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While electron kinetic effects are well known to be of fundamental importance in
several situations, the electron mean-flow inertia is often neglected when length scales
below the electron skin depth become irrelevant. This has led to the formulation of
different reduced models, where electron inertia terms are discarded while retaining
some or all kinetic effects. Upon considering general full-orbit particle trajectories, this
paper compares the dispersion relations emerging from such models in the case of the
Weibel instability. As a result, the question of how length scales below the electron
skin depth can be neglected in a kinetic treatment emerges as an unsolved problem,
since all current theories suffer from drawbacks of different nature. Alternatively,
we discuss fully kinetic theories that remove all these drawbacks by restricting to
frequencies well below the plasma frequency of both ions and electrons. By giving
up on the length scale restrictions appearing in previous works, these models are
obtained by assuming quasi-neutrality in the full Vlasov–Maxwell system.
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1. Introduction: Ohm’s law and electron inertia
Electron kinetic effects play a crucial role in a variety of situations. For example,

the development of non-gyrotropic components in the electron pressure tensor is
a well-known mechanism that drives collisionless magnetic reconnection (see, e.g.
Camporeale & Lapenta 2005; Aunai, Hesse & Kuznetsova 2013; Haynes, Burgess &
Camporeale 2014; Cazzola et al. 2016; Swisdak 2016). Indeed, the non-gyrotropic
electron pressure is among the main mechanisms driving fast reconnection at length
scales bigger than the plasma skin depth (also known as the electron inertial length).
More specifically, collisionless reconnection is produced by the last two (non-ideal)
terms in the electron momentum equation

qeneE= qiniVi ×B− J×B+∇ · P̃e +mene
DVe

Dt
, (1.1)

with the definitions (in standard notation)

nk(x, t)=
∫

fk(x, v, t) dv, (1.2)
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2 E. Camporeale and C. Tronci

Vk(x, t)= n−1
k

∫
fk(x, v, t) dv, (1.3)

P̃k(x, t)=mk

∫
(v −Vk)(v −Vk)fk(x, v, t) dv. (1.4)

Here, fk(x, v, t) is the phase-space density of the kth particle species (k= i, e denotes
the ions and the electrons, respectively) and D/Dt = ∂/∂t + Ve · ∇ is the convective
derivative. Upon neglecting the displacement current (so that J = µ−1

0 ∇ × B) and by
invoking quasi-neutrality (so that ni = −qene/qi), one obtains the generalized Ohm’s
law in the form

E=−Vi ×B− 1
µ0ene

B× (∇×B)− 1
ene
∇ · P̃e − me

e
DVe

Dt
, (1.5)

where we have used the notation qi = Ze = −Zqe for the ion and electron charges.
Each term on the right-hand side of Ohm’s law has been extensively studied in terms
of its contribution to the reconnection flux (Cai & Lee 1997; Wang, Bhattacharjee &
Ma 2000; Birn et al. 2001). The last term is associated with the inertia of the electron
mean flow and this generates microscopic instabilities at the scale of the skin depth
δe= c/ωpe, which can then drive reconnection. However, these length scales are often
neglected in reduced reconnection models by discarding the electron mean-flow inertia
term, so that Ohm’s law becomes

E=−Vi ×B− 1
µ0ene

B× (∇×B)− 1
ene
∇ · P̃e. (1.6)

This reduced form of Ohm’s law has been adopted in a variety of works (Hesse &
Winske 1993, 1994; Winske & Hesse 1994; Kuznetsova, Hesse & Winske 1998, 2000;
Yin et al. 2001; Yin & Winske 2003; Hesse, Kuznetsova & Birn 2004). In these
works, equation (1.6) is combined with a moment truncation for the electron pressure
dynamics, which is then coupled to ion motion in either fluid or kinetic description.

Cheng & Johnson (1999) followed a different strategy for obtaining a reduced
model. While retaining small length scales, their approach neglected high frequencies
by adopting the quasi-neutral limit of the Vlasov–Maxwell system. More specifically,
using Ampère’s law leads to rewriting (with no approximation) the generalized Ohm’s
law (1.5) as(

1+ Zme

mi

)
E = −

(
1+ Zme

mi

)
Vi ×B+ 1

ene

[
J×B−∇ ·

(
P̃e − Zme

mi
P̃i

)]
+ me

e2ne

[
∂J
∂t
+∇ ·

(
ViJ+ JVi − JJ

ene

)]
, (1.7)

where Faraday’s law can be used to write ∂J/∂t = −µ−1
0 ∇ × ∇ × E. At this point,

upon following a standard procedure in plasma theory, Cheng & Johnson (1999)
neglected all terms of the order of me/mi, thereby leading to

E = −Vi ×B+ 1
ene

[
J×B−∇ ·

(
P̃e − Zme

mi
P̃i

)]
+ me

e2ne

[
∂J
∂t
+∇ ·

(
ViJ+ JVi − JJ

ene

)]
, (1.8)
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Weibel instability 3

where we have recalled that P̃i is proportional to the ion mass in order to retain ion
pressure effects. Also, the relation me/e2ne =µ0δ

2
e can be used to rewrite the second

line of the equation above in terms of the plasma skin depth.
In the present work, we are interested in how electron pressure anisotropy effects

manifest in different models. Thus, we shall study the consequences of using the
reduced forms (1.6) and (1.8) of Ohm’s law in the particular case of the Weibel
instability (Weibel 1959). More particularly, we shall consider the implications of both
truncated moment models and fully kinetic theories. Also, special emphasis will be
given to the comparison between certain kinetic models and their variational versions,
which arise from Hamilton’s variational principle (Tronci 2013). As we shall see, the
approaches based on the simplified Ohm’s law (1.6) appear unable to capture pressure
anisotropy effects without exhibiting physical inconsistencies. While the first part of
the paper focuses on moment truncations, the second part is devoted to fully kinetic
theories. Finally, the third part shows how quasi-neutral kinetic models based on the
generalized Ohm’s laws (1.7) and (1.8) appear to recover all the relevant physical
features of the Weibel instability.

2. Moment models

In order to formulate a simplified model for collisionless reconnection, Hesse &
Winske (1993) formulated a hybrid model in which ion kinetics is coupled to a
moment truncation of the electron kinetic equation, while the electron momentum
equation is replaced by Ohm’s law (1.6). The problem of moment truncations is still
an active area of research (Wang et al. 2015) dating back to Grad’s work (Grad
1949). In this section, we linearize the Hesse–Winske model to study its dispersion
relation in the case of the Weibel instability.

2.1. The Hesse–Winske moment model
As anticipated above, the Hesse–Winske (HW) model involves a moment truncation
of the electron kinetics. More specifically, the electron kinetic equation is truncated to
the second-order moment thereby leading to the following equation for the electron
pressure (e.g. see equation (2) in Kuznetsova et al. (1998)):

∂P̃e

∂t
+ (Ve · ∇)P̃e+ (∇ ·Ve)P̃e+ P̃e · ∇Ve+ (P̃e · ∇Ve)

T= e
me
(B× P̃e− P̃e×B). (2.1)

This equation neglects heat flux contributions and this approximation may or may
not be physically consistent depending on the case under study. In a series of
papers (Hesse & Winske 1993, 1994; Winske & Hesse 1994; Kuznetsova et al.
1998, 2000; Yin et al. 2001; Yin & Winske 2003; Hesse et al. 2004), the authors
approximated heat flux contributions by an isotropization term involving ad hoc
parameters. However, in this section we shall continue to discard the heat flux,
whose corresponding effects will be completely included in our later discussion of
fully kinetic models. We address the reader to Basu’s work (Basu 2002) and the
more recent results in Sarrat, Del Sarto & Ghizzo (2016), Ghizzo, Sarrat & Del
Sarto (2017) for a complete description of the Weibel instability in terms of kinetic
moments. In addition, we point out that the gyration terms on the right-hand side
of (2.1) are discarded in Yin et al. (2001), Yin & Winske (2003) (strong electron
magnetization assumption), while these terms are retained in the present treatment.
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4 E. Camporeale and C. Tronci

The electron pressure dynamics (2.1) is coupled in the HW model to Faraday’s law
∂B/∂t=−∇×E and the ion kinetics

∂fi

∂t
+ v ·

∂fi

∂x
+ Ze

mi
(E+ v×B) ·

∂fi

∂v
= 0, (2.2)

where the electric field is given by Ohm’s law in the form (1.6). In addition, quasi-
neutrality gives

Zeni − ene = 0, ZeniVi − eneVe =µ−1
0 ∇×B= J, (2.3a,b)

so that (ne,Ve) can be expressed in terms of the ion moments.
Since we are interested in the Weibel instability, we linearize the HW model around

a static anisotropic equilibrium of the type

E0 =B0 =Ve0 =Vi0 = 0, P0 = p⊥1+ (p‖ − p⊥)zz, f0 = f0(v
2
⊥, v

2
z ), (2.4a−c)

and we consider longitudinal propagation along the wavevector k= kz (here, z denotes
the unit vertical). Notice that we have dropped the species subscripts for convenience
and we have retained both electron and ion anisotropies. The corresponding dispersion
relation is found in § A.1 and it reads

ω2

k2v2
e‖
= 1− T (e)⊥

T (e)‖
+ k2δ2

e + Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
, (2.5)

where µ̄=me/mi.
In order to distinguish the various contributions from the ions and the electrons, it is

useful to study the electron Weibel instability and the ion Weibel instability separately.
In the first case, one can restrict to an isotropic ion equilibrium, so that T (i)⊥ = T (i)‖ .
In addition, upon adopting a cold-fluid closure for the ion dynamics one can write
W(ω/kvi‖)' 0 to obtain

ω2

k2v2
‖
= 1− T (e)⊥

T (e)‖
+ k2δ2 + Zµ̄. (2.6)

A detailed discussion of the dispersion relation (2.6) is presented later in the paper.
For the moment, we remark that ω is imaginary only in the range k2δ2 < T (e)⊥ /T

(e)
‖ −

Zµ̄− 1, while purely oscillating modes emerge otherwise.
The ion Weibel instability can be studied in a similar way upon setting T (e)⊥ = T (e)‖

in (2.5) so that, upon restoring the species index and by denoting by ve the electron
thermal velocity, we have

ω2

k2v2
e

− k2δ2
e = Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
. (2.7)

Again, this dispersion relation is discussed later in this paper.
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2.2. The effect of Coriolis force terms
In Tronci (2013), one of us showed how one can neglect the electron mean-flow
inertia terms in (1.5) by using variational methods based on Hamilton’s principle.
This approach has the advantage of preserving the total energy and momentum and
in recent years there is an increasing amount of work in exploiting this approach
for nonlinear plasma modelling (Cendra et al. 1998; Morrison 1998; Brizard 2000;
Holm & Tronci 2012; Tronci & Camporeale 2015). Essentially, in plasma physics
this approach goes back to Low (1958), Newcomb (1962) and it was later used in
Littlejohn (1983) in his theory of guiding-centre motion. When applied to the case
under study, this method produces Coriolis forces in the electron kinetics that modify
the electron pressure dynamics (2.1) in the HW model as follows:

∂P̃e

∂t
+ (Ve · ∇)P̃e + (∇ ·Ve)P̃e + P̃e · ∇Ve + (P̃e · ∇Ve)

T

+ P̃e ×
(

e
me

B+ωe

)
−
(

e
me

B+ωe

)
× P̃e = 0, (2.8)

where ωe =∇×Ve denotes the electron hydrodynamic vorticity. As shown in Tronci
(2013), the vorticity terms arise by neglecting the electron mean-flow inertia after
expressing the electron kinetics in the relative frame moving with the Eulerian velocity
Ve; this takes the dynamics in a non-inertial frame thereby producing Coriolis forces
that shift the magnetic field by the electron vorticity. We remark that the terms
involving the electron velocity (including the vorticity terms) combine into a fluid
transport operator (Lie derivative) so that the electron pressure becomes frozen
into the electron mean flow in the case of strong electron magnetization (so that
(e/me)P̃e × B− (e/me)B× P̃e ' 0). At this point, the Coriolis forces in the electron
pressure dynamics lead to a modified version of the HW model.

Upon linearizing the modified HW model around the equilibrium (2.4a-c), one
obtains the dispersion relation (see § A.1)

ω2

k2v2
e‖
= 1− T (e)⊥

T (e)‖

{
1− k2δ2

e −
Zme

mi

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
. (2.9)

By proceeding analogously to the previous section, we consider the electron Weibel
instability by setting T (i)⊥ = T (i)‖ and W(ω/kvi‖)' 0 thereby obtaining

ω2

k2v2
‖
= 1− T (e)⊥

T (e)‖
+ T (e)⊥

T (e)‖

(
k2δ2 + Zµ̄

)
. (2.10)

Again, we notice that ω is imaginary only in the range k2δ2<1−Zµ̄−T (e)‖ /T
(e)
⊥ , while

purely oscillating modes emerge otherwise.
In the same way, we can specialize (2.9) to the case of the ion Weibel instability.

In this case, Coriolis effects become irrelevant and one obtains again equation (2.7).
The next section presents a study of (2.5) and (2.9) in each considered case.

2.3. Discussion on moment models
Here and in the following discussions, we consider an electron–proton plasma, with
typical solar wind parameters. For comparison, we report the following dispersion
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relation corresponding to full Vlasov–Maxwell dynamics (see e.g. Gary & Karimabadi
(2006)), as it is obtained by using the exact form of Ohm’s law (1.7):

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
= ω2

ω2
pe

− k2δ2
e − Zµ̄

T (i)⊥
T (i)‖

[
1+W

(
ω

kvi‖

)]
. (2.11)

Here, the electron Weibel instability is studied by adopting a cold-fluid closure for ion
kinetics, so that T (i)⊥ = T (i)‖ and W(ω/kvi‖)' 0 yield

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
= ω2

ω2
pe

− k2δ2
e − Zµ̄. (2.12)

The ratio between electron thermal velocity (in the cold direction) and speed of
light ve/c= 0.0318 (this is also the ratio between Debye length and electron inertial
length). The mass ratio is physical mi/me= 1836. Figures 1 and 2 show the dispersion
relations for electron and ion Weibel instabilities, respectively. The four panels are
for values of temperature anisotropy equal to 2, 5, 10 and 100. The blue lines show
the reference solutions derived from the Vlasov–Maxwell model (2.12) (involving
a cold-fluid closure for ion kinetics), while red lines are for (2.6). In figure 1 one
can notice how the HW model yields much larger growth rates than the correct
values. The results for the modified HW model (2.10) are shown in yellow. They
partially correct the discrepancies with the full Vlasov–Maxwell model, but they are
still unsatisfactory, especially for wavevectors larger than the inverse electron inertial
length.

As we mentioned, the Coriolis effects are irrelevant for the case of the ion Weibel
instability. In this case, the reference Vlasov solution is obtained in figure 2 by solving
the dispersion relation

1+ k2v2
e‖

2ω2
= ω2

ω2
pe

− k2δ2
e − Zµ̄

T (i)⊥
T (i)‖

[
1+W

(
ω

kvi‖

)]
. (2.13)

This is derived upon adopting a warm-fluid closure for electron kinetics, that is by
inserting T (e)⊥ = T (e)‖ and W(ω/kve‖) ' (1/2)k2v2

e‖/ω
2 in (2.11). Interestingly, for the

ion Weibel instability the discrepancies between the HW and VM models are already
significant for kδe < 0.1.

3. Electron inertia in fully kinetic theories
While the results in the previous sections were obtained by using moment

truncations, one is led to ask about the effects arising from higher moments. In
order to address this point, this section presents two different ways to neglect the
electron mean-flow inertia in a fully kinetic theory, in such a way that all higher
moments are fully considered. We remark that this is an unprecedented approach
in the plasma physics literature, with the exception of Tronci (2013). By following
the discussion therein, we remark that it may not be convenient to implement this
approximation directly in the electron kinetic equation

∂fe

∂t
+ v ·

∂fe

∂x
− e

me
(E+ v×B) ·

∂fe

∂v
= 0. (3.1)
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Weibel instability 7

FIGURE 1. Growth rate for the electron Weibel instability for the HW (2.6) and modified
HW (2.10) models, for four values of temperature anisotropy T (e)⊥ /T

(e)
‖ = 2, 5, 10, 100. The

blue lines are the reference solutions derived from the Vlasov–Maxwell model, while red
and yellow lines are for (2.6) and (2.10), respectively.

Indeed, doing this would generate questions of compatibility between the above
electron kinetics and the reduced form of Ohm’s law (1.6), which we want to adopt
throughout this section as a first step in neglecting the electron mean-flow inertia.
Before making any assumption, it is instead convenient to express electron kinetics
in the mean-flow frame by introducing the coordinate c= v − Ve and looking at the
dynamics for the relative distribution

fe(x, c, t)= fe(x, c+Ve, t), (3.2)

that is

∂ fe
∂t
+ (c+Ve) ·

∂ fe
∂x
−
{

DVe

Dt
+ (c · ∇)Ve + e

me
[E+ (c+Ve)×B]

}
·
∂ fe
∂c
= 0. (3.3)

In turn, this kinetic equation is accompanied by Ampère’s law and Faraday’s law.
At this stage, one still needs a closure for the electric field, which can be obtained
by writing Ohm’s law. The latter arises from taking the first moment of (3.3) and
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8 E. Camporeale and C. Tronci

FIGURE 2. Growth rate for the ion Weibel instability for the HW (2.5) model, for four
values of temperature anisotropy T (i)⊥ /T

(i)
‖ = 2, 5, 10, 100. The blue lines are the reference

solutions derived from the Vlasov–Maxwell model, while red lines are for (2.5). In this
case the modified HW model (2.9) yields identical results.

by using the constraint
∫

c fe(c) dc = 0; this process leads to equation (1.1). So far,
no approximation was performed and the mean-flow electron inertia is still fully
retained, as it is made explicit by multiplying (3.3) by mene. Indeed, we notice that
the first term in the acceleration field multiplying ∂ fe/∂c in (3.3) is precisely the term
neglected in Ohm’s law (1.5) to obtain its reduced form (1.6). This acceleration term
can also be expanded as

DVe

Dt
= ∂Ve

∂t
−Ve × (∇×Ve)+ 1

2
∇|Ve|2, (3.4)

which evidently corresponds to a superposition of inertial forces excerpted by the
mean flow on the particles moving in the relative frame.

In the next section, we shall present two different possible strategies for implement-
ing the assumption of negligible electron mean-flow inertia. While the first approach
is direct and involves the equations of motion, the second approach is based on
variational methods and it involves Hamilton’s principle. Although the second
approach removes some of the inconsistencies emerging from the first, both methods
appear to be unsatisfactory for a complete description of the Weibel instability.
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3.1. Removing the electron inertia
A first approach to neglect electron inertia consists of simply removing the term
−DVe/Dt in (3.3), thereby leading to the modified electron equation

∂ fe
∂t
+ (c+Ve) ·

∂ fe
∂x
−
{

c · ∇Ve + e
me
[E+ (c+Ve)×B]

}
·
∂ fe
∂c
= 0. (3.5)

Although this equation retains the acceleration term −c · ∇Ve, inertial forces are only
partially considered since the term (3.4) has been entirely neglected. At this point, one
can easily take the first moment of (3.5), so that using the constraint

∫
c fe(c) dc= 0

leads to the reduced Ohm’s law (1.6) and a fully kinetic model is formulated by using
ion kinetics (2.2), along with Ampère’s and Faraday’s laws.

The model obtained in this way provides the basis for the HW moment model in
§ 2.1, except that the HW model invokes the quasi-neutrality conditions (2.3). The idea
of using quasi-neutrality in a fully kinetic model is not new. In later sections, we shall
show how the quasi-neutrality assumption can be used successfully in fully kinetic
theories, although it requires extra care. However, for the purpose of this section, we
shall keep assuming quasi-neutrality in the present discussion. Thus, Ampère’s law in
(2.3) can be used to eliminate entirely the variable Ve in favour of the ion velocity
Vi, as it is computed from (2.2).

Combining (2.2), (3.5), (2.3) and Faraday’s law yields a fully kinetic model, whose
moment truncation to second-order yields exactly the HW moment model from § 2.1.
For later reference, we shall refer to this as the HW kinetic model. Then, one would
hope that completing the HW moment model by retaining fully kinetic effects (while
still neglecting electron mean-flow inertia) could capture more physics. As we shall
see, this may not always be true and we explain this below by considering again the
case of the Weibel instability.

Here, we linearize the HW kinetic model around the bi-Maxwellian equilibrium

E0 =B0 = 0, f0 = f0(v
2
⊥, v

2
z ), f0 = f0(c2

⊥, c2
z ), (3.6)

where f0 and f0 denote the ionic and electronic equilibrium, respectively. As shown
in § A.2, we obtain the dispersion relation

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=
{

k2δ2
e + Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
W
(
ω

kve‖

)
. (3.7)

In order to study the electron Weibel instability, we follow the approach in § 2.1 and
adopt a cold-fluid closure for the ions by setting T (i)⊥ = T (i)‖ and W(ω/kvi‖)' 0. This
yields

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
= (k2δ2

e + Zµ̄)W
(
ω

kve‖

)
. (3.8)

On the other hand, the ion Weibel instability requires special care since Ohm’s law
(1.6) requires pressure to balance the Lorentz force in electron dynamics. Indeed, as
one can see especially in (A 14) in § A.1, adopting a cold-fluid closure for electron
dynamics would lead to consistency issues. However, a warm-fluid closure can be
performed by setting T (e)⊥ = T (e)‖ and W(ω/kve‖)' (1/2)k2v2

e‖/ω
2 so that (3.7) becomes

2ω2

k2v2
e‖
− k2δ2

e = Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
− 1. (3.9)
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The contribution of the heat flux and higher moments can be understood by comparing
the above equation to the corresponding equation (2.7) for the HW moment model.

While the discussion of the dispersion relations (3.8) and (3.9) is left for later
discussion, the next section aims at extending the modified HW moment model from
§ 2.2 to a fully kinetic theory.

3.2. Coriolis force effects
A modified version of the HW kinetic model was presented in Tronci (2013) (see
equations (1)–(5) therein), by exploiting variational techniques based on Hamilton’s
principle. As discussed in § 2.2, this approach produces the Coriolis force terms
appearing in (2.8). In the fully kinetic treatment, the same approach leaves (2.2),
(2.3) and Faraday’s law unchanged while (3.5) is modified as follows:

∂ fe
∂t
+ (c+Ve) ·

∂ fe
∂x
−
{

c · ∇Ve + c×∇×Ve + e
me
[E+ (c+Ve)×B]

}
·
∂ fe
∂c
= 0.

(3.10)
Evidently, this differs from (3.5) by the Coriolis acceleration term c × ∇ × Ve. As
discussed in Tronci (2013), this term appears from the variational approach due to
the fact that the change of frame performed to express the electron kinetics in the
mean-flow frame affects the Lorentz force term, which now is written in terms of the
effective magnetic field B + meωe/e. This is a typical feature of electrodynamics in
non-inertial frames, as explained in Thyagaraja & McClements (2009). Notice that
the Coriolis acceleration term is absent in (3.3), which also means that this term
is produced to guarantee a consistent force balance after the mean-flow inertia term
DVe/Dt is dropped in (3.3). At this point, the modified HW kinetic model is given
by (3.10), (2.2), (2.3) and Faraday’s law.

For comparison with the HW kinetic model in the previous section, we study the
effect of Coriolis forces by considering again the Weibel instability. Then, we linearize
the modified HW kinetic system around the equilibrium (3.6) to obtain the dispersion
relation (see § A.2)

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
= T (e)⊥

T (e)‖

{
k2δ2

e + Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
W
(
ω

kve‖

)
. (3.11)

By following the approach in the previous sections, we restrict to consider the electron
Weibel instability by adopting a cold-fluid closure for the ions. This yields

T (e)‖
T (e)⊥
+W

(
ω

kve‖

)
= (k2δ2

e + Zµ̄)W
(
ω

kve‖

)
. (3.12)

On the other hand, upon assuming a warm-fluid closure for the electrons by replacing
T (e)⊥ = T (e)‖ and W(ω/kve‖) ' (1/2)k2v2

e‖/ω
2 in (3.11), we obtain the same dispersion

relation (3.9) for the ion Weibel instability.

3.3. Discussion on kinetic models with inertialess electrons
In first instance, this section compares the dispersion relations (3.8) and (3.11) for
the electron Weibel instability with the corresponding result (2.12) for the case of the
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Vlasov–Maxwell system for cold-fluid ions. A typical limit that is often used to study
the Weibel instability is

ω� kve‖ (3.13)

so that W(ω/kve‖)'−1− i
√

πω/kve‖. In this limit, equations (3.8) and (3.11) become
(upon dropping the species superscript for convenience)

−iω= kv‖√
π

(
1+ 1

T⊥/T‖ − k2δ2 − Zµ̄

)
(3.14)

and

−iω= kv‖√
π

(
1− T‖

T⊥

1
1− k2δ2 − Zµ̄

)
, (3.15)

respectively. On the other hand, upon assuming ω�ωp, equation (2.12) becomes

−iω= kv‖√
π

[
1− T‖

T⊥
(k2δ2 + Zµ̄+ 1)

]
. (3.16)

Now, we observe that in the limit kδ � 1 the results in (3.15) and (3.16) coincide
thereby showing that the variational model from § 2.2 agrees well with Vlasov–
Maxwell dynamics for length scales much bigger than the skin depth. In turn, in
the same limit kδ � 1 (3.14) disagrees with the Vlasov–Maxwell result (3.16) with
growing anisotropies.

However, both results (3.14) and (3.15) suffer from the important drawback that
a vertical asymptote emerges in the growth rate as length scales approach the skin
depth. We remark that the assumption ω � kve‖ is no longer valid near and after
the asymptote and so the dispersion relation needs to be solved numerically, as
presented below. After the asymptotes, for both kinetic models the least damped
mode is not the Weibel mode, but one with non-zero real frequency, hence yielding
a completely different result from the Vlasov–Maxwell theory, in which the Weibel
(purely damping) mode is dominant. Figure 3 shows the dispersion relations for the
electron instability, for four values of temperature anisotropy T (e)⊥ /T

(e)
‖ = 2, 5, 10, 100.

The blue lines are the reference solutions derived from the Vlasov–Maxwell model
(2.12), while red and yellow lines are for the HW kinetic (3.8) and modified HW
kinetic (3.12) models, respectively. The aforementioned asymptote for the reduced
models is clearly visible, with the distinguishing features that while it always occurs
at kδ = 1 for the modified HW model, it becomes a function of anisotropy for
the HW model. Both models present large discrepancies with respect to the full
Vlasov–Maxwell solution, with the wavevector approaching the inverse electron
inertial length. Figure 4 shows the real frequency of the least damped mode for
the modified HW kinetic model (solid lines) and for the HW kinetic model (dashed
lines). Once again, in contrast with the correct VM solution, the mode’s real frequency
becomes non-zero after the respective asymptote.

The ion Weibel instability is, on the contrary, well captured by both models. This
is shown in figure 5. Once again, in this case the Coriolis correction does not play
any role and the two models become identical. One can notice that, for any value
of temperature anisotropy, the solutions are indistinguishable from the correct Vlasov–
Maxwell results, which are obtained from the dispersion relation (2.13) (adopting a
warm-fluid closure for the electrons). In some sense, this is not surprising, since ion
kinetics is not subject to any approximation in either the HW kinetic model and its
modified variant.
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12 E. Camporeale and C. Tronci

FIGURE 3. Growth rate for the electron Weibel instability for the HW kinetic (3.8) and
modified HW kinetic (3.12) models, for four values of temperature anisotropy T (e)⊥ /T

(e)
‖ =

2, 5, 10, 100. The blue lines are the reference solutions derived from the Vlasov–Maxwell
model, while red and yellow lines are for (3.8) and (3.12), respectively.

4. Quasi-neutral Vlasov theories

We have shown that all the moment models and fully kinetic theories considered
so far and aiming at neglecting the electron inertia in Ohm’s law (1.5) suffer from
different drawbacks. More specifically, in the nonlinear regime unphysical modes
with kδ > 1 may be excited even if kδ� 1 at the initial time. Even the variational
approach in Tronci (2013), while correcting certain discrepancies in the electron
Weibel instability and retaining the full physics of the ion Weibel instability, would
need an appropriate numerical filtering to prevent the dynamics from introducing
length scales of the order of (or smaller than) the electron skin depth. On the other
hand, the analysis performed so far also posed an alternative question about the
validity of the quasi-neutral limit in fully kinetic theories. Indeed, the assumption
of quasi-neutrality (2.3) was used throughout all the discussion thereby leading to
the question of whether quasi-neutrality may also produce consistency issues when
implemented in a fully kinetic theory. A first answer to this question was provided by
Cheng and Johnson in Cheng & Johnson (1999), where quasi-neutrality was assumed
in the Vlasov–Maxwell system, along with the generalized Ohm’s law (1.8). In this
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FIGURE 4. Real part of the frequency for the electron Weibel instability for the modified
HW kinetic model (3.12) (solid lines) and for the KW kinetic model (3.8) (dashed lines),
for values of temperature anisotropy T (e)⊥ /T

(e)
‖ = 2, 5.

approach, all terms of the order of me/mi are considered irrelevant and thus are
ignored. On the other hand, these terms were considered in more recent work by the
authors (Tronci & Camporeale 2015), where quasi-neutrality was invoked at the level
of Hamilton’s variational principle. The model in Tronci & Camporeale (2015) was
dubbed the neutral Vlasov model.

In the following sections, we present both the Cheng–Johnson (CJ) model (Cheng
& Johnson 1999) and the neutral Vlasov model (Tronci & Camporeale 2015). As
we shall see, both models reproduce faithfully the physics of both ion and electron
Weibel instabilities. In addition, we shall see how Ampère’s current balance may play
a crucial role in preserving quasi-neutrality at all times; this point is of particular
interest for the CJ model, where the exact current balance is lost, while it is retained
by the neutral Vlasov model.

4.1. The Cheng–Johnson model
As anticipated above, Cheng & Johnson (1999) were the first to design an alternative
fully kinetic model in the quasi-neutral limit. More specifically, they expanded
Ohm’s law (1.1) by using Ampeère’s and Faraday’s laws to obtain (1.7). Then, after
assuming quasi-neutrality to write J = µ−1

0 ∇ × B, they neglected all terms of the
order of me/mi. This process leads to the reduced form of Ohm’s law in (1.8), which
is then accompanied by the kinetic equations (2.2) and (3.1), the quasi-neutrality
conditions (2.3) and Faraday’s law. We remark that originally the CJ model was
called a kinetic-multifluid system because the kinetic equation for each species was
written to accompany the equation for its first moment. However, this is totally
equivalent to retaining only the kinetic equations.

In order to compare the CJ model to the systems formulated in the previous section,
we studied the Weibel instability by linearizing again around the equilibrium (3.6).
Upon linearizing the CJ model around the bi-Maxwellian equilibrium

E0 =B0 = 0 , fs0 = fs0(v
2
⊥, v

2
z ) (4.1)
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FIGURE 5. Growth rate for the ion Weibel instability for the HW kinetic model (3.7), for
four values of temperature anisotropy T (i)⊥ /T

(i)
‖ = 2, 5, 10, 100. The blue circles denote the

reference solutions derived from the Vlasov–Maxwell model, while red lines are for (3.7).

(where the subscript s refers to the particle species), we obtain the dispersion relation
(see § A.3)

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=−k2δ2

e − Zµ̄
T (i)⊥
T (i)‖

W
(
ω

kvi‖

)
. (4.2)

The above dispersion relation can be compared directly with the relation (2.11) that is
obtained for the full Vlasov–Maxwell dynamics. As expected, both electron and ion
Weibel instabilities are reproduced by the CJ model in exceptional agreement with the
full Vlasov–Maxwell theory.

A point about the CJ model that has been omitted so far (while it deserves some
attention) is that the quasi-neutrality conditions (2.3) are not preserved in time exactly,
as it can be verified by a direct calculation. More specifically, one can ask if the
electron velocity as computed from the first moment of (3.1) is compatible with the
corresponding expression arising from (2.3). In order to provide the answer to this
question, we use (2.3) and the first moment equation of (2.2) to rewrite (1.8) as

E=−Vi ×B+
(

1+ Zµ̄
1− Zµ̄

)(
1

ene
J×B− 1

ene
∇ · P̃e − me

e
DVe

Dt

)
. (4.3)
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Then, we use (4.3) as the CJ closure equation for the electric field in (3.1). Taking the
first moment (here denoted by Ke) of the resulting electron kinetic equation yields

∂

∂t
(Ke − neVe)+Ve · ∇ (Ke − neVe)+∇ · (Ve Ke − neVeVe)

= (Ke − neVe)×
(

ωe − e
me

B
)
+ Zµ̄

1− Zµ̄

(
1

me
J×B− 1

me
∇ · P̃e − ne

DVe

Dt

)
,

(4.4)

where we recall that ωe =∇×Ve is the electron vorticity and (ne,Ve) are expressed
by using (2.3). Then, we conclude that the consistency relation Ke = neVe fails to
be preserved in time. This is a fundamental consistency issue that is intrinsic to
the model and can lead to different drawbacks beyond the linear analysis of the
Weibel instability. For example, charge conservation is dramatically affected, thereby
preventing neutrality from being satisfied at all times. In the next section, we show
how this issue is solved by simply retaining all terms in the exact Ohm’s law (1.7).

4.2. The neutral Vlasov model
Recently, upon retaining all terms in the exact Ohm’s law (1.7), we showed (Tronci
& Camporeale 2015) how the quasi-neutral limit can be consistently implemented
in the Vlasov–Maxwell system both directly (by formally letting ε0 → 0) and in
Hamilton’s variational principle: a comparison with the full Vlasov–Maxwell system
was presented and good agreement was found in the linear case for both Alfvèn
and Whistler modes at different angles of propagation. Later, Burby (2015) showed
how this model also possesses a Hamiltonian structure, while Degond, Deluzet &
Doyen (2017) provided an alternative mathematical footing by exploiting scaling and
asymptotic techniques in the case of one particle species (by preventing ion motion).
In the same work, the question of the numerical implementation was also discussed.
As it was presented in Tronci & Camporeale (2015), the quasi-neutral model consists
of the kinetic equations (2.2) and (3.1), the quasi-neutrality conditions (2.3), Faraday’s
law and Ohm’s law (1.1). Here, the electron velocity is expressed in terms of the ion
velocity by using Ampère’s law.

A question that emerged at the end of § 4.1 concerned the possibility of consistency
issues precisely with the second equation in (2.3). Again, one asks if the electron
velocity as computed from the first moment of (3.1) is compatible with the
corresponding expression arising from (2.3). A positive answer can be found by
following a similar procedure as in the previous section. First, one replaces (1.5)
in (3.1) and then one takes the first moment of the resulting kinetic equation. As a
result, one obtains

∂

∂t
(Ke − neVe)+Ve · ∇ (Ke − neVe)+∇ · (Ve Ke − neVeVe)

= (Ke − neVe)×
(

ωe − e
me

B
)
, (4.5)

where we recall that ωe =∇×Ve is the electron vorticity and (ne,Ve) are expressed
by using (2.3). Then, we conclude that if Ke = neVe is verified initially, then it stays
so at all times.

As a further remark on the neutral Vlasov model, we notice that Ohm’s law (1.1)
is not suitable for the numerical implementation, since the electron mean-flow inertia
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produces an explicit time derivative in the expression of the electric field. In his thesis,
Burby expanded (1.1) by using (2.3) to obtain (1.7) in the form(

1+ Zme

mi

)
E+ me

µ0e2ne
∇×∇×E=−

(
1+ Zme

mi

)
Vi ×B

+ 1
ene

[
J×B−∇ ·

(
P̃e − Zme

mi
P̃i

)]
+ me

e2ne

[
∇ ·

(
ViJ+ JVi − JJ

ene

)]
,

(4.6)

with J = µ−1
0 ∇ × B. While on one hand this eliminates the time derivative in the

closure for the electric field, one the other hand it involves inverting the operator
ψ + curl2 for some function ψ(x). (Here we shall not dwell upon the question of
the numerical costs involved in inverting this operator). We remark that here we did
not set ∇ ·E to zero, as there is absolutely no reason for this to hold: indeed, quasi-
neutrality is obtained by letting ε0→ 0 in Gauss’ law, while no hypothesis is made
on ∇ ·E.

The linear stability of the neutral Vlasov model can be easily studied since, as
already noticed in Tronci & Camporeale (2015) it suffices to take the limit ε0→ 0
in the standard dispersion relation for the Vlasov–Maxwell system. Then, for example,
the case of the Weibel instability can be studied by simply discarding the term ω2/ω2

pe
in (2.11) so that

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=−k2δ2

e − Zµ̄
T (i)⊥
T (i)‖

[
1+W

(
ω

kvi‖

)]
. (4.7)

In the next section we show the results obtained with the neutral Vlasov model for
both the electron and the ion Weibel instabilities.

4.3. Discussion on quasi-neutral kinetic models
This section compares the dispersion relations for the ion and electron Weibel
instability derived from the CJ and the neutral Vlasov model. As it was done in
previous sections, the case of the electron Weibel instability is studied by adopting a
cold-fluid closure for ion kinetics. Thus, upon setting T (i)⊥ = T (i)‖ and W(ω/kvi‖) ' 0,
equations (4.2) and (4.7) become

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=−k2δ2

e (4.8)

and

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=−k2δ2

e − Zµ̄, (4.9)

respectively. We notice how the electron kinetics completely decouples from the
ions in (4.8), while a minor coupling persists in (4.9). Similarly, the case of the
ion Weibel instability can now be studied by adopting a cold-fluid closure for
electron kinetics (not available in previous sections, which instead adopted an electron
warm-fluid closure for the ion Weibel instability). In this case, setting T (e)⊥ = T (e)‖ and
W(ω/kve‖)' 0 in (4.2) and (4.7) leads to

Zµ̄
T (i)⊥
T (i)‖

W
(
ω

kvi‖

)
=−1− k2δ2

e (4.10)
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FIGURE 6. Growth rate for the ion Weibel instability for four values of temperature
anisotropy T⊥/T||= 2, 5, 10, 100. The blue circles are the reference solutions derived from
the Vlasov–Maxwell model, the red lines are the solution of the CJ model, the blue lines
are for the neutral Vlasov model.

and

Zµ̄
T (i)⊥
T (i)‖

W
(
ω

kvi‖

)
=−1− k2δ2

e − Zµ̄
T (i)⊥
T (i)‖

, (4.11)

respectively. We notice that certain differences between the two models may
be appreciated in this case only for unusual anisotropy values of the order of
T (i)⊥ /T

(i)
‖ ' µ̄−1.

The dispersion relations (4.10)–(4.11) and (4.8)–(4.9) for the ion and electron
Weibel instability derived from the CJ and the neutral Vlasov model are presented in
figures 6 and 7, respectively. The results for the electron instability are indistinguishable
from the VM solutions (obtained upon suitably specializing (2.11) for the case of
electron and ion Weibel instabilities). Neutral Vlasov solutions are not shown as
they also overlap with the VM solutions. For what concerns the ion instability a very
small discrepancy can be noticed between the VM and the CJ, with the latter typically
overestimating the growth/damping rates. However, the values are very small.
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FIGURE 7. Growth rate for the electron Weibel instability for four values of temperature
anisotropy T⊥/T||= 2, 5, 10, 100. The blue circles are the reference solutions derived from
the Vlasov–Maxwell model, while the red lines are the solution of the CJ model. The
neutral Vlasov solution coincides with both the VM and CJ solutions.

5. Conclusions and perspectives

The development and study of reduced models is a central theme in plasma physics,
where the large separation of time and space scales between different species often
makes computationally infeasible to tackle the first-principle dynamics (see, e.g.
Camporeale & Burgess 2016). In this paper, we have addressed the problem of using
reduced forms of Ohm’s law to couple electrons and ions species. We have studied
the validity of different approximation schemes by studying the linear dispersion
relation for both electron and ion Weibel instabilities. In a sense, this is the simplest,
yet not trivial, electromagnetic instability that one would like to be able to recover in
an unmagnetized plasma. The Weibel instability has important physical implications
for magnetic field generation in astrophysical and cosmological scenarios (Fonseca
et al. 2003; Schlickeiser & Shukla 2003).

In § 2.1, we have studied a moment model, initially introduced by Hesse and
Winske and later developed further by Kuztnetsova. This model was then extended to
a fully kinetic theory that neglects electron inertia, in § 3.1. Also, § 4.1 discussed a
quasi-neutral kinetic model introduced by Cheng and Johnson, who neglected terms of
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the order of the mass ratio. Furthermore for each one of the above mentioned model,
we have studied similar variants introduced through variational methods, where the
approximations are introduced at the level of Hamilton’s principle. In particular, the
quasi-neutral Vlasov model (simply named neutral Vlasov) was introduced by the
authors in Tronci & Camporeale (2015).

Among the available reduced models, we have shown that only the quasi-neutral
models (with electron inertia) are able to reproduce correctly the dispersion relation
for the Weibel instability for both cases of ion and electron temperature anisotropy,
thereby highlighting the importance of a kinetic derivation of the electron pressure
tensor. The most important difference between the CJ and the neutral Vlasov models
is that the latter preserves Ampère’s current balance. This ensures the equality, at
all times, between the mean velocity calculated through the first moment of the
distribution function, and the same quantity calculated through Ampere’s law (2.3).
In turn, this also guarantees charge conservation and thus quasi-neutrality.
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Appendix A
A.1. The dispersion relation for moment models

In this appendix, we derive the dispersion relations (2.5) and (2.9) for the moment
models treated in § 2.

First, we decompose all quantities as X = X0 + X1 (where the subscripts 0 and
1 denote the equilibrium configuration and its perturbation, respectively). Then, we
linearize the ion Vlasov equation to find

∂f1

∂t
+ v ·

∂f1

∂x
+
[

e
me

(
∂A1

∂t
+∇ϕ1 − v×B1

)]
·
∂f0

∂v
= 0, (A 1)

where we have dropped the subscript i for convenience of notation. Upon applying
the method of characteristics (Krall & Trivelpiece 1973), we write X1 = X̃1ekz−ωt and
find

f̃1 = −i
Ze
mi

∫ 0

−∞

(
ωÃ1 − ϕ̃1k+ v× k× Ã1

)
·
∂f0

∂v
ei(kvz−ω)τ dτ

= Ze
mi

[
Ã1 + ϕ̃1 − v · Ã1

kvz −ω k

]
·
∂f0

∂v
. (A 2)

At this point, we denote by Ki =
∫

vfi dv the momentum of the ion mean flow and
we compute its planar projection (by dropping the subscript i) as

K̃1⊥ = Ze
mi

∫
v⊥

(
Ã1⊥ ·

∂f0

∂v⊥

)
− Ze

mi

∫
kv⊥

v⊥ · Ã1⊥
kvz −ω

∂f0

∂vz
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= − e
mi

n0Ã1⊥ − Ze
mi

Ã1⊥

∫
1
2

kv2
⊥

kvz −ω
∂f0

∂vz
(A 3)

= − e
mi

n0

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
Ã1⊥, (A 4)

where we have used the fact that f0= f0(v
2
⊥, v

2
z ) (notice, f0 is an even function of v⊥)

and so
∫

v⊥v⊥f0 dv⊥ = (
∫
(v2
⊥/2)f0 dv⊥)1 (here, 1 denotes the identity matrix). Also,

here we have introduced the superscript (i) on the ion temperatures as well as the
notation

W(ξ)=−1− ξZ(ξ), (A 5)
where Z denotes the plasma dispersion function. In addition, here vi‖ denotes the ion
thermal velocity in the parallel direction. As a subsequent step, we linearize Ampère’s
law ZeKi − eneVe =µ−1

0 ∇×B to obtain

K̃1⊥ = n0

Z

(
Ṽ1⊥ + e

me
k2δ2

e Ã1⊥

)
(A 6)

so that eventually

− e
mi

n0

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
Ã1⊥ = n0

Z

(
Ṽ1⊥ + e

me
k2δ2

e Ã1⊥

)
(A 7)

and thus

Ṽ1⊥ =−
{

e
me

k2δ2
e +

Ze
mi

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
Ã1⊥. (A 8)

At this point, we linearize the electron pressure equation to obtain

ωP̃1 − Ṽ1(k · P0)− (k · Ṽ1)P0 − (k · P0)Ṽ1

−α(P0 × (k× Ṽ1)− (k× Ṽ1)× P0)+ i
e

me
(P0 × B̃1 − B̃1 × P0)= 0. (A 9)

Notice that we have included the Coriolis force terms for completeness; when α= 0,
the equation above returns the HW model, while α = 1 retains the Coriolis force
consistently. Then, we take the dot product of the equation above with k (strictly
speaking, we contract the pressure tensor equation with the vector k). To this purpose,
we compute

(k · P0)× (k× Ṽ1)= (kṼ1 : P0)k− (kk : P0)Ṽ1 (A 10)

k · ((k× Ṽ1)× P0) = k ·
∫
((k× Ṽ1)× c)c f0(c) d3c

= −k ·
∫
((c · Ṽ1)k− (k · c)Ṽ1)c f0(c) d3c

= −k2(Ṽ1 · P0)+ (k · Ṽ1)P0k, (A 11)

so that eventually

ωP̃1k= (1− α)p‖(k · Ṽ1)k+ (αp⊥ + (1− α)p‖)k2Ṽ1 + i
e

me
(p⊥ − p‖)k× B̃1. (A 12)

Taking the planar projection yields

ω(P̃1k)⊥ = (αp⊥ + (1− α)p‖)k2Ṽ1⊥ + e
me
(p⊥ − p‖)k2Ã1⊥. (A 13)
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Now, we linearize Ohm’s law (1.5) to write en0(ϕ̃1k−ωÃ1)= P̃1k. Taking the planar
component of the latter equation yields

−en0ω
2Ã1⊥ =ω(P̃1k)⊥ (A 14)

and by inserting the equations (A 8) and (A 13) we obtain

−en0ω
2Ã1⊥ = e

me
(p⊥ − p‖)k2Ã1⊥ − (αp⊥ + (1− α)p‖)k2

×
{

Ze
mi

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
+ e

me
k2δ2

e

}
Ã1⊥. (A 15)

Then, upon using the relation men0/p‖ = 1/ve‖, the dispersion relation becomes

ω2

k2v2
e‖
= 1− T (e)⊥

T (e)‖
+
(
α

T (e)⊥
T (e)‖
+ 1− α

){
Zme

mi

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
+ k2δ2

e

}
. (A 16)

Then, the dispersion relation (2.5) for the HW model in the case of the Weibel
instability is given by α = 0

ω2

k2v2
e‖
= 1− T (e)⊥

T (e)‖
+
{

Zme

mi

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]
+ k2δ2

e

}
, (A 17)

while retaining Coriolis effects (by setting α = 1) leads to (2.9), that is

ω2

k2v2
e‖
= 1− T (e)⊥

T (e)‖

{
1− k2δ2

e −
Zme

mi

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
. (A 18)

A.2. The dispersion relation for reduced kinetic models
This appendix presents the dispersion relations (3.7) and (3.11) for the reduced models
in §§ 3.1 and 3.2, in the case of the Weibel instability. The ion kinetic equation (2.2)
was already linearized around the equilibrium

E0 =B0 =Ve 0 =Vi 0 = 0, f0 = f0(v
2
⊥, v

2
z ) (A 19)

in § A.1, thereby leading to (A 2). In addition, in § A.1, linearizing Ampère’s law led
to (A 6) and to (A 8). At this point, we need to linearize electron kinetics around the
equilibrium (3.6). To this purpose, we consider the following equation

∂ fe
∂t
+ (c+Ve) ·

∂ fe
∂x

−
[

c · ∇Ve + αc×∇×Ve − e
me

(
∂A
∂t
+∇ϕ − (c+Ve)×B

)]
·
∂ fe
∂c
= 0, (A 20)

where α= 0, 1 is a flag variable so that α= 0 corresponds to the kinetic HW system
in § 3.1, while α = 1 corresponds to its variational variant in § 3.2. Upon linearizing
around (3.6), we obtain

∂ f1
∂t
+ c ·

∂ f1
∂x
−
[

qe

me

(
∂A1

∂t
+∇ϕ1 − c×B1

)
+ c · ∇V1 + αc×∇×V1

]
·
∂ f0
∂c
= 0,

(A 21)
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where we have used the same notation as in § A.1. Again, upon using the method of
characteristics and by Fourier transforming, we have

f̃1 =
∫ 0

−∞
[ζe(iωÃ1 − iϕ̃1k+ c× B̃1)+ ikczṼ1 + iαc× k×V1] · ∂ f0

∂c
ei(kcz−ω)τ dτ

= i
∫ 0

−∞
{ζe(ω− kcz)Ã1 − [ζeϕ̃1 − c · (ζeÃ1 + αṼ1)]k+ (1− α)kczṼ1} · ∂ f0

∂c
ei(kcz−ω)τ dτ

= −
[
ζeÃ1 + ζeϕ̃1 − c · (ζeÃ1 + αṼ1)

kcz −ω k+ (α − 1)kcz

kcz −ω Ṽ1

]
·
∂ f0
∂c
, (A 22)

where we have introduced the notation ζe = e/me. Therefore, the planar components
of the pressure force term are

m−1
e (P̃1k)⊥

=−
∫

kcz

{[
ζeÃ1 + ζeϕ̃1 − c · (ζeÃ1 + αṼ1)

kcz −ω k+ (α − 1)kcz

kcz −ω Ṽ1

]
·
∂ f0
∂c

}
c⊥ d3c.

(A 23)

Then, we verify that∫ (
kczÃ1 ·

∂ f0
∂c

)
c⊥ d3c= k

∫
ϕ̃1

kcz

kcz −ω
∂ f0
∂cz

c⊥ d3c= k2 Ã1 z

∫
c2

z

kcz −ω
∂ f0
∂cz

c⊥ d3c= 0

(A 24)
and also ∫

kcz

[
kcz(αṼ1z + ζe Ã1z)

kcz −ω − (α − 1)kcz

kcz −ω Ṽ1z

]
∂ f0
∂cz

c⊥ d3c= 0. (A 25)

With this in mind, and by recalling
∫

v⊥v⊥f0 dv⊥ =
(∫
(v2
⊥/2)f0 dv⊥

)
1, we compute

m−1
e (P̃1k)⊥ =

∫
kcz

{[
kc⊥ · (αṼ1⊥ + ζe Ã1⊥)

kcz −ω
∂ f0
∂cz
− (α − 1)kcz

kcz −ω Ṽ1⊥ ·
∂ f0
∂c⊥

]}
c⊥

=
∫

kcz

[
1
2

kc2
⊥∂ f0/∂cz

kcz −ω (αṼ1⊥ + ζe Ã1⊥)+ (α − 1)kcz

kcz −ω f0Ṽ1⊥

]
= n0ω

T (e)⊥
T (e)‖

(αṼ1⊥ + ζe Ã1⊥)W
(
ω

kve‖

)
+ (α − 1)ω

[
n0 +ω

∫
f0

kcz −ω
]

Ṽ1⊥

= n0ω

[
T (e)⊥
T (e)‖

(αṼ1⊥ + ζe Ã1⊥)+ (1− α)Ṽ1⊥

]
W
(
ω

kve‖

)
. (A 26)

Now, the planar components of Ohm’s law (as in (A 14)) yield

− e
me

[
1+ T (e)⊥

T (e)‖
W
(
ω

kve‖

)]
Ã1⊥ =

[
1− α

(
1− T (e)⊥

T (e)‖

)]
W
(
ω

kve‖

)
Ṽ1⊥, (A 27)
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so that, upon recalling (A 8),

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=
[

1− α
(

1− T (e)⊥
T (e)‖

)]

×
{

k2δ2
e + Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
W
(
ω

kve‖

)
. (A 28)

Then, the dispersion relation (3.7) for the HW kinetic model in the case of the Weibel
instability is given by α = 0

1+ T (e)⊥
T (e)‖

W
(
ω

kve‖

)
=
{

k2δ2
e + Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
W
(
ω

kve‖

)
, (A 29)

while retaining Coriolis effects (by setting α = 1) leads to (3.11), that is

T (e)‖
T (e)⊥
+W

(
ω

kve‖

)
=
{

k2δ2
e + Zµ̄

[
1+ T (i)⊥

T (i)‖
W
(
ω

kvi‖

)]}
W
(
ω

kve‖

)
. (A 30)

A.3. Dispersion relation for the Cheng–Johnson model
This appendix presents the dispersion relation (4.2) that arises by linearizing the
Cheng–Johnson model around the equilibrium (4.1). In this case, linearizing the form
(1.8) of Ohm’s law leads to

q2
e

me
n0E1 +µ−1

0 ∇×∇×E1 = qe
1

me
∇ · Pe 1 + qi

1
mi
∇ · Pi 1 (A 31)

and taking the planar components after Fourier transforming leads to

ω(1+ k2δ2)Ã1⊥ = 1
en0
[(Zµ̄ P̃(i)1 − P̃(e)1 )k]⊥. (A 32)

On the other hand, by adapting the result (A 26) to the present case, we have

m−1
s (P̃

(s)
1 k)⊥ =±ωen0

ms

T (s)⊥
T (s)‖

W
(
ω

kvs‖

)
Ã1⊥, (A 33)

(where the plus is used when s= e and the minus when s= i) and therefore we obtain
(4.2) in the form

1+ k2δ2
e =−

T (e)⊥
T (e)‖

W
(
ω

kve‖

)
− Zµ̄

T (i)⊥
T (i)‖

W
(
ω

kvi‖

)
. (A 34)
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