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We study the effect of insoluble surfactants on the wave dynamics of vertically falling
liquid films. We use three-dimensional numerical simulations and employ a hybrid
interface-tracking/level-set method, taking into account Marangoni stresses induced by
gradients of interfacial surfactant concentration. Our numerical predictions for the
evolution of the surfactant-free, three-dimensional wave topology are validated against
the experimental work of Park & Nosoko (AIChE J., vol. 49, 2003, pp. 2715–2727).
The addition of surfactants is found to influence significantly the development of
horseshoe-shaped waves. At low Marangoni numbers, we show that the wave fronts
exhibit spanwise oscillations before eventually acquiring a quasi-two-dimensional shape.
In addition, the presence of Marangoni stresses is found to suppress the peaks of the
travelling waves and preceding capillary wave structures. At high Marangoni numbers, a
near-complete rigidification of the interface is observed.

Key words: capillary waves, thin films

1. Introduction

The occurrence of falling films in a wide range of industrial and daily-life applications
has driven significant interest in the literature and led to comprehensive reviews (see e.g.
Chang 1994; Oron, Davis & Bankoff 1997; Craster & Matar 2009; Kalliadasis et al.
2012). The complex topological features on the surface of such films have fascinated
the scientific community since the ground-breaking experiments by Kapitza (1948). The
desire to isolate the fundamental mechanisms underlying the genesis and development of
two-dimensional and three-dimensional waves has led to numerous experimental studies
– see, for instance, Kapitza (1948), Tailby & Portalski (1962), Liu, Paul & Gollub (1993),
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906 A16-2 A. Batchvarov and others

Alekseenko et al. (1994), Liu, Schneider & Gollub (1995), Oron et al. (1997), Park &
Nosoko (2003), Craster & Matar (2009) and Kalliadasis et al. (2012) and references
therein. These works have uncovered the generation of ‘families’ of waves and the
transition from two- to three-dimensional waves.

Large two-dimensional wave humps dominate the early stages of film development,
after which two kinds of secondary transitions help create the spatio-temporal chaos
associated with solitary wave structures in falling films (Liu et al. 1993; Cheng &
Chang 1995). Chang et al. (1996) discussed the presence of streamwise two-dimensional
secondary instability leading to the coalescence and coarsening of the initially saturated
two-dimensional waves. Additionally, a secondary three-dimensional instability initiates
the spanwise transformation of the two-dimensional waves (Joo & Davis 1992). Two
avenues for the transition from two- to three-dimensional waves exist depending on
the ratio of the spanwise to streamwise noise level at the inlet: an out-of-phase
three-dimensional chequerboard evolution of the two-dimensional wave front is observed
at sufficiently large cross-stream noise level (Chang et al. 1994); and a synchronous
horseshoe-shaped modulation of the wave front is seen at weak spanwise noise levels (Liu
et al. 1995).

Drawing inspiration from the work of Liu et al. (1995), Scheid, Ruyer-Quil &
Manneville (2006) developed a low-dimensional weighted residual integral boundary layer
model to study the two- to three-dimensional transition and found that the herringbone
pattern is largely dependent on the initial conditions. Knowledge of the effect of the
synchronous spanwise instability has led to the design of the experiments conducted
by Park & Nosoko (2003), who were able to isolate the horseshoe-shaped solitary
waves of prescribed spanwise and streamwise wavelength, while bypassing the secondary
two-dimensional wave dynamics. Using a similar modulation approach, Dietze et al.
(2014) performed numerical simulations of three-dimensional waves, which they then used
to provide a comprehensive study of flow structures present within the inertia-dominated
large wave hump region as well as within the visco-capillary region.

Surfactants are surface-active species that act to decrease surface tension, additionally
introducing variations of this quantity that give rise to Marangoni stresses, which drive
fluid away from regions of high surfactant concentration (low surface tension). In the
context of falling film flows, surfactants have a stabilising effect, a concept perceived in
the early studies on this topic (Tailby & Portalski 1962; Benjamin 1964; Whitaker 1964).
In recent years, linear stability studies have been a primary tool to study the stabilising
effect of surfactants on the falling film wave dynamics (Blyth & Pozrikidis 2004;
Shkadov, Velarde & Shkadova 2004; Wei 2005; Pereira & Kalliadasis 2008; Karapetsas &
Bontozoglou 2013, 2014; Bhat & Samanta 2018; Hu, Fu & Yang 2020). More specifically,
the role of insoluble surfactants was discussed in greater detail by Blyth & Pozrikidis
(2004), who via numerical solutions of the Orr–Sommerfeld equation have shown that
surfactants act to stabilise the interface. The authors also comment on the competition of
the ever-present interfacial Yih mode and surfactant-concentration-dependent Marangoni
mode: at zero Reynolds numbers, the latter is more dominant, but, as the Reynolds number
departs from zero, the growth rate of the Yih mode increases, eventually overtaking the
Marangoni mode. Additionally, the critical Reynolds number at which the Yih mode
produces an instability was shown to increase in the presence of surfactants.

Using a very similar formulation, Pereira & Kalliadasis (2008) found that Marangoni
effects dampen the interfacial Kapitza mode and reduce the critical Reynolds number
for onset of instability. The authors also acknowledged that surfactants act to reduce the
amplitude of free-surface solitary waves and commented on the fact that the emergent
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dynamics are such that the surfactant accumulates below the primary hump of free-surface
solitary waves, especially at low Marangoni numbers. More recently, the effect of insoluble
surfactants on the long-wave instability of falling films was investigated by Hu et al.
(2020), who, using a weighted residual model, found that surfactant surface elasticity
decreases the temporal growth rate and increases the critical Reynolds number. The
effect of surfactant solubility on the long-wave instability was investigated in detail by
Karapetsas & Bontozoglou (2014), who found the interfacial concentration gradient to be
the strongest for insoluble surfactants and to weaken with increasing surfactant solubility.

Experimentally, the damping of wave activity has been shown by the works of
Georgantaki, Vlachogiannis & Bontozoglou (2012) and Georgantaki, Vlachogiannis &
Bontozoglou (2016). More recently, Bobylev et al. (2019) investigated the effect of varying
concentration of surfactants and observed that at high concentrations the damping effect
is reversed, with wave structures beginning to grow again.

In this paper, we study for the first time the effect of insoluble surfactants on vertical
falling films in a three-dimensional, nonlinear framework. We implement the same
initialisation approach as Dietze et al. (2014) and demonstrate the emergence of oscillatory
behaviour in the developing wave fronts for intermediate values of a parameter that
characterises the relative significance of the Marangoni stresses. We use our detailed
numerical results to elucidate the mechanism underlying this phenomenon. In § 2, we
provide details of the problem formulation along with the numerical technique used to
carry out the computation. We discuss our numerical results in § 3 and include those
from a validation study wherein our predictions are benchmarked against the experimental
observations of Park & Nosoko (2003). Finally, concluding remarks are provided in § 4.

2. Problem formulation and numerical method

With the purpose of studying the three-dimensional wave development of
vertically falling films in the presence of insoluble surfactant species, we utilise
a front-tracking/level-set method – also known as the level contour reconstruction
method as in Shin & Juric (2002, 2009) and Shin, Chergui & Juric (2017). The
continuity and momentum equations are solved in a three-dimensional Cartesian
domain, x = (x, y, z), as shown in figure 1, with a coupling for the transport of
interfacial surfactant species. Bulk surfactant transport is not considered in this work.
This is a common assumption in the context of several previous falling liquid film
studies (Blyth & Pozrikidis 2004; Wei 2005; Pereira & Kalliadasis 2008; Bhat &
Samanta 2018; Hu et al. 2020). Insoluble surfactants are also naturally occurring
and we believe that the results from this paper could be of great interest to any
experimental set-up that incorporates the use of insoluble surfactants such as NBD-PC
(1-palmitoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3
-phosphocholine) (Strickland, Shearer & Daniels 2015; Fallest et al. 2010). The gas and
liquid are assumed to be immiscible, incompressible Newtonian fluids. The full set of
dimensional equations for this method can be found in Shin et al. (2018).

To render the equations dimensionless, we use the following scalings:

x̃ = x
δ0

, ũ = u
U0

, t̃ = t
δ0/U0

, p̃ = p
ρlU2

0
, σ̃ = σ

σs
, Γ̃ = Γ

Γ∞
, (2.1a–f )

where the tildes designate dimensionless quantities. Here, t, u and p denote time, velocity,
and pressure, respectively, and the density of the liquid is ρl. The mean velocity and
thickness of a waveless falling film, as presented theoretically by Nusselt (1923), are
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x̃/L̃

x̃/L̃
ũx
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FIGURE 1. (a) Initial (t̃ = 0) three-dimensional wave profile; (b) schematic representation of
the problem in the x–z (y = 0) plane showing the initial film thickness distribution, δ̃, and initial
streamwise velocity profile, ũx .

designated by U0 and δ0, respectively. The surfactant-free surface tension is σs, while the
surface tension coefficient varying with the interfacial surfactant concentration Γ is given
by an equation of state σ = σ(Γ ) given below; the concentration at saturation is given
by Γ∞.

Using the relations in (2.1a–f ), the dimensionless forms of the continuity and
momentum equations are respectively expressed as

∇ · ũ = 0, (2.2)

and

ρ̃

(
∂ũ
∂ t̃

+ ũ · ∇ũ
)

= −∇p̃ + 1
Re

∇ · [μ̃(∇ũ + ∇ũT
)] + ex

Fr2

+ 1
We

∫
Ã(t̃)

(σ̃ κ̃n + ∇s σ̃ )δ(x̃ − x̃ f ) dÃ, (2.3)

where κ̃ denotes the interface curvature, ∇s the surface gradient operator, n the
outward-pointing unit normal to the interface, and ex a unit vector in the direction of
gravity (i.e. x-direction). Here x̃f is the parametrisation of the time-dependent interface
area Ã(t̃), where δ(x̃ − x̃ f ) is the three-dimensional Dirac delta function, which vanishes
everywhere except at the interface localised at x̃ = x̃ f . The density ρ̃ and viscosity μ̃ are
given by

ρ̃(x̃, t̃) = ρg

ρl
+
(

1 − ρg

ρl

)
H(x̃, t̃), μ̃(x̃, t̃) = μg

μl
+
(

1 − μg

μl

)
H(x̃, t̃). (2.4a,b)

Here, H(x̃, t̃) represents a smoothed Heaviside function, which is zero in the gas phase
and unity in the liquid phase, while the subscripts l and g designate the individual liquid
and gas phases, respectively.
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Surfactant transport in the context of insoluble surfactants is governed by

∂Γ̃

∂ t̃
+ ∇s · (Γ̃ ũt) = 1

Pes
∇2

s Γ̃ , (2.5)

where ũt = (ũs · t)t is the tangential velocity vector, in which ũs is the surface velocity and
t is the unit tangent to the interface. This type of interfacial transport equation (2.5) follows
a similar approach as in Shin et al. (2018). The dimensionless parameters appearing in
these equations are given by

Re = ρlU0δ0

μl
, We = ρlU2

0δ0

σs
, Fr = U0

g1/2δ1/2
, Pes = U0δ0

Ds
, (2.6a–d)

where Re, We and Fr are the Reynolds, Weber and Froude numbers, respectively. The
gravitational acceleration, assumed to be acting only in x-direction, is given by g. The
surface Péclet number, Pes, describes the relative importance of surface diffusion to
convection, where Ds is the diffusion coefficient.

The decrease of σ in relation to Γ is modelled using a Langmuir relation (Shin et al.
2018):

σ̃ = 1 + βs ln(1 − Γ̃ ). (2.7)

The surfactant elasticity parameter is defined as βs = RTΓ∞/σs, where R is the ideal gas
constant and T is the absolute temperature. Marangoni stresses, which arise from gradients
of surface tension, can be expressed in terms of Γ̃ by

1
We

∇s σ̃ · t ≡ τ̃

We
= −Ma

1

(1 − Γ̃ )
∇sΓ̃ · t, (2.8)

where Ma ≡ βs/We = RTΓ∞/ρlU2
0δ0 is a Marangoni parameter.

The procedure for solving the above equations follows the same approach as in Shin
et al. (2017, 2018). In summary, the Navier–Stokes equations (2.3) are solved by a
projection method (Chorin 1968), where the temporal discretisation follows a second-order
Gear scheme (Wang & Wen 2006) with implicit time integration for the viscous terms. As
for the spatial discretisation, a staggered-mesh marker-and-cell (MAC) method (Harlow
& Welch 1965) has been used on a uniform finite-difference grid with a second-order
essentially non-oscillatory (ENO) advection scheme (Shu & Osher 1988). The pressure
p̃ is located at the centres of the cells while the three components of the velocity ũ are
located at the faces. All spatial derivatives are approximated using second-order centred
differences. The interfacial surfactant transport, (2.5), is treated in a manner consistent
with the Lagrangian front-tracking approach and is discretised using triangular interface
elements. The detailed numerical solution scheme is presented in Shin et al. (2018).

The numerical set-up of the problem closely follows the previous construct of Dietze
et al. (2014). We impose a periodic boundary condition in both streamwise and spanwise
directions of the domain shown in figure 1(a). The bottom wall of the domain is treated
as a no-slip boundary, whereas a no-penetration boundary condition is prescribed for the
top domain boundary. Following the same formulations for the initial film thickness and
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streamwise velocity profile as Dietze et al. (2014), we set

δ̃|t=0 = ¯̃
δ

[
1 + 0.2 cos

(
2πx̃

λ̃x

)
+ 0.05 cos

(
2πỹ

λ̃y

)]
, ũl = Re

Fr2
(δ̃z̃ − 0.5z̃2), (2.9a,b)

where λ̃x and λ̃y are the dimensionless domain length and width, respectively, and are
motivated by the experimental set-up of Park & Nosoko (2003). In their work, Dietze
et al. (2014) acknowledge the importance of ¯̃

δ as a control parameter for liquid volume
(since Ṽl = ¯̃

δλ̃x λ̃y), Reynolds number and streamwise wave frequency in numerical cases
where periodic boundary conditions are employed. In this work, we have set up the
base surfactant-free validation case using the height, H̃, and the mean film thickness, ˜̄δ,
estimated in the work of Dietze et al. (2014). As a result, our domain size has the following
dimensions: 0.025 m × 0.02 m × 0.0012 m.

The targeted flow conditions for the surfactant-free base case are from Dietze et al.
(2014): Re = 59.3, We = 0.159, Fr = 4.45 and f = 17 Hz. The selected fluid properties
are representative of an air–water system at 25 ◦C: ρl/ρg = 841.41, μl/μg = 48.22 and
σs = 0.072 N m−1. For surfactant-laden cases, the initial surfactant distribution is uniform
across the interface (e.g. Γ̃ = 0.1) as shown in figure 1(b). The surface Péclet number
also remains unchanged from Pes = 10 for all surfactant simulations. The Marangoni
parameter is the key focus of this work and is varied in the range 0.63–1.88. For the chosen
initial surfactant concentration and Marangoni parameters, the maximum overall surface
tension reduction is 3.2 %, which is sufficiently low to allow us to analyse the effect of
Marangoni stresses without the need for running additional simulations where τ̃ = 0. To
assess the grid dependence of the results, we have used two uniform Cartesian grids for
the surfactant-free base case: M1 = 768 × 576 × 64 and M2 = 1536 × 1152 × 128. All
surfactant simulations were run using mesh M1, unless stated otherwise in the text.

3. Results

We start the discussion of the results by comparing our numerical predictions for
the surfactant-free case against the experimental results of Park & Nosoko (2003) (see
figure 2a,b). The numerical results are given as snapshots of the wave fronts at times
corresponding to subsequent periods, whereas the experimental shadowgraph shows the
evolution of the waves in the streamwise direction. During the initial stages, the dynamics
are dominated by small-amplitude sinusoidal undulations that develop into well-defined
‘horseshoe’ shapes separated by flat regions. We also capture the development of the
capillary waves, which precede the horseshoes, and their interactions. It is evident from
figure 2(b) that our numerical technique permits the simulation of the wave evolution with
good accuracy. The disparity with the experimental observations of Park & Nosoko (2003)
in terms of overestimation of the horseshoe spacing is similar to that in the work of Dietze
et al. (2014); these authors argued that this is an artefact of the imposed constant spanwise
wavelength, λ̃y , whereas in the experiments this wavelength varies as the wave fronts travel
downstream.

In addition to the validation against experimental data, we have also carried out mesh
sensitivity studies. The two key monitored quantities, the kinetic energy Ek = ∫

V(u2/2) dV
(see figure 7a) and interfacial surface area Ã (see figure 7b), respectively, associated with
meshes M1 and M2 are essentially indistinguishable, highlighting the mesh independence
of our results.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.796


Falling films with surfactants 906 A16-7

(a) (b) (c) (d) (e)

FIGURE 2. (a) Experimental snapshots from Park & Nosoko (2003) and simulation
results for (b) surfactant-free and (c–e) surfactant-laden falling films. The times
associated with panels (b–e) are: (b) t̃ = (60, 116, 170, 223, 277, 330); (c) Ma = 0.63 at
t̃ = (60, 116, 170, 223, 625, 1111); (d) Ma = 1.25 at t̃ = (60, 116, 170, 223, 636, 794); and
(e) Ma = 1.88 at t̃ = (60, 116, 170, 223, 277, 330). The surfactant-free and surfactant-laden
Reynolds, Weber and Froude numbers are 59.3, 0.159 and 4.45, respectively. The surface Péclet
number is kept constant for all surfactant cases at Pes = 10.

Following the validation step, we then proceed to add surfactant species to the flow.
It should be noted that all surfactant simulations were run until no further topological
changes in the interface shape were detected. Although sinusoidal wave segments
dominate the first stages of wave development for all studied cases, significant differences
in the individual wave evolution stages can be observed in figure 2(c–e) as we increase
the Marangoni parameter. For Ma = 0.63 (see figure 2d), a horseshoe-shaped wave
develops similarly to the surfactant-free case; however, its curvature is smaller and the
arc connecting its legs, which bulges upwards for the surfactant-free case, is almost
completely flattened. A decrease in the number and increase in wavelength of the capillary
wave structures preceding the horseshoe-shaped wave can be seen at t̃ = 170 for the
surfactant-free (see figure 2b) and surfactant-laden (see figure 2c) cases, respectively. The
last two panels for Ma = 0.63 show a divergence of wave development in comparison to
what is observed experimentally for the surfactant-free case. At t̃ = 625, we observe that
the locations of the horseshoe-shaped and horizontal wave segments are flipped around
before the wave stabilises into a quasi-two-dimensional shape at t̃ = 1111. An explanation
of this wave development, and the underlying role of the surfactants, is provided below.

Attention is now turned towards the Ma = 1.25 case presented in figure 2(d), where
we see that the rise in Ma preserves the initial sinusoidal wave pattern at the early stages
of wave development (i.e. up to t̃ = 223) until surfactants act to change the mode of the
trailing wave segment from three-dimensional to quasi-two-dimensional, bypassing the
intermediary step of spanwise oscillation observed for Ma = 0.63. For Ma = 1.25, we also
observe further suppression of capillary wave structures. Finally, we can see the dominant
effect of the highest Marangoni parameter on the flow development in figure 2(e), where
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Γ̃
ũt

FIGURE 3. Effect of varying the Marangoni parameter on two-dimensional projection in the x–z
(ỹ/W̃ = 0) plane of film thickness (a), interfacial surfactant concentration (b) and the streamwise
component of the interfacial velocity (c), all parameters remaining unchanged from figure 2.

the initially developed sinusoidal shape of the wave is preserved for the entire duration of
the simulation, and the capillary wave development is nearly suppressed.

In figure 3, we examine in greater detail the effect of increasing Ma on the leading
capillary structures and trailing wave fronts. The two-dimensional cut performed in the
y = 0 plane reveals that, for all cases investigated, the presence of surfactants suppresses
the peak of the trailing wave humps (see figure 3a). This behaviour can be explained
further via inspection of the interfacial surfactant concentration in figure 3(b) where we
see that the peak of Γ̃ observed ahead of the wave crest gives rise to a bi-directional
Marangoni stress, which drives flow away from the region of high Γ̃ and acts to curb the
amplitude of the waves. In figure 3(c), the ‘rigidification’ effect induced by the Marangoni
stresses is evident by the reduction of ũt of the travelling wave front. We also observe that
the suppression of the wave peaks becomes more effective with increasing Ma.

Next our attention is turned towards the effect of surfactants on the capillary wave
structures, where magnification of the region in terms of δ̃ and Γ̃ is given in panels 3(a)
and 3(b), respectively. For Ma = 0.63 and Ma = 1.25, the capillary wave structures are
still present, however, their amplitude is suppressed significantly. This Marangoni-driven
damping is caused by a local Γ̃ maximum at the peak of each oscillation, which drives the
fluid away from the crest. Further evidence in support of the rigidification effect is seen
in the decrease of the peak amplitude ũt of each capillary structure (see figure 3c). For
Ma = 1.88, we observe significant thickening of the capillary region and near-complete
elimination of the oscillatory structures (viz. the enlarged insets in figure 3). Further
examination of the Γ̃ field in figure 3(b) reveals the presence of a concentration gradient
that gives rise to a Marangoni stress that drives fluid towards the trough of the trailing
hump structure, resulting in the near-complete flattening of the overall wave topology.

The presence and understanding of vortical structures in the trailing wave hump is
a critical element when designing efficient heat and mass transfer processes. First we
consider the vortical structure in the x–z plane shown in the reference frame of the wave
crest (see figure 4). The presence of a recirculation zone for the surfactant-free case is
associated with increased heat and mass transfer capability (see figure 4a). On the other
hand, surfactant addition actively suppresses the recirculation zone of the trailing hump,
where similar effects were seen for all Ma values examined. The rigidification of the
interface brought on by the presence of Marangoni stresses is also the main reason for
the uniformity of the vorticity field.

In figure 5 the main vortical structures in the x–y slice of the large wave humps are
displayed in the wave reference frame for two wall distances for the surfactant-free case
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FIGURE 4. Vortical structure evolution in the reference frame of the wave crest viewed in the
x–z (ỹ/W̃ = 0) plane for surfactant-free (a) and surfactant-laden (b) films, respectively, with
the darkness of the shading indicating the magnitude of the dimensionless vorticity, |Ω̃|. In (b),
Ma = 1.88 and all other parameters remain unchanged from figure 2.
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FIGURE 5. Vortical structure evolution in the wave crest reference frame viewed in the x–y
plane at z̃/H̃ = 0.2 and z̃/H̃ = 0.28 for surfactant-free case (a,b) and surfactant-laden case at
z̃/H̃ = 0.2 (c). Vortical structure shown in wave crest reference frame. In (c), Ma = 1.88 and all
other parameters remain unchanged from figure 2.

(see figure 5a,b). Several vortical structures persist over the height of the film. Firstly,
two large co-rotating vortices are observed in the horseshoe leg region of the flow. In
figure 5(b), the centres of these structures move towards the horizontal section of the
large wave. Meanwhile, at a location closer to the wall, the horizontal wave portion is
represented by two counter-rotating vortices, which are subsequently disrupted by the
movement of the horseshoe vortices. Similar observations concerning the trailing hump
vortical structures were made by Dietze et al. (2014), except for the fourth counter-rotating
vortex located at the horizontal wave segment. The authors only observe this vortex to
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=

0

Γ̃ τ̃

1.2
0.4

5

0

–5

0.3

0.2

0.1

0

–0.5

–1.0

1.1

1.0

0.9

0.8
0 0.5 1.0

(g) (h) (i)
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FIGURE 6. Three-dimensional wave dynamics, with the darkness of the shading indicating the
magnitude of surfactant interfacial concentration, Γ̃ , shown in (a), (d) and (g); two-dimensional
projection of interface and streamwise velocity component in the x–y plane (z̃/H̃ = 0.2) shown
in (b), (e) and (h); and Γ̃ and Marangoni stress in the x–y plane (z̃/H̃ = 0.2) shown in (c), ( f )
and (i). Panels (a–c), (d–f ) and (g–i) correspond to t̃ = 223, 625 and 1111, respectively, with
Ma = 0.63 and the rest of the parameters remain unchanged from figure 2.

appear as a consequence of the disruptive movement of the large horseshoe co-rotating
vortices. Upon addition of surfactants, the three-dimensional flow structures are entirely
suppressed. This observation persists across all studied Ma values and all wall distances.
This result is detrimental for heat and mass transfer operations, as they have been shown
to receive a wave-induced boost in three-dimensional films (Alekseenko et al. 1994). The
apparent drawback of surfactant-laden flows is the elimination of spanwise flow structures
and subsequent suppression of the convective transport in this direction.

We now examine the spanwise oscillatory motion of the wave structures observed for
Ma = 0.63. In figure 6, we present snapshots of the three-dimensional wave shape at
t̃ = 223, 625 and 1111 complemented by spanwise two-dimensional representations of
the interface, streamwise velocity, ũx (where the velocity is given in the reference frame
of ũx at ỹ = 0), interfacial concentration, Γ̃ , and arising spanwise Marangoni stresses, τ̃ .
We observe that the non-uniform distribution of Γ̃ at t̃ = 223 (see figure 6a–c) gives
rise to spanwise Marangoni stresses, which drive fluid flow from the horizontal part
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FIGURE 7. Temporal evolution of (a) kinetic energy, Ẽk, and (b) surface area, Ã, scaled on the
initial kinetic energy, Ek0, and interface area, A0, respectively. The rest of the parameters remain
unchanged from figure 2.

of the wave hump towards the legs of the horseshoe-shaped wave and also from the
tip of the horseshoe towards its legs. The combined effect of the Marangoni stress is
to bridge the gap between the tip of the horseshoe and the horizontal portion of the
wave. This effect, however, is sufficiently strong so as to promote the development of the
middle portion of the wave segment, causing it to accelerate in relation to the adjoining
regions, giving rise to a spanwise bulge (see figure 6d–f ). A new local peak in Γ̃ , which
coincides with the spanwise peak of the bulge, leads to a τ̃ structure that induces the final
stabilisation of the wave topology (see figure 6g–i). Here, the nearly uniform distribution
of Γ̃ results in the elimination of all Marangoni stresses.

Finally, in figure 7, we show the influence of surfactants on the kinetic energy, defined as
Ek = ∫

V(ρu2/2) dV , and the surface area, normalised by their initial values, for the same
parameters as in figure 2. Inspection of the kinetic energy plot in figure 7(a) reveals that
increasing Ma acts to decrease the overall value of Ẽk. The amplitude of the oscillations
in Ẽk observed at early times for Ma = 0.63 is also all but suppressed with increasing Ma.
A further increase in Ma to Ma = 1.88 rigidifies the flow and eliminates completely any
oscillation in Ẽk. In figure 7(b), we see that the presence of surfactant reduces the initial,
linear growth rates in interfacial area for all cases, with this effect becoming particularly
pronounced at high Ma, in line with the recent observations of Hu et al. (2020).

4. Concluding remarks

Three-dimensional numerical simulations of vertically falling liquid films in the
presence of insoluble surfactants were carried out for the first time. The numerical
predictions for the surfactant-free case were benchmarked against the experimental
observations of Park & Nosoko (2003). For the surfactant-laden case, emphasis was placed
on isolating the effect of the Marangoni stresses on the dynamics. The results demonstrate
the emergence of oscillations at the wave fronts at low values of the Marangoni
parameter, Ma, mediated by the Marangoni stresses, brought about by spanwise surfactant
concentration gradients; the wave fronts eventually evolve into quasi-two-dimensional
structures. With increasing Ma, the Marangoni stresses led to the progressive elimination
of the capillary wave structures where near-complete rigidification, and flattening of the
liquid film, were observed for sufficiently large Ma. An increase in Ma also resulted in
the elimination of vortical structures within the wave crests, and significant reduction in
interfacial area and system kinetic energy.
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