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CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS:
O-MINIMALITY AND UNDECIDABILITY

ALFRED DOLICH, CHRIS MILLER, ALEX SAVATOVSKY, AND
ATHIPAT THAMRONGTHANYALAK

Abstract. We initiate an investigation of structures on the set of real numbers having the property that
path components of definable sets are definable. All o-minimal structures on (R, <) have the property, as do
all expansions of (R, +, -, N). Our main analytic-geometric result is that any such expansion of (R, <, +) by
Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of (N, +, -).
We also show that any given expansion of (R. <, +,N) by subsets of N” (n allowed to vary) has the
property if and only if it defines all arithmetic sets. Variations arise by considering connected components
or quasicomponents instead of path components.

§1. Introduction. We are interested in structures on the set of real numbers,
especially expansions of the real field (R, +, -) by locally path connected sets, having
the property that each path component of each definable set (allowing parameters,
and of any arity) is definable. Variations on the theme arise by considering connected
components and quasicomponents. Our original motivation lies in real-analytic
geometry, but we have come to believe that a more foundational investigation is in
order. Thus, in this paper, we provide some fundamental logical results and some
examples.

Some global conventions. The reader is assumed to be familiar with basic topology
(e.g.. [18]) and mathematical logic (especially o-minimality, e.g., [5]). Our default
is that definability (in any given structure) allows parameters (from the underlying
set of the structure) and we identify interdefinable structures. Whenever syntactic
dependence on the language is relevant, we shall make it clear. We always regard
each R” as equipped with its usual topology, and subsets of R” with the induced
topology. We abbreviate “connected component” by “component.” The set of all
nonnegative integers is denoted by N.

Proofs of results stated in this introduction are postponed to later in the paper.

DEFINITIONS. A structure with underlying set R is:

(1) path-component closed, or PCC for short, if for every definable set E, each
path component of E is definable;
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1244 ALFRED DOLICH ET AL.

(2) component closed, or CC for short, if (1) holds with “component” in place of
“path component”;
(3) quasicomponent closed, or QCC for short, if (1) holds with “quasicomponent”
in place of “path component.”
Note that every structure on R satisfying any of these conditions defines the usual
order < on R. (Consider { (x,y) € R*: x # y }.) Thus, the definitions are really
about expansions of (R, <).

We suspect that, in this generality, none of these conditions imply any of the
others, but our candidates for counterexamples are ad hoc and unverified as yet.
Currently we are most interested in PCC structures, but simultaneous consideration
of the other two conditions is natural.

Trivially, the expansion of R by each subset of R” as n ranges over the positive
integers is PCC, CC and QCC. Thus, abstractly, every structure on R has a least
expansion that is PCC, CC and QCC; of course, this holds also for each of the
conditions individually and pairwise. Relative to known results, it is easy to see that
there exist two concrete classes of nontrivial examples.

PrOPOSITION 1.1. Every o-minimal expansion of (R, <) is PCC, CC and QCC.
Every expansion of (R, +,-,N) is PCC, CC and QCC.

O-minimal expansions of (R, <) have been studied extensively. Expansions of
(R, +.-,N) are too complicated for us to study as definability theory (every real
projective set is definable). The main underlying reason for starting this investigation
was to see if certain properties of o-minimal expansions of (R, 4+, -) extend to some
other settings. Thus, we are interested in PCC structures on the real field that are
generated by locally path connected sets, but neither are o-minimal nor define N.
Recent work of the third author [21] provides some examples, but by construction,
they are easily seen to interpret (N, +, -) (and thus to have undecidable theories). We
show here that the interpretability of (N, -+, -) is unavoidable, even in much leaner
structures.

Notation. Throughout, | indicates the usual divisibility relation on N, regarded
as theset { (n,dn) :n.d € N}.

By Robinson [20], (N, <, |) is interdefinable with (N, +, ), hence also with the
expansion of N by all arithmetic sets (of any arity); we tend to use this fact without
further mention.

THEOREM 1.2. If R is an expansion of (R, <. +) by Boolean combinations of open
subsets of various R", and is PCC, CC or QCC, then exactly one of the following
holds.

(1) R is o-minimal.

(2) There is a strictly increasing a: N — R such that { (6(m),o(n)) :m | n} is

definable.

As we shall see later, every expansion of (R, <, +.|) by subsets of various N” is
PCC, CC and QCC. Trivially, there are plenty of examples of expansions of (R, +, -)
for which it is known that condition (2) holds without the assumption of PCC, CC
or QCC, but there are also such examples for which every definable set is a finite
union of locally path connected definable sets: see [8, 9, 13, 17, 23].
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COROLLARY 1.3. If R is a PCC expansion of (R, <.+) generated by topological
submanifolds, and R is not o-minimal, then no expansion of R has a decidable theory.

This is perhaps not so surprising, but also not as discouraging as it might seem.
Definability is generally more important than abstract interpretability in the analytic
geometry of expansions of (R, <).

Theorem 1.2 relies on the following technical result.

ProrosITION 1.4. If 0 # A C R has empty interior and f: A — A is strictly
increasing and strictly dominates the identity, then there is a strictly increasing
o: N — R such that every expansion of (R, <, f) that is PCC, CC or QCC defines

{(a(m).a(n)):m|n}.

(By “strictly dominates the identity” we mean that x < f(x) for all x in the
domain of f. For logicians: The function f is regarded as a subset of R?, not the
interpretation of a unary function symbol.) A key step in the proof is the special
case that A = N and £ is the usual successor function on N.

PROPOSITION 1.5.  Every expansion of (R, <,N) that is PCC, CC or QCC defines |.

Via quantifier elimination in an appropriate language, it is easy to see that (R, <,
N) does not define { 2n : n € N }; then it does not define |. and so is neither PCC,
CC nor QCC.

It appears to us at this time that dealing with arbitrary expansions of (R, <, +)
is daunting, especially those that define a bijection between a bounded interval and
an unbounded interval. Thus, we first attempt to understand some less complicated
structures.

From now on: 2} denotes a fixed, but arbitrary, expansion of (R, <).

We say that R is locally o-minimal if for each definable £ C R and x € R there
is an open interval U containing x such that £ N U is a finite union of points and
open intervals. (One might find different definitions in the literature, but as far as
we know, all are equivalent over (R, <).) Evidently, every o-minimal expansion of
(R, <) is locally o-minimal, but there are locally o-minimal expansions of (R, <)
that are not o-minimal. Of particular importance in this paper is that the expansion
of (R, <, +) by all subsets of each N (as n ranges over positive integers), is locally
o-minimal (see, e.g., [8]), and so the same is true of all of its reducts. Thus, (R, <, N)
is locally o-minimal, but neither PCC, CC nor QCC.

ProPOSITION 1.6.  The following are equivalent:

(1) Ris locally o-minimal.

(2) If E C R" is bounded and definable, then the expansion of (R, <) by all definable
subsets of E is o-minimal.

(3) Every definable set is locally path connected.

(4) For every definable set, its components are the same as its path components and
its quasicomponents.

(5) Components of bounded definable subsets of R? are path connected.

(6) Quasicomponents of bounded definable subsets of R* are connected.

(7) If A C R is definable and has empty interior, then A is closed and discrete.

(Most of the implications are either trivial or easy exercises in topology that can
be done on their own, but (2)=-(3) will require some explanation.)
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COROLLARY 1.7. If R is locally o-minimal, then it is PCC if and only if it is CC, if
and only if it is QCC.

Thus, when dealing with locally o-minimal expansions of (R, <), we may work
with any of the conditions (PCC, CC or QCC) as convenient. We present a class of
examples.

PROPOSITION 1.8. Let R be an expansion of (R, <, +, |) by subsets of various N".

(1) Every bounded definable set is definable in (R, <, +).

(2) If Eis definable and connected, then for all x, y € E there is a path in E definable
in (R, <, +) joining x to y.

(3) Ris PCC.

REMARKS. (a) Thus, R is not just locally o-minimal, but “locally o-minimal with
respect to (R, <,+).” This is neither surprising nor necessarily original, nor it is
difficult to then derive (2). The point is that 9% is PCC; our proof of this requires (2)
and our proof of (1). (b) Trivially, the theory of the expansion of R by all subsets of
each N” interprets every countable theory. Thus, in contrast to its local geometry,
the model theory of R can be quite wild. (¢) The group structure is not necessary
for either (1) or (3) to hold, but (2) can fail. To illustrate, it is not hard to check (or
see [15]) that the expansion of (R, <) by all subsets of each N” is PCC, and every
definable subset of any (- oo, )" with b € R is definable in (R, <). But there is no
definable path joining any point in the definable set (— 0o, 1) x (- o0, 2) to the point
(1,2).

Observe that N is (-interdefinable with Z over (R, <, +). By combining results
1.5, 1.7 and 1.8, we obtain the following characterization.

THEOREM 1.9. If R is an expansion of (R, <, +,Z) by subsets of various 7", then
Ris PCC, CCor QCC if and only if it defines all arithmetic sets.

We now say more about the original motivation for this work. One might be
interested in understanding “reachability” properties of given £ C R”. This can
be made more precise by considering what is known if (R, +. -, E) is o-minimal.
Since path components of E are definable, it suffices to consider the case that E is
path connected; then it is path connected in a strong sense: (a) there is a definable
map y: E? x [0.1] — E such that, forall x, y € E, the path ¢t — y(x, y,1): [0.1] —
E is rectifiable and joins x to y; (b) if moreover E is compact, then there is a
definable function f: [0, c0) — [0, c0) such that, for all x, y € E, the length of 7 —
7(x, y. 1) is bounded by f(||x — y]|). (See [6, 4.21] for details.) These are desirable
properties in real-analytic geometry and control theory, and we hope that at least
something similar will hold for certain cases that (R, +, -, £) is not o-minimal. Here
is a case of particular interest. Let w be a nonzero real number, S be the logarithmic
spiral { e’ cos(wt), e’ sin(wt) : t € R}, and E be definable in (R, +, -, S). Evidently,
(R, +.-,S) is not locally o-minimal, but it is known to have a number of desirable
analytic-geometric properties; see, e.g., [14, 4.4], [16], and [25, Theorem 4.1.1]. Some
of these properties, in combination with Theorem 1.2, reveal that (R, +. -, S) is not
PCC, but perhaps there might be PCC expansions of (R, +, -, S) in which most of
these good properties, or variants thereof, are preserved. At present, all we know is
that there exist PCC expansions (R, +, -, S) that preserve some of its good properties
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but fail to preserve some others. It remains to be seen if enough of the properties
useful for reachability analysis can be preserved in a PCC expansion of (R, +, -,.S).
See also [1, 11, 22, 24] for some related material on reachability properties of sets
definable in certain expansions of (R, <).

The previous paragraph explains somewhat why we have so far mentioned only
working over the real line. But the question does arise: What about expansions of
other dense linear orders, or even more generally, first-order topological structures
as defined in [19]? We defer discussion of these more general settings to the end of
the paper.

Some history and attributions. The original questions underlying this research
were raised by Thamrongthanyalak in conversations with Miller. Some early results,
including some first steps toward Theorem 1.9, were documented in [15]. (See also
[7].) Savatovsky became interested in the project after attending a presentation
by Miller at Universitdit Konstanz in May 2017, subsequently leading to the
establishment of Proposition 1.5 and the motivating case (namely, R = (R, <, +.))
for Proposition 1.8. The proof of Proposition 1.8.3 presented here is due essentially to
Dolich. Some earlier work of Kawakami et al. [10, Section 4] is related to Proposition
1.8.1, but the different setting makes comparisons cumbersome.

§2. Proofs. We now provide proofs of the results stated in the introduction (but
not in the same order as they were stated). As before, 53 denotes an arbitrary
expansion of (R, <).

We begin with some conventions and routine facts from topology. Let Y be a
topological space and X C Y. The closure of X is denoted by X. We say that X is
locally connected if, in the subspace topology, X has a basis consisting of connected
sets. If u, v € X, then a path in X from u to vis a continuous map y from a nonempty
compact interval [a. b] C Rinto Y such thaty(a) = u, y(b) = v, and y([a.b]) C X.
The set X is path connected if for every u, v € X there is a path in X from u to v,
and is locally path connected if, in the subspace topology. X has a basis consisting
of path-connected sets.

2.1. Here are some facts to keep in mind.

e The component of y € Y is the union of all connected sets containing y (and
similarly for path components).

e The quasicomponent of y € Y is the intersection of all clopen sets containing y.

e If X is a component or a quasicomponent of Y, then X is closed.

e If Y islocally connected, then its quasicomponents and its components are the
same.

e If Y is locally path connected, then its path components and its components
are the same (which in turn are the same as its quasicomponents).

o If Y has a countable basis at y € Y consisting of connected sets and Y \ {y}
is locally path connected, then Y is locally path connected.

REMARK. There are closed subsets of R? having quasicomponents that are not
components, e.g., {— 1,1} x R is a quasicomponent of the closure of the union of
the boundaries of the boxes (— 1 +27".1-2") x (-2",2"). n € N.
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PRrOOF OF PROPOSITION 1.1. Suppose that SR expands (R, +. -, N). We show that
M is PCC, CC and QCC. Let n € N. Recall (see, e.g.. [5. p. 16]) that there exist
m € Nand Z C R” x R” such that Z is (- definable in (R, +, -, N) and { {yeR":
(a,y)€Z}:aeR" } is exactly the collection of the closed subsets of R”. Let
E C R". If X is either a component or a quasicomponent of E, then X is closed in
E. and so (R, 4+, -, N, E) defines X. Let X be a path component of E; we show that
(R, +, -, N, E) defines X. It suffices to fix x € X and show that the set of all v € R”
for which there is a path in E from x to v is definable in (R, Z, E). Now, v € X if
and only if there is a continuous y: [0, 1] — R” such that y(0) = x, (1) = v, and
the image of [0, 1] under y is contained in E. To put this another way, v € X if
and only if there exists @ € R™ such that: the fiber Z, :={y e R" : (a,y) € Z }
is a bounded subset of E; for all ¢ € [0, 1] there exists a unique y € R” such that
(t,y) €[0.1] x Z,; and, the points (0, x) and (1,v) belong to [0,1] x Z,. (The
resulting function is continuous because its graph is closed.) As the set of all such v
is definable in (R, +,-. N, E), so is X.

Suppose that 9,/ is o-minimal. We show that J& is PCC, CC and QCC. Each
definable set has only finitely many components, each of which is definable [5,
Chapter 3, (2.18) and (2.19).7]. Hence, R is CC. For PCC and QCC., it suffices by the
basic topological facts to show that every definable set is locally path connected. By
cell decomposition and a routine induction on dimension, it suffices to let C C R”
be a cell of R and y € C \ C. and show that {y} U C is locally path connected.
It is an exercise to see that {y} U C is locally connected at y (indeed, see [5,
Chapter 3, (2.19).8]), that is, in the subspace topology, {y} U C has a basis at y
consisting of connected sets; as we are working over R, we may take this basis to
be countable. Now, ({y} U C)\ {y} = C. and cells are locally path connected.
By the last item of 2.1, {y} U C is locally path connected at y (as was to be
shown). 4

PrROOF OF PROPOSITION 1.6. This is mostly just an exercise, so we give only an
outline.

(1)=(2). Let R be locally o-minimal. Let E C R” be bounded and definable. We
contend that the expansion of (R, <) by all definable subsets of E is o-minimal. By
the Bolzano—Weierstrass Theorem, every bounded subset of R definable in R is a
finite union of points and open intervals. Thus, there is an open interval / C R such
that the expansion of (1, <) by all subsets of E definable in R is o-minimal. It is
now routine to see that the expansion of (R, <) by all definable subsets of E is also
o-minimal.

(2)=(3). Recall the proof of Proposition 1.1.

(3)=(4) is just topology, and (4)=-((5) & (6)) is trivial.

(5)=(7). If E C R has empty interior and a limit point ¢, then

(E\{c} < [0.1) U {(e. D} U (R x {0})

is connected, but not path connected.

(6)=(7). If E C R has empty interior and a limit point ¢, then {(c.0), (¢, 1)} isa
quasicomponent of its union with (E \ {c¢}) x [0, 1].

(7)=(1). The boundary of every definable subset of R is closed and
discrete. o
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FIGURE 1. S, near the origin.

ProOF OF ProPoOSITION 1.5. Suppose that PR defines N and is PCC, CC or QCC.
We show that % defines |. Ford € N, putdN := {dn :n € N}. Asa | b if and only
if BN C aN. it suffices to show that | J, . ({d} x dN) is definable.

First we show that each d N is definable. Let Sy be the intersection of the boundary
of (0, 00)? with the union of the boundaries of the boxes (—n,1)?, 0 < n € N. Put
P={(x0.z) eR*:x,z>0}.Ford €N, put

Sa = (So\ P) U ((So N P) + (d.0.0)) U ([0.d] x {0} x N>°).

In words, S, is the result of replacing Sy N P by shifting it d units in the positive x
direction and then filling in the resulting gaps with the line segments [0, d] x {0} x
{n}. n> 0. (See Figure 1 for d = 2.) Observe that S, is locally path connected,
definablein (R, <,N) and (d, 0,0) € S,. Let C; be the component of S, that contains
(d.0,0): then Cy is also the path component and the quasicomponent that contains
(d.0,0), and thus is definable. The intersection of C; with the positive x-axis is
the set {(d(n+1),0,0) : n € N}. (See Figure 2 for d = 2.) As C, is definable,
so is dN. Note that we could have obtained dN instead by first obtaining the set
{dn +1:n € N}, whichis the intersection of the positive x-axis with the component
of S, that contains (1,0, 0).

Let +[N? denote addition on N, regarded as a subset of R?. Examination
of the construction of the sets Sy yields that | J,cy({d} x S4) is locally path
connected and definable in (R, <.+[N?) (because shifting by d units along the

https://doi.org/10.1017/js1.2022.16 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2022.16

1250 ALFRED DOLICH ET AL.

FIGURE 2. (), near the origin.

positive x-axis is uniformly definable). Let C be the component of {(t 1,0,0) :
teR}YUUyen({d} x Sq) that contains (1,1,0.0). Again, C is also the path
component and the quasicomponent that contains (1, 1,0,0), and thus is definable.
Observethat C N { (/. £.0.0): j.k e N} = J,on{ (d.dn +1.0.0) : n € N}. Thus,
Usen{d} x {dn+1:n e€N}) is definable. yielding that |J,y({d} x dN) is
definable (as was to be shown). Hence, in order to finish the proof, it suffices to
show that { (a.h.c) e N*:a < b & a+b = c} is definable (as then +[N? is also
definable).

Let y denote the characteristic function of the set of odd natural numbers as a
subset of R. For each m,n € N with m < n, let I, , be the union of the images of
the paths

t (mn.t, x(m)t, [0.1] = R,

(n)t
t (t.n 1, x(m), x(n)

t— m+1.0.1,x(m). x(n)
t=(m+1Ln+1.t,x(m)t, y(n)t

):
): [mom +1] = R,
)i [non+1] = R,
):[0.1] = R>.

n

n

Each path is definable in (R, <), and I, is definable in (R, <), connected and
compact. If j.k € Nand j < k, then I';; N I, is equal to one of the following:

0. Lypn. {(m.n,0,0,0,0)}, {(m +1.n+1,0,0,0,0)}.
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(m + 1\ ;'l\‘F ‘1,\ IL
y

(m+1,n+1,0)
FIGURE 3. The projection of I, , on the first three coordinates.

It is perhaps helpful to regard the pair (y(m). x(n)) € {0,1}* as a color assigned to
the projection of I, ,, on the first three coordinates, and then to regard projections
having different colors as being disjoint except possibly at the endpoints in the xy-
plane (see Figure 3). Hence, foreachd € N, {d} x |J; oy I'k.a+ is the component of
{d} x Um’neN I, that contains (d.0.d.0.0,0). Let L be the line in R® containing
both the origin and (1,0,1,0.0.0). Put E = L U (N x {,, <,cy /m.n) and note that
E is definable in (R, <,N,2N). Let D be the componen{ of E that contains the
origin. As before, D is definable. It is routine to see that L U, cn({d} X Tkas)
is closed, contained in D, and open in D: thus, D = LU J,;en({d} X Thasi). I
(a.b.c) € N?, then (a.b.¢.0.0.0) € D if and only if « < b and ¢ = a + b. Hence,
{(a.b.c) eN*:a <b & a+b = c}is definable, as was to be shown. -

Note. We did not need PCC, CC or QCC per se, only that certain rather special
kinds of path-connected subsets of certain rather special definable sets are definable.
We discuss this further at the end of the paper.

PRrROOF OF THEOREM 1.4. Let () # A C R have empty interior and f: A — A be
strictly increasing and strictly dominating the identity. We find a strictly increasing
o: N — R such that every expansion of (R, <, ) that is PCC, CC or QCC also
defines { (6(m),a(n)) : m | n }. Note that 4 cannot have a maximal element and
there exists ayp € A4 such that 4 N [ay, co) is infinite. By replacing 4 with 4 N [ag, o)
and f with its restriction to 4 N [ap. o0) we reduce to the case that min A4 exists;
for ease of notation, say min 4 = 0. We obtain a subset S of R® by repeating the
construction of S; (as in the proof of 1.5), but with A4 instead of N, and f instead
of the successor function on N. Note that S is definable in (R, <. /). Let P be
the path component of S that contains f(0). Note that P is a component and a
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quasicomponent of S, and the intersection of P with [0, c0) x {0} x {0} is the orbit
of f on f(0). Thus, it suffices to assume that A is the image of a strictly increasing
function N — R and f is the successor function on A4; then ((— oo,sup A4). <, A) is
isomorphic to (R, <, N) and we apply Proposition 1.5 to finish.

ProorF or THEOREM 1.2. Let R be an expansion of (R,<.+) by Boolean
combinations of open sets. Suppose that & is PCC, CC or QCC, but is not
o-minimal. We find a strictly increasing o : N — R such that { (¢ (m),a(n)) :m |n}
is definable. It suffices by the proof of Theorem 1.4 to show that R defines the range
of a strictly increasing sequence in R. By Dougherty and Miller [4] and Dolich et al.
[3]. P& defines an infinite discrete A C R. If 4 is closed, then at least one of 4 N [0, oo)
or — AN[0,00) is the range of a strictly increasing sequence. Suppose now that A4
is not closed. Put F = 4\ A4: then F is nonempty, has no interior, and is closed
(because A is locally closed).

Suppose that F' has no isolated points; then there exists N € N such that
F N[~ N, N]is a Cantor set. The set of negatives of lengths of the maximal open
intervals of [- N, N]\ F is definable and the range of a strictly increasing sequence
of real numbers.

Suppose that F has an isolated point c. Let x, y € Rbesuchthat F N (x, y) = {c}.
As cisalimit point of 4, atleast one of 4 N (x, ¢) or A N (¢, y) isinfinite and discrete:
assume the former (the latter is similar). By increasing x, we have that 4 N (x, c) is
the range of a strictly increasing sequence (because 4 N (x, ¢) has no limit points in
(x,¢)). =

ReEmARK. The last paragraph of the proof does not require the group structure.

We now begin to work toward the proof of Proposition 1.8.

2.2. Let %R be an o-minimal expansion of (R, <, +) such that every bounded set
definable in R is definable in Ry. Let E C R” be connected and definable in fR. Let
x,y € E. Then there is a path in E definable in Ry joining x to y.

PrOOF. As fR is locally o-minimal, E is path connected. As images of paths
are compact, there exist N € N and a path in £ N[- N, N]" joining x to y. By
assumption, E N[- N, N]" is definable in Ry. By o-minimality, the path components
of EN[- N, N]" are definable in Ry. Thus. we may reduce to the case that £ N [—
N, NT" is path connected. By Cell Decomposition and Curve Selection, there is a
pathin £ N[ N, N]" joining x to y that is definable in Ro. =

For the remainder of this section, our approach will be more model theoretic than
our earlier material. In particular, we use both “expansion” and “reduct” in the
traditional first-order syntactic sense, “quantifier-free definable” means “defined
by a quantifier-free formula of the language under consideration,” and “QE”
abbreviates “quantifier elimination.”

Let Ty be the theory of ordered Q-vector spaces with a distinguished positive
element, in the language Lo := { <. +.0.1} U{ /4, : ¢ € Q}, where 0 < 1 and 4, is
intended to indicate left scalar multiplication by ¢. Let | | be a new unary function
symbol and put Ly = Lo U {| |}. Let T be the union of T and the universal
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closures of the following:

o [lx|+y]=Ix]+ Lyl

e0<x<1l—|x]=0,

o|l]=1,

o x| <x<|x|+ 1
Observe that as T is universally axiomatizable, so is T<L/1>' By [12, Appendix], T, @
has QE and is complete.' It is easy to see that (R, <.+, N) is (-interdefinable with
(R.<.+.0.1.(¢.x)4eq. | ]). where | | denotes the usual “floor” function ¢
max(Z N (- oo, 1]) for £ € R. Thus, Th(R. <, +,N) is bi-interpretable with 7¢. It is
more convenient to prove Proposition 1.8 by working over (R, <, +, Z) instead of
(R, <, +,N).

Let 3 be a structure on Z in a language L3 such that:

o L3 has no function or constant symbols;

o there is a symbol Z € L3 that is interpreted as Z in 3;

e Th(3) has QE;

e 3 defines < and | (hence also all arithmetic sets).

Put L=LGuUL; and T =THU{Vx(Zx < |x] =x)}U{c”:0€Th(3)}.
where ¢ denotes the relativization of ¢ to Z (see. e.g.. [2] for a definition).
We will show that 7" has QE. The proof is an extension of that of the corresponding
result for T, @ but the added complication justifies outlining some details. We begin
by disposing of a number of routine technical observations and lemmas (the proofs
of which we leave mostly to the reader). Unless indicated otherwise, “term” means
“L-term.”

Every term is a finite composition of | | and Lg-terms. Every finite composition
of | |is T-equivalentto | |.Every Lg-term in variables xi, ..., x, is Tg-equivalent
to one of the form Y 7 | A x; + 44,1 for some n € N and ¢..... ¢, € Q: we tend
to write Z?:l ¢ix; + qo instead of Z:’Zl Ag;iXi + Agyl. If 71 and 1, are Lo-terms in
variables xi., ..., x,. then there is an Lg-term ¢ in the same variables such that

TQ FTiXp X, =ToX| Xy & 0X] - X, = 0,

TolF tix1 Xy < T2X1 - Xp 4 0X7 - X, < 0.

In what follows, we tend to let ¥8 (allowing subscripts) denote an arbitrary model
of T, with underlying set B (allowing corresponding subscripts). Let Z(8) denote
the interpretation of the symbol Z in 8. Note that Z(B) = {b € B : |b| =b }. We
recall a lemma used in the proof of QE of T(/J.J’ restated for our current purposes,
followed by some routine consequences.

23. For all b€ Z(®B) and positive integers m there exists a unique
i €{0,....m—1} such that L (b +i) € Z(B).

m

24. Letn >1andz(xq.....x,) beaterm.

1. There is a finite partition C of Z(*B) into sets -definable in the reduct of B
to L3 such that, for each C € C, there exist ¢ € Q and a term g (x1, ..., X, 1)

1Some minor errors in the published proof were noticed and repaired by Trent Ohl while he was a
Ph.D. student of author Miller.
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with 7 = ¢ 4 gx, on B"! x C. (More precisely: The restriction to B"! x C
of the interpretation of 7 in B is equal to the restriction to B"! x C of the
interpretation of ¢ + gx, in 98.)

2. Thereisa finite partition C of Z (B) into sets #-definable in the reduct of B to L
such that, for each C € C, there exist ¢, ¥ € Q and a term o (x1. ..., x,_1) such
that for all (b.c) € B"' x C.if t(b.c) € Z(8). then 7(h.c) = a(b) + qc + r
and both ¢(b) and gc + r lie in Z(B).

3. Let m < n. b € B™ and D be the definable closure of b in the reduct of B to
L(’Q). There is a finite partition C of [0, 1)"~" into sets that are D-definable in the
reduct of B to Lg such that, for each C € C, there exist ¢qi. .... ¢,-m € Q and
d.e e Dwitht|({b} x C) =37, ¢ix; +d and 7] [({b} x C) =e.

We omit proofs. (Generally, proceed via 2.3 and induction on terms, noting that

the interesting cases tend to be when z is of the form |].)

2.5. Every subset of Z(3)" that is quantifier-free definable in (B, (b)ycp) is
definable in (Z(B), (R(B))rery). where R(B) is the interpretation of R in B.

SKETCH OF PROOF. As every arithmetic set is (-definable in 3, there is a bijection
from Z($B)" to Z(B) that is quantifier-free definable in 8. Thus, it suffices to
consider subsets of Z(8) that are atomically defined in (B, (b),cp). Functions
given by unary terms of (B8, (b),c ) are given by compositions of | | and functions
of the form ¢gx + b with b € B. Employ 2.4.1 and 2.4.2 as needed. o

2.6. Let Y C B™" be quantifier-free definable in B and (u, z) € B™ x Z(B)".
Let D be the definable closure of (u, z) in the reduct of B to L(’@. Then

{x€B":(ux)e Y}ﬂH[z,—,z,——i—l)
i1

is D-definable in the reduct of 95 to Lg.

SKETCH OF PROOF. It suffices to show the result for atomically defined sets.
Employ 2.4.3. -

2.7. T is complete and has QE.

PrOOF. As the L-structure (Q.<.,+.0.1,(4y)4eq.| J.3) embeds into every
model of 7, it is enough to show that 7" has QE. We employ one of the standard
“embedding tests.” Let B, B, = T and 2 (with underlying set 4) be a substructure
of B that is also embedded into B,. Assume that 2B, is card(B;)*- saturated. We
show that the embedding extends to an embedding of B, into B,.

We first reduce to the case that Z(23;) = Z(2) as follows. Suppose there exists
c1 € Z(B) \ Z(A); we show that we may replace 2 with the substructure of B,
generated over 2 by ¢;. (Then iterate as needed.) In order to reduce clerical clutter,
let us assume that the embedding of 2 into 9B, is just the identity on 4. As Th(3)
has QE, there exists ¢; € B such that the L3-type of ¢; over A N Z(*B,) is equal to
the L3-type of ¢; over A N Z(B). It suffices now to show that the quantifier-free
L-type of ¢ over A is equal to the quantifier-free L-type of ¢; over 4. We illustrate
by dealing with a special case. Let: m and n be positive integers; 7 be an n-ary term;
a € A"'; Rbe an m-ary relation symbol of L3:and a’ € A" . If follows from 2.4.3.
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applied to each of B and B, thatif B = R(r(a.cy).a’). then B, F R(z(a, ;). a’).
(Other cases are handled similarly using 2.4.1 or 2.4.2.)

Now assume that Z(%) = Z(2() and let ¢; € B \ 4. As Ty, has QE, there exists
¢2 € B, such that the L{Q- type of ¢, over the image of 4 (under the embedding)
is equal to the LfQ-type of ¢ over A. The rest of the proof is similar to (but easier
than) the previous case. We omit details. —

PROOF OF PROPOSITION 1.8. Suppose that R is an expansion of (R, <, +,|) by
subsets of various N”. By passing to an extension by definitions, we assume that
R =(R.<.+.0.1.(¢gx)4eq. | |.3) where 3 is the expansion of Z by all subsets of
each Z" that are (-definable in R. (Remark: By 2.5, every definable subset of any Z"
is P-definable, and so 3 is equal to the structure induced on Z in fR.) By 2.7, Th(fR)
has QE and is axiomatized by 7. By QE and 2.6, every bounded set definable in
R is definable in (R, <, +). i.e., Proposition 1.8.1 holds; then Proposition 1.8.2 is
immediate via 2.2. It remains to show that R is CC.

Let £ C R"” be definable in 8. We must show that each component of E is
definable. Let m € N, ¢ € R” and X C R be ()- definable in R such that E =
{e€R":(c.e) € X }. Via QE, 2.5, 2.1 and model-theoretic compactness, there
exist

e N €N,

e sets Y7,..., Yy C R that are (- definable in (R, <, +, 1),

e maps Fy, ..., Fy: R — R that are (- definable in 3.
such that, for each z € Z”, there exists J C {1, ..., N} such that the sets

{xeR": (Filc.2).x) e Y;}. jel

partition £ N[} _[zk.zx + 1) into cells of (R, <.+). The set of all z € Z" such
that [];_,[zx. zx + 1) intersects E is definable in 2R, and the possible descriptions
of the cells in E N[];_,[zx.2zx + 1) can be coded uniformly in z by subsets of
{0, 1}¢ for some d € N. Thus, there exist m € N and definable S C Z"” x R” such
that, letting 4 be the projection of S on the first m coordinates, the fibers S,
(={eeR":(ae) €S})of S over 4 partition E into connected sets that are each
definable in (R, <, +). As any expansion of (Z, <, {0}) has Definable Choice, we
reduce to the case that a — S, is injective. Let G be the set of all pairs (a.b) € A>
such that (S, N'S,) U (S, N'S,) # 0: then G is definable in R, hence also in 3. As 3
defines all arithmetic sets, each graph component of (4, G) is definable in 3. (To put
this another way: Since G is computable from A, each graph component of (4. G) is
computably enumerable from A, hence definable in (Z, +, -, 4).) It is an exercise (cf.
[5. Chapter 3, (2.19).5]) to see that C is a graph component of (4, G) if and only if
U.ec Sa is a component of E. —|

§3. Concluding remarks. Examination of the proof of Proposition 1.8 yields a
number of other results; below are three illustrative examples.

3.1. Let R be an expansion of (R, <, +,1,Z) by subsets of various Z". Then
Th(fR) is axiomatized over the union of Th(R, <, 4. 1) and the relativization to Z
of the theory of the structure induced on Z in R by expressing that (Z, +,1) is a
substructure of (R, 4+, 1) and, for every r € R, there is a unique k € Z such that
k<r<k+1.
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3.2. IffRgis a reduct in the sense of definability of (R, <, +) over (R, <), and R
is an expansion of (R, N) by subsets of various N”, then R is PCC, CC or QCC if
and only if it defines |.

(For the QE, replace Ry with the expansion in the syntactic sense of (R, <,0,1)
by all {0, 1}-definable functions of Ry. Every such function is (-definable in (R, <,
+.1).)

3.3. Let G be a divisible additive subgroup of R containing 1 and & be an
expansion of (G, <,+,Z) by subsets of various Z". If & defines |. then for all
E C G" definable in & and x € E, & defines the set of y € E for which there
is a definable-in-(G, <, +) continuous map y: [a, b] — E such that y(a) = x and
y(b) =y.

(The appropriate analogue of 2.2 follows from [5, p. 100].)

We now return to a question hinted at in the introduction: To what extent does
Proposition 1.5 depend on working over R?

The notion of PCC is problematic in more general settings. The usual definition of
“path” includes the requirement that the domain of a path be a compact subinterval
of R, and in practice, one typically uses that — x is an order-reversing bijection of
R and all infinite compact intervals are definably isomorphic in the vector space
(R, +. (rx),er). We can get around this in some special settings. Let (M, <) be
a linear order. If X C M", then we say that a path in X, relative to (M, <), is a
continuous map f from an interval [a, b] into M" such that f([a.b]) C X. and
declare a piecewise path in X (relative to (M. <)) to be a finite sequence

Yy = ())12 [al,bl] — Mn,...,yp+12 [a,H_l,pr] — Mn)

of paths in X (for some p € N) such that y; (b;) = pry1(arsy) fork =1,..., p. We
say that y is injective if each y; is injective and the images y([a1. b1)). .... y([ap. b))).
y([ap+1.bps1]) are pairwise disjoint. The image of y is the union of the images of
the y,. We abuse terminology somewhat and say that X is path connected relative
to (M, <) if for all u,v € X there is a piecewise path y in X such that u and v are
contained in the image of y. If the piecewise paths can be taken to be injective, then
we say that X is injectively path connected relative to (M, <). Now fix an expansion
M of (M, <) and A C M. We can specialize these definitions to the notion “4-
definable in 91 in a mostly obvious fashion. (Some authors might require that X
be A-definable in order to call it 4- definably path connected relative to 9, but we
do not.) If A = M, then we omit mention of 4. (Thus, definably path connected
relative to (R, <, +.-,N) is the same as path connected in the usual sense.) An
examination of the proof of Proposition 1.5 yields the following technical result, thus
establishing that working over R is not necessary if one is willing to modify a few
definitions.

3.4. Let D be a dense subset of R that contains N. Let A C D and ® be an
expansion of (D, <, N) such that forall E C F C D’ if F is §-definable in (D, <, N)
and E is maximally (-definably injectively path connected relative to (D, <, (n),en).
then E is A-definable in ©. Then | is A-definable in .

(A priori, the hypothesis is weaker than PCC for expansions of (R, <). We leave
nonarchimedean settings to the interested reader.)
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Asan application, we obtain the converse of 3.3, hence also the following extension
of Theorem 1.9.

3.5. Let G be a divisible subgroup of R containing 1 and & be an expansion
of (G.<,+.Z) by subsets of various Z". Then & defines | if and only if for
all £ definable in & and x € E, & defines the set of all y € E for which
there is a definable-in-(G, <, +) continuous map y: [a,b] — E such that y(a) = x
and y(b) = y.

As we have defined it, the notion of CC is of little use in more general settings,
even for o-minimal expansions of dense linear orders. To illustrate, every expansion
of a totally disconnected linear order is trivially CC. However, there is a natural
generalization of the notion of CC to first-order topological structures (as defined
in [19]): Every definable set 4 should be a union of definable sets C that are maximal
with respect to the property of not being disconnected by any pair of definable open
sets. In [5]. such sets C are called definably connected components of 4 (and are
definable by definition).

In o-minimal structures, all definable sets are unions of finitely many definably
connected components [3, p. 57]. But by QE of Th(R, <), there is no piecewise path
definable in (R, <) joining any point in (— 0o, 1) x (- 0o, 2) to the point (1, 2). Thus,
in (R, <), the set (— oo, 1) x (—00,2) U{(1,2)} is path connected and definably
connected, but not definably path connected relative to (R, <).

Let 91 be as before. Under any reasonable definition, M should be regarded as
(-definably injectively path connected in 91—but M need not be definably connected
in 9, even if (M, <) is densely ordered (say, if 97 is weakly o-minimal, but not o-
minimal). This failure of the fundamental topological fact that path connectedness
implies connectedness invalidates many of the techniques used in our arguments over
(R. <). However, it is known that if (M, <) is densely ordered and M is definably
connected in 91, then the implication is essentially restored for definable data. Hence,
we have the following corollary of 3.4, the proof of which we leave as an exercise
(familiarity with some results in [12] will be needed).

3.6. Let D be a dense subset of R that contains N. Let © be an expansion of
(D. <. N) such that D is definably connected in ® and every definable set is a union
of definably connected components. Then | is definable in D.

In particular, if R is an expansion of (R, <, N) such that every definable set is a
union of definably connected components (an a priori weaker condition than CC),
then | is definable.

We leave any potential generalizations of QCC to the interested reader.
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