
Solving theoretical or empirical issues sometimes involves establishing the equality of two variables with repeated
measures. This defies the logic of null hypothesis significance testing, which aims at assessing evidence against the
null hypothesis of equality, not for it. In some contexts, equivalence is assessed through regression analysis by testing
for zero intercept and unit slope (or simply for unit slope in case that regression is forced through the origin). This
paper shows that this approach renders highly inflated Type I error rates under the most common sampling models
implied in studies of equivalence. We propose an alternative approach based on omnibus tests of equality of means and
variances and in subject-by-subject analyses (where applicable), and we show that these tests have adequate Type I
error rates and power. The approach is illustrated with a re-analysis of published data from a signal detection theory
experiment with which several hypotheses of equivalence had been tested using only regression analysis. Some further
errors and inadequacies of the original analyses are described, and further scrutiny of the data contradict the conclusions
raised through inadequate application of regression analyses.
Keywords: statistical equivalence, repeated measures, Signal Detection Theory, Yes–No, 2AFC, interval bias, Standard
Difference Model.

Resolver problemas teóricos o empíricos requiere en ocasiones contrastar la equivalencia de dos variables usando
medidas repetidas. El mero planteamiento de este objetivo supone un desafío para la lógica subyacente a los métodos
de contraste de hipótesis estadísticas, que están diseñados para evaluar la magnitud de la evidencia contraria a la
hipótesis nula y de ningún modo permiten evaluar la evidencia a favor de ella. En algunos contextos aplicados se ha
abordado el problema utilizando métodos de regresión y contrastando la hipótesis de que la pendiente es 1 y la
hipótesis de que la ordenada en el origen es 0 (o simplemente la primera de ellas cuando se fuerza la regresión “por
el origen”). Este trabajo muestra que esa estrategia conlleva tasas empíricas de error tipo I muy superiores a las tasas
nominales bajo cualquiera de los modelos de muestreo más comúnmente implicados en estudios de equivalencia.
Como alternativa, se propone una estrategia basada tanto en pruebas tipo ómnibus que incluyen contrastes de medias
y varianzas como en análisis sujeto a sujeto (cuando la situación lo permita). Un estudio de simulación con estas
pruebas muestra que la tasa empírica de error tipo I se ajusta a la tasa nominal y que la potencia de los contrastes es
adecuada. A modo de ilustración, se aplican estos contrastes para re-analizar los datos de un experimento psicofísico
sobre detección de contraste que originalmente sólo fueron analizados mediante regresión por parte de los autores del
estudio, pese a que todas las hipótesis consideradas implicaban equivalencia con medidas repetidas. Nuestro re-
análisis permite una inspección más minuciosa de los datos que revela contradicciones entre las características empíricas
de los datos y las conclusiones extraídas mediante la aplicación inadecuada de métodos de regresión. Los resultados
de este re-análisis también invalidan las conclusiones extraídas en la publicación original.
Palabras clave: equivalencia estadística, medidas repetidas, Teoría de Detección de Señales, Sí–No, elección forzada
entre dos alternativas, efectos de orden.
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Over the years of reviewing manuscripts, I had been developing
the nervous conviction that there was too much emphasis on
pouring raw data into SPSS or BMD programs and simply
accepting whatever numbers emerged—chi-squares, F ratios,
whatever—as the conclusion, without further ado. This didn’t seem
to me like a very imaginative or fruitful way to go about analyzing
data. It seemed to me that off-the-shelf statistical analysis programs
were producing off-the-shelf results.

Loftus (1985, p. 149)

The reason that, say, Cronbach’s alpha and principal components
analysis are so popular in psychology (...) is that they are default
options in certain mouse-click sequences of certain popular statistics
programs. Since psychologists are monogamous in their use of such
software (most in my department are wedded to SPSS) there is little
chance of convincing them to use a model—any model—that is not
“clickable” in the menus of major statistical programs.

Borsboom (2006, p. 433)

The need to establish statistical equivalence arises in a
number of contexts, such as when seeking evidence that
two or more groups are matched with respect to some control
variable (a methodological question), when seeking evidence
that two or more treatments are equally effective (a practical
question), or when seeking evidence that two or more
experimental manipulations produce the indistinguishable
effects that some model predicts (a theoretical question).
In all of these occasions the experimental hypothesis (i.e.,
that groups are matched, that treatments are equally effective,
or that manipulations produce the same effect) translates
into not rejecting the null hypothesis, and the researcher
actually seeks to find evidence supporting the experimental
hypothesis. As is well known, null hypothesis significance
testing (NHST) is not useful when the aim of the
experimenter is, loosely speaking, to accept the null
hypothesis of no difference. As Blackwelder (1982, p. 346)
put it, “p is a measure of the evidence against the null
hypothesis, not for it, and insufficient evidence to reject
the null hypothesis does not imply sufficient evidence to
accept it.” This problem arises mostly because the logic of
NHST rarely fits researchers’ goals (Dixon & O’Reilly,
1999). Tests of equivalence are needed in these cases, and
some have been developed over the past few decades for
use with independent groups (Anderson & Hauck, 1983;
Blackwelder, 1982; Dunnett & Gent, 1977; Edgell, 1995;
Frick, 1995a, 1995b; Kirkwood, 1981; Metzler, 1974;
Rogers, Howard, & Vessey, 1993; Selwyn, Demptster, &
Hall, 1981; Selwyn & Hall, 1984; Stegner, Bostrom, &
Greenfield, 1996; Tryon, 2001; Tryon & Lewis, 2008;
Westlake, 1976, 1979, 1981).

The tests described in the papers just mentioned represent
slight variants of conventional methods in NHST, like using
strategies that increase statistical power (as part of the

broader good-effort criterion of reasonably seeking to detect
an effect if it existed; Frick, 1995a, 1995b), defining specific
types of confidence intervals, or defining indifference regions
around the null hypothesis (for an application of this latter
idea in the context of mastery decisions in educational
measurement, see van den Brink & Koele, 1980; García-
Pérez, 1989). All of these methods require users to specify
the maximum amount of difference that is regarded as
negligible in practice, and the methods themselves are
generally aimed at testing equality of means (for testing
for lack of association, see Goertzen & Cribbie, 2010). These
two characteristics represent drawbacks for the type of
application that we will be discussing in this paper, both
because the maximum difference that is negligible is difficult
to agree upon in many cases and also because we will be
considering instances in which equivalence implies not only
identity of means but also of variances at the very least.
More importantly, all the methods described in the papers
listed above were developed in the context of establishing
the equivalence of independent groups of observations, but
this case does not exhaust all of the situations in which a
researcher might be interested in testing equivalence.
Actually, experiments in which participants serve under
several treatments lend themselves to equivalence tests with
repeated measures. For example, one may set out to
determine whether sensory thresholds obtained with
alternative psychophysical methods are equivalent (Alcalá-
Quintana & García-Pérez, 2007), whether paper-and-pencil
and computer administrations of a test are equivalent (Hays
& McCallum, 2005), or whether cross-modal interactions
affecting saccade latencies are invariant under certain types
of experimental manipulations (Diederich & Colonius, 2011).
Also, and to anticipate the experimental context in which
equivalence tests with repeated measures will be illustrated
in this paper, one might set out to test the signal detection
theory tenet that performance in two-alternative-forced choice
(2AFC) trials is the same whether the signal is presented
in the first or in the second interval. In this latter case,
repeated measures are not an option but an inescapable
consequence of experimental control (i.e., all participants
must serve in an experiment in which the signal is randomly
presented in the first or the second interval across a series
of 2AFC trials).

Equivalence tests with repeated measures do not seem
to have been developed as such. Yet, a large body of
literature under the general labels of “determining agreement
between instruments” or “method comparison studies”
describes tests that are applicable in these conditions (see,
e.g., Altman & Bland, 1983; Astrua, Ichim, Pennecchi, &
Pisani, 2007; Bland & Altman, 1986, 1999; Cox, 2006;
Dunn & Roberts, 1999; Hawkins, 2002; Lin, 1989, 1992,
2000; Lin, Hedayat, Sinha, & Yang, 2002; van Stralen, Jager,
Zoccali, & Dekker, 2008; Wang & Iyer, 2008; Westgard &
Hunt, 1973). The context in which these tests were originally
developed involved a comparison of two alternative
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instruments (or methods) measuring the same variable and
the goal was to assess the agreement (or equivalence)
between the measures provided by either instrument or
method. This literature has almost exclusively considered
correlation and linear regression as the tools to carry out
the equivalence tests, but there are obvious ways in which
correlation is inadequate and linear regression is insufficient
for this purpose (for a thorough discussion of the theoretical
inadequacy of regression analyses in the context of method
comparison studies, see Bland & Altman, 1986, 2003; Lin,
1989, 1992, 2000). The equivalence tests that are generally
carried out for this purpose consist of testing the null
hypotheses that the regression slope is unity and that the
regression intercept is zero; in some occasions, linear
regression through the origin (Turner, 1960) has also been
used, which forces the intercept to zero and thus only
involves a test that the regression slope is unity.1

The goal of this paper is three-fold. First, to provide
evidence that linear regression (whether unconstrained or
through the origin) is not advisable because the Type I error
rates of the tests for regression slope and intercept
overwhelmingly exceed their nominal rates under the most
common circumstances in equivalence testing. Thus, this
demonstration does not rely on rhetorical arguments
regarding whether regression seems reasonable for the
purpose but, rather, in actual evidence regarding its failure
as a statistical test in this context. Second, to propose an
alternative package of statistical tests for testing equivalence
with repeated measures and to show that the Type I error
rate and power of these tests is adequate. Third, to re-analyze
a published data set in which equivalence was tested using
the inadequate method of regression through the origin.
Our re-analyses do not support the conclusions that were
originally raised. Our overall purpose is to describe and
illustrate the use of an adequate statistical package to
substantiate a decision about rejection or not rejection of
equivalence. Nevertheless, this decision will never turn into
strictly accepting equivalence although the package indeed
provides the occasion for a lack of equivalence to manifest
in one way or another, thus abiding by the subjective good-
effort criterion that is usual in tests of equivalence with
independent measures (see Frick, 1995a, 1995b; Tryon, 2001)
and that is widely adopted in empirical practice (Baguley,
Landsdale, Lines, & Parkin, 2006; van Berkum, 1997; Corina,
1999; Cusack & Carlyon, 2003; Dierdorff & Morgeson, 2007;
Ferrand, 1999; Hietanen & Leppänen, 2003; Hollands &
Spence, 1998; Huntsman, 1998; Jordan & Troth, 2004; Kane,
Poole, Tuholski, & Engle, 2006; Los, 2004; Perea & Rosa,
2002; Rorden, Karnath, & Driver, 2001; Russo, Fox, &

Bowles, 1999; Saint-Aubin & Poirier, 1999; Segrin, 2004;
Smith & Kounios, 1996; Spence & Driver, 1997, 1998;
Tipples & Sharma, 2000; Vatakis & Spence, 2008; Vatakis,
Ghazanfar, & Spence, 2008; Zampini et al., 2005).

The inadequacy of regression for testing 
equivalence with repeated measures

Consider the case of two variables, X and Y, measured
in the same sample of individuals. Observed measurements
in X and Y are both affected by error, and errors may not
have the same statistical characteristics for X and Y. For
instance, the two variables could be measured with
procedures that differ as to bias and precision. Thus,
observed values in X and Y will differ from the underlying
true values by a random additive error whose mean reflects
measurement bias and whose variance reflects measurement
precision, and the mean and variance of these errors may
vary across variables. We will adopt the usual notation where
n is the size of the sample of paired observations, X̄ and
Ȳ are the sample means, sx

2 and sy
2 are the sample variances,

and rxy is the sample product-moment correlation.
Under the conventional measurement model, if X and

Y are observed measures of the same latent variable T,
measurement error makes X = T + εX and Y = T + εY, where
εX and εY are random variables with means μεx and μεy

(reflecting bias when these means are different from zero)
and non-null variances σ2

εx and σ2
εy (reflecting precision).

Differences in the bias and precision with which the two
variables are measured is the only threat to the statistical
equivalence of X and Y in this case. This is of outmost
interest in method comparison studies and in assessing
agreement between instruments because in these cases a
common latent variable is generally guaranteed. However,
when the latent variables are not the same and the research
question is purely theoretical (e.g., assessing whether the
threshold for discriminating the length of temporal intervals
is the same whether the interval is delimited by auditory
or by visual stimuli), differences in the bias and precision
with which the two variables are measured (which are
theoretically irrelevant) may seriously hamper the quest
for equivalence. In these cases X and Y are not guaranteed
to share a latent variable so that measurement error makes
X = TX + εX and Y = TY + εY, where TX and TY are the true
values and εX and εY are random errors as before. The
relevant theoretical question is whether the latent variables
TX and TY are equivalent, but testing this equivalence is
hampered by the fact that the manifest variables X and Y
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1 Whether the regression intercept should be forced to zero or estimated from the data is certainly a controversial issue in the
literature, but we will not discuss it here. The interested reader can ponder the various aspects of this issue in Hahn (1977), Casella
(1983), Mukherjee, White, and Wuyts (1998), Eisenhauer (2003), or Freund, Wilson, and Sa (2006).
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which are used in the test are affected by measurement errors
that may disguise the potential equivalence of the latent
variables. Note, however, that whether or not TX = TY,
potential differences in the distributions of εX and εY may
result in a lack of equivalence of X and Y. Classical test
theory (see Gulliksen, 1950) describes the relations between
observed and latent variables under this measurement model.

But it is also possible that the two variables X and Y
can only be described by their joint probability distribution.
Then, the experiment that is used to collect the data with
which to test equivalence would be regarded as involving
bivariate sampling from a distribution in which variables
X and Y have means μX and μY, variances σ2

x and σ2
y , and a

correlation ρXY.
These two types of sampling differ from that assumed

in regression models. Under regression sampling, the
observations in X are taken at specified fixed levels (i.e.,
they are not random) and they are measured without error
whereas the observations in Y are assumed to be normally
distributed with mean β0 + β1X (in ordinary least-squares
linear regression) or β1X (in regression through the origin)
and with a variance σ2

e that does not vary with X (the
homoscedasticity assumption). It is important to realize
that the conventional test statistics for β0 and β1 (or only
for the latter in the case of regression through the origin)
were derived under the assumption of regression sampling
and, hence, that their performance under bivariate sampling
or under the measurement model described above is not
guaranteed to be accurate. To investigate their behavior in

these three cases and also under a slight variant of regression
sampling whereby the observations in X are random, a
simulation study was carried out as described next.

Simulation method

Twenty-thousand samples were drawn according to each
of the four sampling models described above. Under the
measurement model, T was normally distributed with mean
and variance that varied across simulations whereas εX and
εY were independent and identically normally distributed
with mean 0 and a variance that also varied across
simulations with the constraint that σ2

x = σ2
y = σ2

T + σ2
εx =

σ2
T + σ2

εy. Under bivariate sampling, X and Y had a bivariate
normal distribution with means μX = μY and variances σ2

x

= σ2
y that varied across simulations whereas ρXY also varied

between .69 and .99 across simulations. Under regression
sampling, the number of levels for X varied between 3 and
23 across simulations and these levels were symmetrically
placed around μX with constant spacing whereas observations
in Y were normally distributed with μY = X (i.e., β0 = 0
and β1 = 1) and variance σ2

y , which also varied across
simulations as a result of variations in σ2

e . Finally, a variant
of regression sampling was also considered that merely
differed in that values for X were randomly drawn from a
normal distribution with mean and variance that varied across
simulations. For each sample thus drawn, the coefficients
of ordinary least-squares regression and regression through
the origin were computed, and the two-tailed significance
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Figure 1. Type I error rate of the test that the regression intercept is zero (open symbols) and that the regression slope is unity (gray
symbols) in ordinary least-squares regression and of the test that slope is unity in regression through the origin (solid symbols) under
bivariate sampling as a function of the correlation between X and Y (a), under the measurement model as a function of the standard
error of measurement (b), under lax regression sampling with random X as a function of error variance (c), and under strict regression
sampling with error variance σ2

e = 121 as a function of the number of fixed levels for the observations in X (d). Nominal test size is α
= .05 and sample size is n = 150.
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of the statistical tests of the null hypotheses β0 = 0 and β1

= 1 (in ordinary regression) or β1 = 1 (in regression through
the origin) was computed. When the entire set of 20,000
samples had been drawn, the empirical Type I error rate
of each test was estimated as the proportion of samples
for which the two-tailed probability was below .05 (for a
nominal size-.05 test).

Results

Figure 1 shows representative results from one set of
simulations in which n = 150, μX = 50 and σ2

x = 100. Clearly,
bivariate sampling when μY = 50 and σ2

y = 100 also (Figure
1a) rendered data for which the null hypotheses β0 = 0 (open
symbols) and β1 = 1 (gray symbols) in ordinary regression
were rejected overwhelmingly even when ρXY was as high
as .99; the same was true for the hypothesis β1 = 1 in
regression through the origin (solid symbols). Ordinary
regression and regression through the origin behaved
similarly inappropriately under the measurement model
when μX = μY = 50 and σ2

x = σ2
y = 100 (Figure 1b), only

approaching the nominal Type I error rate when the standard
error of measurement was unrealistically low (i.e., when
σ2

εx = σ2
εy < 1 which, given that  σ2

x = σ2
y = 100, implies a

reliability in excess of .99). In contrast, all tests turned out
to be accurate under lax regression sampling (i.e., when X
is random rather than fixed; Figure 1c) and, naturally, under
strict regression sampling (Figure 1d). The results of other
simulations in which sample size (in the range from n =
20 to n = 300) or the ranges and parameters of the
distributions of the variables involved varied (i.e., X and Y
in bivariate sampling, or T, εX, and εY under the measurement
model) were similar in that lax and strict regression sampling
always rendered accurate tests, whereas bivariate sampling
and the measurement model always rendered tests whose
inaccuracy was evident. The particular test that most departed
from its nominal size varied greatly across these conditions
so that, for instance, the performance of all tests deteriorated
meaningfully although at different rates as sample size
increased; also, the test for β0 = 0 seemed accurate under
bivariate sampling only when μX = μY = 0 but, in these
conditions, the Type I error rate of the test for β1 = 1 in
regression through the origin was overly inaccurate. These
results, then, show the inadequacy of NHST of regression
parameters for testing equivalence with repeated measures
under the most common empirical circumstances (i.e.,
bivariate sampling or measurement models).

A package for testing equivalence with 
repeated measures

Generally, the equivalence of two variables has several
observable manifestations. Thus, thorough analyses that
explore all the implications of equivalence are in order. We

will start considering two approaches to testing equivalence,
namely, omnibus tests and subject-by-subject tests. The former
are useful for testing equivalence at the population level
(i.e., when some model states that two variables should be
identical in the population, as is the case for test scores on
presumed parallel tests) whereas the latter are useful for
testing equivalence on an individual by individual basis
(e.g., when a model states that the equality of two variables
may or may not hold according to individual characteristics
so that whether or not equality holds at the population level
is immaterial; a typical situation is the analysis of reaction
times under various manipulations, where participants using
different strategies may end up producing similar or different
distributions of reaction times across conditions).

Omnibus tests

Perhaps the most stringent test of equivalence would
be based on a package of statistical tests including a t-test
for the equality of two related means through the well-
known statistic

(1)

which is distributed as t with n - 1 degrees of freedom, a
t-test for the equality of two related variances through the
well-known statistic

(2)

which is distributed as t with n - 2 degrees of freedom,
and a chi-square test of homogeneity of distributions. These
tests are known to be robust to violation of their assumptions
even with small samples (Benjamini, 1983; Cressie, 1980;
García-Pérez & Núñez-Antón, 2009; Good & Hardin, 2006,
Ch. 5) and they thus represent a useful starting point for
equivalence tests. Arguably, the equivalence would be
rejected if at least one of the three tests in this package
rejects its null hypothesis, although in different practical
applications a rejection by some of these tests may be
regarded as less critical than a rejection by others (e.g.,
rejecting only the null hypothesis of equality of variances
may not be regarded as critical when there is evidence that
the two variables are measured with different precision).
In any case, because several independent tests are applied
to the same data, it is advisable to carry them out under
the typical Bonferroni correction for the case of k
independent tests, namely, the overall size-α test of
equivalence would be rejected when at least one of the k
tests was rejected at α* = α/k. This is actually the typical
approach to assessing parallelism in classical test theory
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(García-Pérez, 2010), which also amounts to establishing
the equivalence of repeated measures.

Besides the package just described, a one-shot approach
to testing simultaneously for equality of means and variances
was proposed by Bradley and Blackwood (1989), which
uses the statistic

(3)

where SSE is the residual sum of squares from the regression
of D = X - Y on S = X + Y. If μX = μY and σ2

x = σ2
y , this

test statistic is distributed F with 2 and n - 2 degrees of
freedom.

Although significance tests for correlations and regression
coefficients are inadequate, the various omnibus tests just
described must necessarily be complemented with evidence
of a positive relation between X and Y. The reason is that
all of the tests just discussed may concur in not rejecting
the null hypothesis when X and Y differ blatantly. Consider
the case of two variables that are highly negatively correlated
with the same means, variances, and distributions: in such
case, equivalence will not occur because Y = 2μX - X ¹ X
despite the fact that μX = μY and σ2

x = σ2
y . For this purpose,

we propose the use of the concordance correlation coefficient
ρ̂c (Lin, 1989, 1992, 2000), which is a scaled average measure
of the squared perpendicular deviation of the data from the
identity line in a scatter plot. The concordance coefficient,
whose values range between -1 and 1, is defined as

(4)

and two of its interesting properties are that ρ̂c = 0 if and
only if rxy = 0 and that ρ̂c = rxy if and only if X̄ = Ȳ and s 2

x

= s2
y, whereas ½ρ̂c½ ≤ ½rxy½ otherwise. Lin (1989) also shows

that the Z-transformed concordance coefficient Ẑ = 1/2 ln[(1
+ ρ̂c)/(1 - ρ̂c)] is asymptotically normally distributed with
known mean and variance, which allows for NHST and
the construction of confidence intervals. Although the
concordance correlation coefficient outperforms the product-
moment correlation for our present purposes, it is less clear
that it can actually be used in an equivalence test. The reason
is that strict equivalence occurs when ρc = 1, but it is not
always clear what precise reference value ρc < 1 should be
adopted in an empirical evaluation of equivalence using
NHST or confidence intervals for ρc. We mention this
coefficient here because it may eventually be useful, but
we will not include it in our package except to provide the
required additional evidence that X and Y are positively
related.

To gather evidence as to the adequacy of the test package
and the one-shot approach, simulations were carried out

along the lines described in the preceding section to
investigate accuracy and power. These simulations only
considered bivariate sampling and the measurement model
(the two cases that more often hold in empirical tests of
equivalence) and excluded regression sampling for obvious
reasons: The regression model assumes  σ2

y = σ2
x + σ2

e so
that the null hypothesis σ2

y = σ2
x included in the package

can never be true under regression sampling. Also, the
homogeneity test was not included in our simulation study
because the typically small sample sizes in empirical studies
of equivalence rarely allow for it.

The top part of Figure 2 shows the accuracy of the t-test
for equality of two related means (open circles), the t-test
for equality of two related variances (gray circles), the package
consisting of both tests with the Bonferroni correction (solid
circles), and the one-shot Bradley–Blackwood test (small
open squares) under bivariate sampling with μX = μY = 50
and σ2

x = σ2
y = 100 as a function of ρXY (left panel) and under

the measurement model with μT = 50,  μεx = μεy (so that
μX = μT = 50), σ2

x = σ2
y = σ2

T + σ2
εx = σ2

T + σ2
εy = 100 as a

function of σεx (right panel). Nominal test size was α = .05
and sample size was n = 150. Across the board, both t-
tests are accurate when considered separately, and their
joint application with the Bonferroni correction is only
minimally more accurate; the Bradley–Blackwood test, on
the other hand, is similarly adequate. The bottom part of
Figure 2 shows the power (also evaluated at α = .05 with
n = 150) of either t-test, of their joint application with the
Bonferroni correction, and of the Bradley–Blackwood test
as a function of variations in the mean of Y (upper row),
in the variance of Y (center row), or in both (lower row),
also under bivariate sampling with ρXY = .7 (left column)
and under the measurement model with μX = μT = 50, σ2

x =
100, σ2

T = 84, and σ2
εx = 16 (right column). Under the

measurement model, variations in the mean and variance
of Y were accomplished by varying μεy and σ2

εy as needed.
The package (solid circles) and the Bradley–Blackwood
test (small open squares) are slightly less powerful than
the applicable t-test (open and gray circles) when X and Y
differ only as to mean or as to variance, but they are both
certainly more powerful when X and Y differ as to both
(the typical case when X and Y actually differ). In sum,
then, the package of t-tests for means and variances with a
Bonferroni correction is appropriate for testing equivalence,
and so is the Bradley–Blackwood test, which in addition
is slightly more powerful when means and variances both
differ.

Subject-by-subject tests

The omnibus approach described thus far aims at
assessing equivalence in the population from which the
pairs of observations are sampled. However, some situations
demand tests of equality at the individual level, particularly
in cases in which a theoretical model indicates that
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Figure 2. Top part: Type I error rates under bivariate sampling as a function of the correlation between X and Y (a) and under the
conventional measurement model as a function of the standard error of measurement (b). Open circles reflect results for the t-test
of equality of means, gray circles reflect results for the t-test of equality of variances, solid circles reflect results for the joint
package with a Bonferroni correction, and small open squares reflect results for the Bradley–Blackwood test. Nominal test size
is α = .05 and sample size is n = 150. Bottom part: Power of the tests (graphical conventions as before) across variations in the
mean of Y (upper row), in the variance of Y (center row), or in both (lower row). In all cases the mean of X was 50 and its
variance was 100.
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equivalence may or may not hold separately for each
individual while making no claim as to how equivalence
(as a binary categorical variable reflecting an individual
characteristic) is distributed in the population. For instance,
a given pair of observations in X and Y may represent
performance measures derived from proportion correct across
sets of trials in each of two different conditions, or average
reaction times across a number of repeat trials in each of
two different conditions. In these cases, the two conditions
may interact with individual characteristics in ways that
equivalence may hold for some participants and not for
others. Error models for proportions (or transformations
thereof) or error models for means, variances, and counts
can then be used to test equivalence on a subject-by-subject
basis. In such cases, the equality of X and Y would be
separately tested for each individual in the sample using
the particular statistical test or package that is appropriate
given the nature of the two variables. If X and Y are means,
t-tests may be appropriate; if they are proportions, a test
of homogeneity of distributions would be appropriate and
performed on a 2-way contingency table with rows (or
columns) representing the variable (X or Y) and columns
(or rows) representing the type of response (correct or
incorrect). On the other hand, if the entire distributions of
measurements under each condition are usable, then these
subject-by-subject tests may provide the conditions for
equivalence tests with independent measures (e.g., the set
of NX reaction times recorded for some individual under
condition X and the set of NY reaction times recorded for
the same individual under condition Y). We will not consider
these cases here because they can be treated with the
methods described in the introduction, which were designed
for use with independent measures.

The distinction between omnibus and subject-by-subject
tests is more important than it may seem at first glance.
Consider the case in which an omnibus test reveals significant
differences between X and Y. Subject-by-subject tests on
the data, when feasible, might indicate that X and Y also
differ significantly and in the same direction for the vast
majority of individuals in the sample, which warrants the
overall conclusion of the omnibus test. But these subject-
by-subject tests might reveal instead that X and Y only differ
significantly for a rather small subset of the individuals in
the sample. The overall conclusion from the omnibus test is
then unwarranted, because this conclusion entails that X differs
from Y in the population when the truth is that X and Y differ
significantly for only a few individuals but in a way that
triggers rejection of the null hypothesis of equality by the
omnibus test. It is incumbent on the researcher to define

whether equivalence is expected to hold at the population
level or, rather, it must be regarded as an individual
characteristic subject to differences across participants.

Empirical illustration

The remainder of this paper illustrates the use of the
set of tests just described in a particular application and
also comments on some issues that may arise in such a
quest for equivalence. The data that will be used for this
purpose come from a recent study (Yeshurun, Carrasco, &
Maloney, 2008; henceforth referred to as YCM) which tested
four separate hypotheses associated with the standard
difference model of 2AFC performance. The reason for
using these data is mainly that it allows for a thorough
discussion of several applications of equivalence tests with
repeated measures, but also that further analyses and scrutiny
of the data are possible to complement the quest for
equivalence. It will be shown along the way that YCM
committed other errors besides the use of regression analysis
to answer their research questions; all of them will also be
fixed in our application of the tests discussed in this paper,
whose results do not support the conclusions originally
raised by YCM. Before we describe all of these analyses,
the next subsection provides the necessary background by
describing the standard difference model of 2AFC
performance and some of its variants, the four specific
hypotheses that YCM set out to test, and the experiments
that were designed to gather the data with which the
hypotheses were tested.

The model, the experiments, and the data

The basic assumptions of signal detection theory (SDT)
and the ensuing models of performance are described in
a number of sources (e.g., Macmillan & Creelman, 2005;
McNicol, 2005; Wickens, 2002). They are perhaps
sufficiently well known also, but a brief description will
be useful here if only to introduce our notation. SDT posits
that the sensory effect elicited by presentation of a stimulus
is a continuous random variable with some distribution.
It is generally assumed without loss of generality that
the distribution is normal with a mean μ that increases
with stimulus level and with a variance that is independent
of stimulus level and arbitrarily assumed to be unity.2

Signal detection experiments involve a large number of
trials under Yes–No tasks or under 2AFC tasks, among
other tasks.

GARCÍA-PÉREZ AND ALCALÁ-QUINTANA1030

2 Determining whether the variance of sensory effects is constant (the so-called fixed-noise assumption) or changes with stimulus
level (the so-called variable-noise assumption) has proved elusive (see García-Pérez & Alcalá-Quintana, 2009), but this issue is inconsequential
for the present analysis. It should nevertheless be stressed that YCM also adopted the fixed-noise assumption that we are endorsing
here so that our analyses will not differ from theirs in this respect.
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A Yes–No trial consists of a single temporal interval in
which either the stimulus or a blank (chosen at random with
equiprobability) is presented. If the stimulus was presented,
the sensory effect Ss has mean μs > 0; otherwise, the sensory
effect Sb has mean μb = 0. Observers are asked to indicate
whether or not a signal had been presented, and they are
assumed to set an unknown cutpoint c (often referred to as
“criterion”) such that they respond ‘Yes’ if the sensory effect
is larger than c and they respond ‘No’ otherwise. If the
stimulus has actually been presented (defining signal trials),
a ‘Yes’ response is scored as a hit and a ‘No’ response is
scored as a miss; if the stimulus has not been presented
(defining no-signal trials), a ‘Yes’ response is scored as a
false alarm and a ‘No’ response is scored as a correct
rejection. From the empirical proportion p̂h of hits across a
series of signal trials and the empirical proportion p̂fa of false
alarms across a series of no-signal trials (with signal and
no-signal trials randomly interwoven within a session),
estimates of parameters μ and c are obtained as3

(5a)

(5b)

(see, e.g., Wickens, 2002, ch. 2), where F is the unit-normal
distribution function. In Yes–No tasks, μ̂ as estimated from
Equation (5a) is also taken to be the estimate of sensitivity
referred to as d’ in SDT.

A temporal 2AFC trial in a signal detection experiment
consists of two consecutive intervals one of which (chosen
at random with equiprobability) presents the stimulus (and,
thus, elicits a sensory effect Ss with mean μs > 0) whereas
the other presents a blank (and, thus, elicits a sensory effect
Sb with mean μb = 0). Observers are asked to report which
interval presented the stimulus, and they are assumed to
use a decision rule such that the reported interval is that
which elicited the larger sensory effect. This decision rule
subsumes a decision variable D representing the difference,
say, between the sensory effect S2 elicited in the second
interval and the sensory effect S1 elicited in the first interval
so that the observer responds ‘interval 1’ when D < 0 and

‘interval 2’ when D > 0 (see Figure 3a). Therefore, observers
also use a cutpoint but, unlike with the Yes–No paradigm,
it is assumed to be fixed at c = 0. The observer’s response
is scored as correct if it matches the interval that actually
presented the stimulus and otherwise it is scored as incorrect.
In these conditions, the absolute value of the mean of the
decision variable is estimated as

(6)

where p̂ is the overall empirical proportion of correct
responses across interval-1 and interval-2 presentations of
the stimulus.4

The foregoing description reflects what is known as
the standard difference model of 2AFC performance, which
assumes no differences in sensitivity across intervals (i.e.,
the mean of D is the same—except for a change of sign—
whether the signal is presented in the first or the second
interval) and also assumes unbiased observers (i.e., the
cutpoint is at c = 0). According to this model, the proportion
p̂1 of correct responses to stimuli presented in the first
interval should be the same (within sampling error) as the
proportion p̂2 of correct responses to stimuli presented in
the second interval, but this is not always observed
empirically. Two variants of the standard difference model
compete to account for empirical cases in which p̂1 and p̂2

differ significantly. One of them states that there are actual
differences in sensitivity across intervals. This yields the
model illustrated in Figure 3b, where the observer is still
unbiased (i.e., the cutpoint remains at c = 0) but the mean
of D differs by more than a sign reversal when the stimulus
is presented in the first or second intervals. Under the model
of Figure 3b, these means are respectively estimated as

(7a)

(7b)

and note that values μ̂1 and μ̂2 can always be found under
this model so that the observed p̂1 and p̂2 are exactly reproduced.
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3 Since the average sensory effect of the blank is assumed to be null and is not estimated, the only remaining parameters in the
model are the cutpoint c and the average sensory effect of the stimulus, which we will subsequently denote μ rather than μs.

4 For simplicity, we are referring only to the mean of D in order to avoid at this point the decision on a metric for d’, which also
involves considerations as to how to treat the standard deviation of D. To illustrate, if d’ in a 2AFC task is defined as the mean of the
distribution of the sensory effects of the signal (e.g., Wickens, 2002, p. 97), d’ = μ̂ = Ö2F-1(p̂) from Equation (6) and thus d´ has the
same value in Yes–No and 2AFC tasks; if, on the contrary, d’ is defined as the distance between the two distributions in Figure 3a
divided by their (common) standard deviation (e.g., McNicol, 2005, p. 67; Wickens, 2002, p. 100), the use of Equation (6) yields d’ =
2μ̂ /Ö2 = Ö2μ̂ = 2F–1(p̂) and then d’ is Ö2 times larger in a 2AFC task than it is in a Yes–No task. Then, the advantage of μ̂ at this point
is that it is unequivocal.
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The competing explanation for unequal empirical
proportions of correct responses across intervals is depicted
in Figure 3c. This alternative model assumes instead that
sensitivity is the same in both intervals (i.e., μ1 = μ2 = μ
again) but the observer is biased and sets the cutpoint at
some c ¹ 0. The model parameters are estimated as

(8a)

(8b)

Note that values μ̂ and ĉ can also always be found under
this model so that the observed p̂1 and p̂2 are exactly
reproduced. Thus, significant differences in proportion correct
across intervals can arise either as a result of actual
differences in sensitivity across intervals without criterion
bias (Figure 3b) or as a result of a non-zero criterion without
differences in sensitivity across intervals (Figure 3c). A
mixture of both characteristics is also possible, but we will
not consider it here.

Yeshurun et al. (2008) analyzed data from 17 different
2AFC experiments in the literature and they reported
significant differences in proportion correct across intervals,
something that is usually dubbed ‘interval bias.’ They then
set out to investigate four claims associated with the standard
difference model of 2AFC performance, namely,

(1) that the 2AFC procedure is unbiased in the sense
that the empirical proportion of correct responses
is the same when the stimulus is presented in the
first or the second interval,

(2) that the structure of the 2AFC procedure does not
alter sensitivity in any way so that d’ is the same
in the first and the second interval,

(3) that d’ from a 2AFC procedure is Ö2 times larger
than d’ from a Yes–No procedure (which should hold
when the observer’s sensitivity is the same in the
two 2AFC intervals), and

(4) that d’ from a 2AFC procedure is larger than d’ from
a Yes–No procedure even in the presence of
differences in sensitivity across 2AFC intervals.

To investigate these issues, YCM carried out an
experiment comprising two parts. One of them (which they
referred to as a “2-way task”) involved a conventional 2AFC
procedure with 395–408 trials in which a signal was
displayed in only one of two temporal intervals (with
equiprobability) and the observer had to indicate in which
interval the signal had been presented. The other (which
they referred to as a “4-way task”) was designed such that
a signal could be presented in the first, the second, neither,
or both intervals of a trial that was identical in all respects
to trials in the 2-way task, and the observer had to indicate
which of these four patterns had been presented. The overall
number of trials (of the four types) varied between 402
and 408 across observers. The 2-way task provided
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Figure 3. Variants of the difference model for 2AFC procedures.
In each panel, the distribution on the left applies when the target
is presented in the first interval, the distribution on the right
applies when the target is presented in the second interval. A
continuous vertical line partitions the horizontal axis at some
point c into regions that lead the observer to give the responses
indicated at the top. The probability that the response indicated
at the top of each region is correct is given by the numerals
near the bottom, which represent the area under the distribution
in the applicable region. (a) Standard difference model, in which
the mean of D is ½μ½ = Ö2 and c = 0. (b) Difference model with
differences in sensitivity across intervals such that ½μ1½ = Ö2
and ½μ2½ = 1 (μi being the mean of D when the target is presented
in interval i) and with c = 0 also. (c) Difference model with
bias, in which ½μ1½ = ½μ2½ = μ = 1.2069 and c = 0.2071. Note
that the two latter models predict interval bias in exactly the
same amount.
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proportions of correct responses when the signal was
presented in the first and the second intervals and also
yielded a sensitivity estimate d̂ F́C. The 4-way task was
regarded as two consecutive Yes–No tasks and yielded
empirical proportions of hits and false alarms in each Yes–No
task as well as two estimates of sensitivity, d̂́1 and d̂́2 , one
from the Yes–No task in each interval. YCM found in their
results “little evidence supporting the claims that [2AFC]
is unbiased and that it does not alter sensitivity” and they
also “reject[ed] the two claims associated with the
difference model as a model of performance” (YCM, p.
1837). In sum, then, they rejected the four claims listed
above.

On testing SDT models and the four claims just
described, YCM did not carry out any tests for equality of
means or variances and three of the claims were tested via
regression through the origin. We re-analyzed their data
thoroughly and through the package defined earlier, also
using subject-by-subject tests where appropriate. We also
carried out further analyses that may shed additional light
on the issues that YCM investigated. By carrying out these
additional analyses, we want to stress that equivalence with
repeated measures often has additional implications and
that researchers should use all available chances to scrutinize
the data. The results of these re-analyses and new analyses
are presented next. We used YCM’s actual data, which were
kindly provided by Dr. Carrasco. Table 1 lists, for each of
the 20 observers in their experiments, the proportions correct
in each interval of the 2-way task as well as the values of
d’ and c that they estimated for the 2-way task and for each
interval of the 4-way task,5 all taken from the files supplied
by Dr. Carrasco.

The first claim, p1 = p2

This claim only involves manifest variables. YCM’s 2-
way task as well as their literature review unequivocally
reveal interval bias in that p1 = p2 does not generally hold
at the individual level (i.e., according to statistical tests
under the subject-by-subject approach discussed earlier).
Actually, interval bias was reportedly not shown by almost
two thirds of the observers in YCM’s 2-way task, and a
non-negligible proportion of observers in the 17 experiments
that they reviewed failed to show interval bias too. Jäkel
and Wichmann (2006) also reported results revealing that
only a subset of their observers showed interval bias.

One reason that we refer to this claim here is to correct
an error in the computation of the subject-by-subject test
carried out by YCM. They reported that the test was rejected
for eight of their observers, and in their Figure 7 they
indicated the significance level for each observer with a
square whose side increased proportionally to minus the
logarithm of the p-value of the test. They plotted two data
points with the size that corresponds to significant p-values
between .05 and .01, but our own computation of the test
described in their Appendix B.1 indicates that the p-values
for these two observers (#4 and #10 in Table 1) are,
respectively, .081 and .092 so that these data points should
have been plotted as single dots and they should not have
been counted as instances of rejection of the null hypothesis
by their criterion of a 95% significance level. Then, only
six of their observers showed a significant interval bias,
and these are marked in Table 1 with a star between the
columns for p̂1 and p̂2. The final figure is that 70% (14/20)
of their observers did not show any significant interval bias.
The importance of this fact lies in that observers failing to
show interval bias in YCM’s 2-way task thus seem to be
behaving according to the standard difference model and,
then, their performance and sensitivity estimates in the 4-
way task should perhaps stand out as different from those
of observers showing interval bias in the 2-way task. In
other words, if the performance of these observers in the
2-way task is consistent with the standard difference model,
one should reasonably expect that the performance of these
observers in other tasks is also consistent with predictions
from the same model. On the other hand, the 2-way
performance of the remaining observers is instead consistent
with the models in Figures 3b and 3c and, again, their
performance in other tasks is expected to be consistent with
predictions of one or the other of those models. Checking
out this consistency thus becomes a further test of the
difference model, and the results of these additional tests
will be presented in the next section.

Although the hypothesis that p1 = p2 lends itself to
subject-by-subject analyses, we should mention that size-
.05 omnibus tests (i.e., with α* = .025, given that k = 2
and α = .05) only rejected the null hypothesis of equality
of variances (t18 = -2.4816, p = .023) and that the value of
the concordance coefficient was .472. On the other hand,
the Bradley–Blackwood test also rejected the null hypothesis
of equality of means and variances (F2, 18 = 6.5665; p =
.007). In sum, on a subject-by-subject basis, the hypothesis
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5 We should stress that estimates of the criterion c in the 2-way task were incorrectly computed by YCM. According to Equation (6)
in YCM’s Appendix B.2, the estimate should be computed as ĉ = F-1(1 - p̂1|2), where p̂1|2 is the proportion of incorrect responses when
the signal was presented in interval 2, so that 1 - p̂1|2 is actually the proportion correct when the signal was presented in interval 2,
listed as p̂2 in Table 1. Thus, for observer #1 in Table 1, ĉ = F-1(.9902) = 2.3339 instead of 1.9746. We have been unable to work out
the computation that may have rendered the estimates obtained by YCM, but we should also note that this error is inconsequential
because YCM did not use criterion estimates in their analyses.
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is rejected for only 6 out of 20 observers and, then, the
data indicate that only a few observers (30% of the sample)
show significant interval bias. Admittedly, insufficient
evidence to reject the null (which occurred for 70% of the
observers) is not to be taken as evidence for it (Blackwelder,
1982; Frick, 1995a). But, at the same time, rejecting the
null (which occurred for 30% of the observers) does not
imply accepting the alternative (Goodman & Royall, 1988;
Hacking, 1965). In any case, and beyond this nihilism,
evidence against the standard difference model claim that
p1 = p2 is far from overwhelming in YCM’s 2-way task.

The second claim, d́1 = d́2

The presence of interval bias for some observers in
the 2-way task led YCM to seek evidence of differences
in sensitivity when the target is presented in the first or
the second 2AFC interval. They thus devised a 4-way task
that, in their words, “directly measure[s] the sensitivity of
the observer in the two intervals of a [2AFC] task” (YCM,
p. 1843). Sensitivities d́1 and d́2  were thus estimated from
the 4-way task under the untested and suspect assumption
that the observer performs an independent Yes–No task
on each interval of the 4-way trial. (A formal proof that
this assumption is implied in YCM’s estimation method
is provided in Appendix A, where the implications of this
assumption are also discussed.) Further, regression through
the origin rejected the null hypothesis of unit slope and
led YCM to conclude that “the observers are, overall,
slightly more sensitive in the first interval than the second”
(YCM, p. 1844). In other words, d 1́ and d 2́  differed
significantly by YCM’s analysis, thus supporting the model
in Figure 3b.

But regression results are suspect when the data do not
come from regression sampling, as illustrated in Figure 1
above. What do dependable tests of equivalence say instead?
As for t-tests, the average d̂1́ was 2.725 with a standard
deviation of 0.925 and the average d̂́2  was 2.488 with a
standard deviation of 0.893, so that a paired-samples t-test
for equality of means yields t19 = 2.5636 and a two-tailed
p-value of .019 whereas a paired-samples t-test for equality
of variances yields t18 = 0.3357 and a two-tailed p-value
of .741. Then, because k = 2 and α* = .025 when α = .05,
equality of means is rejected and, then, the package of
omnibus tests rejects the equivalence of d́1 and d 2́ . The
value of the concordance coefficient was .871. In contrast,
the alternative Bradley–Blackwood test does not reject the
null hypothesis of equality of means and variances (F2, 18

= 3.1890; p = .065). These conflicting statistical conclusions
and the borderline nature of the rejection (in one case) or
not rejection (in the other) of the null indicates that the
evidence against the hypothesis of equal sensitivities in
both intervals is far from overwhelming.

But it is somewhat surprising that YCM tested the
hypothesis that p1 = p2 on a subject-by-subject basis and

then switched to linear regression through the origin for
an omnibus test of the hypothesis that d́1  = d́2 . Equality
of d́1  and d́2 may hold for some observers and not for others
just as equality of p1 and p2 holds for some observers and
not for others. In fact, there is no reason to think that all
observers will be more sensitive in one interval than in
the other, just as there is no reason to think that all observers
will show interval bias (and empirical evidence indicates
that only a few observers actually show it). The approach
described by Macmillan and Creelman (2005, p. 328), which
we also describe and exemplify in Appendix B, could
actually have been used for testing equality of d́1  and d́2

on a subject-by-subject basis, since d̂́1  and d̂́2  from YCM’s
4-way task were estimated as independent Yes–No measures
of sensitivity (as Appendix A proves). Application of this
test with α = .05 rejects the null hypothesis of equality for
only five observers (indicated with a star on the left of the
column for d̂2́  in Table 1). Then, YCM’s claim that
“observers are, overall, slightly more sensitive in the first
interval than the second” misstates the facts because 15 of
20 observers actually did not show any significant difference
in sensitivity across intervals, one was significantly more
sensitive in the second interval, and only four were
significantly more sensitive in the first interval. Then, the
data indicate that, with a few exceptions, observers’
sensitivities do not differ significantly across intervals.

We should note at this point that a quick look at the
location of the stars in Table 1 reveals that out of the five
observers for whom d́1  = d́2 is rejected, p1 = p2 is rejected
for only two (observers #12 and #14 in Table 1). And,
remarkably, for observer #12, p̂1 < p̂2 while d̂́1  > d̂́2 . It is
obvious that a perfect match in the outcomes of the two
tests should not be expected, and also that any non-
significant difference between p̂1 and p̂2 (alternatively, d̂́1

and d̂2́ ) should not necessarily have the same sign as a
significant difference between d̂́1  and d̂́2  (alternatively, p̂1

and  p̂2 ). But the divergent results of these two tests deserve
further scrutiny, if only because each observers’ performance
is likely to have been produced by a particular version of
the difference model (whichever it was for each observer)
and, hence, some consistencies in the data should be
expected.

Furthermore, if YCM’s contention is correct that the 4-
way task provides estimates of sensitivity in the two intervals
of the 2-way task, d̂́1  and d̂́2  estimated from the 4-way task
should have predictive validity and account (within sampling
error) for observers’ performance in the 2-way task. This
is best understood by noting the implications of true
differences in sensitivity across intervals of the 2-way task,
which were illustrated in Figure 3b. If d̂́1  and d̂́2  from YCM’s
4-way task are estimates of μ1 and μ2 during each interval
of the 2-way task (as YCM explicitly claimed in the first
paragraph of their Appendix B.3), these values should
account through the model in Figure 3b for the actual
proportion correct of their observers in each interval of
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the 2-way task. We have compared actual performance in
the 2-way task with the performance predicted through the
model in Figure 3b under the assumption that d̂́1  and d̂́2

actually describe sensitivity in each of the intervals of the
2-way task. Details of how this prediction was obtained are
given in Appendix C and the results are shown in Figure 4.
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Figure 4. (a) Proportion correct in the second interval plotted against proportion correct in the first interval of the 2-way task for each
of the observers participating in YCM’s experiments. Dashed curves indicate the 95% confidence region around the null hypothesis H0:
p1 = p2 (represented by the diagonal line) according to the test used by YCM (see their Appendix B.1). Data points within this confidence
region would not reject the null; the two gray symbols denote observers whose data reject the null according to YCM’s report but do
not reject it according to our own computation of their test; the six open symbols denote observers whose data reject the null in YCM’s
and our own computations. (b) Proportion correct in each interval of the 2-way task predicted by the sensitivity measures determined
through the 4-way task. Symbols denote observers showing or not showing interval bias as described in the preceding panel. (c, d)
Predicted versus actual performance in the first (c) and second (d) intervals of the 2-way task. The prediction is again obtained from
sensitivity measures determined through the 4-way task. Symbols denote observers showing or not showing interval bias as described
in the preceding panels.
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Data points in Figure 4a show, for each observer, actual
proportion correct in the second interval of the 2-way task
against actual proportion correct in the first interval. Data
points from the 12 observers reported by YCM to not show
interval bias (i.e., observers for whom p1 = p2 within
sampling error) are indicated with solid symbols; of the
remaining eight observers (whom YCM tagged as showing
interval bias), two did not actually show interval bias as
discussed in the preceding section, and their data points
(indicated with gray symbols in Figure 4a) actually fall
within the 95% confidence region (enclosed by dashed
curves) around the null hypothesis p1 = p2 (diagonal line).
Figure 4b shows an analogous plot of predicted performance
obtained from the model of Figure 3b on the assumption
that μ1 and μ2 in the 2-way task are given by d̂́1 and d̂́2 in
the 4-way task. Predicted data for the observers showing
or not showing interval bias in the actual 2-way task are
still indicated with symbols of different shade. Two
characteristics of these plots are worth pointing out. First,
the large interval bias that some observers showed in the
2-way task does not come out in these predictions:
Sensitivities estimated through the 4-way task predict that
only one observer should show a minimal interval bias in

the 2-way task, but this particular observer did not actually
show it. Second, predicted proportion correct in either interval
of the 2-way task is noticeably better than actual performance
(this point is best appreciated in Figures 4c and 4d), with
no observer expected to perform below the 75%-correct
level on either interval of the 2-way task (compared to six
observers actually performing below this level on at least
one of the intervals), with 16 observers expected to give
more than 90% correct responses in either interval (compared
to only five observers actually showing this performance
level), and with 12 observers expected to give more than
95% correct responses in either interval of the 2-way task
(when only two actually showed this performance level).

Since the difference model with different sensitivities
in each interval (given by d̂ 1́ and d̂2́ ) cannot predict observed
performance in each interval of the 2-way task, these results
may be viewed as rejecting the difference model as a model
of performance in 2AFC tasks. But another possibility is
that d̂ 1́ and d̂ 2́ are not valid estimates of sensitivity during
the intervals of a 2AFC task. Actually, our demonstration
and discussion in Appendix A suggests that this is likely
to be the case. Interestingly, the difference model can be
put aside completely in this inquiry by looking at the relation
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Table 1
Data and parameter estimates in the 2-way and 4-way tasks of Yeshurun et al. (2008)

2-way task                                                                   4-way task 

Observer p̂1 p̂2 d̂´ ĉ d̂1́ ĉ1 d̂2́ ĉ2

1 0.9755 0.9902 4.3029 1.9746 3.6247 2.0599 * 2.9144 1.8895
2 0.8235 0.7843 1.7164 0.9015 2.2580 1.2121 1.8421 1.0074
3 0.9901 0.9755 4.3008 2.3282 4.3957 2.3338 4.4722 1.8895
4 0.9167 0.8627 2.4779 1.3527 3.3829 2.3337 * 2.3904 1.3830
5 0.9167 * 0.5637 1.5930 1.1321 1.9975 1.1594 1.8762 1.3490
6 0.9412 0.9412 3.1295 1.5647 3.2099 1.7599 3.6640 2.1779
7 0.8480 0.8235 1.9573 1.0120 1.8245 1.0707 * 2.5911 1.8209
8 0.8209 0.8621 2.0095 0.9517 1.2590 0.8100 1.3954 0.9188
9 0.9755 * 0.9118 3.3257 1.9402 4.3022 2.3337 3.7426 2.1779
10 0.8867 0.8284 2.1591 1.1760 2.9823 1.8895 3.0374 1.6544
11 0.9360 0.9020 2.8155 1.5063 2.7674 1.3517 2.3778 1.4861
12 0.8775 * 0.9559 2.8733 1.2074 3.5116 2.5827 * 2.7034 1.3517
13 0.8137 0.8088 1.7653 0.8883 2.9428 1.7048 2.5127 1.5647
14 0.8333 * 0.5392 1.0879 0.7189 1.4972 0.5131 * 1.0686 0.8382
15 0.7363 0.7512 1.3105 0.6440 1.7995 1.2564 1.7089 0.8779
16 0.8922 * 0.7451 1.9081 1.1434 1.1986 0.6140 0.9876 1.0491
17 0.8039 0.8079 1.7258 0.8557 2.1723 1.5622 1.8426 1.2622
18 0.9507 0.9163 3.0337 1.6350 2.8705 1.6055 2.5758 1.4861
19 0.7700 * 0.5473 0.8673 0.5392 2.8628 1.6006 2.4555 1.3463
20 0.6533 0.6735 0.8437 0.4035 3.6509 2.3319 3.5940 2.3319

Data reported for the 2-way task are proportion correct in the first and second intervals (p̂1 and p̂2), sensitivity d̂́ , and criterion ĉ ; a star
between the columns labeled p̂1 and p̂2 indicates that proportion correct differs significantly across intervals for the corresponding
observer. Data reported for the 4-way task are sensitivity d̂́ and criterion ĉ for the Yes–No tasks carried out in the first and second
intervals (indicated by subscripts); a star on the left of the column labeled d̂́2 indicates that sensitivity differs significantly across
intervals for the corresponding observer.
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between differences in d̂1́ and d̂2́ (which are estimated
without recourse to the difference model) and differences
in p̂1 and p̂2 (which are observed quantities that do not come
from any imposed model). If interval bias in the 2-way
task (the difference p̂1 - p̂2) is caused by differences in
sensitivity across intervals and these latter are in turn
revealed by the difference d̂́1 - d̂́2 in the 4-way task, one
should expect a strong and positive relation between these
differences. The scatter plot in Figure 5 shows instead that
the difference p̂1 - p̂2  in the 2-way task is unrelated to the
difference d̂́1 - d̂́2 in the 4-way task. Surprisingly enough,
observers with the largest absolute values of d̂́1 - d̂́2 in
the 4-way task (data points in the far left and far right of
Figure 5) show non-significant and virtually null interval
bias (p̂1 - p̂2) in the 2-way task, whereas observers with
large and significant interval bias (open symbols in the
upper part of Figure 5) show differences d̂ 1́ – d̂ 2́ that are
non-significant and smaller than those of many observers
for whom interval bias p̂1 - p̂2 is virtually null. In other
words, interval bias in the 2-way task does not occur for
observers showing large differences between d̂́1 and d̂́2 in
the 4-way task, and vice versa. It thus seems untenable
that d̂́1 and d̂́2 actually indicate sensitivities during the first
and second intervals of the 2-way task and, in these
circumstances, the difference model cannot be blamed for the
failed predictions in Figure 4.

The conclusion at this point is then that measures of
sensitivity obtained with the 4-way task are likely to be
contaminated by response bias and that they cannot be
interpreted as measures of sensitivity during each of the
2AFC intervals. No further analyses are then justifiable to
pursue the issues investigated by YCM and, thus, we will
not evaluate claims (3) and (4). But we should point out
that YCM again addressed these claims inadequately by
testing for unit slope in regression through the origin.
Nevertheless, we should turn to a discussion of claim (3)
to point out other errors in YCM’s analyses that should
not spread in future research on these issues.

The third claim, d F́C = τd ÝN

Citing Wickens (2002, p. 100ff), YCM argued that, when
sensitivity differs across intervals, overall 2AFC sensitivity
is given by d F́C  =   d 1́

2 + d 2́
2 = d 1́ 1 + ρ2, where ρ = d 2́ /d 1́

and d 1́ and d 2́ are the Yes–No sensitivities during each 2AFC
interval. They then estimated ρ as the slope of the regression
of d 2́ on d 1́ through the origin (which yielded ρ̂ = 0.908; see
Appendix D for a critique of this approach to estimating ρ),
defined τ̂ =   1 +  ρ̂2 = 1.35, and used regression through the
origin again to test the claim d F́C  = τd ÝN. This regression
analysis led them to conclude that τdÝN differs significantly
from dF́C , and they rejected claim (3) and the difference model.

An important issue concerning claim (3) is the theoretical
justification of the relation that YCM started with, namely,
d F́C  =  d 1́

2 + d 2́
2. Wickens (2002, p. 122) proved the

Pythagorean relation d ÁB  =   d Á
2 + d B́

2 in a completely
different context, namely, when (1) A and B are stimuli
that differ in quantity along some dimension but also in
quality on two orthogonal dimensions, (2) d Á represents
Yes–No sensitivity to stimulus A, (3) d B́ represents Yes–No
sensitivity to stimulus B, and (4) dÁB represents discrimination
sensitivity on single-presentation trials in which either
stimulus A or stimulus B is presented and the observer must
indicate whether A or B had been presented. (This case,
and a similar proof, is also discussed in Section 7.2 of
Macmillan & Creelman, 2005.)6 The right-hand side of the
expression certainly involves Yes–No sensitivities, but the
left-hand side is not comparable to sensitivity in 2AFC
trials in which one of the intervals presents a blank and
the other presents a signal. Then, the Pythagorean relation
that YCM assumed still has to be proved.

Consider for this purpose a one-dimensional representation
of the 2AFC task for the case in which sensitivity differs
across intervals (Figure 6a; adapted from YCM’s Figure 5b).
Thus, when the signal is presented in interval 1, the mean
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Figure 5. Relation between interval bias (the difference p̂1 - p̂2)
in the 2-way task and differences in sensitivity across intervals
(the difference d̂́1 - d̂́2) estimated with the 4-way task. The obvious
lack of relation indicates that interval bias is not caused by
(presumed) differences in sensitivity across intervals. Symbols
of different shade denote observers showing or not showing interval
bias as described in Figure 4a. Arrows indicate observers for
whom d̂́1 and d̂́2 differed significantly.

6 Wickens (2002) also proved a Pythagorean relation in another case, namely, Yes–No detection of compound stimuli compared to
Yes–No detection of each component (see Sections 10.1 and 10.3 in Wickens, 2002; see also Equation 6.9 in Macmillan & Creelman,
2005). But this case is also not equivalent to 2AFC sensitivity compared to Yes–No sensitivities in each of the intervals of the 2AFC task.
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of the decision variable is -μ1; when the signal is presented
in interval 2, the mean is μ2. These means are also the Yes–No
sensitivities that would hold during each 2AFC interval (YCM,
p. 1841), that is, μ1 = d’1 and μ2 = d 2́. Then, under the
conventional definition that sensitivity is given by the distance
between those means divided by the common standard
deviation, we arrive at d F́C  = (d 1́ + d 2́)/Ö2.

We can only think of one reasoning under which YCM’s
Pythagorean relation will (incorrectly) arise, and it is by
using a two-dimensional representation such as that in Figure
6b (adapted from YCM’s Figure 5a). Using the same
definition of sensitivity as above, the distance between the
means is actually   d 1́

2 + d 2́
2, which could be mistaken to

be d F́C because of the unit standard deviation in this
representation. This demonstration is fallacious because in
a two-dimensional representation sensitivity is not given
by the distance between the means but by the sum of the
distances from each mean to the decision boundary given
by the dotted diagonal line (for a discussion and an illustration
of this principle in the case of the reminder task, see pp.
180–181 and Figure 7.4 in Macmillan & Creelman, 2005).

In sum, when sensitivity differs across 2AFC intervals,
d F́C  = (d 1́ + d 2́)/Ö2. This relation can also be written in the
form d F́C  = d 1́ (1 + ρ)/Ö2, where ρ = d 2́/d 1́, so that the
relation d F́C  = τd 1́ involves τ = (1 + ρ)/Ö2 instead of YCM’s

τ =  1 + ρ2. From the 4-way data in Table 1, YCM’s
erroneous estimate of τ through regression analysis was
1.351, whereas the correct estimate from the relation derived
here and using the method described in Appendix D is 1.358.
The difference is minimal for these data, but the correct
relation should have been used and, more importantly, the
incorrect relation stated by YCM without proof should not
mislead researchers in the future.

In any case, there is also the issue that the theoretical
relation that YCM set out to test involves d F́C (2AFC
sensitivity) and d ÝN (Yes–No sensitivity measured in a
Yes–No task). YCM’s use of d 1́ in place of a true measure
of d ÝN (which would have been very easy to obtain
experimentally) seems inconsistent with their own stance:
By their own admission, the 4-way task demonstrated that
“the temporal structure of the [2AFC] task altered sensitivity
in one or both intervals and that measured sensitivity is
not independent of the psychophysical method used to
measure it” (YCM, p. 1848). The logical consequence of
this statement is that they should never have regarded d̂1́

from their 4-way task as a valid estimate of what d ÝN might
have been in an unaltered, stand-alone Yes–No procedure.
For this reason, claims (3) and (4) cannot be regarded as
properly tested by YCM, and their data cannot be used to
test those claims in any reasonable sense.
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Figure 6. (a) One-dimensional representation of a 2AFC task with different sensitivities across intervals. The Gaussian on the left
describes the distribution of the decision variable when the signal is presented in the first interval; the Gaussian on the right describes
the same distribution when the signal is presented in the second interval. The means are, respectively, -d 1́ and d 2́ , and the variance is
2. (b) Two-dimensional representation of a 2AFC task with different sensitivities across intervals. The axes represent sensory effect S1

of the signal when presented in the first interval and the sensory effect S2 of the signal presented in the second interval. Concentric
circles represent the bivariate distribution of sensory effects in the two intervals on trials in which the signal is presented in the first
interval (lower right) or the second interval (upper left). The means are located at (d 1́, 0) and (0, d 2́), and the variance is unity along
each dimension. The diagonal line is the decision boundary under the standard difference model. The distance between the means
(indicated by a solid line) is the Pythagorean sum of  d 1́ and d 2́. The distances from the mean of each distribution to the decision
boundary are indicated with dashed lines, and the sum of these distances is d F́C.
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Discussion

Our re-analysis of YCM’s data indicate that the difference
model of performance in 2AFC tasks cannot be rejected
beyond a reasonable doubt. It will be useful to summarize
the picture that arises from our analyses.

Our first analysis shows that, on a subject-by-subject
basis, claim (1) cannot be rejected for 14 (and not just
12) of YCM’s 20 observers, who did not show significantly
different proportions of correct responses in the first and
second intervals of the 2-way task. Omnibus tests of this
claim reject the null, but interval bias is likely an individual
characteristic that demands the subject-by-subject analysis
that YCM actually performed on their data. The presence
of interval bias in some observers rejects the standard
difference model (Figure 3a), but it does not reject the
difference model in general because two of its versions
(illustrated in Figures 3b and 3c) are compatible with
interval bias.

Our second analysis reveals that claim (2) cannot be
rejected on a subject-by-subject basis for 15 of YCM’s
20 observers, who did not show significant differences
in sensitivity in the first and second intervals of the 4-
way task. Alternative omnibus tests of this claim yield
mixed results, but the reasons that justify subject-by-
subject analyses for claim (1) also apply to claim (2).
Additional characteristics of YCM’s data (discussed in
our Figures 4 and 5) suggest that sensitivities estimated
during each of the intervals of the 4-way task do not apply
during the 2-way task. We have also noted that sensitivity
during the 4-way task is higher than it is during the 2-
way task and we have argued (Appendix A) that these
differences may be the result of top-down influences that
make the 2-way and 4-way tasks incomparable. This
conclusion makes claims (3) and (4) impossible to test
with the present data.

Beyond the inadequate use of regression analyses,
we have described several other errors in YCM’s
analyses. While three of them are empirically marginal
or have only theoretical importance, the other error has
a major bearing on YCM’s conclusion. In particular,
YCM were aware that observers might not approach
the 4-way task as two independent Yes–No tasks, and
they contended that their maximum-likelihood approach
to obtaining sensitivity estimates would wade through
any potential problems in this respect. By deriving
closed-form estimators for sensitivity and criterion under
YCM’s maximum-likelihood approach (Appendix A),
we have shown that the estimates actually embody the
assumption that observers perform two independent
Yes–No tasks. The fact that YCM used numerical
methods rather than closed-form expressions to obtain
the estimates does not change this characteristic. In
addition, the fact that the number of parameters in the
model equals the number of independent data sources

does not leave room for testing the goodness of the fit.
Without evidence as to whether or not the observers
actually approached the 4-way task as two independent
Yes–No tasks, what YCM’s estimates d 1́ and d 2́ actually
represent is not at all clear. Further research that
bypasses this problem is needed to investigate potential
differences in sensitivity across 2AFC intervals (claim
(2)) as well as the relation between 2AFC and Yes–No
sensitivity (claims (3) and (4)).

The issues that YCM sought to investigate (interval bias,
differences in sensitivity across 2AFC intervals, and the
validity of the difference model of performance in 2AFC
procedures) still require further research. The fact that
interval bias is not a universal characteristic and that only
some observers show it implies that a realistic model of
2AFC performance must be compatible with the presence
and the absence of interval bias. Alternative versions of
the difference model depicted in Figures 3b and 3c are
compatible with this presence and absence, although none
of these two models appear testable (i.e., they can only be
fitted to the data and the fit to any possible data will be
perfect for both models with no degrees of freedom left to
test the inescapably perfect fit). 

Conclusion

The need to test equivalence with repeated measures
arises in two different contexts. One is in method comparison
studies or in the assessment of agreement between
instruments, where the underlying latent variables are the
same. The second context occurs in theoretical work involving
different latent variables in identical or commensurate scales.
We have described various complementary approaches to
testing equivalence with repeated measures, including
omnibus and subject-by-subject tests. We have also shown
that these approaches are accurate and powerful, whereas
regression analysis (whether unconstrained or through the
origin) is inadequate under the circumstances usually
surrounding quests for equivalence (bivariate sampling or
the measurement model). Finally, we have used dependable
procedures in a re-analysis of YCM’s data and we have also
carried out additional analyses on the data to further
complement the quest for equivalence, because a researcher’s
actual goal is to test experimental hypotheses thoroughly
by assessing all of their implications and not just to apply
a fixed set of statistical tests (Gigerenzer, 1993, 1998).

The test packages that we have described and applied
represent a further step towards a good effort to find an
effect if it exists, by looking at different manifestations of
equivalence. In addition, we have shown that its application
can be further complemented with tests of additional relations
or expectations derived from the model under consideration
(for a further illustration of this point, see Baguley et al.,
2006). Therefore, an inquiry about whether some model is
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empirically adequate is not only based on tests of equivalence
and the problematic issue of accepting null hypotheses. After
all, an experimenter’s goal is not to apply a fixed protocol
of statistical tests to the data set at hand but rather to explore
and scrutinize the data so as to extract as much relevant
and useful information as possible that bears on the research
questions which prompted the investigation.
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7 The middle sentence in this three-sentence excerpt expresses an idea that contradicts those in the two other sentences and that is inconsistent
with the thread of the paragraph from which these three sentences are extracted. We are inclined to think that what YCM meant to say in the
second sentence is that “we cannot assume that the observer’s judgment in one interval does not affect the judgement in the other.”

APPENDIX A 

Figure A1. Table representing trial types (rows) and responses
(columns) in YCM’s 4-way task. Contents indicate cell probabilities
according to YCM’s model for the 4-way task.
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APPENDIX B 

Figure B1. Sample data table (left panel) for observer #2 in Table 1, replotted from YCM’s Figure 6, and the two
tables (center and right panels) representing the outcomes in the Yes–No tasks of intervals 1 and 2 of the 4-way task. 
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APPENDIX C 
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