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SUMMARY
The behavior of mechanical manipulators with backlash
is analyzed. In order to acquire and study the signals an
experimental setup is implemented. The signal processing
capabilities of the wavelets are used for de-noising the
experimental signals and the energy of the obtained
components is analyzed. To evaluate the backlash effect
upon the robotic system, it is proposed an index based
on the pseudo phase plane representation. Several tests are
developed that demonstrate the coherence of the results.

1. Introduction
Robotic systems have nonlinearities in the actuators that
include deadzone, backlash, and saturation. This problem
is particularly important in robotic manipulation where high
precision is needed. In fact, the backlash is one of the most
important nonlinearities that limit the performance of the
mechanical manipulators. This dynamic phenomenon has
been an area of active research, but due to its complexity
well-established conclusions are still lacking.

The backlash in robotic systems has two main aspects: the
identification and the control. Several authors have addressed
the problem of identification.1–6 Dagalakis and Myers1

proposed a technique based on the coherence function
to detect backlash in robotic systems. Another technique,
proposed by Stein and Wang,2 was based on the analysis of
momentum transfer for detecting the backlash in mechanical
systems. There have been also efforts toward the backlash
detection using artificial intelligence schemes and state space
observers.4,5 Trendafilova and Brussel6 present several tools
to analyze the nonlinear dynamics of the robot joints.

To mitigate the effects of the backlash, several authors
studied the control of the mechanical systems with
this nonlinearity.7–9 Nordin and Gutman8 presented a
survey of the techniques for controlling mechanical
systems with backlash. The techniques included the
use of linear controllers, such as proportional–integral–
derivative controller (PID), state feedback, and observer-
based algorithms. A control using the describing function,
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which is a common method for the analysis and synthesis of
nonlinear systems, was also adopted.7 Nonlinear,10 neuro,11

and fuzzy12 controllers have been also proposed. More
recently, the fractional order controllers were also applied to
suppress the backlash in mechanical systems.9 The problem
of reducing the effects of backlash was also studied in
other robotic applications, including systems with joint13 and
link14 flexibility, in grippers,15 and anthropomorphic hands.16

Modern robots use precision gears to reduce backlash.
However, its elimination may be impracticable, because
there are several sources of the effect which are impossible
to remove completely.1 Therefore, in order to reduce the
backlash and its effects, a good understanding of this
phenomenon is needed. In this perspective, we investigate
the behavior of a mechanical manipulator with backlash in
the joints.

Bearing these ideas in mind, this paper is organized
as follows. Section 2 describes briefly the robotic system
used to capture the signals. Sections 3 and 4 present
some fundamental concepts, and the experimental results,
respectively. Finally, Section 5 outlines the main conclusions
and points out the plans for future work.

2. Experimental Platform
In order to analyze signals that occur in a robotic manipulator
was developed an experimental platform. The platform has
two main parts: the hardware and the software components.17

The hardware architecture is shown in Fig. 1 (left).
Essentially it is made up of a mechanical manipulator, a
computer, and an interface electronic system. The interface
box is inserted between the arm and the robot controller,
in order to acquire the internal robot signals. The interface
system captures also external signals, such as those arising
from accelerometers and force/torque sensors. The modules
are made up of electronic cards specifically designed for this
work. The function of the modules is to adapt the signals and
to isolate galvanically the robot’s electronic equipment from
the rest of the hardware required by the experiments.

The software package runs in a Pentium 4, 3.0 GHz PC and,
from the user’s point of view, consists of two applications.
One, the acquisition application, is a program made up of
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Fig. 1. Block diagram of the hardware architecture (left) and accelerometer 2 mounted on the robot arm (right).

two parts: the graphical user interface (GUI) module and
the real time module. The other application is an Analysis
Package that analyses the data obtained and recorded by the
acquisition application. The real time software, running in
the Hyperkernel, was developed in C based on a standard
Windows NT/2000 development tool (MS Visual Studio)
and the robot controller software was implemented in the
advanced control language (ACL) proprietary language.
The Windows NT/2000 Software is made up of the GUI
module of the acquisition system and Analysis Package. The
acquisition system software was developed in C++ with MS
Visual Studio. The Analysis Package, running off-line, reads
the data recorded by the acquisition system and examines
them. The Analysis Package allows several signal processing
algorithms such as, Fourier transform, correlation, time
synchronization, etc. With this software platform both the
Hyperkernel and the Analysis Package tasks can be executed
on the same PC.

The manipulator is a vertical articulated robot with five
rotational joints. The third joint connects the upper arm
to the forearm of the robot. This joint is driven through
a servomotor coupled to the harmonic drive gear by a
timing belt. By adjusting the belt tension of the third joint
two-stage transmission, three distinct degrees of backlash
were introduced that are qualitatively classified as: (i) low
backlash, (ii) medium backlash, and (iii) high backlash.
The vibration response is measured with the accelerometers
1 and 2 that are mounted in the end of the upper arm
and forearm, respectively (see Fig. 1). The robot motion is
programmed in a way such that only the third joint is driven
and, consequently, it oscillates over a predefined range from
the vertical position. The axis of the rotational joints 2, 3, and

4 are parallel; therefore, the effects of the third axis rotation
affect directly the adjacent joints. During the motion several
signals are recorded with a sampling frequency of fs =
750 Hz. The tests developed show that this sampling fre-
quency is adequate to capture the relevant dynamic behavior
of the system. The signals come from different sensors, such
as accelerometers, wrist force and torque sensor, position
encoders, and joint actuator current sensors. Figure 1 (right)
depicts the accelerometer 2 mounted on the robot arm.

3. Main Concepts
This section presents briefly the fundamental concepts
involved in the experiments. In order to deal with the
noisy signals captured by the accelerometers the de-noise
capabilities of wavelets18 are used. Additionally, the system
behavior with backlash is analyzed through the pseudo phase
space (PPS).6

3.1. The wavelet transform
The continuous wavelet transform (CWT) is a generalization
of the windowed Fourier transform (WFT). The concept of
the WFT is very simple. We multiply the signal to be analyzed
x(t), by a moving window g(t − τ ), and then we compute
the Fourier transform of the windowed signal x(t) g(t − τ ).
Each FT gives a frequency domain “slice” associated with
the time value at the window center. Wavelet analysis is
performed in a similar way, in the sense that the signal is
multiplied by a function called wavelet. However, in the
CWT the width of the “window” changes as the transform
is computed. Considering the wavelet function ψ centered
at time τ and scaled by s, the CWT of the signal x(t) is
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Fig. 2. Simplified diagram of a signal wavelet multiresolution
analysis.

represented analytically by

CWT(s, τ ) = 1√|s|
∫ +∞

−∞
x(t)ψ

(
t − τ

s

)
dt . (1)

The CWT of the signal x(t) is a function of two
variables: translation τ , which corresponds directly to time,
and scale/dilation s, which indirectly relates to frequency
information. The transforming function ψ(t) is called mother
wavelet, and consists in a prototype for generating the other
window functions. The scale s, in the wavelet transform, is
similar to the scale used in maps. High scales give a global
view of the signal corresponding, in the frequency domain,
to the low frequencies. Low scales give detailed information
of a signal corresponding, in the frequency domain, to the
high frequencies.

The digital version of the CWT is the discrete wavelet
transform (DWT) that is considerably faster to implement in
a computer. A time-scale representation of a digital signal
can also be implemented using digital filtering techniques.
An efficient way to implement the DWT using filters was
developed by Mallat.19 Filters of different cutoff frequencies
are used to analyze the signal at different scales (see Fig. 2).
The signal is passed through a bank of high pass filters
to analyze the high frequencies giving detailed information
(Dn). Additionally, the signal is passed through a bank of low
pass filters to analyze the low frequencies giving a coarse
approximation (An). Then the decomposition of the signal
into different frequency bands is obtained by successive high-
pass and low-pass filtering of the time domain signal.

In what concerns to the wavelet function ψ(t) there is
a wide variety of wavelet families, proposed by different
researchers, that includes the Haar, Daubechies, Mexican
Hat, and Morlet wavelets. The function ψ(t) should reflect
the type of features present in the time series.20 Therefore, the

wavelet adopted in this paper is the Haar (Eq. (2)) function
due also to its simplicity and small computational time.

In this work we use the signal processing capabilities of
the DWT for de-noising the experimental signals:

ψ(t) =
⎧⎨
⎩

1 0 ≤ t < 1/2,

−1 1/2 ≤ t < 1,

0 otherwise.
(2)

3.2. The pseudo phase plane
The PPS is used to analyze signals with nonlinear behavior.
For the two-dimensional case it is called pseudo phase
plane (PPP).6,21,22 The proper time lag Td , for the delay
measurements, and the adequate dimension d ∈ N of the
space must be determined in order to achieve the phase space.
In the PPP the measurement s(t) forms the pseudo vector y(t)
according to

y(t) = [s(t), s(t + Td ), . . . , s(t + (d − 1)Td )]. (3)

The vector y(t) can be plotted in a d-dimensional space
forming a curve in the PPS. If d = 2 we have a two-
dimensional time delay space.

The procedure of choosing a sufficiently large d is formally
known as embedding and any dimension that works is called
an embedding dimension dE . The number of measurements
dE should provide a phase space dimension, in which the
geometrical structure of the plotted PPS is completely unfold,
and where there are no hidden points in the resulting plot.

Among others,21 the method of delays is the most
common method for reconstructing the phase space. Several
techniques have been proposed to choose an appropriate time
delay.22 One line of thought is to choose Td based on the
correlation of the time series with its delayed image. The
difficulty of correlation to deal with nonlinear relations leads
to the use of the mutual information. This concept, from
the information theory,23 recognizes the nonlinear properties
of the series and measures their dependence. The average
mutual information for the two series of variables t and t + Td

is given by

Iav(t, t + Td ) =
∫

t

∫
t+Td

F1{s(t), s(t + Td ))} log2

× F1{s(t), s(t + Td )}
F2{s(t)}F3{s(t + Td )} dtd(t + Td), (4)

where F1{s(t), s(t + Td )} is a bidimensional probability
density function and F2{s(t)} and F3{s(t + Td)} are the
marginal probability distributions of the two series s(t) and
s(t + Td ), respectively.

The index Iav allows us to obtain the time lag required
to construct the PPS. For finding the best value Td of the
delay, Iav is computed for a range of delays and the first
minimum is chosen. Usually, Iav is referred6,21,22 as the
preferred alternative to select the proper time delay Td .
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Fig. 3. Robot axis positions for joints 2–4 for the case (iii) (left) and electrical currents of robot axis motors 2–4 for the case (iii) (right).

Fig. 4. Signals of accelerometer 1 (bottom) and accelerometer 2
(middle and top).

4. Results
According to the platform described in Section 2 we adopt an
experiment in which the robot arm moves as a consequence
of the joint 3 rotation. By other words, the robot motion is
programmed in a way such that only the joint 3 is driven and
consequently it oscillates over a predefined range from the
vertical position.

Figures 3 and 4 present a typical time evolution of several
variables. All the captured robot signals were studied but,
due to space limitations, only the most relevant are depicted
in this paper.

Figure 3 (left) shows the axis positions of joints 2–4 for the
case of high backlash. It is actuated only the joint 3 but, due
to the dynamic coupling, the adjacent joints 2 and 4 oscillate
slightly. Figure 3 (right) depicts the electrical currents of
robot axis motors 2–4 for the high backlash (case (iii)). The
currents of the motors reveal the action of the robot control
system ensuring the position control.

Figure 4 (middle and bottom) shows the robot accelera-
tions for the case (iii). As referred previously, the
accelerometers 1 and 2 are mounted in the end of the upper
arm and forearm, respectively (see Fig. 1). The signals from

the accelerometers present a considerable noise and it is
difficult to extract information about the backlash effect.
Several tests demonstrated that the effects of the adjusted
backlash are captured only by the accelerometer 2. The
signals from the others sensors present significant less noise,
but the backlash effect is not observed by them. A priori
the accelerometers constitute sensors that are more prone
to capture the backlash effect, but the truth is that the
accelerometer 1 revealed to be useless due to the high level
of noise.

Figure 4 (top and middle) depicts the signal from the
accelerometer 2 for the cases (i) and (iii), respectively. The
signal corresponding to the case (iii) exhibits larger peaks
compared with the case (i). In spite of this detail, the effect of
the backlash becomes difficult to analyze due to the amount of
noise of the acceleration signals. Therefore, the signals must
be filtered in order to reduce the noise. First, it was tried a
low-pass Butterworth filter with different cutoff frequencies.
The resulting filtered signal presented a noise reduction,
but the backlash effect was also reduced. As an alternative
the wavelets were adopted. Preliminary tests, with several
wavelet families, were performed to verify their capabilities.
The Haar wavelet revealed good results and was adopted due
to its simplicity and low computational time.

Figure 5 depicts the wavelet decomposition tree with
the resulting frequency bands of the corresponding
approximation (An) and detail (Dn) components for each
level. Since the sampling rate of the captured signal is
750 Hz, the frequency ranges are approximately the values
shown in the diagram.

Figure 6 (left) shows the five level components obtained
through the process of decomposition of the accelerometer 2
signal in the case (i). The original signal captured
from the accelerometer 2 is shown at the top. The
approximation component reveals the low frequency part
of the acceleration 2. The five detail components show the
high-frequency parts for the different frequency bands. A
method of filtering based on the threshold level for each
component is used. For the distinct components the values
adopted for the threshold level, based on an experimental
procedure, are [3.74, 4.42, 4.26, 4.09, 3.92, 3.74] ms−2

for the wavelets components [A5, D1, D2, D3, D4, D5],
respectively. Figure 6 (right) shows at the top the resulted
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Fig. 5. Wavelet decomposition and the resulting frequency bands

Fig. 6. Wavelet decomposition of the accelerometer 2 signal for the case (i): noisy (left); filtered (right).

filtered signal where it is evident the effect of the backlash.
Figure 6 (right) shows also the six components of the filtered
signal, corresponding to the same frequency bands shown
in the left. Comparing the five detail components of the
filtered signal, with those ones from the original signal, it
is clear the effect of filtering. Additionally, the energy values
of each wavelet component are shown in Fig. 6. Comparing
the filtered with the noisy signal reveals that the process of
filtering removes about 21% of the signal energy.

To compare the wavelet transforms energies of each level,
the normalized values are adopted. Therefore the total energy
resulted from the sum of all the signal components is
the unity. Figure 7 depicts the normalized energy for the
six components resulted from the decomposition process.
The distribution of the energy in the frequency domain is
not uniform. The signal has the energy concentrate at low
frequency, namely at A1 component. Nevertheless, the signal
has also a significant amount of energy at D1 to D3 details.
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Fig. 7. Wavelet components energy of the accelerometer 2 original
and filtered signals for the three cases.

In terms of energy, the approximation component A1 is
the most important, either for the noisy signal or for the
filtered signal. However, the A1 component is not sensitive
to the backlash. Additionally, the details D1 of the noisy
signal for the cases (i), (ii), and (iii) have the same energy
approximately, while for the filtered signal, the component
energy for the three cases varies significantly. The detail
components D2 and D3 present a similar behavior to the one
described for the component D1. Therefore, comparing the
{D1, D2, D3} details we can say that these components of
the noisy signal are not sensitive to the backlash while the
filtered versions components changes with the backlash. For
the noisy signal, the detail components {D4, D5} present
identical energy, while for the filtered signal the correspon-
ding components energy for the three cases is negligible.

In conclusion, we can say that the approximation
component A1 is the signal responsible for the excitation
of the system, while the {D1, D2, D3} details of the filtered
signal are the components sensitive to the backlash. Finally,
the detail components {D4, D5} are essentially noise.

The filtered periodic signal can be expanded to a Fourier
series in the form

xFS(t) = a0 +
∞∑

k=1

[ak cos(kωt) + bk sin(kωt)]. (5)

An infinite number of terms (i.e. the fundamental term
and the harmonics) are required to fit the filtered signal
x(t) with xFS(t). However, we can assume that the filtered
signal x(t) (see Fig. 6 right at top) is composed by the
fundamental harmonic perturbed by the backlash effect.
Therefore, for the low backlash (case (i)), with k = 1, we
obtain (a0, a1, b1) = (−0.53, −5.69, 0.72). Figure 8 shows
the filtered accelerometer 2 signal for the case (i) and its
fundamental harmonic.

Figure 9 depicts the PPPs of the noisy and filtered
accelerometer 2 signals, for the experiment with the low and
high backlash, and the fundamental harmonic. As referred
previously, usually the time lag adopted for the PPS is based
on the correlation or mutual information of the time series.

Fig. 8. Filtered accelerometer 2 signal and its fundamental harmonic
for the case (i).

In this work, practice reveals that the best time lag is that one
corresponding to one quarter of the period of the fundamental
harmonic, which was adopted for the PPPs shown in Fig. 9.
Once again, we observe the advantages of filtering the signal.
Comparing the PPPs of the noisy signal for the cases (i)
(Fig. 9a) and (iii) (Fig. 9b) we can see the backlash effect;
however, due to noise it is difficult to measure it. This task
is simplified using the corresponding PPPs for the filtered
signal (Fig. 9c–d). In this line of thought was developed a
metric based on the error between the filtered signal and
its fundamental harmonic to analyze the influence of the
distinct levels of backlash in the robotic system. For the two
components x(t) and x(t − τ ) of the PPP, the index is based
on the root mean square error in discrete time, given by

RMSE2 = RMSE2
t + RMSE2

t−τ , (6)

where

RMSEt{x(t)} =

1

N

N∑
k = 0

[x(kT ) − x1(kT )]2

1

N

N∑
k = 0

x2(kT )

,

where x1(t) is the fundamental harmonic and T is the
sampling period.

The RMSE values computed for the three cases of backlash
using the filtered signal (RMSEi, RMSEii, RMSEiii) =
(2.24, 2.44, 3.14) × 10−7 show that the index magnitude
increases with the level of backlash (see Fig. 10). On the
other hand, the corresponding values for the unfiltered
signal are (RMSEi, RMSEii, RMSEiii) = (5.13, 5.09, 5.43) ×
10−7 which reveals a different behavior due to the effect of
noise. Additionally, a set of experiments were developed to
study the influence of the amplitude and frequency of the joint
3 motion upon the backlash dynamics. Figure 11 depicts the
RMSE of the accelerometer 2 signal for the nine experiments.
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Fig. 9. PPPs of the accelerometer 2 signal and its fundamental harmonic: (a) noisy signal for the case (i); (b) noisy signal for the case (iii);
(c) filtered signal for the case (i); (d) filtered signal for the case (iii).

Fig. 10. RMSE for noisy and filtered versions of the accele-
rometer 2 signal for the three cases.

The results confirm, in general, the behavior of the RMSE
that increases with the level of the backlash. However, for
some experiments, the index is not in complete accordance

Fig. 11. RMSE of the accelerometer 2 signal for a set of
experiments: cases (i), (ii), and (iii).

with the expected results. This fact can be caused by the noise
of the signal that is not filtered completely, probably due to
the method adopted for the selection of the threshold level.
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Fig. 12. RMSE of the accelerometer 2 signal vs. amplitude and frequency of joint 3 movements.

The use of another method (e.g. an heuristic one) or the use
of another type of wavelet, could mitigate the problem of the
noise. A deeper insight into the nature of this problem must
be envisaged.

Additionally, Fig. 12 (left) depicts the RMSE values of
the accelerometer 2 signal vs the amplitude and frequency
of joint 3 movements for low backlash case. The nine
points, shown in Fig. 11 for each individual case, produce
a smooth surface that relates the three variables. There is a
maximum of RMSE 1.06 × 10−6 that occurs at (frequency,
amplitude) = (0.6, 6.5). Figure 12 (right) depicts the same
variables for the high backlash case and we verify that we
have a RMSE = 1.35 × 10−6 maximum that occurs again at
(frequency, amplitude) = (0.6, 6.5).

The tests developed in this article proved that the RMSE
reveals to be a good index for the backlash analysis.

5. Conclusions
The tests demonstrate the usefulness of the wavelets on filter-
ing the experimental signals reducing the noise while main-
taining important features about the backlash. The energy
analysis of the signals revealed the components responsible
for the excitation of the system and for the backlash.

An index based on the PPP was proposed to detect the
backlash effect on a robotic manipulator. The tests proved that
the RMSE is an appropriate index for the backlash analysis.

In a future work, we plan to pursue several researches
in order to further understand the backlash phenomenon.
These include the study of the wavelet tuning parameters,
in the process of de-noising, and the analysis of the
backlash with various static preloads applied on the robot
end-effector.
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“Experimental set-up for vibration and impact analysis in
robotics,” WSEAS Trans. Syst. 4(5), 569–576 (May, 2005).

https://doi.org/10.1017/S0263574710000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000056


Experimental backlash study in mechanical manipulators 219

18. S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed.
(Academic Press, London, UK, 1999).

19. S. Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Trans. Pattern Anal. Mach.
Intell. 11(7), 674–693 (1989).

20. C. Torrence and G. P. Compo, “A practical guide to
wavelet analysis,” Bull. Am. Meteorol. Soc. 79(1), 61–78
(1998).

21. B. F. Feeny and G. Lin, “Fractional derivatives applied
to phase-space reconstructions, special issue on fractional
calculus,” Nonlinear Dyn. 38(1–4), 85–99 (2004).

22. Henry D. I. Abarbanel, Reggie Brown, John J. Sidorowich and
Lev Sh. Tsimring, “The analysis of observed chaotic data in
physical systems,” Rev. Mod. Phys. 65(4), 1331–1392 (1993).

23. C. E. Shannon, “A mathematical theory of communication,”
Bell Syst. Tech. J. 27, 379–423; 623–656 (July, Oct. 1948).

https://doi.org/10.1017/S0263574710000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000056

