the plaque topology.

THEOREM 6.2.7. If F is a dendritation of a compact surface S, then there is a residual
set G ⊂ S such that F(x) has no ramification for all x ∈ G. For all x ∈ G the leaf F(x)
with the plaque topology is a one-dimensional manifold: R, [0,+∞), [0, 1] or the circle.

Proof. By Proposition 4.1.10 and Theorems 4.3.4, 4.2.2 we know that: τF is a metric
topology, the leaves are arc-connected in τF and each leaf has a countable basis with
respect to τF . Arguing as in the proof of Proposition 6.2.6 we have that the number of
leaves with ramification points is at most countable. Since each leaf is a meagre set (by
the definition of cw-foliation), the set of points in leaves without ramifications is a residual
set G. Then, the result follows by the classification of one-dimensional manifolds, see for
example [29]. �

Remark 6.2.8. On a residual set, as in Theorem 6.2.7, one-dimensional manifolds can
occur. For example, a torus can be foliated by circles. Also, a minimal flow on the torus has
all the leaves homeomorphic to R. Using Example 6.2.5 we can define a cw-foliation of the
sphere (identifying two disks by the boundary) with a residual set of leaves homeomorphic
to one-dimensional manifolds with boundaries.
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Remark 6.2.9. It would be interesting to extend Theorem 6.2.7 without assuming local
connection of the plaques.

In the next result we will use the stable and unstable cw-foliations F s, Fu that were
constructed in §5.1 for an arbitrary cw-expansive homeomorphism of a Peano continuum
(as our compact surface S).

THEOREM 6.2.10. If f : S→ S is a cw-expansive homeomorphism and F s, Fu are
dendritations, then there is a residual set G ⊂ S such that for all x ∈ G it holds that F s(x)
and Fu(x) are homeomorphic to R or [0,+∞).

Proof. Take from Theorem 6.2.7 two residual sets Gs and Gu corresponding to F s and
Fu , respectively, and define G = Gs

∩ Gu . For x ∈ G we know that the stable and the
unstable leaf of x is a one-dimensional manifold. In Theorem 5.1.2 we proved that no
leaf Fσ (x) is plaque-compact. By Theorem 4.2.6, this implies that no leaf Fσ (x) is a
Peano continuum in the relative topology of τ (the topology of the surface). Since [0, 1]
and the circle are Peano continua we know from Theorem 5.1.2 that F s(x) and Fu(x) are
homeomorphic to R or [0,+∞) for each x ∈ G. �

Remark 6.2.11. In the examples known to the author, for every cw-expansive
homeomorphism of a compact surface there is a residual set of points whose stable
and unstable leaves are homeomorphic to R and just a countable number of leaves are
homeomorphic to [0,+∞).

6.3. Graph-like continua and decompositions. In this section we develop a technique
to construct examples of decompositions.

Let I, J ⊂ R be compact intervals. Consider a continuum with empty interior C ⊂ I ×
J disjoint from I × ∂ J and such that for each x ∈ I the set C ∩ [{x} × J ] is connected
and non-empty. In this case we say that C is a graph-like continuum. For such a continuum
C , define

U+ = {(x, y) ∈ I × J : if (x, y′) ∈ C then y > y′},

U− = {(x, y) ∈ I × J : if (x, y′) ∈ C then y < y′}.

We have that I × J is the disjoint union of C,U+ and U−.
We will define a decomposition of I × J associated with a graph-like continuum C .

Define v : I × R→ R2 by v(p)= (0, dist(p, C)), where dist(p, C)=min{dist(p, q) :
q ∈ C}. Since v is Lipschitz, it defines a continuous flow φ on I × R with equilibrium
points at every point of C . For p ∈ I × J define QC (p)= C if p ∈ C and

QC (p)= {q ∈ I × J : ∃t ∈ R such that φt (p), φt (q) ∈ I × ∂ J }

if p /∈ C . Recall from §3.1.1 that the continuity of a decomposition is with respect to the
Hausdorff metric.

PROPOSITION 6.3.1. If C ⊂ I × J is a graph-like continuum then QC is a cw-
decomposition and:
(1) QC (p) is the graph of a continuous map I → J for all p /∈ C;
(2) QC is continuous at every p /∈ C;
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FIGURE 9. The decomposition is continuous at x and discontinuous at y (approximate y from below).

(3) QC is continuous (at every point in C) if and only if C ∩ ∂U+ = C ∩ ∂U−;
(4) [I × J ]/QC is an arc.

Proof. Fix p ∈U+. Define L± as the components of I × ∂ J contained in ∂U±,
respectively. Take T (p) ∈ R such that φT (p)(p) ∈ L+. Since L± are transverse to φ we
have that T :U+→ R is continuous. From the definition of QC we have that QC (p)=
φ−T (p)(L+), given that p ∈U+. Therefore, QC (p) is the graph of a continuous map for
all p ∈U+. In a similar way this conclusion holds for all p ∈U−. This implies that each
QC (p) is a continuum meeting ∂(I × J ). Also, no QC (p) has interior points.

In order to conclude that QC is a decomposition it only remains to prove the upper
semicontinuity. The continuity of the flow φ implies that the functions whose graphs
are QC (p), for p /∈ C , vary with continuity. This proves the continuity of QC at the
points p /∈ C . Now consider p ∈ C and pn→ p and assume without loss of generality that
pn ∈U+. We have that T (pn)→−∞. Take qn ∈ QC (pn) with qn→ q. By the continuity
of T we have that q ∈ C . This proves the upper semicontinuity of QC at p ∈ C . Therefore
QC is a decomposition.

With the previous notation, we have that QC (pn)→ C ∩ ∂U+. Therefore, QC is
continuous at points in C if and only if C ∩ ∂U+ = C ∩ ∂U−. In order to conclude that
the quotient is an arc, note that, except L±, every plaque separates the rectangle I × J .
This also implies that QC is codendritic and a cw-decomposition. �

Example 6.3.2. In the square [−1, 1] × [−1, 1] consider the graph-like continuum

C = ([−1, 1] × {0}) ∪ ({0} × [0, 1/2]).

The decomposition QC induced by C is shown in Figure 9. We see that it can be continuous
at some x while not being continuous at some y ∈ QC (x).

Example 6.3.3. In the square [−2, 2] × [−2, 2] consider the graph-like continuum

C = ({0} × [−1, 1]) ∪ {(x, sin(1/x)) : 0< |x | ≤ 2}.

We have that QC is a continuous decomposition. It is illustrated in Figure 10.
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FIGURE 10. A continuous decomposition with a plaque that is not arc-connected.

FIGURE 11. The (non-locally connected) leaf C is not a countable union of small plaques.

Example 6.3.4. Consider K ⊂ [0, 1] a Cantor set and define the graph-like continuum

C = (K × [1/3, 2/3]) ∪ ([0, 1] × {1/3}).

Consider the decomposition QC in the square [0, 1] × [0, 1]. See Figure 11. If we think
of QC as a cw-foliation of this square and we consider a complete basis of small open sets
then we see that C is a leaf that is not a countable union of plaques.

6.4. The foliated box. The purpose of the present section is to give a characterization
of the standard foliated two-dimensional box (a product structure of a rectangle).

PROPOSITION 6.4.1. Let Q : D→ C(D) be a cw-decomposition. If P is an arc-connected
plaque that separates D and Q is continuous at every x ∈ P then P is an arc and P ∩ ∂D
has exactly two points.

Proof. By Janisewski’s Theorem 3.1.7†, we have that P ∩ ∂D is disconnected because P
is a continuum separating D. Take a, b ∈ ∂D in different components of P ∩ ∂D. Since P
is arc-connected there is an arc γ ⊂ P from a to b. We can assume that γ ∩ ∂D = {a, b}.

† In this case, Jordan’s closed curve theorem could also be applied.
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FIGURE 12. A non-separating plaque not being an arc in a continuous arc-connected decomposition of a disk.

We will show that γ = P . Arguing by contradiction assume that there is z ∈ P\γ .
Denote by D1, D2 the components of D\γ and suppose that z ∈ D1. Take y ∈ γ and
xn ∈ D2 with xn→ y. Since Q is continuous at every point of P , it is continuous at y.
But z is not in the limit of Q(yn). This contradiction proves that P = γ . �

Remark 6.4.2. We wish to remark the necessity of the hypothesis in Proposition 6.4.1. The
arc connection is needed by Example 6.3.3, where C is separating and continuous but not
arc-connected. In Example 6.3.2 we see that Q must be continuous at every point of C in
order to conclude that it is an arc, even being arc-connected and separating. We need to
assume that C is separating in order to conclude that it is an arc. An example is illustrated
in Figure 12.

PROPOSITION 6.4.3. If Q : D→ C(D) is a continuous arc-connected cw-decomposition,
then D/Q is an arc.

Proof. By definition of cw-decomposition we know that D/Q is a dendrite. In order to
prove that it is an arc it is sufficient to prove that if Q(x) separates D/Q then it separates
into two components, and this is a direct consequence of Proposition 6.4.1. �

Example 6.4.4. Proposition 6.4.3 is not true if we do not assume the arc-connection of
each Q(x). An example can be constructed based on Wada’s lakes. See Figure 13. A
similar decomposition was previously considered in [13, Remark 4.11]. It is a continuous
decomposition Q of a disk D such that Q/D is a triod.

For the following proof we recall that a size function is a continuous function µ :
C(D)→ R such that: µ(C)≥ 0 for all C ∈ C(D) with equality if and only if C is a
singleton; if C ⊂ C ′ and C 6= C ′ then µ(C) < µ(C ′). Size functions exist [37] and in
fact were introduced by Whitney in [48] for the study of regular families of curves (very
similar to our case). The following result characterizes standard foliated boxes (or product
structure as defined in §3.2). Its proof uses techniques from [48, Theorem 17A].

THEOREM 6.4.5. If Q : D→ C(D) is a C-smooth, continuous cw-decomposition with two
non-trivial plaques contained in ∂D then it is a product structure.
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FIGURE 13. Wada’s lakes.

FIGURE 14. The construction of suitable coordinates.

Proof. In Proposition 3.2.15 we proved that every C-smooth decomposition is dendritic
(in particular, arc-connected). Then, we can apply Proposition 6.4.3 to conclude that the
quotient D/Q is an arc. Therefore, it has two non-separating plaques. Let E1, E2 ⊂ ∂D
be the non-separating plaques of Q. Take two arcs A1, A2 ⊂ ∂D intersecting E1 and E2

in one point to each one, as shown in Figure 14.
Since D/Q is an arc, Q(z) separates E1 from E2 for all z ∈ D. Then Q(z) ∩ Ai 6= ∅ for

all z ∈ D and i = 1, 2. By Proposition 6.4.1 we have that Q(z) ∩ Ai is a singleton. Define
π : D→ A1 by {π(z)} = A1 ∩ Q(z). Proposition 6.4.1 also gives us that each Q(z) is an
arc. Define 0 : D→ C(D) such that 0(z)⊂ Q(z) is the arc from z to π(z).

Let µ : C(D)→ R be a size function and define h : D→ A1 × [0, 1] by

h(z)= (π(z), µ(0(z))/µ(Q(z))). (14)

Since Q has no trivial plaques, we have that µ(Q(z)) 6= 0 for all z ∈ D. Let us show that
h is continuous. As Q(z) ∩ A1 is a singleton for all z ∈ D we have that π is continuous.
Given that Q is C-smooth, we conclude that 0 is continuous. Since µ is continuous we
conclude that h is continuous.
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FIGURE 15. Every plaque is an arc from the left side to the right side but Q is not C-smooth. Also, the quotient
space is an arc.

To prove that h is injective, suppose that h(z)= h(z′). Then π(z)= π(z′) and
µ(0(z))/µ(Q(z))= µ(0(z′))/µ(Q(z′)). Therefore z, z′ are in the same plaque and
µ(Q(z))= µ(Q(z′)), which implies thatµ(0(z))= µ(0(z′)). Since every plaque is an arc
we conclude that z = z′ and the injectivity of h. Similar arguments prove the surjectivity
of h and we conclude that h is a homeomorphism. Denote by Q̃ the decomposition of
the rectangle A1 × [0, 1] in horizontal lines {a} × [0, 1] for a ∈ A. Since it holds that
h(Q(z))= Q̃(h(z)) the proof ends. �

It is natural to ask if a continuous arc-connected cw-decomposition Q : D→ C(D)
must be a product structure. In the next example we show that this is not always the case.

Example 6.4.6. The cw-decomposition illustrated in Figure 15 is not a product structure
because it is not C-smooth.

6.5. Smooth dendritations. Let F be a cw-foliation on a closed surface S with atlas
A= {QU :U ∈ U}.

Definition 6.5.1. We say that cw-foliation F is C-smooth if each QU is a C-smooth
decomposition.

By Proposition 3.2.16 we know that monotone restrictions of a C-smooth cw-
decomposition are C-smooth. Then, a C-smooth cw-foliation is defined ever a complete
basis.

THEOREM 6.5.2. Every C-smooth cw-foliation of a closed surface S is a standard foliation
with a finite set of prong-singularities and no 1-prongs.

Proof. Consider a cw-atlas A= {QU :U ∈ U} of the C-smooth cw-foliation F . By
Proposition 3.2.15 we have that F is a dendritation. Take U ∈ U such that D =U is a
disk and define Q = Q D .

In this paragraph we will show that if z is an end point of the dendrite Q(z) then z ∈ ∂D.
Arguing by contradiction suppose that there is z ∈ D\∂D that is an end point of its plaque.
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FIGURE 16. A finite number of components of D\Q(x) are disks with x in their boundary.

Take zn ∈ D\Q(z) such that zn→ z. Since Q is codendritic, for each n ≥ 1 there is a
plaque Pn separating Q(z) from zn . Consider an arc An ⊂ Pn separating Q(z) from zn

such that An ∩ ∂D = {xn, yn}. Consider a Riemannian metric on D and for each n ≥ 1 a
geodesic arc γn from z to zn . Since An separates z from zn , we can take z′n ∈ γn ∩ An .
Since γn is a geodesic arc we have that z′n→ z. Taking subsequences we can assume
that xn→ x and yn→ y with x, y ∈ Q(z) ∩ ∂D. Given that Q is C-smooth we have that
An→ A where A is an arc from x to y. Since z′n ∈ An and zn→ z we have that z ∈ A. The
upper semicontinuity of Q gives us that A ⊂ Q(z). Since z /∈ ∂D we have that z is not an
end point of Q(z). This contradiction proves that every end point of each plaque is in the
boundary of D.

Now we will show that for all compact sets K ⊂ int(D) the set of points x ∈ K such
that x is a ramification point of Q(x) is finite. The result of the previous paragraph implies
that for all x ∈ D every component of Q(x)\{x} meets ∂D. Now suppose that there is a
sequence yn→ y such that yn ∈ K and each yn is a ramification point of Q(yn). Denote
An = Q(yn) ∩ ∂D. We have that each An has at least three points. We can take an, bn ∈ An

such that dist(an, bn)→ 0 and yn ∈ Q(an, bn)†. This contradicts that Q is C-smooth and
proves that the set of ramification points can only accumulate on ∂D. Then, there is a finite
number of ramification points in the whole surface.

Take x ∈ S and a small disk D around x . Assume that in D\{x} there are no ramification
points. We know that Q D(x) separates D in at least two components. Some of these
components may be far from x and only a finite number of them contain x in their
boundary, see Figure 16. Denote by D1, . . . , Dn the closures of such components.

Since the only possible ramification point in D is x , we know that in each Di every
plaque is an arc. As the end points of the plaques are in the boundary, each plaque is an
arc starting and ending at the boundary. Given y in the interior of Di , the arcs Q Di (x) and
Q Di (y) determine two arcs A, B contained in the boundary of Di as shown in Figure 17.

Now we will prove that there is a neighborhood V of x in Di such that every z ∈ V
separates Q Di (z) in two arcs γA(z) and γB(z) such that γA(z) cuts A and is disjoint from
B and γB(z) cuts B and is disjoint from A. Arguing by contradiction, assume first that

† For two points a, b in a common plaque, Q(a, b) is the arc in the plaque from a to b.
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FIGURE 17. The arcs A and B cut Q D1 (x) and Q D1 (y) in one point.

there is zn→ x such that Q Di (zn) ∩ B = ∅. We can take two points an, bn ∈ A ∩ Q Di (zn)

such that dist(an, bn)→ 0. This contradicts that Q Di is C-smooth. Therefore, if z is close
to x then Q Di (z) cuts A and B. A similar argument proves that if z is sufficiently close to
x then one component of Q Di (z)\{z} cuts A and not B while the other component cuts B
and not A.

Define K as the union of all the arcs starting and ending in A and contained in a plaque
of Q Di . Considering that the arcs defining K may be trivial, we have that A ⊂ K . In this
way K is a continuum. For u, v ∈ Di in a common plaque define arc(u, v) as the arc from
u to v inside the plaque. For u ∈ V define π(u) as the first point of γA(u) in A. Define
0 : V → C(Di ) as

0(u)= arc(u, π(u)) ∪ K .

In this paragraph we show that 0 is continuous. Take u ∈ V and un→ u. We can
assume that 0(un) converges and π(un)→ v ∈ γA(u) ∩ A. Since Q is C-smooth we have
that arc(un, π(un))→ arc(u, v). It is clear that arc(u, π(u))⊂ arc(u, v). Consequently,
0(u)⊂ lim 0(un). Since arc(π(u), v)⊂ K and

arc(u, v)= arc(u, π(u)) ∪ arc(π(u), v)

we have that lim 0(un)⊂ 0(u). This proves the continuity of 0.
Consider a size function µ : C(Di )→ R and define ϕ : V → R as ϕ(u)= µ(0(u)). The

function ϕ is continuous and increases along a plaque from A to B. The level sets of ϕ and
the plaques give coordinates and define a product structure in a neighborhood of x in Di

(contained in V ).
Arguing in the same way in the sectors D1, . . . , Dn an n-prong structure is defined

around x . As we proved, n 6= 1 and the set of n-prongs with n ≥ 3 is finite. This finishes
the proof. �

6.6. Continuous dendritations. Let A= {QU :U ∈ U} be an atlas of a dendritation F
over the complete basis U of a surface S.

Definition 6.6.1. We say that a dendritation F is continuous if for all x ∈U ∈ U there is
a closed disk D ⊂U such that x is in the interior of D and Q D is continuous.

This definition of continuity is stronger than the one given in §4.4 because we require
the continuity on disks instead of arbitrary neighborhoods.

Denote by Q1 the decomposition of D = [−1, 1] × [−1, 1] in horizontal plaques (a
foliated box). Consider the equivalence relation on D generated by (x, 1)∼ (−x, 1) for all
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x ∈ [−1, 1]. Denote by Q2 the induced decomposition on the quotient space D̃ = D/∼.
The point {(0, 1)} in D̃ is called a 1-prong of Q2.

THEOREM 6.6.2. Every continuous dendritation is a foliation possibly with a finite
number of 1-prongs.

Proof. By Proposition 6.4.1 there are no ramification points, that is, every plaque is an arc.
Take x ∈ S and a disk D around x with Q D continuous. From Proposition 6.4.3 we know
that D/Q is an arc. Then there are exactly two non-separating plaques that will be called
E1, E2. From Proposition 6.4.1, every separating plaque cuts the boundary of D at exactly
two points. Reducing D with two separating plaques (if needed) we can assume that E1

and E2 are non-trivial (are not singletons).
In this paragraph we will show that if E1, E2 ⊂ ∂D then Q is a product structure.

For this purpose we will show that Q is C-smooth and apply Theorem 6.4.5. Arguing by
contradiction assume that Q(xn, yn) does not converge to Q(x, y) assuming that xn→ x ,
yn→ y and yn ∈ Q(xn). Taking a subsequence we can assume that Q(xn, yn)→ C for a
continuum C ⊂ D. Since Q(xn, yn)⊂ Q(xn) and Q is continuous we have that C ⊂ Q(x).
Therefore, C is an arc because Q(x) is an arc. Moreover, x, y ∈ C . Since C 6= Q(x, y),
we have that y (or x) is an interior point of the arc C . Let z ∈ C be the end point of C that
is not in Q(x, y). Consider zn ∈ Q(xn, yn), an interior point, such that zn→ z. Since the
dendritation is continuous there is a disk D′, a neighborhood of z, such that Q′ = Q|mD′
is continuous. We can assume that D′ is so small that y, yn /∈ D′ for all n ≥ 1. Therefore,
Q′(zn) is a sequence of arcs separating D′. We can find n1, n2, n3 such that z and Q′(zni )

are in the same component of D′\Q′(zn j ) if i 6= j , i, j ∈ {1, 2, 3}. Then Q′ has at least
three non-separating plaques. This contradicts Proposition 6.4.3 in the disk D′ and proves
that Q is C-smooth. Since E1, E2 are non-trivial we can apply Theorem 6.4.5 to conclude
that Q is a product structure.

If x ∈ E1 (i.e. E1 is not contained in the boundary of D) we can cut D along E1 and
reduce the proof to the previous case (E1, E2 ⊂ ∂D). In this case we obtain that Q is a
1-prong decomposition around x . This also proves that the number of 1-prongs is finite. �

In the following result the word foliation means a one-dimensional C0 foliation in the
standard sense (without singular points).

COROLLARY 6.6.3. A dendritation is a foliation if and only if it is continuous and C-
smooth.

Proof. It follows by Theorems 6.5.2 and 6.6.2. �

6.7. cwF -expansivity and dendritations. If two arcs α, β in a surface meet at x we
say that they are topologically transverse at x if the components of α\β are in different
components of D\β, where D is a disk separated by β and containing α. See Figure 18.

The following result gives some idea of how the stable and the unstable cw-foliations
of a cwF-expansive homeomorphism are distributed in the surface.

THEOREM 6.7.1. If f is a cwF -expansive homeomorphism of a compact surface S then:
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FIGURE 18. Two arcs topologically transverse at the point x .

(1) F s and Fu are f -invariant dendritations and no leaf is a Peano continuum;
(2) there is a residual set G ⊂ S such that F s(x) and Fu(x) are non-compact one-

dimensional manifolds for all x ∈ G;
(3) there is a subset H ⊂ G that is dense in S such that F s(x) and Fu(x) are

topologically transverse at x for all x ∈ H.

Proof. By Theorem 5.1.2 we know that F s and Fu are f -invariant cw-foliations without
plaque-compact leaves. We start by proving the local connection of stable and unstable
plaques to conclude that they are dendritations. Arguing by contradiction, let P ⊂ S
be a non-locally connected stable continuum. By Theorem 3.1.4 we can consider Pn a
sequence of subcontinua of P such that Pi ∩ Pj = ∅ if i 6= j and dist(Pn, P∗)→ 0 for
some non-trivial continuum P∗ ⊂ P . Take x ∈ P∗ and a small disk D around x such that
every Pn separates D for every n ≥ n0, for some n0. We can assume that D = Br (x)
for some r > 0. Denote by Qs and Qu the stable and the unstable cw-decompositions
of D, respectively. Consider xn ∈ Pn ∩ D such that xn→ x and each Qs(xn) separates
D. Taking a subsequence if needed we can assume that Qs(xn) converges to a stable
continuum C ⊂ Qs(x). Moreover, we can assume that the sequence of plaques Qs(xn)

is monotonous (i.e. if i < j < k then Qs(x j ) separates Qs(xi ) from Qs(xk)). For the value
of r > 0 fixed above (D = Br (x)) take ε > 0 given by Theorem 2.4.2. Denote by Gn the
component of D between C and Qs(xn). Since Qs(xn)→ C in the Hausdorff metric,
there is n1 > 0 such that Qs(xn)⊂ Bε(C) for all n ≥ n1. Consequently, Gn ⊂ Bε(C) for
all n ≥ n1. If ε is small, we can take yn ∈ ∂Br/2(x) ∩ Qs(xn) and an arc γn ⊂ Br/2(x)
from xn to yn . Taking a subarc of γn we can assume that γn ⊂ Gn ∩ Br/2(x) meeting
C and Qs(xn). This proves that (C, Gn, Qs(xn)) is an (r, ε, x)-capacitor for all n ≥ n1.
Applying Theorem 2.4.2 we can take an unstable plaque Qu(z) cutting C and Qs(xn).
This unstable plaque cuts Qs(xm) for all m ≥ n. Since the plaques Qs(xn) are contained
in the stable plaque P (considered at the beginning of the proof) we have a contradiction
with the cwF-expansivity of f . This proves that F s and Fu are dendritations.

Since cwF-expansivity implies cw-expansivity we can now apply Theorem 6.2.10 to
obtain the residual set G.
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By Theorem 5.1.2 no stable leaf is plaque-compact and, by Theorem 4.2.6, a leaf is
plaque-compact if and only if it is a Peano continuum. Therefore, no stable leaf is a Peano
continuum.

Let D ⊂ S be a small disk and take an interior point x ∈ D. We can take a sequence
xn ∈ G such that xn→ x . Consider a stable arc γ s

n from xn to yn ∈ ∂D. We can assume that
yn→ y and γn→ C where C is a dendrite containing x and y. Taking a subsequence we
can suppose that yn is monotone in ∂D. Consider four consecutive arcs γ s

n+1, . . . , γ
s
n+4.

As before, for n large, we can apply Theorem 2.4.2 to the capacitor determined by γ s
n+1

and γ s
n+4 to find a point p ∈ G between γ s

n+2 and γ s
n+3 whose unstable arc cuts γ s

n+1 or
γ s

n+4. Suppose that it cuts γ s
n+1. Then, it cuts γ s

n+2. By the cwF-expansivity of f , the
unstable arc of p intersects γ s

n+2 in finitely many points. By construction, at least one of
these cuts is topologically transverse. �

6.8. cw1-expansivity. In this section we show that every cw1-expansive
homeomorphism of a compact surface is expansive.

LEMMA 6.8.1. Let Q1, Q2 be two cw-decompositions of D such that Q1(x) ∩ Q2(x)=
{x} for all x ∈ D, ∂D is the union of two arcs α and β with extreme points p, q and
α ⊂ Q1(a) for some a ∈ ∂D. Then for all x ∈ α, x /∈ {p, q}, it holds that Q2(x) ∩ β 6= ∅.

Proof. Suppose that for some x ∈ α, x 6= p, q, we have that Q2(x) ∩ β = ∅. We know
that D/Q2 is a dendrite. Since Q2(x) ∩ Q1(x)= {x} we have that Q2(x) is an end of
D/Q2. In the quotient dendrite we can find a point say Q2(y) that separates D/Q2 and is
arbitrarily close to Q2(x). Then Q2(y) cuts Q1(a) in at least two points, contradicting our
hypothesis. �

Definition 6.8.2. Given two cw-decompositions Q1, Q2 of a disk D we say that ∂D is
a (Q1, Q2)-rectangle if there are x1, y1, x2, y2 ∈ ∂D such that ∂D is contained in the
ordered union Q1(x1) ∪ Q2(y1) ∪ Q1(x2) ∪ Q2(y2).

PROPOSITION 6.8.3. Let Q1, Q2 be two cw-decompositions of a disk D such that
Q1(x) ∩ Q2(x)= {x} for all x ∈ D and ∂D is a (Q1, Q2)-rectangle. Then there is
a homeomorphism h : D→ [0, 1] × [0, 1] sending the plaques of Q1 and Q2 onto
horizontal and vertical segments, respectively.

Proof. We know that D/Q1 and D/Q2 are dendrites. Let us show that they are arcs. For
this purpose we will show that they have no ramification point. Suppose by contradiction
that Q1(x) (similarly for Q2) is a ramification of the dendrite D/Q1 for some x ∈ D. Then
Q1(x) separates D into at least three components. Consequently, Q1(x) ∩ ∂D has at least
three components. Since ∂D is a (Q1, Q2)-rectangle, we have that Q1(x) cuts in at least
two points to a plaque of Q2 in the boundary of D. This contradiction proves that D/Q1

is an arc.
Let h : D→ [D/Q1

] × [D/Q2
] as h(x)= (Q1(x), Q2(x)). We have that h is

continuous and injective. In order to conclude that it is a homeomorphism it is sufficient to
prove that it is surjective. The surjectivity in this case means that Q1(x) cuts Q2(y) for all
x, y ∈ D, and this follows by Lemma 6.8.1. �
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PROPOSITION 6.8.4. If Q1, Q2 is a pair of dendritic cw-decompositions of D and
Q1(x) ∩ Q2(x)= {x} for all x ∈ D then (Q1, Q2) is a generating pair.

Proof. Fix a point x ∈ D. Taking a small subdisk around x we can assume that the
intersection of each component of Qi (x)\{x} with ∂D is a single point, i = 1, 2. In
this way D\Qi (x) has a finite number of components. By Lemma 6.8.1 we know that
each component of D\Q1(x) is separated by a component of Q2(x)\{x}. Therefore, the
components of Q1(x)\{x} and Q2(x)\{x} are alternated in the disk. Denote by D′ a disk
contained in D bounded by an arc α1

⊂ Q1(x), an arc α2
⊂ Q2(x)\{x} and an arc γ ⊂ ∂D.

Assume that α1 and α2 are consecutive.
By Lemma 6.8.1 we have that for each interior point y ∈ α1 there is an arc β2

y (of Q2)
from y to γ . Also, for each interior point z ∈ α2 there is a stable arc βu

z from z to γ . Since
αs and αu are consecutive, if z and y are close to x we have that βs

y cuts βu
z . In this way

we obtain a (Q1, Q2)-rectangle and we can apply Proposition 6.8.3 to prove that both
decompositions generate a neighborhood of x in D′.

Repeating this argument in each sector we conclude that Q1 and Q2 generate a (full)
neighborhood of x . �

THEOREM 6.8.5. Every cw1-expansive homeomorphism of a compact surface is
expansive.

Proof. If f is cw1-expansive then by Proposition 6.8.4 we have that F s and Fu generate.
Then, the result follows by Theorem 5.3.4. �

As usual, �( f ) denotes the non-wandering set of f .

COROLLARY 6.8.6. For a homeomorphism f : S→ S of a compact surface the following
statements are equivalent:
(1) f is cw1-expansive;
(2) f is expansive;
(3) f is 2-expansive and �( f )= S;
(4) f is conjugate to a pseudo-Anosov diffeomorphism without 1-prongs.

Proof. We have that 2→ 1 on arbitrary metric spaces. The equivalence of 2 and 4 was
shown in [18, 30]. The equivalence of 2 and 3 follows by [6]. We have that 1→ 2 by
Theorem 6.8.5. �
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