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Two-dimensional oscillation of convection roll in
a finite liquid metal layer under a horizontal
magnetic field
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We investigate the two-dimensional (2-D) oscillation of quasi-2-D convection rolls in a
liquid metal layer confined by a vessel of aspect ratio five with an imposed horizontal
magnetic field. Laboratory experiments were performed in the range of Rayleigh Ra and
Chandrasekhar Q numbers of 7.9 × 104 ≤ Ra ≤ 1.8 × 105 and 2.5 × 104 ≤ Q ≤ 1.9 ×
105 by decreasing Q at set Ra-number intervals to elucidate the features and mechanisms
of oscillatory convection. Ultrasonic velocity profile measurements and supplemental
numerical simulations show that the 2-D oscillations are caused by oscillations of
recirculation vortex pairs between the main rolls, which are intensified by periodic
vorticity entrainment from the vortex pair by the main rolls. The investigations also suggest
that the oscillations occur at sufficiently large Reynolds Re numbers to induce instabilities
on the vortex pair. The Re number is smaller for larger Q/Ra in the 2-D oscillation regime
and the variations can be approximated by the effective Ra number; namely, the value
reduced by the critical value for the onset of convection depending on Q. The variations
steepen with further large Q/Ra and approach a scaling law of the velocity reduction
as (Ra/Q)1/2, which is established assuming that viscous dissipation is dominated by
Hartmann braking at the walls perpendicular to the magnetic field. The results suggest
that these phenomena are organized by the relationship between buoyancy and magnetic
damping due to Hartmann braking.
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1. Introduction

Rayleigh–Bénard convection (RBC) refers to natural convection in a horizontal fluid layer
caused by unstable vertical temperature stratification and is a fundamental flow system that
creates large-scale fluid motion in both nature and industry. Convection is dominated by
two dimensionless numbers, the Rayleigh number, Ra = gβ�TL3/(κν), and the Prandtl
number, Pr = ν/κ , and the shape and size of the fluid layer, where g, �T and L denote
the acceleration due to gravity, vertical temperature difference and height of the fluid
layers, respectively, and β, κ and ν are the thermal expansion rate, thermal diffusivity
and kinematic viscosity of the test fluids, respectively (see review papers and books by
Koschmieder (1993), Bodenschatz, Pesch & Ahlers (2000), Ahlers, Grossmann & Lohse
(2009), Lappa (2010) and Lohse & Xia (2010)). According to linear stability theory, the
onset of convection in infinite fluid layers is independent of Pr, whereas the development
of convective motion with increasing Ra number strongly depends on the Pr number. For
Pr numbers smaller than unity, the transition from steady convection to thermal turbulence
occurs more drastically with decreasing Pr number (Krishnamurti & Howard 1981). Such
drastic transitions have also been represented by smaller stable regions of two-dimensional
(2-D) convection rolls at smaller Pr numbers formed at the onset of convection. The
stable region determined by stability analysis, the so-called ‘Busse balloon’, shrinks with
decreasing Pr number (Busse 1978).

In actual situations of liquid metal layers (Pr = O(10−2)), the stable region of 2-D
convection rolls can be difficult to access in experiments because of the very small
cross-section of the Busse balloon at low Pr conditions. The application of a horizontal
magnetic field enlarges the stable region and the quasi-2-D constraint arises from the
influence of the Lorentz force with respect to the roll orientation. This reorganizes the
flow structure in ways that ensure that both the global Joule dissipation and global kinetic
energy decline in strict accordance with the conservation of linear and angular momentum
(Davidson 1995). RBC affected by external magnetic fields is also characterized by the
Chandrasekhar number, Q = B2L2σ/(ρν), which is the ratio of the Lorenz and viscous
damping forces (equivalent to the square of the Hartmann number, Q = Ha2), where B,
σ and ρ denote the intensity of the external magnetic field, electrical conductivity and
density of the test fluids, respectively. Linear stability theory suggests that the application
of a horizontal magnetic field to infinite fluid layers does not affect the critical Ra value
for the onset of convection (Chandrasekhar 1961), and weakly nonlinear theory (Clever &
Busse 1987) predicts that magnetic fields with a small Q (e.g. Q = 30 for RBC in infinite
fluid layers) widen the Busse balloon. One of the balloon boundaries is for the oscillatory
instability that accompanies travelling waves on 2-D convection rolls. Further increases of
Q on the applied magnetic field are expected to further widen the balloon, and oscillatory
convection rolls with travelling waves would be observed even under relatively high Ra
conditions. However, actual situations in finite fluid layers show different aspects, which
are detailed below.

In the case of fluid layers confined by sidewalls (so-called finite fluid layers), the
magnetic field restricts convection because of sidewall Hartmann braking, depending
on the wall material. Burr & Müller (2002) expressed the effect as an upward shift
of the neutral stability curve for the onset of convection, and predicted an increasing
wavenumber of 2-D rolls with increasing Q. From laboratory experiments using eutectic
sodium–potassium, Na22K78, Burr & Müller (2002) also reported the development of
thermal turbulence via oscillatory convection by modifying the Ra and Q; thermal
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turbulence is suppressed with increasing Q for fixed Ra as variations of the power spectrum
of the temperature fluctuations inside the fluid layer. However, the displayed variations do
not present a straightforward progression to thermal turbulence, which leaves the detailed
flow structure during these changes unexplained owing to a lack of flow field information.

Liquid metal experiments restrict the adoption of ordinary optical visualization
techniques to observe flow fields because of their opaqueness. Recent developments
in ultrasonic velocity profiling (or ultrasonic Doppler velocimetry using different
terminology) (Eckert, Cramer & Gerbeth 2007; Takeda 2012) have provided a
breakthrough in the understanding of this problem. Line measurements of instantaneous,
single-velocity components in UVP provide both flow pattern and quantitative information
of the spatio-temporal velocity field in liquid metal layers. As a typical example of UVP
applied to RBC, small-scale turbulent statistics (Mashiko et al. 2004) and the behaviour
of large-scale circulation (Tsuji et al. 2005) have been investigated. Quasi-2-D convection
rolls in liquid metal layers confined by a rectangular vessel and periodic oscillatory motion
of the rolls have also been visualized (Yanagisawa et al. 2010).

In our studies on RBC in a finite liquid metal layer confined by a horizontal magnetic
field (Yanagisawa et al. 2013), we provided a regime diagram describing the development
of the convection pattern from weak convection (very slow flows that are difficult to
measure), steady quasi-2-D rolls, oscillatory convection and transition regimes to thermal
turbulence with respect to Ra at fixed regions of somewhat small Q. In the regime
diagram, the transitions between regimes are organized by Ra/Q. This relation holds over
a widened regime diagram (Tasaka et al. 2016) at a somewhat higher Q range. The regime
diagrams (Yanagisawa et al. 2013; Tasaka et al. 2016; Vogt et al. 2018) also indicate
that a larger Q range generates smaller convection rolls (i.e. larger wavenumber of the
structure), as predicted by Burr & Müller (2002). Vogt et al. (2018) recently investigated
the development of convection flow structures with increasing Ra at fixed Q conditions
to observe stepwise increases in Ra/Q. They reported that oscillatory convection occurs
when maintaining the quasi-2-D state, which differs from the three-dimensional (3-D)
travelling waves considered in the Busse balloon. Incipient instabilities can be assumed
to be associated with quasi-2-D flow structures, and the 2-D character is lost with further
reduction of the magnetic field until the flow ultimately becomes 3-D. Here, 2-D implies
that the magnetic field reduces the velocity gradients along the magnetic field lines.

In this paper, we elucidate the 2-D oscillation features of convection rolls and
their associated mechanisms, which disagree with theoretical predictions of a simple
enlargement of the Busse balloon. This allows the present study to provide ideas for the
Busse balloon when extended to the case of an applied horizontal magnetic field with
vessel sidewalls. We investigated flow development with decreasing Q from sufficiently
large values that forms steady convection at fixed Ra. This provides a simpler way to
modify flow conditions than adjustments to Ra by simultaneously measuring both the
flow field and temperature fluctuation using UVP and thermocouples. The spatio-temporal
velocity field measurements allow monitoring of the variations in the number of rolls and
also provide data for consideration from the point of view of specific velocity variations as
they develop. After a brief description of the experimental arrangement, we detail the
measurement tools and conditions in § 2. The experimental results and investigations
on the morphology of the 2-D oscillations are summarized in § 3 with supplemental
numerical simulations to show the flow structure details. A detailed discussion of the
results in § 4 elucidates the conditions for the onset of oscillations with variations in the
Reynolds number (Re) as inertia-induced oscillation.
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Figure 1. Experimental set-up, dimensions and sensor arrangement: (a) top view and (b) side view.

Physical properties Symbol Unit Values

Thermal expansion coefficient β K−1 1.24 × 10−4

Thermal diffusivity κ m2 s−1 1.05 × 10−5

Kinematic viscosity ν m2 s−1 3.31 × 10−7

Density ρ kg m−3 6.35 × 103

Electrical conductivity σ (� m)−1 3.26 × 106

Prandtl number Pr — 0.03
Magnetic Prandtl number Pm — 1.36 × 10−6

Table 1. Physical properties of the test fluid, eutectic GaInSn (Ga67In20.5Sn12.5) at 25 ◦C (Morley et al. 2008;
Plevachuk et al. 2014).

2. Experimental set-up and measurement procedure

The experimental arrangement used here has also been applied in a series of previous
studies (Yanagisawa et al. 2011, 2013; Tasaka et al. 2016; Vogt et al. 2018). The vessel has
a square cross-section with 200 mm sides and L = 40 mm height, as shown in figure 1.
The vessel is bounded by copper plates at the top and bottom to achieve isothermal
boundaries and by resin walls at the sides to ensure thermal and electrical insulation.
Channels machined in the top and bottom copper plates were connected to thermostatic
baths and water circulation maintained a constant temperature at the top and bottom vessel
boundaries. The test fluid for the fluid layer filling the vessel is eutectic gallium–indium–tin
(Ga67In20.5Sn12.5), which is electrically conductive and has a small Prandtl number
(Pr ∼ 0.03). Details of the material properties are summarized in table 1. A quasi-uniform
magnetic field (B in figure 1) was created using an electromagnet consisting of two
water-cooled copper coils and a magnetic yoke. The maximum intensity and non-uniform
magnetic field strength were 700 mT and better than 7 % at maximum intensity.

Two measurement techniques were used in the experiments, ultrasonic velocity profiling
(UVP) and thermocouples for capturing the flow field and temperature fluctuations,
respectively. Sensor arrangements are shown in figure 1 from a top view (a) and side view
(b). Three ultrasonic transducers for the UVP were mounted on the vessel: at z = 10 mm
from the bottom plate and 40 mm from the sidewall (x = 160 mm) for UV1; z = 30 mm
and x = 160 mm for UV2; and z = 10 mm and x = 100 mm for UV3. The instantaneous
flow velocity profiles were recorded along the propagation lines of the ultrasonic waves,
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uy( y, t), which were aligned perpendicular to the magnetic field. One thermocouple (T)
was placed in the fluid layer (figure 1), 3 mm below the top plate. Two thermocouples
were inserted in the top and bottom copper plates to monitor the temperature at the vessel
boundaries, top, TL and bottom, TH . The temperature difference used to calculate Ra is
obtained as �T = TH − TL. Details of the experimental set-up are also provided in Tasaka
et al. (2016).

The experiments were strictly carried out according to the following procedure.
The temperature difference was first adjusted by controlling the temperatures in the
thermostatic baths. After 30 min, a magnetic field was applied. After an additional 10 min,
the flow measurements began, assuming that the fluid layer had reached equilibrium.
In each series of experiments, which were always started at the highest magnetic field
strength, the temperature difference was held constant and the magnetic field intensity
was reduced in stages. At each stage, the field intensity was held constant for 30 min,
which is considerably longer than the thermal diffusion time of the fluid layer (153 s) and
turnover time of a single convection roll (6–10 s). The total measurement time was longer
than 4 h for the shortest experiments.

We performed direct numerical simulations for the same geometry as in the laboratory
experiment, considering a horizontal magnetic field imposed on a rectangular vessel
with no-slip velocity boundaries. The numerical code used here is identical to that
in Yanagisawa, Hamano & Sakuraba (2015) and Vogt et al. (2018), and successfully
reproduces the diverse convection regimes observed in the experiments for variations of
Ra and Q. In the code, a set of governing equations for magnetohydrodynamic flows is
solved for a Boussinesq fluid (see Yanagisawa et al. (2015) for further details). The Pr
number for the simulations was set to 0.025. The grid resolution is a compromise between
a sufficient number of grid points in the Hartmann layer and reasonable computation time.
The calculations were conducted on a mesh of 600 × 600 × 120 grid points. Additional
calculations were performed at a finer mesh with 1280 × 1280 × 256 grid points for
shorter durations to check the reliability of the results.

3. Results

3.1. Variety of initial number of rolls at high Q
The application of a magnetic field restricts flow structures to quasi-2-D shape by Joule
dissipation on the fluid motion parallel to the magnetic field (Davidson 1995). For RBC
with a horizontal magnetic field, this provides convection rolls arranged parallel to the
magnetic field, and also modifies the number of convection rolls (i.e. wavenumber of the
structure) depending on Ra and Q (Yanagisawa et al. 2013; Tasaka et al. 2016). Unlike our
earlier studies conducted at smaller Q (Yanagisawa et al. 2011, 2013; Tasaka et al. 2016),
a notable feature of the present experiments performed at relatively high Q is that several
repetitions of the experiments do not produce exactly the same number of convection rolls.
Depending on the Ra number, different probabilities are found for the occurrence of an
initial number of rolls n. Figures 2(a)–2( f ) show histograms of the probability density on n
observed at a fixed Q of 2.0 × 105, and variable Ra values (2.3 × 104 to 1.5 × 105), where
solid circles with bars represent the averages and corresponding standard deviations. The
number of rolls was identified using the spatio-temporal velocity maps, uy( y, t), measured
by the ultrasonic transducer (UV1, figure 1). An example of a map is shown in figure 2(g),
where the seven white and black stripes represent individual convection rolls and the
adjacent rolls show opposite rotation directions. The identification of the number of rolls
based on velocity measurements along the measurement line perpendicular to the magnetic
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Figure 2. Probability density function for the initial number of convection rolls observed at Q = 2.0 × 105

and at several Ra numbers: (a) 2.3 × 104, (b) 3.8 × 104, (c) 7.7 × 104, (d) 9.2 × 104, (e) 1.2 × 105, and
( f ) 1.5 × 105, where solid circles with bars represent the average and standard deviations. (g) An example
of a spatio-temporal velocity map for n = 7.

field is quite straightforward, because a sufficiently high field strength stabilizes the rolls
and aligns them along the field lines. The seven-roll regime (n = 7) shown in figure 2(g)
was first observed in this study, whereas previous studies assumed this number of rolls for
sufficiently high Q from the observation that n increases with Q (Yanagisawa et al. 2013;
Tasaka et al. 2016).

The initial number of convection rolls obtained in the present experiments ranges
from n = 3 to 8 as shown in the histograms (figure 2a–f ). In these, n = 3, 4 and 8 are
unstable states, where the initial roll number changed over time for the same Ra and
Q numbers. With three stable states, n = 5, 6 and 7 occur with bistability that has not
been previously reported for smaller Q. This may be due to a reduced horizontal size of
the stable convection rolls at larger Q relative to the vessel size, Γ = 5 in aspect ratio.
The experimental procedure in the present study, giving initially a certain temperature
difference for the set Ra number, may also affect the bistability. The average and standard
deviation of n in the histograms show no significant tendency with respect to Ra number
in the range examined here.

The present study focuses on the onset of convection roll oscillations with decreasing Q
at a given Ra number by velocity mapping and temperature fluctuation measurements. The
thermocouple positions with respect to the convection rolls must be taken into account to
evaluate the temperature fluctuation because, in the case of oscillations, their amplitude
should be greater if the measuring position is in between two adjacent rolls. In the stable
states, five- and six-roll states are sustained with decreasing Q whereas the seven-roll state
shows a transition to the six-roll state with slight decrease of Q. We therefore investigated
the onset of the oscillations for the five- and six-roll states. In figure 3, the examined Ra
and Q values are displayed with the corresponding roll number state and flow regimes
with different symbols. Light circular symbols with a central mark and bold circular
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Ra

Q

n = 5

n = 6
Non-oscillation

Oscillatoryn = 5 and 6

104 105

105

5 × 104

Figure 3. Parameter range examined in the present experiments. Open and red-filled circles represent
non-oscillation and oscillatory states, respectively. The thickness of the circle and central mark in the circles
indicates the corresponding number of rolls.

symbols with no central mark indicate five- and six-roll states, respectively, and bold
circular symbols with a central mark indicate that both states are observed for the same
set parameters; and open and red-filled symbols represent non-oscillation and oscillatory
regimes, respectively. The recognition of an oscillatory or non-oscillation regime was
tentatively given from the spatio-temporal velocity map.

3.2. Onset of oscillatory convection
Each measurement series performed for a Ra number starts with sufficiently large Q
values at which distinct oscillatory motion is not observed. With the stepwise reduction
of the magnetic field, oscillations occur at certain Q, whose properties change with
further reduction of Q. Figure 4 shows an example for an oscillating five-roll state at
Ra = 1.2 × 105 and Q = 5.0 × 104. The spatio-temporal velocity map in figure 4(a) was
measured by UV1 and the corresponding temperature fluctuation in figure 4(b) was
measured by the temperature probe T (figure 1). In the velocity map, oscillations are
visible as periodic changes in the boundaries between the neighbouring convection rolls,
with the three inner rolls showing greater fluctuations than those on the vessel sidewalls.
The main features are similar to those observed in the 2-D oscillations (Vogt et al. 2018,
figures 4 and 10), which are the main subject for investigation in the present study.
The two-dimensionality of the oscillations is further evaluated below. The corresponding
temperature fluctuation shows clearer periodic oscillations than in the velocity map; in the
five-roll state, the position of probe T is at the boundary between the second and third
rolls and can effectively capture the oscillation because of the relatively large oscillation
amplitude expected at the boundary.

The power spectra from a Fourier transformation of the fluctuations of velocity and
temperature shown in figure 4 are plotted in figure 5. The velocity fluctuation for the
spectra in figure 5(a) is extracted from figure 4(a) at y = 120.56 mm and corresponds
to the boundary between the main convection rolls, where the root-mean-square (r.m.s.)
value of the velocity fluctuations reaches the maximum. Both spectra have a sharp peak
corresponding to the roll oscillation at f = 0.086 Hz ( fOS). The critical Chandrasekhar
number for the onset of oscillations, QOS, is determined from the velocity fluctuations.
Taking into account the occurrence of the five- or six-roll state, the location to extract the
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Figure 4. Sample of (a) spatio-temporal velocity map measured by UV1 and (b) corresponding temperature
fluctuations measured by temperature probe T (figure 1) in the oscillation regime at Ra = 1.2 × 105 and Q =
5.0 × 104.
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Figure 5. Power spectra for (a) velocity (at y = 120.56 mm) and (b) temperature fluctuations, both with the
data shown in figure 4. (c) Schematic diagram for the variation of peak power of the frequency component of
the velocity fluctuation at f = fOS.

velocity fluctuations is always chosen as the boundary between the two central convection
rolls. The zero-crossing point from the linear extrapolation of the spectral peak values from
the velocity fluctuations gives the critical value QOS (see schematic diagram in figure 5c).
The spectral peak values of the temperature fluctuations are also used to cross-check the
QOS values estimated from the velocity fluctuations.

The determined QOS values obtained at both the five- and six-roll states and at different
Ra numbers are plotted in figure 6, with the five- and six-roll states shown by solid squares
and open circles, respectively. The symbols for the two states appear to overlap, which
suggests only a small influence of the number of rolls on the onset of oscillation. For
comparison, the critical values obtained in similar experimental work by Burr & Müller
(2002) are plotted as crosses in figure 6. The difference between the present results and
data obtained in Burr & Müller (2002) is apparent, even if different criteria and procedures
were applied to determine the critical values. For a given Q value, the critical Ra number
for the onset of oscillatory convection is one order of magnitude smaller than the present
results. The most significant difference between the experiments is the size of the fluid
layer; the present study uses a square vessel with Γ = 5 aspect ratio, whereas Burr &
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QOS

Ra

105 106

104

105

Oscillatory

Steady

Figure 6. Critical Q for the onset of oscillation, QOS, obtained at different Ra values with decreasing Q. Solid
squares and open circles represent QOS for n = 5 and 6, respectively. The crosses indicate critical Ra numbers
for the onset of oscillation obtained at different Q values from Burr & Müller (2002).

Müller (2002) used a larger rectangular vessel with sides of 10L and 20L in directions,
respectively, parallel and perpendicular to the magnetic field. Simply stated, this difference
is from a magnetohydrodynamics (MHD) effect due to the vessel size and differences
in the oscillatory convection criteria. A detailed investigation of the corresponding flow
structures in § 3.4 elucidates that a different oscillatory convection type emerges even
below the boundary determined here. These points are further discussed below.

3.3. Development of oscillatory convection
This section considers the development of oscillation intensity with decreasing magnetic
field strength beyond the onset of oscillations at Q = QOS(Ra). Temperature fluctuations
are used to monitor the development instead of the spatio-temporal velocity maps. This
decision is justified by the long measurement times of approximately 4 h, during which a
noticeable separation of reflecting particles occurs due to the small difference in density
between the liquid metal and particle. This leads to a deterioration of the measured signals
by the increasing noise level. The variations of r.m.s. of the temperature fluctuations, Trms,
with decreasing Q are shown in figure 7(a) for different Ra values, in a five-roll state (i.e.
n = 5). The grey band at the bottom of the figure indicates the noise level below which no
temperature fluctuations can be reliably detected. The points at which the curves reach the
noise level correspond fairly well with the onset of oscillations determined by analysing
the velocity data (see figure 5).

The variations of Trms versus Q can be merged into a single curve by normalizing Trms
with the maximum r.m.s. value, Trms,max, for the respective measurement series at a given
Ra (figure 7b) and Q with Ra values. This suggests that developments in the oscillation
are organized by Ra/Q, such as the organization of different flow regimes determined in
our previous studies (Yanagisawa et al. 2013; Tasaka et al. 2016; Vogt et al. 2018). It may
be expected from the unified curves that Trms decreases with a further reduction of Q at
lower Ra conditions than Ra = 1.8 × 105. This might be caused by 3-D developments of
the oscillatory motion of a convection roll (Vogt et al. 2018), and is discussed further in
§ 3.5 from the viewpoint of the oscillation frequency and characteristic velocity of the
convection roll.

3.4. Structures and source of the 2-D oscillations
To verify the two-dimensionality of the oscillatory motions from phase differences of
the local velocity fluctuations, we simultaneously measured velocity profiles along three
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Figure 7. (a) Variations of the r.m.s. value of the temperature fluctuations T (figure 1) with decreasing Q
at different Ra values, where the grey hatched area represents data lower than the noise level. (b) Variations
normalized by the maximum r.m.s. values, with respect to Q/Ra, where the grey symbols (right side) represent
data points lower than the noise level. The corresponding number of convection rolls is n = 5 (five-roll state).
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Figure 8. Velocity fluctuations extracted at f = fOS by Fourier transformation from the original velocity
fluctuations measured by different ultrasonic transducers, UV1 to UV3 (figure 1) at y = 120.56 mm, and at
Ra = 1.2 × 105 and Q = 5.0 × 104.

different measurement lines at UV1, UV2 and UV3 (figure 1). The velocity fluctuations
corresponding to f = fOS were extracted by discrete Fourier transformation from the time
series of the velocity signals for the position y = 120.56 mm, where two neighbouring
rolls encounter each other. Figure 8 presents the velocity time series of all three sensors,
showing distinct oscillations at f = fOS. The signals of sensors UV1 and UV3, which
are mounted at the same height (z = 10 mm) and different x-positions (x = 160 and 100
mm), are in phase, whereas the signals recorded by UV1 and UV2 mounted at the same
x-position at the bottom (z = 10 mm) and top (z = 30 mm) of the fluid layer oscillate
in antiphase. These results coincide with the basic features of the 2-D flow structure
and thus fundamentally differ from the 3-D travelling wave oscillations in conventional
Rayleigh–Bénard convection (Clever & Busse 1987).

The reason that 2-D oscillatory motion appears at the onset of oscillatory convection
rather than the 3-D travelling waves, as predicted in previous studies (Busse & Clever
1983; Clever & Busse 1987), requires further explanation. Stability analysis performed by
Busse & Clever (1983) indicated that the stable region boundary of the 2-D convection
rolls in ordinarily occurring oscillatory instability widens by applying a horizontal
magnetic field. Our measurements suggest that another type of instability occurs in the
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Figure 9. Profiles of mean velocity Uy and standard deviation of velocity fluctuations uy,rms measured at Ra =
1.2 × 105 and Q = 5.0 × 104 (Q/Ra = 0.42) by ultrasonic transducers at the bottom and top positions, UV1
and UV2 (figure 1) (the corresponding spatio-temporal velocity map for UV1 is shown in figure 4a).

case of the magnetic field. This section discusses the mechanics of these 2-D oscillations,
together with the details of roll motion corresponding to the 2-D oscillations obtained in
the present experimental results.

The mean flow structure in the case where the 2-D oscillations occur at Ra = 1.2 × 105

and Q = 5.0 × 104 (Q/Ra = 0.42) is presented in figure 9 as profiles of the time-averaged
velocity Uy (solid line) measured at the bottom (black, UV1) and top (grey, UV2)
(see figure 1). The mean velocity profile exhibits five conversions of flow directions
corresponding to a five-roll state. However, the profile shape is not simply sinusoidal
but shows substantial asymmetric deformations (i.e. humps). Furthermore, neighbouring
positive and negative parts of the profile with a hump seem to appear in the point
symmetry, and the profiles measured by the top and bottom line are also related by point
symmetry. A profile of the standard deviation of the velocity fluctuations measured along
the bottom line (UV1), uy,rms, is also plotted in figure 9 (broken line). The standard
deviation assumes sharp peaks around positions with Uy = 0, corresponding to the
boundaries between rolls and large values around the deformation area of the Uy profiles.

We performed additional numerical simulations to obtain more details of the structures
corresponding to the typical velocity profiles. The simulation parameters were set close
to the experimental conditions in figure 9, Ra = 1.0 × 105 and Q = 3.2 × 104 (Q/Ra =
0.32). The isosurface of the Q3D value, the second invariant of the velocity gradient tensor
calculated from the simulation results, displays convection rolls. A quasi-2-D shape of the
rolls in the oscillatory condition provides evidence of 2-D oscillatory motion (figure 10a).
We also calculated a spatio-temporal velocity map from the simulation results along a
line corresponding to the present UV1 line measurement (z = 0.25L; dark red line in
figure 10a). This map shows finer structures of the oscillatory convections (figure 10b).
The corresponding mean velocity profile shown in figure 10(c) also has humps that reflect
modifications of the main rolls. Figures 10(d)–10( f ) show sequential snapshots of the
vorticity field on a vertical cross-section of the fluid layer perpendicular to the magnetic
field (ωx). Red and blue contours in the various panels represent positive and negative
values of vorticity in the direction of the applied magnetic field (x-axis), respectively. The
broken line in figure 10(d) indicates the measurement line corresponding to the ultrasonic
transducer (figure 1). At the places corresponding to the humps, there is an additional
recirculation vortex pair between the main rolls. The vortices seem to be a separation
vortex pair from the main rolls and appear in between the roll flows detached from the
wall, not approaching or adhering to the wall.

Sequential snapshots shown in figure 10(d–f ) also represent the motion of the rolls
corresponding to the 2-D oscillations as a periodic distortion of the rolls into elliptic
shapes. A remarkable feature of this distortion is that the roll axes are almost fixed
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Figure 10. Results of numerical simulation performed for Ra = 1.0 × 105 and Q = 3.2 × 104 (Q/Ra = 0.32).
(a) The isosurface of Q3D represents the roll structures, where the dark red line indicates the place of the
UV1 measurement line. (b) Spatio-temporal velocity map extracted along a line corresponding to the UV1
measurement line (see figure 1). (c) Time-averaged velocity profile of the velocity map. (d–f ) Instantaneous
contour maps of vorticity on the vertical cross-section at x = 160 mm, where red and blue contours represent
positive and negative values of the vorticity, respectively (see also supplementary movie 1).

at both horizontal and vertical positions. The distortion is accompanied by entraining
the vorticity from the recirculation vortex pair; the entrainment occurs periodically
and alternately between neighbouring main rolls, and deformation of the rolls behaves
synchronously (see also supplementary movie 1 available at https://doi.org/10.1017/jfm.
2020.1047). By the entrainment, the main rolls seem to be surrounded by an annular layer
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Figure 11. Profiles of mean velocity Uy and standard deviation of velocity fluctuations uy,rms measured at
Ra = 7.9 × 104 and Q = 2.0 × 105 (Q/Ra = 2.5) by UV1.
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Figure 12. Profiles of mean velocity Uy and standard deviation of velocity fluctuations uy,rms using data from
Vogt et al. (2018) at Ra = 1.7 × 104 and Q = 8.0 × 103 (Q/Ra = 0.47) by UV2.

of opposite-sign vorticity. In this oscillation mode, fluid particles may follow an elliptic
particle path in a y–z cross-section different from the 3-D travelling wave oscillations.
Along the periodic distortion, the cross-sectional area of the rolls periodically expands
and shrinks similar to ‘breathing’. This behaviour of the rolls with rotation of the major
axis of the elliptic shape is expressed by diagonal lines on the space–time velocity
map (figure 10b). Similar diagonal stripe patterns are also observed in the velocity map
measured by UVP (figure 4a). This supports the reliability of this numerical simulation.

No oscillatory convection is detected at Q > QOS(Ra), according to the present criteria.
We investigated the mean velocity profile taken at this condition of the experiment to
highlight the differences in the convection roll structures (figure 11). Here the profile was
measured along UV1 at Ra = 7.9 × 104 and Q = 2.0 × 105 (Q/Ra = 2.5). The profile
still has small but distinct humps and is asymmetric, representing elliptic main rolls
with small recirculation vortex pairs. The corresponding r.m.s. values of the velocity
fluctuations are small but significantly distributed. This condition therefore cannot be
distinguished as a steady-state regime, even though a distinct peak frequency is not
detected on the velocity fluctuation spectra. Under considerably smaller Ra conditions,
the velocity profile assumes a sinusoidal shape with horizontal symmetry in each roll. An
example of these profiles is shown in figure 12 as the mean velocity profiles, where the
original velocity data for the profile is from Vogt et al. (2018) measured at Ra = 1.7 × 104

and Q = 8.0 × 103 (Q/Ra = 0.47) by UV2. Even in this condition, the profile of the r.m.s.
value shows small, local maxima at the boundaries between the main rolls. A numerical
simulation was also performed at similar parameters, Ra = 1.4 × 104 and Q = 5.7 × 103

(Q/Ra = 0.41), to determine the corresponding motion of the main rolls. A snapshot of
the isosurface of the Q3D value also represents quasi-2-D rolls along the direction of the
magnetic field (figure 13a).

The spatio-temporal velocity map shown in figure 13(b) extracted from the simulation
results along the line corresponding to the UV2 measurement line (dark red line in
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Figure 13. Results of numerical simulation performed for Ra = 1.4 × 104 and Q = 5.7 × 103 (Q/Ra =
0.41). (a) Isosurface of the Q3D value representing roll structures, where the dark red line indicates the
UV2 measurement line. (b) Spatio-temporal velocity map extracted along a line corresponding to the UV2
measurement line (figure 1). (c) Time-averaged velocity profile of the velocity map. (d,e) Instantaneous contour
map of vorticity on the vertical cross-section at x = 160 mm, where red and blue contours represent positive
and negative values of the vorticity, respectively (see also supplementary movie 2).

figure 13a) displays longer-period periodic oscillation with substantially smaller amplitude
than in the oscillations shown in figure 10(b). The mean velocity profile calculated from
the map also has a quasi-sinusoidal shape with small deformation around the boundaries
between the main rolls (figure 13c). Contour maps of the instantaneous vorticity field given
from the simulation show the existence of small recirculation vortex pairs (figures 13d
and 13e; see also supplementary movie 2). The numerical simulation elucidates that the
vortex pair oscillates periodically and locally, and the distinct peaks of the r.m.s. values
shown in figure 12 may represent such local oscillations. Such small vortex pairs and
oscillations may not be distinguished by UVP measurements in the present experiment
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because of the arrangement of the measurement lines relative to the vortex pair and the
inability to resolve small velocity fluctuations. The results summarized above suggest that
there are two different types of 2-D oscillatory convection: weak and local oscillations
on the recirculation vortex pair (corresponding to figures 11–13), and more dynamic and
global elliptic oscillations of the main rolls accompanied by vorticity entrainment from the
recirculation vortex pairs (figures 9 and 10).

Previous studies that assumed a wake of straight cylinders reported that such
recirculation vortex pairs show absolute instability at relatively small Reynolds numbers,
Re = O(10), and display periodic oscillations (e.g. Drazin & Reid 1998). With increasing
Re number, O(102), the oscillations propagate from the recirculation vortex pair
downstream. Here, unlike the wake, the main rolls are in tight interaction with the
recirculation vortex pairs via vorticity entrainment and elliptic deformation of the roll
in the 2-D oscillation with increasing velocity of the main rolls. In the next section, we
investigate the convective flow velocity and dimensionless frequency of the oscillatory
motion to characterize the 2-D oscillations.

3.5. Frequency and flow velocity on the 2-D oscillatory convection
This section discusses the characteristic frequency of the oscillatory convection fOS and
the local maximum value of the time-averaged velocity profile at the central convection
rolls Uy,max (figure 9), which are the basis for calculating the dimensionless frequency
and Re numbers. Variations in these values with respect to Q are shown in figure 14.
The fOS and Uy,max values for the plots were obtained from spatio-temporal velocity
maps measured by UV1 at different Ra numbers for the five-roll state via the spatially
averaged power spectrum of the velocity fluctuations and time-averaged velocity profile,
respectively. The fOS detected by UV3 placed at the centre of the vessel parallel to UV1
are also plotted to evaluate the range of the 2-D oscillations in figure 14(a). The frequency
gradually increases with decreasing Q at all of the Ra conditions studied here, with the
largest increases observed for small Q and the highest Ra number of Ra = 1.8 × 105.
There is a very close coincidence of the fOS obtained by UV1 and UV3 at relatively large
Q values within the frequency resolution as expressed by the symbol overlap. At smaller
Q, however, distinct peaks corresponding to fOS in UV3 cannot be distinguished and are
buried in multiple peaks or noise, whereas the spectra obtained by UV1 show clear peaks.
The coincidence suggests the existence of 2-D oscillations, whereas the disappearance
may indicate a transition from the 2-D oscillatory convection regime to a 3-D flow regime.
Vogt et al. (2018) suggested that a transition from quasi-2-D convection to a 3-D flow
regime appears as a meandering structure along the centreline of the vessel perpendicular
to the magnetic field while fine structures move along the roll axis. The disappearance of
a distinct peak in the spectra obtained by UV3 may reflect this; however, further detailed
investigation is beyond the scope of the present study.

The dependence of Uy on Q shown in figure 14(b) is similar to the behaviour of the
temperature oscillations in figure 7(a): the mean velocity initially slightly increases with
decreasing magnetic field, reaches a maximum and then decreases. These observations can
also be understood as growth of the 2-D oscillations and subsequent transition to a 3-D
flow regime. At the opposite viewpoint, Uy,max increases with increasing magnetic field
strength in the range of small Q. This effect can likely be attributed to the stabilization and
strengthening of the mean flow by the magnetic field. Burr & Müller (2002) reported an
increase in heat transfer in RBC with the application of a horizontal magnetic field over
a specific parameter range for Hartmann numbers Ha = Q1/2 < 400. As an explanation
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Figure 14. Variations of (a) the main frequency on the oscillatory convection, fOS, obtained by UV1 and UV3,
and (b) the maximum time-averaged velocity of the central convection rolls, Uy,max, in the five-roll state with
respect to Q obtained at different Ra. In (a), the frequencies obtained by UV3 at most of the Q values agree
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Figure 15. Dimensionless frequencies determined by UV1 and UV3 plotted at different Ra versus Q/Ra,
where the frequencies obtained by UV3 at most of the Q/Ra values agree with those by UV1 within the
frequency resolution as overlaps of the solid and open symbols. There exist no symbols for UV3 for small
Q/Ra values because of unclear frequencies by UV3.

for the increase of flow transport properties, the authors suggested an enhancement of
the quasi-2-D roll-type convection. A damping of the flow intensity occurs with further
increases in Q due to the emerging magnetic damping. This point is important in the
discussion of flow transition and is further addressed in the following section.

The dimensionless frequency reduced by the circulation time (turnover time) of the
main convection rolls, f ∗ = fOSτTO, is plotted as a function of Q/Ra in figure 15,
where the circulation time is given as τTO = 2π�z/Uy,max, with the displacement of the
measurement line from the centre of the rolls, �z = 10 mm (figure 1). At sufficiently
high magnetic fields (Q/Ra � 0.3) the values obtained by UV1 and UV3 collapse into
a unified curve (i.e. the symbols overlap) and f ∗ assumes a nearly constant value around
0.6. The supplemental numerical simulations shown in figures 10 and 13 provide a similar
dimensionless frequency, f ∗ ∼ 0.6. As mentioned, the finding of a consistent and constant
dimensionless frequency can be interpreted as an indication of a 2-D flow structure,
whereas the scattering of the data for Q/Ra � 0.3 can be understood as the transition
from the 2-D oscillatory convection regime to a 3-D flow regime. The transition point at
Q/Ra ≈ 0.3 corresponds to the one at which the r.m.s. value of the temperature fluctuation,
Trms, reaches the maximum (figure 7b). Furthermore, the Re number also reaches a
maximum here as discussed in § 4.1. Together these results indicate that the decrease in
Trms and flow velocity are both caused by the transition to a 3-D flow regime and that the
transition can be organized by Ra/Q.
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Figure 16. Variations in Reynolds numbers for quasi-2-D flows, Re2D, plotted with decreasing Q at different
Ra values and different number of rolls: (a) n = 5 and (b) n = 6, respectively. The grey lines are guides for
variations proportional to Q−0.2 and Q−0.5; larger open symbols (grey cross symbols) indicate Re2D values
corresponding to QOS in figure 6. Coloured broken lines indicate approximations of the variations of Re2D
considering the influence of Q on the critical Ra at the onset of convection, Rac(Q). The constant 250 is set
empirically.

4. Discussion

The experimental and numerical results shown in the previous section indicate that the
2-D oscillatory convection accompanies oscillations of the recirculation vortex pairs
situated between the main rolls, and that there are two different types of oscillations. The
recirculation vortices play an important role in the onset of instabilities, which is deduced
to be dominated by the inertia of the flow from the knowledge of absolute instability of the
wake. Here we discuss the physics behind the variations in the Re number of quasi-2-D
flows and its relation to the fraction of Q/Ra with arguments based on MHD for a unified
understanding of the involved phenomena.

4.1. Variation of the Reynolds number
In the case of quasi-2-D convection consisting of parallel convection rolls, we use the
velocity in the rolls, Uy,max, and the vessel height, L, to define the Reynolds number as
Re2D = Uy,maxL/ν. The variation of Re2D with Q obtained at different Ra values for the
five- and six-roll states are plotted in figure 16(a,b), respectively. Larger open symbols (and
grey crosses) indicate Re2D values corresponding to the critical value of the Chandrasekhar
number for the onset of the oscillations QOS shown in figure 6; QOS here indicates the onset
of more dynamic 2-D oscillations discussed in § 3.4 and is determined along the criteria
mentioned in § 3.2. For the range of Ra numbers considered here, the oscillations occur
for Re2D > 800. It can be assumed that the flow velocities in the main convection rolls are
sufficiently large in this range to entrain the vorticity from the recirculation vortex pair to
form dynamic 2-D oscillations. A re-examination of data published in our previous papers
(Tasaka et al. 2016; Vogt et al. 2018) also indicates that for Q > 103 the steady conditions
maintain Re2D < 800 and the first oscillation of five or six rolls appears at Re2D > 800.
Here, the value 800 of the Re number itself probably has no universal character and may
change depending on the vessel aspect ratio, as discussed later.

The log–log plot in figure 16 indicates that the main part of the dependence of Re on Q
cannot be described by a single power law as shown by the grey auxiliary lines in the figure
representing the slopes of Re2D ∝ Q−0.2 and ∝ Q−0.5; the variations seem to be steeper
with respect to Q. Notably, there is a maximum in the Re number as in the temperature
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Figure 17. Schematic drawing of the Hartmann layer formed near a sidewall parallel to the magnetic field:
(a) with convection rolls and (b) with contours of the induced electric currents displayed on the midplane.

fluctuations (figure 7), especially in the case of large Ra. The reduction of Re2D in the
case of small Q may be accompanied by the transition to a 3-D flow regime, whereas the
decrease in flow amplitude at high Q may be due to the Hartmann braking effect.

4.2. Scaling for variations of Reynolds numbers
Here we consider the scaling law of Re2D to cover a wide range of the variations shown in
figure 16. To describe the variation in Re2D where the slope gradually changes with Q, we
express the effect of magnetic damping using the critical Rayleigh number for the onset
of convection as a function of Q. The key phenomenon to evaluate the magnetic damping
is the Hartmann braking in the boundary layer formed on the walls perpendicular to the
magnetic field (Hartmann layer, figure 17). Burr & Müller (2002) explained Hartmann
braking in the present system as follows:

In the core region the Lorenz forces are directed opposite to the convective motions
whereas at the Hartmann walls their direction is reversed and the fluid is accelerated. This
renders the Hartmann layers very thin and thereby, together with conducting Hartmann
walls, they govern the current density and with it the damping of velocity in the core
region. The energy removed from the core region is dissipated by Joule dissipation in the
Hartmann walls and by Joule and viscous dissipation in the Hartmann layers.

In the present system, an electrically insulating material is used as the sidewalls and thus
the energy dissipation occurs in the Hartmann layer. With increasing Q, the Hartmann
layer becomes thinner and viscous dissipation becomes stronger. In the results of linear
stability analysis performed by Burr & Müller (2002), the critical Ra number for the onset
of convection with regard to Hartmann braking, Rac(Q), was given as a relation of Rac
versus 1/τm (figure 18). The time scale of magnetic damping by the Hartmann braking,
τm, is given from (22) in Burr & Müller (2002) as

1
τm

= Q1/2

b
+ QcH

b + cH
, (4.1)

where b and cH denote the dimensionless half-width of the fluid layer parallel to the
magnetic field and the electrical conductivity of the sidewall, respectively.

The Prandtl free-fall velocity for thermal convection indicates that the representative
velocity W0 is W0 ∼ √

gβ�TL. This makes the Re number for the case of non-magnetic
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105 101 102 103 104 105 106

No convection

Convection

Figure 18. Neutral stability curve for the onset of convection replotted from Burr & Müller (2002). The top
axis represents the corresponding Chandrasekhar number Q for cH = 0 and b = 2.5 calculated from magnetic
damping time τm in (22) of Burr & Müller (2002), where the arrow indicates the range of Q examined in the
present study.

field approximately Re ∼ (Ra/Pr)1/2. By extending this relation, the variations in Re
number can be expressed as

ReQ ∼
[

Ra
Pr

Rac(Q = 0)

Rac(Q)

]1/2

= A
[

Ra
Rac(Q)

]1/2

(with A a coefficient constant), (4.2)

where the inertia generated by buoyancy is given as a value of Ra relative to Rac(Q). We
revisit figure 16 to evaluate the applicability of the present scaling law derived above. The
dimensionless half-length is b = 2.5 and the sidewalls are electrically insulated (cH = 0).
The Rac–Q dataset was formed (figure 18) by reading off Rac–1/τm in Burr & Müller
(2002). Variations of ReQ are thus calculated from the dataset at different Ra numbers,
as shown by dashed lines in figure 16, where the coefficient A = 250 was empirically
determined to fit the result for the five-roll state (n = 5) at Ra = 7.9 × 104. This value
is very close to [Rac(Q = 0)/Pr]1/2 = (1708/0.03)1/2 ≈ 239 in (4.2). The variations of
Re2D can be approximated by the present scaling law of (4.2) in the moderate Q range
depending on Ra. This suggests that the convection velocity is determined by the effective
Ra numbers, i.e. distance from the neutral stability curve under a horizontal magnetic field.
The critical Chandrasekhar numbers, QOS, for the onset of 2-D oscillations appear to occur
at which the present Re2D data fail to match the present scaling law for large Q. The data
also deviate from the scaling law for small Q, which arises from the transition to a 3-D
flow regime discussed in the previous section.

4.3. Scaling in the steady 2-D regime
Variations in Re2D appear steeper and detach from the scaling law of (4.2) for relatively
large Q values (figure 16). At sufficiently large Q, 2-D oscillatory convection may be
suppressed into steady 2-D convection. The scaling law describing the steeper slope may
thus be derived to consider the condition. The influence of viscous dissipation can be
disregarded in cases of sufficiently large Ra and Q, and the equation of motion for the
vertical velocity w in the quasi-2-D flows is reduced to

Dw
Dt

∼ Fb − FH, (4.3)
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where D/Dt is a material derivative, and the force terms on the right-hand side are the
buoyancy and the magnetic damping by Hartmann braking. The order of (4.3) is evaluated
using the characteristic velocity W with the time scale of Hartmann braking τH as

DW
Dt

∼ gβ�T − W
τH

. (4.4)

From Sommeria & Moreau (1982), the dissipation time scale of the Hartmann braking
is given as τH = (a/2B)(ρ/σν)1/2 with the spacing between walls a. The expression of
τH is equivalent to τm in (4.1) for cH = 0. Here we reformulate the time scale using length
scale L as

1
τH

∼ Q1/2

b
ν

L2 . (4.5)

This includes the dimensionless half-width b (= 2.5), whereas the thickness of the
Hartmann layer,

δH ∼ Q−1/2L, (4.6)

is independent of b.
It is assumed that the fluid flow is in steady condition with Q larger than the critical

Chandrasekhar number QOS(Ra) for the onset of 2-D oscillations. Equilibrium velocity
W∗ in the condition is thus determined by the balance between the buoyancy and the
magnetic damping by Hartmann braking. Following the procedure to evaluate convection
velocity considering magnetic damping in Davidson (2017, § 6.2.5), (4.4) is simplified by
substituting (4.5):

gβ�T = W∗

τH
,

Ra
κν

L3 = W∗ Q1/2

b
ν

L2 ,

W∗ = Ra
Q1/2

κ

L
b.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

The Re number for steady quasi-2-D flows becomes

Re2D = W∗L
ν

∼ Ra
Q1/2

b
Pr

. (4.8)

Equation (4.8) indicates that the variations in Re2D depend on Q with an exponent of
−1/2 for the limiting case that inertia can be neglected compared with the electromagnetic
forces, here Q > 105 in figure 16. Using Prandtl free-fall theory for a non-magnetic field,
Re ∼ (Ra/Pr)1/2, the relative Re number under magnetic field to this Re becomes

Re2D

Re
∼

(
Ra
Q

)1/2 b
Pr1/2 . (4.9)

Variations in Re2D reduced by Ra1/2 are shown in figure 19, where Q in the abscissa is
also reduced by Ra. The curve representing the power law derived above is indicated by
a broken line. The data collapse reasonably well into a unified curve and the variations
of Re seem to approach the slope of the broken line for larger Q, Q/Ra � 1. It can be
speculated that, if Q/Ra values decrease, the data deviate from this power law after the
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Figure 19. Values of Re2D as a function of Q/Ra for different Ra conditions reduced by Ra0.5 according to
the scaling law: (a) n = 5 and (b) n = 6. Larger open symbols (grey cross symbols) indicate Re2D values
corresponding to QOS in figure 6.

103 104 105

104

105

Q

4-roll advective
5-roll advective
4-roll standing
3-roll standing

Ra = 100 Q Ra = 10 Q

Ra = Q

Ra

Ra = 0.1 Q QOS (Ra)

4-roll steady
5-roll steady
5-roll short OS
6-roll steady
6-roll short OS

Rac (Q)

Figure 20. Critical Chandrasekhar number QOS for different Ra values (figure 6) plotted on the regime
diagram provided by Vogt et al. (2018), where broken black lines indicate contours of Ra/Q. The solid black line
shows critical Rayleigh numbers for the onset of convection calculated from the results of Burr & Müller (2002)
with b = 2.5. The red line represents the contour line of ReQ = 250[Ra/Rac(Q)]1/2 = 800 as the proposed
critical condition of quasi-2-D oscillations for cases of Q/Ra � 1.

2-D oscillations have appeared. The power law based on the assumption of the balance
between the buoyancy and the magnetic damping by Hartmann braking is not valid at
weaker magnetic fields where inertia must be taken into account.

The applicability of the criterion that the present power law of ReQ determines the onset
of 2-D oscillation is now evaluated for the previous results obtained with Q/Ra < 1. The
regime diagram summarized in Vogt et al. (2018) is shown in figure 20 with the critical
Chandrasekhar number QOS obtained in this study, where square and diamond symbols
indicate the steady and the 2-D oscillation regimes with five or six rolls, respectively.
The red line in figure 20 represents the contour ReQ = 250[Ra/Rac(Q)]1/2 = 800, where
Re2D = 800 is chosen as the lower limit at which the 2-D oscillation emerges (figure 16).
The line is a good approximation of the border between the steady and the 2-D oscillation
regimes.

Through a detailed investigation of the results obtained here and following the above
discussion, the flow regimes may be dominated by a Re number determined by the distance
from the neutral stability curve (black solid line in figures 18 and 20). The fraction Q/Ra
appears as the dominant factor that determines the regimes in conjunction with Re, e.g.
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Q/Ra ≈ 1 for the onset of dynamic oscillation, and Q/Ra ≈ 0.3 for the transition to a 3-D
flow regime. These conditions of the fraction, however, are given for the specific value of
b (= 2.5). It is thus trivial that the fraction may not be a universal factor to describe the
phenomena, and the condition Q/Ra ≈ 1 for the onset of dynamic oscillation is modified
by different b values.

4.4. Relation to previous studies
According to the derivation process of the scaling law in (4.9), the Re number strongly
depends on the half-length of the fluid layer (b in (4.9)) in the direction of the magnetic
field because of the dominance of Hartmann braking on the fluid layer. The fluid layer
used in Burr & Müller (2002) has a larger b = 5, compared with b = 2.5 in the present
set-up (figure 17). The differences in the critical conditions for the onset of oscillatory
convection in their results show substantially smaller critical Ra numbers than the present
results, which can be explained by a further discussion of reasons below. Here we
assume that the flow regimes are dominated by the Re number according to the previous
discussions. Fluid layers of larger horizontal extents in the direction of the magnetic
field would achieve sufficiently large Re numbers for the transitions even with smaller
Ra, at similar Q conditions to those in the present study. This is because of the reduced
influence of Hartmann braking on the variations of Re. There are also differences in the
criterion determining the onset of oscillation. Burr & Müller (2002) used the temperature
fluctuation intensity measured at the central part of the fluid layer, whereas we determined
the investigated frequency component f = fOS of the velocity fluctuations at which the
r.m.s. value reaches the local maximum in the profile. As mentioned in § 3.4, there are
two different types of 2-D oscillatory convection: weak and local oscillations of the
recirculation vortex pair between the main rolls, and more dynamic and global elliptic
oscillations of the main rolls accompanying vorticity entrainment from the recirculation
vortex pair. From these observations it is suggested that Burr & Müller (2002) detected
the former, whereas the present study investigated the latter.

The flow development and transitions dominated by Hartmann braking are not
a specific problem in this study, but are common characteristics that influence
low-magnetic-Reynolds-number flows confined by walls of electrically insulating
materials. Knaepen & Moreau (2008) predicted that MHD damping in the flows confined
by walls perpendicular to the magnetic field is not characterized by the interaction
parameter N = Q/Re, but by Ha/Re (or N/Ha in a different form; see also Sommeria
& Moreau (1982) and Moreau, Thess & Tsinober (2007)). In the present system, Ha/Re
is modified to (QPr/Ra)1/2 as Re ∝ (Ra/Pr)1/2. This prediction agrees with the results
obtained here. It may thus be concluded that the present results provide experimental
evidence for this prediction.

5. Concluding remarks

We investigated 2-D oscillatory motions on quasi-2-D convection rolls that have been
reported in Rayleigh–Bénard convection with an imposed horizontal magnetic field
at relatively large Rayleigh-number Ra and Chandrasekhar-number Q conditions. The
investigation was performed by considering the morphology, generation and mechanism
that give rise to the oscillations through laboratory experiments using eutectic GaInSn
as the test fluid filling in a vessel with an aspect ratio of five. Supplemental
numerical simulations were performed to determine the details of the flow structures.
Multi-line measurements of the instantaneous velocity profiles performed by ultrasonic
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velocity profiling at conditions of 7.9 × 104 ≤ Ra ≤ 1.8 × 105 and 2.5 × 104 ≤ Q ≤
1.9 × 105 and the numerical simulations elucidated the emergence of two different types
of 2-D oscillations. One is dynamic and global oscillations accompanied by vorticity
entrainment from recirculation vortex pairing of separation flows detaching from the
walls between neighbouring main rolls. The other is weak localized oscillations of the
vortex pair. The source of the oscillations was found to lie in the periodic oscillations
of the recirculation vortex pair. Despite different Ra conditions, the oscillations occur
at similar Reynolds numbers (Re2D > 800). These Re2D values are sufficiently large to
cause oscillatory instability in the recirculation vortex pairs. This is considerably different
from the 3-D travelling wave propagation along the roll axis predicted by stability analysis
at relatively small Q conditions, Q = O(10), as enlargements of the Busse balloon. The
2-D oscillations are caused by sufficiently high inertia provided by the large Ra and
2-D restrictions. The intensity of the temperature fluctuations and Reynolds number Re2D
increase with decreasing Q, along with the development of 2-D oscillations, and further
decrease with decreasing Q because of a transition from the 2-D oscillation regime to a
3-D flow regime.

A scaling law describing the variation of Re2D was derived with an effective Ra number
reduced by a critical Ra number as a function of Q as ReQ ∝ [Ra/Rac(Q)]1/2. The contour
of ReQ = 800 given from the scaling law shows good agreement with the boundaries of
oscillatory and steady-state regimes obtained in previous experiments under relatively
small Q conditions. A considerably steeper decrease of Re2D around the onset of the
2-D oscillations for relatively large Q seems to approach (Q/Ra)−1/2. This corresponds
to the scaling law derived from the assumption of a balance between buoyancy and
magnetic damping by Hartmann braking near the sidewall of the vessel perpendicular
to the magnetic field in the steady regime. These results suggest that the emergence of
2-D oscillatory convection is governed by the competition between the buoyancy in the
core region and viscous dissipation in the thin Hartmann layer, and therefore its onset is
determined by Re2D.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1047.
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