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Abstract

The peritrophic matrix is a chitin-protein structure that envelops the food bolus in
the midgut of the majority of insects, but is absent in some groups which have, in-
stead, an unusual extra-cellular lipoprotein membrane named the perimicrovillar
membrane. The presence of the perimicrovillar membrane (PMM) allows these in-
sects to exploit restricted ecological niches during all life stages. It is found only in
some members of the superorder Paraneoptera and many of these species are of med-
ical and economic importance. In this review we present an overview of the midgut
and the digestive system of insects with an emphasis on the order Paraneoptera and
differences found across phylogenetic groups. We discuss the importance of the
PMM in Hemiptera and the apparent conservation of this structure among hemipter-
an groups, suggesting that the basic mechanism of PMM production is the same for
different hemipteran species. We propose that the PMM is intimately involved in the
interaction with parasites and as such should be a target for biological and chemical
control of hemipteran insects of economic and medical importance.
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Introduction

The peritrophic membrane/matrix (PM) is a chitin-protein
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matrix that surrounds the food bolus in the midgut of the ma-
jority of insects (Bolognesi ef al., 2008). In some insects, how-
ever, the PM is absent and is replaced by an extra-cellular
lipoprotein membrane called the perimicrovillar membrane
(PMM) (Silva et al., 2004). This PMM allows insects to exploit
restricted ecological niches during all postembryonic stages
(Terra & Ferreira, 2005; Damasceno-Sa et al., 2007). The
PMM is present only in some members of the superorder
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Fig. 1. Phylogeny of Paraneoptera and schematic representation of the different membranes in Exopterygoya insect orders. The
Paraneoptera group includes two superorders Psocodea, which comprises the orders Psocopetra (booklice, bark lice and psocids) plus
Phthiraptera (sucking and biting lice) and the superorder Condylognatha that includes the order Thysanoptera (thrips) and Hemiptera
(suborders Homoptera and Heteroptera). The schematic representation of different membranes to separate the meal from the epithelium
are: (a) peritrophic membrane in insects belonging to the Polyneoptera group; (b) peritrophic gel in Psocoptera (booklice) and
Phthiraptera (lice); (c) kind of perimicrovillar membrane in Thysanoptera order; and d) perimicrovillar membrane in Hemiptera.
Arrows = membranes of the midgut in the different orders of insects; DM =microvilli; asterisks show the orders which have

perimicrovillar membrane.

Paraneoptera, including some species of medical and econom-
ic importance such as the Reduviidae, vectors of Trypanosoma
cruzi (Lane & Harrison, 1979), the parasite that causes Chagas
disease. Chagas disease (American trypanosomiasis) is a
human disease endemic in large areas of Latin America.

This review provides an overview of the digestive tract in
insects and changes that have occurred in different phylogen-
etic groups with an emphasis on the midgut of the
Paraneoptera. Subsequently, we discuss the presence of the
PMM and its interaction with pathogens and how the PMM
may become a target to reduce populations of insects of eco-
nomic and medical importance.

Insect digestive system
General morphology

The digestive system in insects comprises the salivary
glands and the alimentary canal, which are involved in diges-
tion, absorption and feces elimination (Terra & Ferreira, 2009).
The salivary glands open into the cibarium and the saliva lu-
bricates the mouthparts (Terra et al., 1996). The alimentary
canal, moreover, can broadly be divided into foregut, midgut
and hindgut (Billingsley & Lehane, 1996).

The foregut begins at the mouth and includes the buccal
cavity; the esophagus, crop and proventriculus. The crop is a
storage organ in many insects although it also serves as a site
for digestion in some species. The proventriculus is a triturat-
ing organ and in most insects serves as valve controlling the
entry of food into the midgut (Chapman, 1998). The midgut
is a tube with a ventriculus (anterior and posterior ventriculus)
and sacs (gastric or midgut cecae) usually at the anterior end
(Billingsley & Lehane, 1996). The midgut is the principal site
for digestion and absorption of nutrients but there is, however,
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considerable variation in midgut arrangement and structure
depending on the insect order and on the diet (Billingsley &
Lehane, 1996; Terra & Ferreira, 2009). The last section of the di-
gestive system is the hindgut which includes the ileum, colon
and rectum. This is the section where water absorption and ex-
cretion occur (Billingsley & Lehane, 1996; Chapman, 1998). In
the region of the sphincter (pylorus) separating the midgut
from the hindgut, Malpighian tubules used for excretion and
osmoregulation, end between midgut and hindgut (Terra,
1988).

The midgut epithelium of insects comprises three cell
types: cells involved in enzyme secretion and absorption (di-
gestive cells), those with endocrine functions (endocrine cells)
and those that play a role in replacement of epithelium (regen-
erative cells) (Billingsley & Lehane, 1996; Pinheiro et al., 2008;
Teixeira et al., 2015). Unlike many other animal groups, insects
do not produce glycosylated proteins such as mucins to separ-
ate the meal from the epithelium (Tellam et al., 1999), but have
developed different membranes or matrices, often referred to
as the PM, or PMM, that cover the surface of the intestinal tract
and function as a protective lining for the epithelium.

PM

The PM was described by Balbiani (1890) as a membranous
sac that directly surrounds the food in the lumen. The PM is
not a cell component, but forms a cylindrical film or sheet
that lines the lumen of the midgut between the midgut colum-
nar cells and the ingested or digested food (fig. 1a). The PM is
made up of a matrix of chitin, glycosaminoglycans and pro-
teins (Eisemann & Binnington, 1994; Liu et al., 2012;
Moussian, 2013). Although it impedes direct contact of food
with the striated border of columnar cells, this membrane per-
mits the passage of digestive enzymes in the direction of the
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midgut lumen and the absorption of products resulting from
digestion that are subsequently eliminated with the feces, pre-
venting mechanical injury and hindering or impeding the
entry of pathogens (Lehane & Billingsley 1996; Pinheiro
et al., 2008). Furthermore, the PM hinders the free movement
of molecules, dividing the midgut lumen into two compart-
ments: endoperitrophic space and ectoperitrophic space
(Dow, 1987; Terra & Ferreira, 2009; Kuraishi et al., 2011;
Moussian, 2013; Teixeira et al., 2015).

The structure of the PM is thought to result from chitin fi-
brils being interlocked with chitin-binding domains of peritro-
phins (Moussian, 2013). Mucin-like domains line the
ectoperitrophic and endoperitrophic sides of the PM (Terra
& Ferreira, 2012). As these domains are highly hydrated,
they lubricate the surface of the PM, easing the movement of
food inside the PM and in the ectoperitrophic fluid outside the
PM (Terra, 2001; Terra & Ferreira, 2012). The PM is classified
into two types (Peters, 1992; Marques-Silva et al., 2005). Type I
PM (primarily studied in lepidopteran larvae and dipteran
adults) is produced along the midgut epithelium
(Marques-Silva et al., 2005; Teixeira, et al., 2015) and is induced
by the distension of the gut caused by food ingestion (Terra,
2001). This type of PM is found in Coleoptera, Dictyoptera,
Ephemeroptera, Hymenoptera, Odonata, Orthoptera,
Phasmida, larval Lepidoptera and adult hematophagous
Diptera with subtle differences (Peters, 1992; Hegedus et al.,
2009). Type II PM is produced in a restricted region called
the cardia that separates the foregut from the midgut
(Marques-Silva et al., 2005; Teixeira, et al., 2015). This PM is
found in some orders of Polyneoptera, such as Dermaptera,
Isoptera and Embiodea and some species of Lepidoptera,
and the larvae of Diptera (Hegedus et al., 2009). PM produc-
tion control is poorly understood; in some insects (i.e. mosqui-
toes), ingestion of a meal induces PM production, but whether
this effect is direct (food in the midgut) or indirect (via endo-
crine pathways) is unknown (Peters, 1992). The protein com-
ponents of PM I and PM II are similar. PM proteins have
been classified into four types: class 1 proteins, thought to be
digestive enzymes and food proteins loosely absorbed at the
PM surface; class 2 proteins, proteins enclosed in membrane
vesicles trapped between PM sheets; class 3 and 4 proteins, in-
tegral proteins of the PM named peritrophins, characterized
by the presence of chitin-binding domains and mucin-like do-
mains (Tellam et al., 1999; Geer et al., 2002). Furthermore,
Tellam ef al. (1999) proposed four classes of PM proteins
based on the ease with which they can be removed from the
PM. Class I proteins are removed with physiological buffers
and represent loosely associated proteins, likely digestive en-
zymes and food remnants. Class II proteins are extractible
with mild detergents, such as sodium dodecyl sulfate, that dis-
rupt weak ionic interactions, whereas Class III proteins are re-
leased only with strong denaturants, such as urea. Class IV
proteins cannot be removed by any means and are likely cova-
lently linked to other proteins or chitin.

The PM has multiple functions which are associated with
its ability to compartmentalize the gut. The compartmental-
ization increases the efficiency of the digestion of polymeric
molecules (Silva et al., 2004). The characteristics of the PM
can be grouped according to their role in digestion: semiper-
meability, enzyme immobilization, counter-current flow,
water and ion movement, all of which facilitate absorption
(Ferreira et al., 1994; Terra & Ferreira, 1994; Agrawal et al.,
2014); and protection of the midgut epithelium: food abrasion
and invasion by microorganisms (Lehane, 1997; Bolognesi
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et al., 2008; Hegedus et al., 2009; Kuraishi et al., 2011). The
class III proteins known as peritrophins (nonmucin peritro-
phins and invertebrate intestinal mucins) are involved in the
protection of the midgut epithelium (Hegedus et al., 2009)
Thus, insects lacking a PM may have the midgut cells da-
maged and may be subject to invasion by microorganisms
(Tellam, 1996; Terra & Ferreira, 2012). Although protection is
thought to be the ancestral function of PM, new functions have
been added during the evolution of insect digestive tracts
(Terra, 1988). These may include: (a) prevention of nonspecific
binding of undigested material onto midgut membrane hy-
drolases and/or transport proteins; (b) prevention of enzyme
excretion by permitting the endo-ectoperitrophic circulation of
digestive enzymes; (c) mechanisms to ensure that monomers
produced from food remain close to the surface of the midgut
cells (Terra, 1988; Terra & Ferreira, 2012). These functions not
only guarantee protection but also an effective digestive ma-
chinery. The presence of the PM is characteristic of almost all
insects (Lehane, 1997; Hegedus et al., 2009; Terra & Ferreira,
2009).

PMM

Among the few insects that lack a PM are adult ants
(Hymenoptera), most adult moths and butterflies
(Lepidoptera) and Bruchidae (Coleoptera) (Peters, 1992).
One possible reason for this absence of PM in Hymenoptera
and Lepidoptera is that these animals feed almost exclusively
on low-molecular weight substances such as sugar, which
does not require luminal digestion (Terra, 2001; Waniek,
2009). Rather than a PM, some insects have a peritrophic gel
in their midgut which is the case of Bruchidae (Terra, 2001).
Based on these data, it was concluded that the PM should be
absent in insects lacking luminal digestion (Terra, 2001).
However, in insects with a diluted diet and lacking a PM,
they produce a second external membrane to the microvillar
membrane (MM), which may have an analogous function
and is called the PMM. This is the case of some members of
Paraneoptera group (figs 1 and 2)

The PMM refers to a double membrane covering the MM of
the intestine epithelial cells forming an outer microvillar (peri-
microvillar) membrane which maintains a constant distance
from the inner, or true, MM and projecting themselves to-
wards the intestine lumen (fig. 1d) (Reger, 1971; Burgos &
Gutiérrez, 1976; Billingsley & Downe, 1988). The PMM pro-
duction depends on factors such as abdominal distention,
diet content, activation of the neuroendocrine system leading
to the release of prothoracicotropic hormone (PTTH) and ec-
dysone production (Billingsley & Downe 1988; Azambuja
et al, 1993; Nogueira et al., 1997; Garcia et al., 199§;
Albuquerque-Cunbha et al., 2004).

The presence of the PMM is related to a modification of the
alimentary canal that enables direct absorption of nutrients,
such as essential amino acids, which occur in very low concen-
trations (Terra, 1990). Such modifications are believed to deal
rapidly with large amounts of dilute fluid food to prevent
hemolymph dilution. The functions of the PMM are similar
to those of the PM, such as compartmentalization of the digest-
ive process and a mechanical barrier to immobilize molecules
and protection of intestinal epithelium. Unlike the PM, how-
ever, the PMM increases the absorption capacity of nutrients
from diluted diets (Billingsley & Downe, 1988; Ferreira et al.,
1988; Billingsley, 1990; Terra & Ferreira, 2005).
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Fig. 2. Organization of gut compartments in the major insect orders. Neopteran insects are the common ancestor and include all the winged
insects, except Ephemeroptera and Odonata. Polyneoptera, Paraneoptera and Holometabola have different features in the digestive
physiology. C=crop; G=gastric cecae; V =ventriculus; M =Malpighian tubules; I=ileum; Co=colon; R=rectum; E =esophagus;
AV = anterior ventriculus; PV = posterior ventriculus (midgut). (Intestinal representations were taken and modified from Terra, 1988).

Based on the results from immunolocalization of the
PMM-bound-o-glucosidase which was found in both MM
and PMM (Albuquerque-Cunha et al., 2009, Allahyari et al.,
2010), it has been suggested that PMM is formed by budding
from the trans area of the Golgi complex, migrating as the in-
ternal membrane of double membrane vesicles, fusing their
outer membranes with the MM and their inner membranes
with the PMM (Silva et al., 1995; Damasceno-Sa et al., 2007).
Despite these developmental differences, Silva et al. (1995)
and Terra et al. (2006) proposed that the MM and PMM of pos-
terior midgut cells have the same origin. Furthermore, MM
and PMM share some biochemical properties as both are
rich in sterols, Mg?+-ATPase and Na+k-+-ATPase reaction, gly-
coconjugates and carbohydrate-binding molecules (Ferreira
et al., 1988; Albuquerque-Cunha et al., 2009). However, once
both have fully developed, MM and PMM show some func-
tional differences which may reflect the different intestinal mi-
croenvironments and the enzymatic dispersion to which they
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have been exposed (Albuquerque-Cunha et al., 2009). In rela-
tion to this, Bittencourt-Cunha et al. (2013) demonstrated that
after a meal, Rhodnius prolixus, uses fatty acids from the lumen
for the synthesis of different lipid and phospholipid classes
that were organized into PMM.

Digestive pattern related to phylogeny of the insects

Allinsects can be grouped according to their digestive physi-
ology and organization of the digestive system (fig. 2) (Terra,
1988; Lehane & Billingsley, 1996). Neopteran insects are the
common ancestor and include all the winged insects, except
Ephemeroptera (mayflies) and Odonata (dragonflies) and
evolved along three main lines: Polyneoptera (including
Orthoptera, Zoraptera, Mantodea, Blattaria, Isoptera);
Paraneoptera (including Hemiptera, Thysanoptera, Psocoptera
and Phthiraptera) and Holometabola (including Coleoptera,
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Megaloptera, Hymenoptera, Lepidoptera and Diptera) (fig. 2)
(Wheeler, 2001; Misof et al., 2014).

The Neoptera is the ancestor of Polyneoptera and evolved
to Paraneoptera and Holometabola (fig. 2). Based on Terra ef al
(1996), the neopteran ancestors have different features in the
digestive physiology: digestive enzymes may pass forward
from midgut to crop; the hydrolases are free and small, able
to pass through the PM; the endo-ecto peritrophic circulation
of digestive enzymes is driven by the secretion of fluid by
Malpighian tubules and fluid absorption in the midgut
cecae; and finally, there is differentiation of an acid anterior
midgut (with carbohydrase activity) and an alkaline posterior
midgut (with protease activity). Generally this group has a
large crop and relatively short midgut with diverticula (mid-
gut caeca) at the anterior end.

Polyneoptera

This group has retained characteristics of their neopteran
ancestor but has reduced the size of the crop; some insects
have lost caeca and have a differentiation of hindgut structures
associated with the utilization of refractory material (Terra
et al., 1996; Terra & Ferreira, 2009). The majority of digestion
is carried out in the crop by digestive enzymes propelled by
antiperistalsis from the midgut. Then, there is a transfer of di-
gestive enzymes and partially digested food towards the ven-
triculus. The anterior ventriculus is acidic and has high
carbohydrase activity, whereas the posterior ventriculus is al-
kaline and has high proteinase activity (Terra & Ferreira,
2012). In the midgut, the food bolus moves backwards by peri-
stalsis. When the polymeric molecules have been digested they
pass through the PM. Once the molecules pass through the PM
(fig. 2a), they diffuse, along with digestive enzymes, into the ec-
toperitrophic space. Subsequently, with a countercurrent flux
caused by secretion of fluid by the Malpighian tubules, the en-
zymes and nutrients are moved towards the midgut cecae
where final digestion is completed and nutrient absorption oc-
curs (Terra & Ferreira, 2009, 2012). The Polyneoptera group in-
cludes different orders such Dictyoptera (Blattaria and
Mantodea), Orthoptera, Phasmatodea, which gave rise to
Paraneoptera and Holometabola (fig. 2).

Paraneoptera

In this group of insects the PM is absent and is replaced by a
variety of membranes on the MM that performs the same role of
absorption of essential nutrients from a diluted diet (i.e. amino
acids that are present in very low concentrations) (Silva et al.,
2004). The ancestral origin of Paranoptera group (see
‘Adaptation of the midgut Paraneoptera Insects’ below) may
have had adaptations to deal rapidly with large amounts of di-
lute fluid food. This group have an alimentary tract in the form
of a simple tube (Kollien et al., 2004) distinguished by modifica-
tions of the crop, anterior caeca and endo-ectoperitrophic circu-
lation of digestive enzymes and polymer and oligomer
hydrolases, all associated with the lack of midgut luminal
digestion (Terra et al., 1996). Therefore, the fluid food is stored
essentially undigested in the anterior part of the midgut before
concentration and partial enzymatic hydrolysis, passing rapid-
ly through the narrow posterior part of the midgut into the
hindgut (Kollien et al., 2004; Waniek, 2009).

https://doi.org/10.1017/50007485315000929 Published online by Cambridge University Press

Holometabola

This group has similar water fluxes and circulation of en-
zymes as does the Polyneoptera, except that the fluid secretion
occurs in the posterior ventriculus instead of the Malpighian
tubules. The posterior midgut fluid does not contain waste,
as does the Malpighian tubular fluid (Terra & Ferreira, 2012).
It should be noted, however, that there may be considerable
variation in the digestive systems of insects: Holometabolous
(lower Holometabola- Coleoptera, Hymenoptera; and higher
Holometabola- Diptera, Lepidoptera, Trichoptera), or between
larvae and adults of the same groups. The compartmentaliza-
tion, however, seems to be conserved, facilitating the digestion
of polymeric food in more restricted environments (Terra et al.,
1987, 1996).

Adaptations of the midgut in Paraneoptera insects

The Paraneoptera group is subdivided in Psocodea and
Condylognatha that have marked differences in their digestive
tracts (Terra, 1988).

Psocodea

This group includes the orders Psocoptera (booklice) and
Phthiraptera (lice). As a particular feature of the midgut,
they have a peritrophic gel (fig. 2b) that covers the midgut col-
umnar cells instead of a PM (Terra, 2001; Silva et al., 2004). The
absence of the PM in this group is thought to be related to their
type of food and the countercurrent flows and their small size
that allows for easy and efficient diffusion of digested pro-
ducts to the midgut surface (Terra & Ferreira, 2012). The diges-
tion in Psocodea insects occurs in a few hours, implying serine
proteases for digestion and an alkaline pH value for the mid-
gut lumen (Waniek et al., 2005). The absence of PM was con-
firmed by Silva et al. (2004) who observed, via transmission
electron microscopy, dark material among midgut MM of
booklice, which corresponds to the remains of a peritrophic
gel that separates cells and midgut contents and an absence
of a-glucosidase bound to the peritrophic gel demonstrated
by immunocytolocalisation tests Essentially it can be said
that Psocodea does not have a PMM but a primitive mem-
brane form, the peritrophic gel (fig. 1).

Condylognatha

This group gave rise to the Thysanoptera and Hemiptera,
but there are few general characteristic of the midgut in these
two orders.

Thysanopterans have particular modifications at the mid-
gut cells. Current studies suggest that the MM of midgut
cells have two different types of glycocalyx, not seen in other
insects. In the anterior region of the midgut the MM are sur-
rounded by a myelin-like membrane that encloses several
MM in a bundle. This structure is similar to a PMM and pro-
vides a form of protection for the MM in a region where cells
are involved in secretory activity (Kitajima, 1975). In the pos-
terior region of the midgut the MM have numerous rod-like
projections arranged to form continuous layers characterized
by dense material in the intercellular space that are more simi-
lar to a PMM (fig. 1c, table 1) (Del Bene et al., 1991).
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Table 1. Characteristics of the PMM in Thysanoptera and Hemiptera.
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Order Suborder Infraorders Common name Characteristics References
Thysanoptera Thunderflies e Estructure similar to a PMM, involved in Del Bene et al. (1991)
Thunderbugs absorption and secretory activity Kitajima (1975)
Storm flies ® Presence of a-glucosidases Parrella et al. (2003)
Storm bugs ® Economically important insect Riley et al. (2011)
Corn lice * Vector of 20 tospoviruses Ullman et al. (2002)
Hemiptera Homoptera Sternorrhyncha Aphids * Phloem feeders Ashford et al. (2000)
Whiteflies * PMM with modification that help in Cristofoletti ef al. (2003)
Scake hydrolysus of sucrose and phloem amino acid. Douglas (2003)
* o-glucosidases involved in the hydrolysis of Fonseca et al. (2010)
dietary sucrose and in the osmoregulation Silva et al. (2004)
¢ Problem in agriculture Zhong et al. (2013)
Auchenorrhyncha Cicadas ¢ Xylem-suckers Fonseca et al. (2010)
Leafhoppers e Filter chamber linked to the PMM, suitable Terra (1988)
Treehoppers structure to deal with an extremely diluted diet Wu et al. (2006)
Planthoppers * a-glucosidase acts to control the osmolarity Zhong et al. (2013)
Spittlebugs ® Presence of PMM
¢ PMM in the management of the pests
Heteroptera Pentatomomorpha Stink bugs ® Seed-sucker, phytophagous Silva &Terra (1994)
Flat bugs * Presence of PMM Silve et al. (1995)
Seed bugs ¢ a-glucosidase
Cimicomorpha bed bugs ¢ All members are adapted to feeding on Alves et al. (2007)
Bat bugs animals as their prey or host (predators or Castro et al. (2012)

Assassin bugs

Kissing bug

hematophagous)
Presence of PMM

o-glucosidase linked with the synthesis of
hemozoin

Bed bugs and kissing bugs are a highly
specialized hematophagous

Reduviidae are generally predators of other
insects and some contribute to biological
control

Triatominae subfamily are blood suckers and
are vectors of protozoan T. cruzi

PMM in the management of vectors insects

Cortez et al. (2012)
Lane & Harrison (1979)

Mury et al. (2009)
Reinhard & Siva-Jothy (2006)

Silva et al. (2007)
Silverman et al. (2001)

Terra (1988)
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Features of the PMM in Hemiptera

The order Hemiptera comprises two suborders: Homoptera
and Heteroptera (table 1). The Homoptera includes:
Sternorrhyncha (Coccidae, scale insects; Aphididae, aphids;
Aleyrodidae, whitefly) and Auchenorrhyncha (Fulgoroidae,
planthopper; Cercopidae, spittle bugs; Cicadidae, cicadas;
Cicadellidae, leathoppers; Membracidae, treehoppers), all ter-
restrial plant feeders (Cranston & Gullan, 2009). The
Heteroptera comprises Pentatomomorpha (Lygaeoidae, seed
bugs; Pyrrhocoroidea, cotton strainers; Coreoidae, squash
bugs; Pentatomidae, shield bugs, chust bugs and stink bugs)
and Cimicomorpha (Cimicidae, bed bugs; Reduviidae, assas-
sin bugs) that have different feeding strategies that include pre-
dation, sap sucking and hematophagy (Terra et al., 1996; Misof
etal.,2014).

Sternorrhyncha (Homoptera) species are phloem feeders
and most studies have evaluated the digestive systems in
aphids, whiteflies and scale insects (Ashford et al., 2000;
Douglas, 2003; Fonseca et. al., 2010; Zhong et al., 2013). The
data suggest modifications associated with the PMM, that ori-
ginate from multimembrane vesicles from Golgi (Cristofoletti
et al., 2003) and which help in the hydrolysis of sucrose and
absorbing dilute phloem amino acids (Terra, 1990).

Auchenorryncha (Homoptera) species, principally cicadas,
leafthoppers, treehoppers, planthoppers and spittlebugs, are
xylem-feeders. This group of insects acquired a filter chamber
linked to the PMM, in the conical segment and anterior and pos-
terior extensions of the midgut (Zhong et al., 2013). These filter
chambers with the PMM provide a suitable mechanism to deal
with an extremely diluted diet (Terra, 1988; Fonseca et al., 2010).
Xylem fluid is a diet poor in organic nutrients and hypotonic to
the hemolymph; these insects require obligate bacterial sym-
bionts to synthesize essential amino acids (Wu et al., 2006).

The compartmentalization of digestion in Heteroptera is
known mainly from the Pentatomorpha: Dysdercus peruvianus
a seed-sucker bug; and Cimicomorpha: R. prolixus a hema-
tophagous bug (Lane & Harrison, 1979; Silva & Terra, 1994).
Despite having different diets, these insects share digestive
system similarities including the presence of the PMM (Lane
& Harrison, 1979). The anterior midgut of these insects is
used to store food and absorb water and also absorbs glucose
in Pentatomomorpha (Bifano et al., 2010). The digestion and
protein absorption of amino acids occurs in the posterior mid-
gut. Most protein digestion in Heteroptera occurs in the lumen
with the aid of cysteine and/or aspartic proteinases, mainly
cathepsins and ends in the perimicrovillar space under the ac-
tion of aminopeptidases and dipeptidases (Terra & Ferreira,
1994; Balczun et al., 2012).

In phloem feeding Sternorrhyncha, a-glucosidases are in-
volved in the hydrolysis of dietary sucrose and in the osmo-
regulation in the midgut lumen through their
transglycosidase activity (Ashford et al., 2000). Members of
Auchenorrhyncha, feed on xylem contents, that have low con-
centrations of organic compounds and it is possible that the
membrane-bound o-glucosidase acts to control the osmolar-
ity, following the passage of the meal into the midgut (Terra
& Ferreira, 2005; Fonseca et al., 2010). Silva et al. (2004) con-
firmed the existence of an integral protein o-glucosidase in
the PMM that works as a biochemical marker for the PMM.
This protein was first described in the seed-sucker bug D. per-
wvianus (Silva & Terra, 1995; Silva et al., 1995) and kissing bugs
R. prolixus and Triatoma infestans (Burgos & Gutiérrez, 1976;
Terra, 1988). Subsequently, o-glucosidases have been
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described in different groups of hemipteran insects and they
are involved in different functions other than digestion
(Allahyari et al., 2010; Fialho ef al., 2013). In the hematophagus
bug, R. prolixus, the perimicrovillar-associated a-glucosidase
has been linked with the synthesis of hemozoin that protects
the bug from the oxidative stress caused by the release of
hemin, a product of the hemoglobin digestion (Oliveira et al.,
2000; Silva et al., 2007; Mury et al., 2009).

The presence of integral proteins in the Paraneoptera group
confirmed the presence of a PMM in Hemipterans and
Thysanopterans (fig. 1), but not in Psocopterans and
Phthirapterans, suggesting that o-glucosidases and PMM of
Thysanoptera and Hemiptera are homologous (Silva et al.,
2004). Despite a common origin and composition of the PMM
(Terra, 1990; Albuquerque-Cunha et al., 2004, 2009), the synthesis
of the PMM can vary among species, which can be explained by
different feeding behaviors (Damasceno-Sa et al., 2007; Azevedo
et al., 2009; Fialho et al., 2009, 2012). In the hematophagous
Cimex hemipterus (Hemiptera: Cimicidae), Triatoma pallidipennis
and others triatomine species (Hemiptera: Reduviidae), of
Cimicomorpha infraorder, the PMM is evident 20 and 15 days
post feeding, respectively (Billingsley & Downe, 1986; Azevedo
et al., 2009; Gutiérrez-Cabrera et al., 2014). In the phytophagous
cotton stainer, D. peruvianus (Hemiptera: Pyrrhocoridae) and
sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae),
both of the Pentatomomorpha infraorder, the PMM covers all
the cells 30 and 20 h post-feeding, respectively (Damasceno-Sa
et al., 2007; Mehrabadi & Bandani, 2011). While in the zoophyto-
phagous Brontocoris tabidus (Hemiptera: Pentatomidae), also of
Pentatomomorpha infraorder, the PMM is evident in both the
starved and fed condition (Fialho et al., 2009, 2013).

Therefore, the development of PMM in hemipterans varies
according to how frequently the animal has access to food: in
phytophagous and zoophytophagous species access to food
seems frequent (Damasceno-Sa et al., 2007; Fialho et al., 2009),
while in blood-suckers such access is less frequent as hosts
are harder to find (Nogueira ef al., 1997; Azevedo et al., 2009).

Economic and public health importance of species with PMM

The Thysanoptera is a worldwide order of nearly 6000 spe-
cies, many of which are economically important insects: they
cause direct damage to plants as a result of their feeding and in-
direct damage as vectors of plant pathogens (Ullman et al., 1989;
Shipp et al., 1998). For example, at least 14 species of thrips trans-
mit 20 tospoviruses (genus Tospovirus, family Bunyaviridae), a
major group of plant viruses affecting >1000 host-plant species
many of them important for human use (table 1) (Ullman et al.,
2002; Parrella ef al., 2003; Riley et al., 2011).

The Hemiptera contains many species of medical and eco-
nomic importance. This order has a high biodiversity, is
adapted to a large number of habitats, exploits different
diets such as phloem and xylem sap, seed sucking, predation
and hematophagy. Most are vectors of viruses, bacteria and
protozoa and as such are a serious problem in agriculture
and public health (Dedryver et al., 2010; Fonseca et al., 2010).
Some hemipterans of economic importance to humans in-
clude: aphids and whiteflies as phloem-suckers; planthoppers,
cicadas, cercopids and leafhoppers as xylem-suckers; seed
bugs, cotton strainers and squash bugs that are phytophagous
terrestrial bugs and include many plant pests; and finally, bed
bugs and assassin bugs that include ectoparasites and vectors
of human parasites and pathogens.
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Cimicidae (bed bugs) are a highly specialized hematopha-
gous taxon that parasitizes primarily humans, birds and bats
(Reinhardt & Siva-Jothy, 2007). Bed bugs are capable of carry-
ing different infectious agents such as bacteria, protozoa and
viruses that may cause diseases such as typhus, anthrax, pla-
gue, relapsing fever, tularemia, Q fever, leishmania, hepatitis B
virus and HIV (Burton, 1963; Ryckman et al., 1981); however,
the cimicids rarely transmit them to their hosts (Goddard &
deShazo, 2009; Silverman et al., 2001). These insects also can
harbor trypanosomes (Bower & Woo, 1981; Gardner &
Molyneux, 1988), including T. cruzi the causative agent of
Chagas disease (Chang & Chao, 1999). Although the trypano-
somes such as Trypanosoma (Megatrypanum) incertum (Gardner
& Molyneux, 1988) and Trypanosoma (Schizotrypanum) hedricki
(Bower & Woo, 1981) have been found in bed bugs, this taxon
had not been considered a major vector of any human parasite.
However, recently Salazar et al (2015) showed that bed bug
(Cimex lecturarius) seems to be a competent vector of T. cruzi.
Bed bugs efficiently acquired T. cruzi on feeding on infected
mice and then transmitted the parasite back to susceptible
hosts both during cohabitation and through contaminated
feces placed on broken host skin by researchers (Salazar
et al., 2015).

In contrast, the Reduviidae (assassin bugs) is one of the lar-
gest families of the Hemiptera and many are predators of other
insects and some contribute to biological control. However,
some species of the Triatominae sub-family are blood feeders
and are important vectors of the protozoan T. cruzi, the causa-
tive agent of Chagas’ disease that affects an estimated 67 mil-
lion people, mainly in Latin America (WHO, 2015). The
interactions between T. cruzi and the PMM of the triatomine
vectors are keys to the success of the parasite in the midgut
(Alves et al., 2007). Bed bugs and triatomine bugs, share
many similarities. Besides belonging to the same infraorder,
both are exclusively hematophagous and develop the PMM,
although the blood sucking lifestyle of each insect has evolved
independently.

Despite their importance in agriculture and public health,
there are few studies of these insects on the morphology and
ultrastructure of their midguts with particular attention to the
interaction with the pathogens that could lead to novel control
measures.

Importance of the PMM in the control of insects of economic
importance: the case of vectors of Chagas disease

Understanding the function and structure of the PMM may
provide us with a target to control insects of economic and/or
health importance. As an example, we will use the case of vec-
tors of Chagas disease. This disease is caused by the protozoan
T. cruzi which proliferates and multiplies in the insect vector
especially in the rectum. During the blood meal some bugs
defecate and deposit the infected feces on the skin or mucosa.
The bite causes a skin wound that allows the parasite to enter
underneath the skin (Breniere et al., 2010). Although this trans-
mission is complex to facilitate transmission of the protozoan
(Takano-Lee & Edman, 2002), Chagas disease is highly de-
pendent on the interaction of triatomines and the parasite
(Kollien & Schaub, 2000; Azambuja et al., 2005).

The life cycle of T. cruzi in the vector has three stages of de-
velopment (Kollien & Schaub, 2000; Azambuja et al., 2005).
The first stage occurs when the triatomine ingests blood con-
taining trypomastigotes from the vertebrate host. In the se-
cond stage, a few hours after ingestion, the trypomastigotes
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transform into epimastogotes in the anterior midgut
(Azambuja et al., 2005); thus establishing the infection in the
insect (Garcia et al., 2010). Subsequently, the epimastigotes
pass to the midgut where they attach to the PMM and multiply
by binary division (Garcia & Azambuja, 1991: Kollien et al.,
1998; Alves et al., 2007). The posterior midgut is the region of
greatest digestive activity and where the greatest concentra-
tion of metabolites should occur (Schaub, 1989). In the final
stage, the epimastigotes pass to the rectum, adhere to the rectal
cuticle by hydrophobic interactions and multiply to very large
numbers and transform into the metacyclic trypomastigotes
which are eliminated with the feces and urine and are able
to infect the vertebrate hosts (Kollien et al., 1998; Kollien &
Schaub, 2000; Azambuja et al., 2005).

Experimental studies highlight the importance of the inter-
actions between the parasite and the PMM, because PMM dis-
ruption is correlated with a blockage not only of epimastigote
multiplication but also of T. cruzi development in the triato-
mine vector (Garcia et al., 1989; Gonzalez & Garcia, 1992;
Cortez et al., 2002, 2012). In regions where PMM is absent or
poorly developed, the parasite rarely comes in contact with
the MM of the intestine and thus fail to multiply (Gonzalez
et al., 1999; Kollien & Schaub, 2000; Azambuja et al., 2005).
These inhibitory effects could be counteracted by either head
transplantation or ecdysone therapy. Furthermore, a simple
oral ingestion of PMM is able to rescue T. cruzi development
in either decapitated or azadirachtin-treated insects (Gonzalez
et al., 1999; Cortez et al., 2002, 2012), indicating that the
PTTH-ecdysone pathway interferes with T. cruzi survival and
development in its vectors (Nogueira et al., 1997; Gonzalez et al.,
1999). These results demonstrate the importance of the insect’s
endocrine system and the PMM in establishing T. cruzi infec-
tions in the vector.

According to Albuquerque-Cunha et al. (2004, 2009), the
PMM in triatomines is composed of glycoconjugates. The carbo-
hydrates attached to the proteins of the insect cells are usually
involved in insect-pathogen interactions (Pereira, 1981;
Nogueira et al., 2007). In triatomines a variety of glycoconjugates
including mannose, glucose, galactosamine, N-acetyl-galactosa-
mine, N-acetyl-glucosamine and sialic acid (Gutiérrez-Cabrera
et al., 2014) have been identified. These sugar residues attached
to the PMM proteins play an important role in the binding of
epimastigotes to the surface of intestinal epithelial cells that al-
lows the parasite to complete its life cycle in the vector (Garcia
etal.,2007,2010). In R. prolixus mannose and sialic acid are essen-
tial in the interaction with T. cruzi (Alves et al, 2007;
Albuquerque-Cunha et al., 2009).

Conclusion and future considerations

Digestion of insects takes place in initial, intermediate, and
final phases. These phases are separated spatially and tempor-
ally by morphological features of the gut. The morphological
features may have evolved by adapting to different diets.
However, the dietary approach alone cannot explain the pres-
ence or absence of some structures and cannot provide a clear
explanation for the absence of peritrophic matrix in all
Hemiptera, despite their contrasting dietary habits.
However, based on the digestive events of different taxa and
their diets, the insects may be grouped according to their di-
gestive physiology and phylogenetic position, with regards
to a common ancestor.

With regard to the origin and evolution of PMM, the
Condylognathan ancestor of the Thysanoptera and
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Hemiptera likely fed on phloem sap obtained from plant tis-
sues pierced by oral stylets, the so-called ‘punch and suck’
mechanism (Silva et al., 2004). This diet would be low in pro-
teins, low carbohydrate polymers, relatively poor in free
amino acids but rich in sucrose. These condylognathan ances-
tors may have lost the PM and the enzymes involved in initial
and intermediate protein digestion due to the lack of luminal
digestion. When very low concentrations of essential amino
acids are present, absorption may be maximized by the
PMM (Terra, 1988; Terra & Ferreira, 1994). The PMM would
transport actively potassium ions from the perimicrovillar
space into the midgut cells, generating a concentration gradi-
ent between the sap in the lumen and that in the perimicrovil-
lar space. This concentration gradient would be used as a
driving force for the absorption of organic substances, such
as amino acids, through carriers in the PMM. The organic sub-
stances, once in the perimicrovillar space, would be absorbed
through carriers at the surface of the MM. The o-glucosidase
bound to PMM efficiently cleaves sap sucrose without being
excreted.

The hemipteran ancestor acquires piercing-sucking mouth-
parts adapted to suck xylem and phloem sap (Gillott, 1995),
thus becoming able to obtain liquids directly from the plant’s
vascular system. Organic compounds obtained from the
xylem and phloem must be concentrated to be absorbed by
the perimicrovillar system. Therefore, the evolution of
Heteroptera was associated with the ability to digest proteins
after losing the appropriate digestive enzymes and maintain-
ing a compartmentalization of digestion by PMM as a substi-
tute of PM (Terra & Ferreira, 2012).

Many thysanopterans and hemipterans are species of med-
ical and economic importance and the PMM may be targeted
to control insects or to regulate and modulate interactions with
pathogens. The development of the PMM varies according to
species and depends on how frequently the insect has access to
food (Nogueira et al., 1997; Damasceno-5Sa et al., 2007; Azevedo
etal., 2009; Fialho et al., 2009). Therefore, it is necessary to carry
out morphological and biochemical studies to obtain detailed
information on the insect digestive tract, to identify funda-
mental parameters we might target to develop novel strategies
to control agriculturally and medically-important insects.

In the specific case of triatomine vectors of Chagas disease,
there are several mechanisms that regulate the interactions be-
tween host and T. cruzi in the alimentary tract of the insect vec-
tor. The PMM could be an excellent target to reduce the
susceptibility of the insect vector to parasites because T. cruzi
epimastigotes interact intimately with these membranes and
this is essential for parasite development in the gut (Burgos
etal., 1989; Gonzalez et al., 1999; Gutiérrez-Cabrera et al., 2014).

Several authors have studied the effects of antisera pro-
duced against antigens from the vector gut on parasite infec-
tions in various insect orders, highlighting, for example,
antibodies that recognize the PM that can also block its devel-
opment (East et al., 1993; Eisemann et al., 1993; Tellam &
Eisemann, 1998; Wijffels et al., 1999; Otranto & Stevens, 2002;
Foy et al., 2003). Based on these observations, Gonzalez et al.
(2006) used an antiserum against PMM and observed changes
in the PMM organization in the posterior midgut of R. prolixus
that had ingested the antisera. Those changes were not import-
ant for triatomine survival but the antiserum acted as a
transmission-reducing compound that significantly reduced
T. cruzi infection in the vector. It is possible that the PMM pro-
teins become unavailable for the parasite after recognition by
the antiserum consequently disrupting T. cruzi development.
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A better understanding of the PMM composition and function
can clarify fundamental steps of the process of triatomine di-
gestion, hemozoin formation and the T. cruzi life cycle.

Different studies have shown that glycoconjugates and
carbohydrate-binding molecules are associated with the plas-
ma membrane of insect cells and are usually involved in the
interactions with pathogens (Rudin & Hecker, 1989;
Jacobson & Doyle, 1996; Dinglasan & Jacobs-Lorena, 2005).
The PMM contains a variety of glycoconjugates, such as man-
nose, as the major sugar residues (Albuquerque-Cunha et al.,
2009; Gutiérrez-Cabrera ef al., 2014). It has been proposed that
these sugar-binding molecules are involved in the binding of
T. cruzi epimastigotes to the midgut epithelial cell surface
(Pereira et al., 1981; Bonay et al., 2001; Nogueira et al., 2007).
However, much remains to be learned about the biochemical
composition of the PMM and the mechanisms of interaction
with parasites.

There is an increasing need to develop either new vector
control methods or alternative strategies to block transmission
of parasites such as T. cruzi. Studies evaluating immunization
using components from midguts must be extended by refining
the native antigens and expanding our knowledge of the pro-
teins from the digestive tract and the PMM of epidemiologi-
cally important triatomines to identify target molecules
essential to parasite development in the insect vector. This re-
quires a further understanding about the origin, biogenesis,
function, composition and development of PMM in the
Thysanoptera and Hemiptera and in more detail, to recognize
which molecules are present in the digestive tract and the
PMM and how they may modulate insect physiology and
parasite development and multiplication.
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