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Abstract

The objective of this paper is to demonstrate that the gradient-constrained discounted

Steiner point algorithm (GCDSPA) described in an earlier paper by the authors is

applicable to a class of real mine planning problems, by using the algorithm to design

a part of the underground access in the Rubicon gold mine near Kalgoorlie in Western

Australia. The algorithm is used to design a decline connecting two ore bodies so as

to maximize the net present value (NPV) associated with the connector. The connector

is to break out from the access infrastructure of one ore body and extend to the other

ore body. There is a junction on the connector where it splits in two near the second

ore body. The GCDSPA is used to obtain the optimal location of the junction and the

corresponding NPV. The result demonstrates that the GCDSPA can be used to solve

certain problems in mine planning for which currently available methods cannot provide

optimal solutions.

2020 Mathematics subject classification: 90B80.

Keywords and phrases: network optimization, mine planning, underground mining,

Steiner trees, net present value.

1. Introduction

The task of designing the decline access networks in underground mines in an optimal

manner has been a challenge for the mining industry. In a typical mine planning sce-

nario, the access network is designed with a view to minimizing the total development

and infrastructure costs. A schedule for developing the access network and extracting

the ore, optimally or otherwise, is constructed subsequently. It follows that the schedule
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and the time value of money cannot be taken into account when the access network is

being designed. The recognition of the need for better techniques and algorithms for

this stage of mine planning is the driving force in the investigation described in this

paper. Specifically, we describe a case study which demonstrates that a mine planning

algorithm developed by the authors, and described in an earlier paper, can be used in

real mine planning problems.

In the remainder of this section we present some basic mining background relevant

to the present problem, introduce net present value as a measure of the time value of

money, discuss methods which have been developed previously for generating optimal

mine designs, and introduce the concepts needed for the algorithm used in the case

study.

We begin with an introduction to mining, focusing on the concepts that are relevant

to the present paper. Mines can be classified as open pit mines, underground mines

or a combination of both. Open pit mines are generally used when the resources are

near to the earth’s surface, while underground mines are used when the resources

are deeper. Extraction in underground mines typically occurs on a number of levels,

and access to the levels from the surface can be provided by shafts or declines.

A decline is a tunnel that slopes downward into the mine. In a complex mine with

several ore bodies there will typically be a network of declines. The decline network

is used by the vehicles that transport personnel and equipment into the mine and

by the trucks that carry the ore and waste rock to the surface. There are two main

items of equipment used both to construct the decline network and to extract the

ore. Jumbos are vehicles with one or more booms which are used to drill into the

rock face prior to setting explosives. Load-haul-dump vehicles have a scoop which is

used to transport broken rock from the development face to ore trucks or underground

stockpiles.

Next, we introduce the concept of net present value. Consider a series of cash

flows: incoming or outgoing payments that occur at specified times. The potential for

currently held cash to generate value by being invested is accounted for by discounting

each future cash flow to the present time, using a discount rate which is typically

expressed as a percentage per annum. The algebraic sum of the discounted cash flows

(treating incoming payments as positive and outgoing payments as negative) is known

as the net present value (NPV) of the cash flow series. The NPV reflects the time value

of money by measuring the present value of a future investment. It is assumed that the

discount rate does not vary over the time period under consideration.

We now discuss the process of designing a mine using optimization methods, where

the NPV of the mine is the objective to be maximized. The current methods for

designing open pit mines are reliable, accurate and relatively simple [7, 10, 25]. In

recent decades, there have been major developments towards methods that maximize

the NPV of open pit mines. By contrast, mathematical models to maximize the NPV

for underground mines that take into account the construction of the access network

have not been developed. Existing methods for designing underground mines do not

generally use optimization techniques.
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The mining industry started to use optimization techniques in the late 1960s, and

they were initially used for the production scheduling of open pit mines [12, 14].

In recent years, these results and some other ideas relating to open pit mines have

been used to implement mathematical models for optimizing underground mines or a

combination of open pit and underground operations. Ben-Awuah et al. [1] used mixed

integer linear programming to investigate mining strategies for maximizing NPV, when

the options of open pit, underground, and concurrent open pit and underground mining

are available. King and Newman [11] developed a mixed integer programming (MIP)

algorithm for optimizing the cut-off grades in pre-determined zones in an underground

mine for maximum NPV. Little et al. [13] developed and applied an MIP model

that simultaneously optimizes the layouts of the stopes (minable blocks of ore) and

the production schedules for maximum NPV. Grossman et al. [8] developed and

applied an exact algorithm for scheduling the construction of an underground mine

for maximum NPV, where the design of the access network is given and one face can

be worked at any given time. Recently, Hou et al. [9] developed an integrated model

for the simultaneous optimization of designing the stopes and the access layout in

underground mines using mixed integer nonlinear programming, with undiscounted

value as the objective. However, most of the techniques for maximizing the NPV of

underground mines have been applied only to specific mines [15, 16, 24], and limited

underlying theory has been developed that can be applied more generally.

We now investigate the design of decline access networks in more detail. At this

point the reader may find it helpful to look ahead to Figures 1 and 2 in Section 2, which

show the layout of the mine used in the case study and a simple representation of part

of the decline network, respectively. We assume that the locations of the surface portal

and the points where each level is to be accessed are given, and the access network

must connect these points. The ramp gradient must be within a safe and economic

climbing limit for trucks, typically in the range of 1 : 9 to 1 : 7. A minimum turning

radius for curved ramps determined by trucks and other equipment is typically in the

range of 15 to 40 metres. Further constraints may be imposed by the ground conditions

and other geotechnical factors. The underground access network needs to be optimized

both topologically and geometrically subject to the gradient, curvature and any other

constraints.

Junction points occur in the network where three ramp segments meet. In the model

of the network these points are represented by variable nodes, because their optimal

location depends on the objective function. If the objective is to minimize the total

length of the ramp segments and the gradient and curvature constraints are disregarded,

then the problem is an instance of the well-known Steiner tree problem. The junction

points are known as Steiner points, and if the lengths of the ramp segments are

given by the standard Euclidean metric, then the locations of the Steiner points can

be determined using the well-established theory of Euclidean Steiner networks [6].

In underground mines, however, the junctions must be placed to avoid violating the

gradient [3, 5] and curvature constraints [2]. The optimization problem becomes

more complicated, even for a network with a single junction point, when subjected
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to these constraints. Optimizing the model for maximum NPV introduces additional

complications, since the optimal location of a Steiner point depends on the time taken

for the decline development to reach its location and on the order of reaching the

points where the ore is extracted, and these in turn depend on the value of the mined

material.

Brazil et al. [3] and Brazil and Thomas [4] studied underground mine access design

processes and described how to locate the Steiner points. The objective of the problem

they analysed was to minimize the infrastructure and haulage costs of an underground

mine. However, they did not take the discounted cost into account in their model,

and they did not study the problem of locating the Steiner point with the objective of

maximizing the NPV. In what follows, we refer to such points as discounted Steiner

points.

The underground mine access construction process can be classified according to

the availability of the mining equipment. The 1-Face and 2-Face discounted Steiner

point algorithms described in the literature [18, 19, 23] can be used to optimally

locate a single discounted Steiner point for maximum NPV, given the locations of the

three adjacent points, when the mine is being developed with one and two concurrent

development faces, respectively, with no gradient or curvature constraints on the

declines. The authors emphasized that the time value of money has a crucial effect on

locating the junction points in the access network for maximum NPV. The algorithm

discussed by Sirinanda et al. [18] locates a junction point to access ore bodies most

efficiently in the absence of gradient and curvature constraints, thus maximizing the

NPV in that case. The authors showed that in the maximum NPV network joining

three points, the paths from the junction point to the breakout point and the first

resource point make equal angles with the path from the junction point to the second

resource point. The algorithm provides higher NPV compared with the placement of

the junction point at the location where the development length is minimized.

We now introduce the gradient constraint into the model. We represent the

underground access network as a tree, where the locations of the ore resource points

and the root (corresponding to the surface portal or a breakout from an existing decline)

are given, and the junction points of the network are to be obtained for a given objective

function. An edge in the tree is labelled as a b edge, an m edge, or an f edge if the

gradient between its endpoints is greater than, equal to, or less than the maximum

gradient, respectively [21]. The labelling of a discounted Steiner point is a list of the

three incident edge labels taken in the order in which the edges are constructed, with

a chevron placed over a label if the corresponding edge lies above the discounted

Steiner point. For example, f̂ m̂b is the labelling for a discounted Steiner point s where

the first edge to be constructed is an f edge above s, the second edge is an m edge

above s, and the third edge is a b edge below s. Sirinanda et al. [22] showed that

only some of the potential labellings are actually feasible. The gradient-constrained

discounted Steiner point algorithm (GCDSPA) [22] determines the optimal location

of a discounted Steiner point in the presence of an upper bound on the gradient in a

network by investigating all feasible labellings of the point.
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The objective of this paper is to demonstrate the applicability of the GCDSPA to

real mine planning problems by conducting a case study. The GCDSPA is used to

design a connector between the access networks associated with two ore bodies. The

ore bodies used in this study are Rubicon and Hornet, which occur in the Rubicon

gold mine in the Kundana mining region near Kalgoorlie, Western Australia. The

aim is to design an underground connector between Rubicon and Hornet so as to

maximize the NPV associated with that connector. The connector will break out from

the access infrastructure of Rubicon and extend to Hornet. The connector will split

into two at a junction point near the Hornet end, and the GCDSPA developed by

Sirinanda et al. [22] is used to obtain the optimal location of the junction point and

the corresponding NPV.

The case study is described in Section 2 and the GCDSPA is described in Section 3.

In Section 4 the given data are prepared so that the GCDSPA can be applied. The

results are discussed in Section 5. Section 6 contains some concluding remarks,

including a proposal for future research.

2. Case study: designing the Rubicon–Hornet connector

2.1. General aim of the case study In this section we describe the case study

in which we use the GCDSPA to design the optimal connector between two ore

bodies, Rubicon and Hornet, in the Rubicon gold mine. The motivation behind the

investigation is to validate and test the effectiveness of the GCDSPA by applying it to

a typical mining operation. In doing so, the case study should provide insight into the

benefits of the new approach.

The Rubicon ore body is located beneath a previously mined open pit. Access to the

Rubicon ore body is via an existing decline. The Hornet ore body is located 600 m to

the south of the Rubicon ore body. Access to the Hornet ore body is to be via a decline

(or connector) developed off the Rubicon decline. The connector will join a decline

that provides access to the Hornet ore body. Ore is to be extracted from each level of

Hornet through a drawpoint located on the Hornet decline at that level. The layout of

the Rubicon and Hornet ore bodies and their grade distributions (gold content in grams

per tonne), and the existing and proposed access network, are shown in Figure 1 [17].

One jumbo and associated equipment are available to construct the connector.

The aim of the investigation is to design an underground connector between

Rubicon and Hornet so as to maximize the NPV associated with the connector as

shown in Figure 2. The connector is to break out from the existing access infrastructure

at Rubicon and extend to Hornet.

2.2. Inputs The algorithm requires the following inputs.

• The coordinates of a set of potential breakout points on the existing Rubicon

access.
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FIGURE 1. Layout of the Rubicon and Hornet ore bodies and access network. (Colour available online.)

FIGURE 2. The Rubicon and Hornet connector.

• A set of drawpoints at Hornet, one drawpoint for each level. For each drawpoint,

the coordinates of the point, the tonnage of ore to be extracted from that level

and the average grade of the ore on the level are required.

• Other parameters, namely, the cost per metre of constructing tunnels, the rate

of tunnel construction, the maximum decline gradient, the discount rate for the

NPV calculation, the market price of gold and the cost per tonne of extracting

and processing the ore.

2.3. Assumptions The following assumptions are made.

• The connector breaks out from one of the given set of breakout points on Rubicon

and connects to two adjacent drawpoints on Hornet via a single junction which

corresponds to a discounted Steiner point [22]. All possible pairs of adjacent

drawpoints in Hornet are to be considered in the optimization.

• Access to the other drawpoints on Hornet is via maximum gradient declines up

or down from the drawpoints associated with the connector.

• The mine is being operated with a single development face at any given time.

This assumption is reasonable, since the jumbo continues to develop the access
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TABLE 1. The potential breakout points on the Rubicon access, with coordinates (in metres) x, y, z.

Rubicon breakout point x y z

R1 9833.374 16 185.869 6208.288

R2 9839.279 16 179.883 6162.217

R3 9831.543 16 185.044 6120.056

R4 9824.143 16 174.721 6078.452

in Rubicon at the same time as it is building the connector and so it is not at risk

of being idle.

• The curvature constraint on declines is ignored. Again this assumption is

reasonable, given that the distances involved in the connector are large compared

to the turning radius.

• For each pair of adjacent drawpoints, the drawpoint with the higher aggregated

value is extracted first, where aggregated value is defined in Section 4.3.

• The input parameters are deterministic and time-independent.

2.4. Anticipated outputs from the case study The anticipated outputs are:

• the optimal design of the connector, defined by the location of the junction and

the choice of the breakout point and the two drawpoints;

• the optimal NPV associated with this design.

2.5. Data The data for the case study were supplied by Rand Mining Limited

and Tribune Resources Limited. The data values used are approximations to the true

values, but they are sufficiently accurate to provide a demonstration of the applicability

of the approach in practice using realistic data at realistic problem scales.

• Development cost rate: $5000/m

• Development rate: 140 m/month with a single heading

• Maximum decline gradient: 1 : 7

• Discount rate: 10% p.a.

• Market price of gold: $800/oz t = $25.7205973/g

• Milling, administration and maintenance costs: $27.35/tonne

The maintenance costs comprise underground road maintenance costs, the fixed

plant cost, and power and water supply costs.

The coordinates of the Rubicon breakout points are given in Table 1. Details of the

Hornet drawpoints are in Table 2 (in the Appendix). The x, y, z coordinates in the tables

are in metres with respect to an arbitrary origin.

3. The gradient-constrained discounted Steiner point algorithm

In this section we provide an outline of the GCDSPA algorithm. Further details may

be found in [22].
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The inputs to the GCDSPA are:

• the coordinates of the three points p0, p1 and p2 adjacent to the discounted Steiner

point. It is assumed that the decline from p0 to p1 via the discounted Steiner point

is to be constructed first, followed by the decline from the discounted Steiner

point to p2;

• the net values at p1 and p2, respectively;

• the cost rate of developing the declines in dollars per metre;

• the rate of developing the declines in metres per year;

• the discount rate as a percentage per annum;

• the maximum decline gradient.

The outputs are the optimal location of the discounted Steiner point, the optimal

labelling and the corresponding value of the NPV.

The algorithm proceeds by calculating the optimal solution for each of four cases

and then determining which of these solutions is the globally optimal solution.

Recall from Section 1 that each edge has a label (b, m or f ) depending on its

gradient, and each discounted Steiner point has a labelling based on the labels of

the three edges incident to it. For each case a number of different labellings must

be explored because the formulae for computing lengths in the network depend on

the labelling. However, according to the theory developed in by Sirinanda et al. [22],

only certain labellings can occur in each case and so it is not necessary to explore

all possible labellings. They provide [22, Theorems 1–7] the means for determining

the location of a discounted Steiner point for all labellings that can occur. For

each labelling, the solution is obtained by solving a certain system of equations

simultaneously.

CASE 1. The optimal solution has three edges, including at least two m edges. The

discounted Steiner point is determined using Theorems 1, 2 and 3 of [22], which deal

with labellings comprising three m edges, two m edges and one b edge, and two m

edges and one f edge, respectively. The corresponding NPV is calculated and the

labelling is recorded.

CASE 2. The optimal solution has three edges, including exactly one m edge. The

discounted Steiner point is determined using Theorems 4 and 5 of [22], which deal

with labellings comprising one edge of each label, and two f edges and one m edge,

respectively. The corresponding NPV is calculated and the labelling is recorded.

CASE 3. The optimal solution has three edges, none of which are m edges. The

discounted Steiner point is determined using Theorems 6 and 7 of [22], which deal

with labellings comprising three f edges, and two f edges and one b edge, respectively.

The corresponding NPV is calculated and the labelling is recorded.

CASE 4. The optimal solution has only two edges, that is, the discounted Steiner point

is located at p1 or p2. The discounted Steiner point is determined, the corresponding

NPV is calculated and the labelling is recorded.
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In the final step, the case that delivers the maximum NPV is determined and the

corresponding discounted Steiner point location and labelling are output.

4. Pre-processing of the data

In this section the given data are pre-processed so that they can be used as input for

GCDSPA.

4.1. Calculation of the net gold values The net gold value at each level of Hornet

is calculated from the tonnage and average grade at the level given in Table 2, the

market price of gold per gram and the costs per tonne of ore. The results are shown in

the final column of Table 2.

The costs of extracting the ore and hauling it to the surface were not included when

calculating the net gold values because the data needed to determine them were not

provided by the mining company. From the point of view of finding the optimal design

for the connector, ignoring these costs is equivalent to treating them as constants with

no time discounting.

4.2. Enumeration of cases The data are organized such that GCDSPA can be

applied. There are 16 cases, corresponding to the 16 pairs of adjacent Hornet

drawpoints. In what follows, the cases are numbered starting from the lowest pair of

levels of the Hornet ore body. For each of these cases, four Rubicon breakout points

are considered, which yields 64 subcases altogether. For each subcase, the discounted

Steiner point could be either above or below the adjacent breakout point and either

above or below each of the adjacent drawpoints.

4.3. Calculating aggregated values In order to be able to apply the GCDSPA,

quantities known as aggregated values need to be calculated. The aggregated value at

a point is the sum of the values at the nodes in the network beyond the point minus the

construction costs of the associated access, with appropriate discounting applied.

Let d be the discount rate per annum, let C be the decline construction cost per

metre, and let D be the decline development rate in metres per year. Consider a point

p where we want to calculate the aggregated value. Let r = 1 + d and Vc = CD/ ln r.

A point with value V at a distance l from p along the decline contributes Vr−l/D to

the aggregated value. If a decline of length l is to be constructed then the discounted

construction cost is
∫ l

0

Cr−x/Ddx = Vcr−l/D
− Vc,

and this quantity is subtracted from the total of the discounted values of the points to

obtain the aggregated value at p.

The net values in each level of Hornet are used to calculate aggregated values for

the two adjacent drawpoints. The Hornet drawpoints H1, H2, . . . , H17 have net values

V1, V2, . . . , V17, respectively. The process for calculating the value aggregations can be

described by considering Case 9, as shown in Figure 3. The aggregated value is cal-
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FIGURE 3. Access network design for Case 9. As in Figure 2, the discounted Steiner point is indicated by

an open circle.

culated by discounting the ore production and access construction costs of the Hornet

decline to the corresponding aggregated point. The net values at the points H10, . . . , H17

are aggregated to the point H10 and the net values at the points H1, H2, . . . , H9 are

aggregated to the point H9. All the values of the points below H9 are discounted at the

aggregated point H9. Similarly, all the values of the points above H10 are discounted

at H10. It is assumed that the points H1, H2, . . . , H8 are connected to the point H9 by

a single decline with the maximum gradient. Similarly, the points H11, . . . , H17 are

connected to the point H10 by a single decline with the maximum gradient.

Let li =
∣

∣

∣zHi+1
− zHi

∣

∣

∣

√

1 + m−2 be the distance from the point Hi to Hi+1 measured by

the gradient metric, where m is the maximum gradient and zHi
is the z-coordinate of

the ith Hornet drawpoint. Let ti = li/D be the time taken to construct the decline link

from Hi to Hi+1. The aggregated value at the point H10 is V̄x, which can be expressed as

V̄x = V10 + V11r−l10/D
+ V12r−(l10+l11)/D

+ V13r−
∑12

i=10 li/D
+ V14r−

∑13
i=10 li/D

+ V15r−
∑14

i=10 li/D
+ V16r−

∑15
i=10 li/D

+ (V17 + Vc)r−
∑16

i=10 li/D
− Vc. (4.1)

The aggregated value at the point H9 is V̄y, which can be expressed as

V̄y = V9 + V8r−l8/D
+ V7r−(l8+l7)/D

+ V6r−
∑8

i=6 li/D
+ V5r−

∑8
i=5 li/D

+ V4r−
∑8

i=4 li/D
+ V3r−

∑8
i=3 li/D

+ V2r−
∑8

i=2 li/D
+ (V1 + Vc)r−

∑8
i=1 li/D

− Vc. (4.2)

This same procedure is followed when calculating the aggregated values for the

other cases as shown in Table 3 (in the Appendix).

5. Results

In the trial, each pair of adjacent Hornet drawpoints p1 and p2 was considered with

each breakout point p0 of Rubicon, which yielded 64 subcases in total. The GCDSPA
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was applied in these subcases and the optimal labellings, the optimal location of the

junction point and the corresponding NPV were obtained as shown in Tables 4–7 (in

the Appendix). Recall that a chevron placed over b, m or f in a labelling denotes that

the corresponding edge lies above the horizontal plane containing the junction point.

The gradients corresponding to the labellings are also shown in the tables. The

gradients g1, g2, g3 are measured between the junction point and the adjacent points

p0, p1, p2, respectively. Note that for the case of a b edge the actual gradient of the

corresponding decline would be the maximum permitted gradient and not the gradient

in the table.

Here, an edge is labelled x1x2x3, where

xi =



























b when gi > 0.1429,

m when gi = 0.1429,

f when gi < 0.1429,

for each i = 1, 2, 3.

5.1. Breakout point at R1 In the scenario where the breakout point is at R1, the

optimal locations of the junction point were obtained for 15 of the 16 cases listed in

Table 3. The points p0 (R1) and p1 are above the point p2 for Cases 1–7. Therefore,

the labellings m̂m̂m, m̂m̂b, m̂f̂ b, m̂f̂ m, f̂ m̂b, f̂ m̂m, f̂ m̂f , f̂ f̂ b, f̂ f̂ m, f̂ f̂ f need to be

considered in these cases [21]. The points p0 (R1) and p2 are above the point p1 for

Cases 8–14, therefore, the labellings m̂bm̂, m̂mm̂, m̂mf̂ , f̂ mm̂, f̂ mf̂ , f̂ f m̂, f̂ f f̂ need to

be considered in these cases [21]. The point p2 is above the points p0 (R1) and p1 for

Case 15.

As shown in Table 4, the optimal solution is given by Case 10 and the optimal

labelling is m̂bm̂ with the maximum NPV of $82 973 572. For Cases 12–15 the optimal

location of the junction point is p2, which corresponds to a degenerate case of the

discounted Steiner point. In the optimal configuration for these cases, p0 and p2 are

connected by a straight line corresponding to an f edge, and p2 and p1 are connected

by a zigzag line corresponding to a b edge.

Case 16 in Table 3 is not considered for two reasons. First, the Rubicon breakout

point is below the Hornet drawpoints and so the solution would have downward

haulage which is unlikely to be optimal. Second, as seen in the last column of

Table 4, the optimal NPV increases up to Case 10 and decreases thereafter. Hence

it is reasonable to disregard the last case.

5.2. Breakout point at R2 Table 5 shows the optimal locations of the junction

point, the optimal labellings and corresponding NPVs for Cases 1–12 of the 16 cases

listed in Table 3, when the breakout point is at R2. The other four cases from Table 3 are

not applicable as the breakout point is below the two drawpoints as before. The optimal

configuration when the breakout point is at R2 occurs with Case 7, with labelling m̂m̂b

and corresponding maximum NPV of $ 83 478 168.
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FIGURE 4. Optimal solution for the case study. The legends for this figure are the same as in Figure 2.

5.3. Breakout point at R3 In this case the breakout point is fixed at R3 and the

optimal locations of the junction, the optimal labellings and the corresponding NPVs

were obtained for ten cases from Table 3. As before, the other six cases are not

applicable as the Hornet drawpoints are above the Rubicon breakout point. Table 6

shows the variation of the junction point for the optimal labellings. When the breakout

point is at R3, Case 6 provides the optimal configuration with the maximum NPV of

$ 83 324 417.

5.4. Breakout point at R4 Table 7 shows the optimal locations of the junction

point, the optimal labellings and the corresponding NPVs for eight cases. Again, the

other cases are not applicable as explained above. Case 4 provides the optimal location

of the junction, the optimal labelling m̂m̂b and the corresponding maximum NPV of

$ 82 979 145.

5.5. Globally optimal solution Table 8 (in the Appendix) shows the optimal

labelling and corresponding NPV when the breakout points are at R1, R2, R3 and

R4. The maximum NPV taken over all breakout points is $ 83 478 168, and it occurs

when the connector starts from Rubicon breakout point R2 and connects to the Hornet

drawpoints H7 and H8. The optimal labelling is m̂m̂b and the optimal location of the

junction is (9842.118, 15 508.049, 6066.239).

The results show that the connector joins at the highest-grade ore locations which

are situated at H7 and H8 in Hornet, as shown in Figure 4. This outcome is not

unexpected, given that a high value for NPV is typically achieved by accessing

high-value ore as early as possible.

The computations were performed on an Intelr Core™ i7-2600 CPU at 3.40 GHz

with 3.23 GB RAM. Each of the 64 subcases took less than 1 minute to run.

6. Conclusion

The GCDSPA was successfully applied to the Rubicon and Hornet ore bodies in

the Kundana group of mines in Western Australia. An underground connector was
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designed between Rubicon and Hornet so as to maximize the NPV associated with

the connector. The connector breaks out from the access infrastructure of Rubicon and

connects via a junction to two locations at Hornet. The GCDSPA was used to obtain

the optimal location of the junction point on the connector and the corresponding NPV.

The optimal location given by the algorithm is (9842, 15 508, 6066) which yields an

NPV of $ 83.5 million.

This study has demonstrated the applicability of the GCDSPA to solving a class

of NPV maximization problems in mine planning by using a realistic representative

scenario. Further, we believe that our study is the first application of an optimization

algorithm to designing an underground mine access network for maximum NPV.

Currently, access network design is carried out manually by a mine design engineer

without using any formal optimization process, or by using software that optimizes for

minimum cost. Optimization for maximum NPV has previously been applied to other

aspects of underground mine design, typically using MIP. However, the geometric

optimization method used in the present study is more appropriate here, due to the

inherently continuous nature of the problem as opposed to the discrete problems to

which MIP methods are well suited.

The situation at the mine changed after the data had been provided to the

researchers. The design that was ultimately used for the connector broke out from

the Rubicon decline near R1 and connected to the Hornet decline near H15. That

design was chosen because a second jumbo had become available, and so it was

advantageous to reach the Hornet decline early to allow both jumbos to be fully

utilized. The algorithm used in this case study could not have obtained that solu-

tion, because it does not take the availability of multiple items of equipment

into account. A fruitful topic for future research would be to extend the model

to enable it to handle such scenarios. This could be achieved by modifying the

2-Face discounted Steiner point algorithm described by Sirinanda et al. [23] to take

account of the constraint on the gradient, by considering all the feasible labellings

of the Steiner point in a similar manner to the approach used in the present

study.

The algorithm used in the present study can be applied only to networks containing

a single discounted Steiner point. In practice, the access networks in underground

mines contain many junctions. Sirinanda et al. [20] derived an algorithm for networks

with two discounted Steiner points and no gradient constraint. In the light of the

successful outcome of the present study, we propose that extending the algorithm to

handle networks with multiple junctions would be a worthwhile area of future research

with potentially substantial benefits for the mining industry.

Another area for investigation is to explore the sensitivity of the outputs of the

algorithm to variations in the discount rate and other parameters such as the gold price.

By running the model with a variety of values for the parameters, ranges of parameter

values could be established for which the optimal location of the connector does not

change. The model could also be extended to a stochastic model to account explicitly

for the uncertainty in the parameters.
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Appendix: Tables

TABLE 2. The drawpoints for the Hornet access, one for each level, with coordinates (in metres) x, y, z.

Av. grade Net
Hornet x y z Tonnes (g/t Au) value ($)

H1 9820.620 15 517.796 5921.472 44 465 4.96 4 456 467
H2 9818.091 15 528.853 5943.130 41 381 7.05 6 371 855
H3 9840.623 15 531.109 5962.314 38 579 7.39 6 277 776
H4 9832.170 15 525.640 5983.492 42 745 8.33 7 989 151
H5 9838.951 15 516.830 6002.379 41 152 8.57 7 945 444
H6 9834.968 15 528.034 6023.395 32 099 10.34 7 658 853
H7 9842.123 15 511.853 6042.983 34 868 11.05 8 956 285
H8 9838.533 15 525.413 6063.707 38 983 11.39 10 354 181
H9 9841.863 15 504.792 6083.575 36 973 9.40 7 927 884
H10 9840.487 15 521.042 6104.712 35 223 8.12 6 393 019
H11 9846.451 15 501.936 6123.909 32 037 8.64 6 243 241
H12 9850.112 15 527.268 6144.418 28 732 7.65 4 867 562
H13 9853.493 15 501.562 6164.579 24 569 10.44 5 925 380
H14 9857.259 15 525.142 6184.610 18 415 10.09 4 275 426
H15 9863.145 15 500.162 6204.046 17 559 7.36 2 843 743
H16 9861.849 15 521.812 6224.877 15 460 7.17 2 428 251
H17 9878.129 15 504.200 6243.582 28 594 4.34 2 409 828

TABLE 3. Aggregated values at the Hornet drawpoints for each case.

First Hornet Second Hornet First Second
Case drawpoint drawpoint aggregated value aggregated value

1 H2 H1 84 143 041 4 456 467
2 H3 H2 78 959 226 10 027 362
3 H4 H3 74 053 506 15 552 612
4 H5 H4 67 237 096 22 664 608
5 H6 H5 60 539 806 29 773 745
6 H7 H6 53 993 391 36 442 735
7 H8 H7 46 148 845 44 423 953
8 H8 H9 53 680 676 36 786 340
9 H9 H10 60 482 767 29 854 678
10 H10 H11 65 620 957 24 324 373
11 H11 H12 70 684 681 18 958 598
12 H12 H13 74 250 954 14 921 152
13 H13 H14 78 868 310 9 779 405
14 H14 H15 81 807 157 6 256 818
15 H15 H16 83 331 043 4 161 217
16 H16 H17 84 380 955 2 409 828
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TABLE 4. Optimal labellings and the optimal location of the junction when the breakout point is at R1.

Optimal location of the junction Gradients
Optimal Optimal

Case labelling x y z g1 g2 g3 NPV $

1 m̂m̂b 9806.935 14 929.498 6028.766 0.1429 0.1429 0.1823 67 988 128

2 m̂m̂b 9823.971 14 997.728 6038.548 0.1429 0.1429 0.1796 69 662 337

3 m̂m̂b 9839.780 15 069.009 6048.734 0.1429 0.1429 0.1870 71 785 782

4 m̂m̂b 9835.462 15 130.676 6057.545 0.1429 0.1429 0.1874 73 487 203

5 m̂m̂b 9839.694 15 209.853 6068.854 0.1429 0.1429 0.2165 75 623 317

6 m̂m̂b 9838.313 15 270.315 6077.492 0.1429 0.1429 0.2098 77 249 778

7 m̂m̂b 9843.389 15 349.671 6088.822 0.1429 0.1429 0.2826 79 312 393

8 m̂bm̂ 9839.985 15 408.858 6097.282 0.1429 0.2880 0.1429 80 866 069

9 m̂bm̂ 9842.010 15 490.985 6109.011 0.1429 1.8422 0.1429 82 892 977

10 m̂bm̂ 9839.964 15 548.367 6117.211 0.1429 0.4573 0.1429 82 973 572

11 m̂bm̂ 9843.121 15 632.950 6129.287 0.1429 0.1720 0.1429 82 197 518

12 f̂ b 9853.493 15 501.562 6164.579 0.0638 0.7776 − 81 146 165

13 f̂ b 9857.259 15 525.142 6184.610 0.0358 0.8389 − 80 848 215

14 f̂ b 9863.145 15 500.162 6204.046 0.0062 0.7573 − 80 065 426

15 f̂ b 9861.849 15 521.812 6224.877 0.0250 0.9605 − 79 617 025

TABLE 5. Optimal labellings and the optimal location of the junction when the breakout point is at R2.

Optimal location of the junction Gradients
Optimal Optimal

Case labelling x y z g1 g2 g3 NPV $

1 m̂m̂b 9806.628 15 087.881 6006.147 0.1429 0.1429 0.1968 71 646 672

2 m̂f̂ m 10 446.32 15 508.587 6032.922 0.1429 0.1164 0.1429 71 126 748

3 m̂m̂b 9837.321 15 227.247 6026.125 0.1429 0.1429 0.2099 75 623 605

4 m̂m̂b 9832.052 15 288.990 6034.942 0.1429 0.1429 0.2174 77 426 363

5 m̂f̂ m 10 206.75 15 524.947 6054.934 0.1429 0.0848 0.1429 76 909 490

6 m̂m̂b 9835.390 15 428.690 6054.902 0.1429 0.1429 0.3171 81 395 804

7 m̂m̂b 9842.118 15 508.049 6066.239 0.1429 0.1429 6.1140 83 478 168

8 m̂bm̂ 9838.373 15 567.041 6074.668 0.1429 0.2633 0.1429 83 453 560

9 m̂bm̂ 9841.598 15 649.195 6086.403 0.1429 0.1772 0.1429 82 747 849

10 f̂ b 9846.451 15 501.936 6123.909 0.0565 0.9591 − 82 080 387

11 f̂ b 9850.112 15 527.268 6144.418 0.0273 0.8013 − 81 774 692

12 f̂ b 9853.493 15 501.562 6164.579 0.0035 0.7776 − 81 102 771
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TABLE 6. Optimal labellings and the optimal location of the junction when the breakout point is at R3.

Optimal location of the junction Gradients
Optimal Optimal

Case labelling x y z g1 g2 g3 NPV $

1 m̂m̂b 9814.879 15 237.789 5984.713 0.1429 0.1429 0.2258 75 097 182

2 m̂f̂ m 10 263.88 15 520.726 6006.825 0.1429 0.1051 0.1429 74 772 343

3 m̂m̂b 9486.073 15 519.946 6012.988 0.1429 0.0852 0.1429 76 851 016

4 m̂m̂b 9833.128 15 439.177 6013.503 0.1429 0.1429 0.3470 81 145 107

5 m̂f̂ m 9688.892 15 526.991 6023.865 0.1429 0.0032 0.1429 81 176 264

6 m̂m̂b 9834.175 15 578.459 6033.400 0.1429 0.1429 0.1799 83 324 417

7 m̂m̂b 9840.573 15 658.037 6044.758 0.1429 0.1429 0.1775 82 888 159

8 f̂ b 9841.863 15 504.792 6083.575 0.0536 0.9512 − 82 612 338

9 f̂ b 9840.487 15 521.042 6104.712 0.0231 1.2961 − 82 285 958

10 f̂ b 9846.451 15 501.936 6123.909 0.0056 0.9591 − 81 860 178

TABLE 7. Optimal labellings and the optimal location of the junction when the breakout point is at R4.

Optimal location of the junction Gradients
Optimal Optimal

Case labelling x y z g1 g2 g3 NPV $

1 m̂m̂b 9819.311 15 378.169 5964.656 0.1429 0.1429 0.3092 78 537 061

2 m̂f̂ m 10 072.77 15 528.310 5979.512 0.1429 0.0740 0.1429 78 511 903

3 m̂f̂ m 9692.371 15 523.402 5983.521 0.1429 0.0018 0.1429 80 774 007

4 m̂m̂b 9830.962 15 579.285 5993.384 0.1429 0.1429 0.1843 82 979 145

5 m̂m̂b 9836.575 15 658.747 6004.720 0.1429 0.1429 0.1796 82 908 364

6 f̂ b 9842.123 15 511.853 6042.983 0.0535 0.2816 − 82 894 902

7 f̂ b 9838.533 15 525.413 6063.707 0.0227 0.1450 − 82 680 439

8 f̂ f 9824.143 16 174.721 6078.452 0.0076 0.0227 − 79 512 703

TABLE 8. Globally optimal solution.

Optimal location of the junction Gradients
Rubicon Hornet Optimal Optimal
breakout drawpoints labelling x y z g1 g2 g3 NPV $

R1 H10, H11 m̂bm̂ 9839.964 15 548.367 6117.211 0.1429 0.4573 0.1429 82 973 572
R2 H7, H8 m̂m̂b 9842.118 15 508.049 6066.239 0.1429 0.1429 6.1140 83 478 168

R3 H6, H7 m̂m̂b 9834.175 15 578.459 6033.400 0.1429 0.1429 0.1799 83 324 417
R4 H4, H5 m̂m̂b 9830.962 15 579.285 5993.384 0.1429 0.1429 0.1843 82 979 145
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