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SUMMARY
The tip of a flexible needle with a bevel tip approximately follows a planar arc when it is inserted
into soft tissue only with the force applied to the needle along the needle axis. The direction of the
arc can be controlled by the rotation input around the needle axis. This flexible and steerable needle
has been shown to have a considerable potential in clinical applications due to its maneuverability
and steerability. Beyond the needle insertion to a single destination, this paper concerns obtaining
needle trajectories that reach multiple targets. Specifically, we propose an algorithm for the insertion
of a flexible needle to travel from a single insertion point (i.e. port) to multiple targets. The insertion
is motivated by the observation that multiple targets can be reached by the flexible needle through
a combination of insertion, partial retraction, turning, and reinsertion of the flexible needle. In this
paper we develop an insertion algorithm that minimizes tissue damage during the needle insertion
to multiple targets. To this end, a cost function which computes the length of needle trajectory that
can be thought of as the tissue damage is defined, and is minimized. Through the minimization, we
find the optimal insertion parameters such as the port location, the insertion direction at the port, the
targeting order, the turning angles, and the lengths of forward insertions and retractions. To reduce
the computation time, we perform workspace analysis for this approach to filter out the no-solution
cases. We present numerical examples of the simulated needle insertion for multiple targets with and
without obstacles and show the benefit of the proposed method in terms of the tissue damage and the
number of skin punctures. Extensions of the proposed approach to more complex cases such as more
than three target points and maneuvering around spherical obstacles are also discussed.

KEYWORDS: Medical robots and systems; Path planning; Motion planning; Novel applications of
robotics; Surgical robots.

1. Introduction
For some percutaneous medical procedures, multiple locations should be targeted, resulting in multiple
needle insertions. When multiple liver samples are to be obtained, multiple needle insertions should
be performed for different targets in liver biopsy.18 In brachytherapy for prostate cancer, implanting
multiple radioactive seeds in the prostate requires many needle insertions.6 Even though the multiple
targets can be reached by multiple independent insertions of a needle, the insertion strategy can
be improved in terms of tissue damage, pain, and infection. As conceptually shown in Fig. 1 of
Reed et al.,24 two target points in tissue can be reached by a steerable flexible needle from a single
insertion point. This is possible through initial insertion, partial retraction, turning, and reinsertion.
This brings less tissue damage than multiple new insertions. In addition, since only one skin puncture
is involved, the pain by the puncture is less than that by multiple punctures. Even though the pain
may be controlled by sedation or anesthesia, the injection of these on the skin needs needle use. It is
true that the probability of infection will increase with more skin punctures. In this paper, we develop
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an insertion plan for a flexible needle reaching multiple targets from a single port with minimized
tissue damage.

Constant improvements of medical procedures led to the appearance of a flexible needle with a
bevel tip resulting in increased steerability and maneuverability within the soft tissue31 compared
with conventional stiff needles. In the past decade, this topic has received considerable attention in
the literature due to its significant clinical potential. Percutaneous needle insertion is used in medical
applications such as biopsies, regional anesthesia, neurosurgery, and brachytherapy.4, 27, 32, 34 The
survey on the state-of-the-art and research trends in this area is presented in Abolhassani et al.1 The
substantial effort to gain good understanding of the nature of various aspects of needle motion and its
interaction with the tissue was put forth in a number of experimental works.8, 12, 15, 17, 19, 22, 24, 25, 29–31 In
particular, several groups of authors12, 16, 19, 26, 31 introduced a variety of needle steering methods and
robotic devices facilitating these methods. For the force interaction between the flexible needle and
the tissue, Misra et al.17 studied the asymmetric force distribution on the needle tip, and Reed et al.25

analyzed the effect of torsional friction on the accuracy of needle manipulation. The interaction force
causes tissue deformation and thus affects needle placement accuracy. While clinical practitioners
have addressed this issue based on their own experience, several research groups3, 7, 8, 13 developed
models quantifying needle placement errors due to tissue deformation. In the clinical setting, needle
insertion relies on medical imaging such as ultrasound, CT, and MRI, therefore many studies have
focused on 2D motion planning.2, 3, 24

Currently, a number of 3D path planning algorithms for flexible steerable needles are available
in the literature. In the works of Park et al.,20, 21 stochastic representation of the needle insertion
process is used and solutions are generated by utilizing the stochastic differential equation and
the corresponding Fokker–Planck equation. Numerical optimization of a cost function was used in
Duindam et al.,10 and path planning for “fireworks” needle insertion based on the Forest of Rapidly
Exploring Random Trees in Xu et al.33 were employed to solve for feasible 3D trajectories while
avoiding obstacles.

A few motion planning approaches were based on geometric properties of a needle motion
trajectory. In particular, Hauser et al.13 used a closed-loop control policy executing helical paths,
while two geometric approaches that generalized the Dubins car representation9 for optimal path
planning in the 3D space were developed in refs. [11, 14]. In both of these latter approaches, however,
the start and goal points are connected by a series of circles of large curvature, which limits the
practical realization of these approaches to flexible needles that generates high-curvature trajectory
(e.g. prebent needles26).

As can be seen in the multiple images of the needle inserted in the phantom tissue such as in ref.
[31], the curvature of the needle path is quite small. This is also confirmed by the parameter estimation
study22 where the trajectory curvature of the flexible needle was estimated at κ = 0.0062 mm−1,
which is equivalent to the radius of curvature, R = 161.3 mm. In order to support this idea, we carried
out an experiment described in the Appendix. We note that very complex needle trajectories with
many frequent turns might be unfeasible for the practical insertion of the flexible needle because the
needle depth does not exceed the size of the human body and the curvature of the needle trajectory
is not large. As Fig. 1 provides the approximate comparison between the human liver and the needle
curve sizes, the curvature of the needle trajectory is not high enough to generate the complex needle
path with many turns. Furthermore, many turns of a needle can cause tissue damage and needle
positioning errors. This observation justifies the very simple insertion strategy proposed in this
paper. As aforementioned, for example, two targets are reached by a needle through insertion, partial
retraction, turn, and reinsertion.

The majority of previous works dealt with finding feasible trajectories for reaching a single goal
given a single insertion point (or port), while only a few focused on reaching multiple goals14, 33

and determining the insertion point.2, 23 Therefore, while the needle path planning in the 3D space
for obstacle avoidance is well studied, not a large number of approaches allowing to reach multiple
targets from a single port with minimum tissue damage have been reported.

In this paper, we make three key contributions. First, we present a new and simple geometric
approach for a flexible needle reaching three target points in the 3D space. This plan uses the fact
that multiple targets in tissue can be reached by a flexible needle through a series of insertion, partial
retraction, turn, and new insertion. The cost function that measures the tissue damage is defined
and then minimized with respect to the insertion point, the insertion direction, and the target order.
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Fig. 1. (Colour online) Comparison of human liver and needle curve dimensions.
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Fig. 2. Illustration of the bevel-tip needle. When simple insertion without turning is applied to the needle base,
the needle travels along a planar arc.

Through the minimization, the lengths for intermediate insertion and retraction, and the angles of
intermediate rotation (or turning) will also be obtained. Second, we present the reachability conditions
that enhance the computational efficiency of the proposed approach. Third, we discuss the extensions
of the algorithm to the case of more than three target points and the more complex cases of obstacle
avoidance.

2. Assumptions, Notation, and Problem Statement
In this paper we use the unicycle model for the needle kinematics developed in ref. [31]. In
other words, the needle is assumed to be following an arc of a perfect circle when it is inserted
without the rotation (or turning) input. As emphasized in the conclusion section of ref. [31],
this kinematic model is suitable when “tissue is relatively stiffer than the needle.” In Fig. 2, the
scheme of a bevel-tip needle and the associated geometry are presented. The radius of curvature
R is determined by physical interaction between the flexible needle and the tissue. A method to
estimate this parameter was introduced in Park et al.22 In our work, we develop a needle insertion
algorithm under a non-deformable and homogeneous environment. In addition, we assume that the
first target is reached by the needle along a single arc from a single port. This is reasonable because
the radius of curvature of the needle trajectory is large enough for practical use as illustrated in
Fig. 1.

When the needle tip is assumed to be following a circular arc as stated above, its instantaneous
coordinates can be described by parametric equations. Since the needle is assumed to be moving
in an ideal environment, the insertion and turning velocities do not influence the feasible needle
configuration that allows the needle to reach all the target points.31 Therefore, all the needle paths are
described by the primitives identified in the notation below, and the entire motion planning algorithm
is based on the problem of fitting circular arcs of a given radius through two points in the given
plane.

In this work we consider the number of ports and the tissue damage by forward insertion. The
number of ports should be limited because many skin punctures (equivalently many ports) may
cause pain and infection. Our approach is advantageous because it uses only one port. Even though
the pain can be reduced by anesthesia, we use needle to inject anesthesia, which may again increase
the possibility of infection. In addition, the tissue damage by the forward insertion of the needle
should be minimized to reduce internal bleeding and help faster recovery. In this context, we assume

https://doi.org/10.1017/S0263574713001161 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001161


988 Geometry-based plan for inserting flexible needles to reach multiple targets

that retraction does not produce significant tissue damage because during retraction, the needle tip
will cause no tissue rupture and follow the already made channel by the prior forward insertion.
Although the rotation (or turning) of the needle tip around the needle axis will damage the tissue,
the rotation motion is not dominant in the proposed insertion plan. For three and four targets,
only two and three rotations are engaged respectively. Compared with the damage by the forward
insertion, the damage by the rotation is negligible, mainly because the number of rotations (or turns)
is only n − 1, where n is the number of targets. We will develop an approach generating the needle
trajectory which causes minimized tissue damage while targeting multiple locations from a single
port.

Next, we introduce the notation used throughout the paper. First, Pi , P1, P2, and P3 denote the
insertion and the first, second, and third target points, respectively. This notation remains the same
even if the sequence in which the points are reached changes, in which case the coordinates of P1,
P2, and P3 are switched around. The notation Pk = [xk , yk , zk]T stands for a vector of coordinates
of a point Pk , and Pck denotes the coordinates of the center of the circle leading to that point Pk . A
normal vector of the plane in which this circle is located is denoted by nk . For brevity, the notation
arc(n, Pc, R, Pst , Pend) substitutes the following expression: the circular arc in the plane with the
normal vector n, center at Pc, and radius R passes through points Pst and Pend in the counterclockwise
direction, as viewed from the tip of the vector n. Note that if the starting and ending points are the
same, the arc(n, Pc, R, Pst , Pend) represents a closed circle.

The path planning algorithm presented in the next section describes a plan for finding the feasible
3D needle trajectories connecting the insertion point and three target points. This plan is executed by a
sequence of insertions, partial retractions, turning, and new insertions toward subsequent target points.
By varying the coordinates of the insertion point, the insertion direction, and the target sequence, we
find optimal needle trajectory which produces the minimum tissue damage while reaching multiple
targets.

3. Path Planning Algorithm
In this section, the path planning algorithm (Algorithm 1) is presented. In this algorithm, the
general strategy for reaching three target points by insertion, partial retraction, turning a needle
to a certain angle, and a new insertion toward the subsequent target point is communicated.
Algorithm 2 that will be linked to Algorithm 1 describes the procedure of finding the turning
point on the current needle trajectory for partial retraction and a new insertion toward the next target
point.

3.1. Mathematical preliminaries: Circles in 3D space
The circle in the plane arbitrarily oriented in the 3D space can be represented by the following
parametric equations:

P = Pc + R

|u|
(

u cos t + 1

|n| (n × u) sin t

)
, (1)

where
P = [Px, Py, Pz]T is the vector of coordinates of a point on the circle,
Pc = [xc, yc, zc]T is the vector of coordinates of the center of the circle,
n = [nx, ny, nz]T is a normal vector of the plane,
u = [ny, −(nx + nz), ny]T is a vector from the center toward the point on the circle in the plane.
For convenience, the vector Eq. (1) can be represented in the following componentwise form:

Px = xc + R(Ax cos t + Bx sin t),

Py = yc + R(Ay cos t + By sin t), (2)

Pz = zc + R(Az cos t + Bz sin t),
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where

Ax = Az = ny/|u|, Bx = (
n2

y + nxnz + n2
z

)
/(|u||n|),

Ay = −(nx + nz)/|u|, By = ny(nz − nx)/(|u||n|),
Bz = (− n2

x − nxnz − n2
y

)
/(|u||n|), (3)

|u| =
√

2n2
y + (nx + nz)2, |n| =

√
n2

x + n2
y + n2

z.

The inverse problem of finding the parameter t∗ corresponding to the given vectors P, Pc, u, and n
can be solved as follows:

sin t∗ = (Py − yc)(Ax + Az) − Ay(Px − xc + Pz − zc)

R(By(Ax + Az) − Ay(Bx + Bz))
,

cos t∗ = (Px − xc + Pz − zc)

R(Ax + Az)
− Bx + Bz

Ax + Az

sin t∗, (4)

t∗ = atan2(sin t∗, cos t∗).

This inverse problem is used in Algorithm 2.

3.2. Algorithm 1
General strategy:

1. Select the sequence in which the target points are reached.
2. Select the insertion point.
3. In the plane passing through points Pi, P1, and P2, draw the right-arc

passing through points Pi and P1.
4. Generate a family of arcs passing through points Pi and P1 by rotating

the arc from stage 3 about the axis PiP1.
5. For each sampled arc from stage 4, numerically find the root of the

function defined by Algorithm 2. If it exists, this is the first turning
point Pturn1 and go to stage 6. Otherwise, return failure.

6. Calculate the first turning angle as

θt1 = acos
(Pc1 − Pturn1, Pc2 − Pturn1)

‖Pc1 − Pturn1‖ · ‖Pc2 − Pturn1‖ . (5)

7. Generate the needle path from the point Pturn1 found in stage 5 to P2.

8. Search for the second turning point Pturn2 on the arc ̂Pturn1P2 from stage 7
using Algorithm 2. If it is found, go to stage 9. Otherwise, go to
stage 11.

9. Calculate the second turning angle as

θt2 = acos
(Pc2 − Pturn2, Pc3 − Pturn2)

‖Pc2 − Pturn2‖ · ‖Pc3 − Pturn2‖ . (6)

10. Generate the needle path from Pturn2 to P3.
11. Repeat stages 5--10 for each arc from stage 4.

12. Select the combination of paths P̂iP1, ̂Pturn1P2, and ̂Pturn2P3 for which the
sum of arc lengths given by

l = R (θ1 + θ2 + θ3) (7)
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Fig. 3. (Colour online) Illustration of the algorithm for generating the optimal needle insertion trajectory for a
selected target sequence and a selected insertion location. Each arc trajectory is obtained by connecting (a) Pi

and P1, (b) Pi , P1, and P2, and (c) Pi , P1, P2, and P3. The respective families of trajectories (d,e,f) are generated
by rotating the configuration in (a) about the axis PiP1 and finding the turning points for arcs leading to P2 and
subsequently P3.

is minimal, where

θ1 = acos
(Pi − Pc1, P1 − Pc1)

‖Pi − Pc1‖ · ‖P1 − Pc1‖ , (8)

θ2 = acos
(Pturn1 − Pc2, P2 − Pc2)

‖Pturn1 − Pc2‖ · ‖P2 − Pc2‖ , (9)

θ3 = acos
(Pturn2 − Pc3, P3 − Pc3)

‖Pturn2 − Pc3‖ · ‖P3 − Pc3‖ . (10)

This is the optimal needle trajectory for the selected insertion point
and the sequence of target points.

13. For different sequences of target points and insertion point, repeat
stages 3 through 12.

The illustration of stages 3–12 of Algorithm 1 is presented in Fig. 3, while the optimal needle path
configuration identified in stage 12 is shown in Fig. 4.

3.3. Algorithm 2
Finding the turning point:
In order to find the location of the turning point at the arc connecting points Pi and P1, the root
(or the minimum norm solution) of the following algorithmically described vector function is found
numerically. It can be shown that the coordinates of a turning point satisfy a system of nonlinear
algebraic equations. Due to the high complexity of this system, an algorithmic description is preferred.
In what follows, let us assume we have an arc(n1, Pc1, R, P1, Pi). Note the reversed order of the starting
and ending points which results from the convention of first generating the right-arc from point Pi to
P1. We are looking for a point with coordinates Pturn1 = [xturn1, yturn1, zturn1]T which lies on that arc
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Fig. 4. (Colour online) Needle path configuration corresponding to the minimum sum of arc lengths (7) in the
family of trajectories in Fig. 3(f).
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Fig. 5. (Colour online) Illustration of finding the turning point using Algorithm 2. The area within the rectangle
is magnified in Fig. 6. Black circles represent the locus of points Pc2 and Pc21.

such that if we turn the needle at this point, its further insertion will result in an arc(n2, Pc2, R, Pturn1, P2)
leading to the point P2. Figure 5 illustrates the algorithm given below that describes the vector function
whose root is being sought. In this figure, along with the final configuration with the point Pturn1 found,
the point Pturn which the algorithm uses at the current iteration is shown for illustrative purposes.
Therefore, all the stages of the algorithm will be formulated for the point Pturn. For completeness,
all the points in Figs. 5 and 6 corresponding to the final needle configuration have an additional
subscript “1.”
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Fig. 6. (Colour online) The magnified area shown within a rectangle in Fig. 5.

1. Assume the coordinates Pturn are known.
2. Find the directional vector l = (Pturn − Pc1) × n1 of the tangent to the

arc(n1,Pc1,R,P1,Pi) at the point Pturn.
3. Define the circle as an arc(l,Pturn,R,Pc1,Pc1).
4. Find the point Pprj

2 as the projection of the point P2 onto the plane with
the normal vector l passing through the point Pturn.

5. Find the center Pc2 of the arc(n2,Pc2,R,Pturn,P2) as an intersection of the
line with the directional vector Pprj

2 − Pturn with the circle from stage 3.
6. Find the normal vector n2 = l × (Pc2 − Pturn).
7. Assuming n = n2, P = P2, and Pc = Pc2, find the corresponding t∗ from Eqs. (3)

and (4).
8. Evaluate Eqs. (2) at the value of parameter t∗ found from stage 7. This

results in coordinates P as a function of coordinates Pturn.
9. The vector function whose root is being found comprises the following

expressions:

F1(Pturn) = (xturn − xc1)2 + (yturn − yc1)2 + (zturn − zc1)2 − R2, (11)

F2(Pturn) = n1 · (Pturn − Pc1), (12)

F3(Pturn) = (Px − x2)2 + (Py − y2)2 + (Pz − z2)2. (13)

Expressions (11)–(13) equated to zero imply that the point Pturn must – directly as in Eqs.
(11) and (12) or indirectly as in Eq. (13) – satisfy the following conditions: (a) Pturn lies on the
arc(n1, Pc1, R, P1, Pi), (b) Pturn lies in the plane with the normal vector n1 passing through the point
Pc1, and (c) coordinates of points P and P2 should match.1

1 To implement Algorithm 2, we used the numerical solver fsolve in Matlab.
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4. Reachability

4.1. Mathematical preliminaries: tori and planes in 3D space
In this section, equations of a torus and a plane in 3D space are reviewed, because these 3D objects
will be used to define the reachability conditions in the next section.

A torus in the 3D space radially symmetric about the z-axis can be described by the following
equation:

f (x, y, z) =
(
Rmj −

√
x2 + y2

)2
+ z2 − R2

mn = 0, (14)

where Rmj and Rmn are the major and minor radii, respectively. We need, however, the equation of
a torus arbitrarily oriented in the 3D space. We consider the plane with the normal vector n passing
through the point Pc and assume that the torus possesses radial symmetry about the line with the
directional vector n and axial symmetry about the plane given by the normal vector n. As a result,
the equation of a rotated torus with the center Pc can be obtained by combining Eq. (14) with the
following coordinate transformation:

[x, y, z]T = A[x ′, y ′, z′]T + Pc, (15)

where

A =
[

u
|u|

1

|n||u| (n × u)
n
|n|

]
(16)

is the matrix of basis transformation and u is a part of Eq . (1). If we need to check whether the
point with coordinates (x, y, z) lies inside, on, or outside the torus, the function in Eq. (14) should be
computed for [x ′, y ′, z′] in Eq. (15), and the sign of f (x ′, y ′, z′) yields one of the following outcomes:

f (x ′, y ′, z′) < 0 inside the torus,

f (x ′, y ′, z′) = 0 on the torus, (17)

f (x ′, y ′, z′) > 0 outside the torus.

In addition, the plane with the normal vector l passing through the point Pc in the 3D space is
given by the equation

p(x, y, z) = l · ([x, y, z]T − Pc) = 0. (18)

The conditions determining whether a point with coordinates (x, y, z) lies in the half-spaces toward
the positive or negative directions of the normal vector are given as

p(x, y, z) > 0, (19)

p(x, y, z) < 0, (20)

respectively.

4.2. Reachable sets
The reachability conditions for steerable needles were studied in a number of publications.11, 20 The
term reachability implies a set of points (or needle poses) that a needle can reach for given location
and direction of insertion. In this paper, we use the reachability condition to reduce computational
time at every insertion point. It can be seen in Fig. 3(e) that the orientation of some sample trajectories
connecting points Pi and P1 does not allow for the turning point Pturn1 to be found by implementing
Algorithm 2 because the subsequent insertion from the turning point does not reach P2. When this is
the case, it may take a numerical solver a longer time to arrive at no solution than the time it actually
arrive at one. Therefore, having the family of trajectories ̂Pturn1P2 shown in Fig. 3(e), we are looking
for the conditions that these trajectories satisfy in order to rule out unfeasible trajectories.
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decomposition of the solid in (a) for the derivation of reachability conditions.

Identification of these conditions can be done by visualizing the possible needle trajectories
emanating from the needle path to the current target point toward the subsequent target and describing
the resulting set mathematically. First, we generate an arc P̂iP1 in the plane with the normal vector
n1. Next, we revolve two semicircles of radius R lying in the plane with normal vector n1 tangent
to the arc P̂iP1 at the points Pi and P1 about the lines tangent to the same arc defined by directional
vectors li and l1, respectively. The family of toroidal surfaces between those at points Pi and P1

represents the set of possible needle trajectories from the point Pturn1 to the point P2. In other words,
this set can be visualized as a solid enclosed within the three surfaces: a concave half of a horn
torus at the point Pi radially symmetric about the line li , a convex half of a horn torus at the point
P1 radially symmetric about the line l1, both with Rmj = Rmn = R, and a spindle torus at the point
Pc1 radially symmetric about the line n1 with Rmj = R and Rmn = 2R, where Rmj and Rmn along
with the equation of a torus are the major and minor radii as defined above. This solid and its
cutaway view are shown in Figs. 7(a) and (b). A similar representation of the reachable set for a
flexible needle is presented in Hauser et al.13 It is obvious that the point with coordinates (x, y, z)
is reachable if it lies on one of the surfaces in Figs. 7(a) and (b) or within the solid as defined
above. However, due to the high geometric complexity of this solid, in order to derive reachability
conditions, we need to decompose this solid into an intersection of simpler ones. The section of such a
decomposition with the plane with normal vector n1 passing through the point Pc1 along with
everything visible beyond this plane is shown in Fig. 7(c). Note that while the hatched area illustrates
the section of the reachable set, the cross-hatched area is the section of the segment of a toroidal
surface that is also reachable, and it is not a part of the solid.

Reachability conditions are shown in the flowchart in Fig. 8. In these conditions, f (x ′, y ′, z′),
fi(x ′, y ′, z′), and f1(x ′, y ′, z′) represent the torus function in Eq. (14) with the coordinate change (15)
for the spindle torus and two horn tori at points Pc1, Pi , and P1 with axes of radial symmetry defined
by vectors n1, li , and l1, respectively. Note that even though the coordinates (x ′, y ′, z′) are the same
for the above three functions, single primes are used solely for brevity, while for each function the
local basis is different and oriented so that the local z-axis coincides with the axis of radial symmetry
of the corresponding torus. At the same time, pi(x, y, z) and p1(x, y, z) denote the plane function in
Eq. (18) with the normal vectors li and l1, respectively.

5. Examples and Discussion

5.1. Insertion without obstacles
In this section we apply the proposed insertion plan to a set of three targets without obstacles. For
convenient demonstration, we use target points with dimensionless coordinates. Besides, the radius of
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Fig. 8. The flowchart illustrating the conditions defining the reachable set shown in Fig. 7. The notation ∧ stands
for the logical AND.

curvature of the needle trajectory R is defined by a dimensionless length. To convert these coordinates
and length to ones with actual dimension unit, we can multiply them by the ratio R′/R, where R′ is
the dimensional radius of curvature of the needle trajectory determined experimentally. The radius
R is a fixed value during optimization. In addition, we consider a cuboid between the two vertices
(0, 0, 0) and (1, 1, 2) which is the medium where the target points are located. Finally, we assume
that the insertion point lies in the xy-plane in the domain [xmin, xmax, ymin, ymax] = [0, 1, 0, 1].

Consider the target points in the 3D space given in Table I (Example 1). In what follows, the result
for the selected example is obtained by the following process. First, we select the resolution of the
search domain for the insertion point and the number of arcs in the family of trajectories generated
in stage 4 of Algorithm 1 shown in Fig. 3(d). Second, for each order of target points, we generate the
optimal needle configuration at every insertion point on the search domain grid. Third, for each of
these optimal needle configurations, we compute the total length of trajectory, which represents the
tissue damage, defined by Eq. (7). Fourth, we generate the tissue damage matrix D using the tissue
damage estimation over the search domain grid. Each component of matrix D is the amount of tissue
damage that would be caused if the needle was inserted from the corresponding port location. Fifth,
for each insertion point on the search domain grid, we select the target point order corresponding to
the minimum tissue damage. Finally, we plot the minimum tissue damage map for which we also
determine the local minimum that corresponds to the optimal insertion point in the selected domain.

For Example 1, we choose the dimensionless radius of curvature of the needle trajectory R = 1.5,
the resolution of 41 × 41 points for the insertion point search, N12 = 271 needle trajectories in
the family from stage 4 of Algorithm 1, and the target point coordinates as P1(0.3, 0.65, 1.5),
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Table I. Parameters associated with the insertion procedure at the optimal insertion points for Examples 1 and 2.

Parameter Example 1 Example 2

Target point P1(0.3, 0.65, 1.5) P1(0.3, 0.65, 1.5)
coordinates P2(0.4, 0.3, 1.4) P2(0.4, 0.3, 1.4)

P3(0.1, 0.5, 1.6) P3(0.1, 0.5, 1.6)
Obstacle location None (0.25, 0.25, 0.25)
Obstacle radius None 0.15
Optimal target sequence 2-1-3 2-1-3
Optimal insertion point (0.55, 0.45) (0.625, 0.5)
Insertion direction (–0.38, 0.28, 0.88) (–0.42, 0.26, 0.87)
Traveling distance for insertion 1 1.4747 1.4929
Traveling distance for retraction 1 0.73842 0.74255
Turning angle 1 137.02o 139.28o

Traveling distance for insertion 2 0.82211 0.81598
Traveling distance for retraction 2 0.6169 0.59378
Turning angle 2 104.51o 106.96o

Traveling distance for insertion 3 0.74355 0.73417
Total tissue damage 3.0403 3.0431

Fig. 9. (Colour online) The tissue damage maps for each order of target points calculated for Example 1. The
scale bar shows the amount of total tissue damage.

P2(0.4, 0.3, 1.4), and P3(0.1, 0.5, 1.6). As aforementioned, the dimensionless length and location are
used for more straightforward demonstration. The value 1.5 for the dimensionless radius was chosen
by comparing the radius size and the target locations so that the setup can simulate realistic situations
such as in Fig. 1. The tissue damage maps for each order of target points are shown in Fig. 9. The map
of tissue damage shown in Fig. 10(a) over the insertion domain can be obtained by combining the six
maps in Fig. 9. In other words, the tissue damage corresponding to an insertion location in Fig. 10(a)
is obtained by selecting the minimum of six damage values corresponding to the insertion location in
Fig. 9. We find the optimal insertion location denoted by the × mark in Fig. 10(a). The optimal order
of target points is the targeting order with which we can get the minimum tissue damage. The needle
configuration for the optimal insertion point and the optimal target order is shown in Fig. 10(b). The
detailed list of parameters associated with the insertion is given in the column named Example 1 in
Table I.

Figure 11 shows the benefit of our approach. In Fig. 11, the three targets of Example 1 are
reached by three independent insertions. Each insertion is obtained such that each length of the
needle trajectory is minimized. In Fig. 11(a), a flexible needle is inserted independently for the
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Fig. 10. (Colour online) (a) The minimum tissue damage map. Cross × indicates the optimal insertion point
location. (b) Needle configuration for the optimal insertion point indicated in (a).
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Fig. 11. (Colour online) Needle insertion for three targets with three independent new insertions. Each insertion
is computed for minimum tissue damage. (a) Insertions of a flexible needle. (b) Insertions of a straight
needle.

three targets. In Fig. 11(b), a straight needle is inserted independently for the three targets. For both
demonstrations in Fig. 11, the target points are denoted by P1, P2, and P3, and the optimal insertion
points are denoted by P1

i , P2
i , and P3

i . It is obvious that the total length of the needle trajectory from
our approach (Fig. 10(b)) is much shorter than the results from Fig. 11. Specifically, the length of the
needle trajectory from our approach is 3.0403 for Example 1 (see Table I), while the lengths of the
trajectories are 4.72 for a flexible needle (Fig. 11(a)) and 4.5 for a straight needle (Fig. 11(b)). This
means that our approach causes less tissue damage and less skin punctures than the multiple new
insertions.
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Fig. 12. (Colour online) (a) Norm ‖D‖, and (b) the error defined in Eq. (21) plotted versus N12 (the number of
needle trajectories in the family from stage 4 of Algorithm 1).

Fig. 13. (Colour online) The tissue damage maps for each order of target points calculated for Example 2. The
spherical obstacle of radius R0 = 0.15 is placed at the point (0.25, 0.25, 0.25). The gaps in the lower left corner
correspond to the insertion points for which no feasible needle trajectories can be found.

It is also perceptive to carry out a convergence test to confirm the intuition that the minimum tissue
damage map converges as the value of N12 increases. Note that N12 denotes the number of arcs in the
family of trajectories generated in stage 4 of Algorithm 1. For this purpose, we select the resolution
of 11 × 11 for the search domain grid and generate the damage map (which is represented by an
11 × 11 matrix) for different values of N12 from 21 to 361 with increments of 10. For the matrix of
tissue damage denoted by D, the error characterizing this matrix is written as

error = ‖D − D∗‖
‖D∗‖ , (21)

where ‖ · ‖ is the Euclidean norm of a matrix and D∗ is the tissue damage map for N12 = 361. Norm
‖D‖ and the error defined by Eq. (21) are plotted versus N12 in Figs. 12(a) and (b), respectively.
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Fig. 14. (Colour online) (a) The minimum tissue damage map for Example 2. Cross × indicates the optimal
insertion point location. (b) The needle configuration for the optimal insertion point indicated in (a).
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Fig. 15. (Colour online) An example of applying the path planning algorithm to the case of more than three
target points is shown. In (a) the numbering of target points represents the initially selected sequence. Once the
turning points Pturn2 and Pturn3 are found on arcs P̂iP1 and ̂Pturn1P2, the order of target points P3 and P4 needs
to be changed as shown in (b).
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Fig. 16. (Colour online) Illustration of algorithm extension to the case of maneuvering around spherical obstacles.

5.2. Obstacle avoidance
The plan for reaching multiple target points by maneuvering a bevel-tip flexible needle can be
modified to account for the avoidance of a spherical obstacle in the following way. For every needle
trajectory already generated (i.e. P̂iP1, ̂Pturn1P2, and ̂Pturn2P3), we can check whether any point of that
trajectory lies within the closed surface bounding an obstacle. This can be done in a similar manner
to the approach described in Section 4.1, where the conditions determining the mutual position of a
point and a torus in the 3D space are formulated.

To illustrate this, consider Example 2 with the same target points as in Example 1 and an additional
spherical obstacle of radius R0 = 0.15 placed at the point (0.25, 0.25, 0.25). The results structured
analogously to the ones shown in Figs. 9 and 10 are shown in Figs. 13 and 14, and the parameters of
the insertion procedure are given in the column named Example 2 in Table I. The white circular areas
in Figs. 13 and 14(a) represent the unfeasible insertion area due to the obstacle. In addition, the detail
of the density map around the unfeasible insertion area is also changed due to the obstacle (compare
Figs. 10(a) and 14(a)).

5.3. Extensions of the algorithm
In this section, extensions for the proposed needle insertion plan are discussed. The proposed
algorithm can be improved to handle more than three target points, avoiding obstacles in the sense of
maneuvering around them, as well as utilizing the path plan in the traditional optimization framework.

The proposed motion planning algorithm (Algorithm 1) can be extended to the case of more than
three target points in the environments without obstacles as follows. For the insertion point and the
first two target points selected, the two arcs corresponding to stages 3 through 6 of Algorithm 1 are
generated. The turning points allowing to reach the subsequent target points in any order are sought
along the arcs ̂Pturn1P2 and P̂iP1. Depending on the location of these turning points, the current order
of target points might change. An example of such an order change (i.e. when points P3 and P4

change their positions in the target order) is presented in Fig. 15.
In Duindam et al.,11 the approach for bypassing obstacles is discussed, where user intervention is

combined with the motion planning algorithm. An intermediate point is introduced, and motion is
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planned from the insertion point toward the intermediate point and subsequently from the intermediate
point toward the target point. In our approach, however, we are looking for the insertion point which
is the part of needle configuration for reaching multiple target points such that the tissue damage
is minimized. Therefore, in order to account for the presence of spherical obstacles in the sense of
maneuvering around them, our approach can be modified in the following way as shown in Fig. 16. If
we recall that the optimal insertion point we are searching for lies in the xy-plane, we can introduce
an intermediate plane γ parallel to the xy-plane such that the distance between these two planes is
the same as the z-coordinate of the center of the obstacle. The search for the intermediate optimal
insertion point Pioi can now be performed in the plane γ , while the region of intersection of the
plane γ and the obstacle is excluded from the search domain. Once the point Pioi is found, an arc
intersecting the xy-plane at the insertion point Pi can be generated. Note that in this case, the arcs
̂PioiP1 and ̂PiPioi should have a common tangent at the point Pioi. Therefore, taking this condition into
account, an arc of the shortest length ̂PiPioi can be determined. However, the locus of the possible
insertion point Pi in the xy-plane is a planar curve resulting from intersecting an arbitrarily oriented
plane with a horn torus. Finally, the cost function corresponding to the length of arc ̂PiPioi needs to
be formulated, and the minimization problem for this cost function needs to be solved. This problem
was solved in Section 4.1 of Park et al.23

6. Conclusions
We introduced a new and simple insertion plan for a flexible steerable needle with a bevel tip
aiming to reach multiple target points using a single insertion point. This insertion plan exploits
the experimentally verified fact that a bevel-tip flexible needle follows the path which can be
approximated by a planar arc when the needle is inserted without turning. The insertion plan is
based on geometric characteristics of planes and arcs in the 3D space. The insertion is executed as
a series of insertions, partial retractions, turning, and new insertions toward the subsequent target
points. This proposed approach allows the needle tip to reach every subsequent target point using
fewer rotations than reported previously. In the examples, for three target points, the optimal insertion
point, insertion direction, and target sequence were obtained with which the needle causes minimal
tissue damage. It was also demonstrated how obstacle avoidance can be accounted for in a simple
way. In addition, extensions of the proposed approach to more complex cases such as more than
three target points and maneuvering around spherical obstacles were discussed. Based on the success
of the proposed approach, several future research topics emerge such as consideration of tissue
deformation, inhomogeneous tissue, in vivo and ex vivo experiments, and targeting of a cloud of
targets for brachytherapy.
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Appendix: Experiments
The experimental setup we used to support the idea that the path of the beveled tip of a flexible needle
is approximated by a circle of small curvature is shown in Fig. 17. The system we built consists of
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Fig. 17. (Colour online) The experimental setup for needle insertion.

Fig. 18. (Colour online) The insertion results captured by stereo vision.

two stepper motors, a phantom tissue, and a Nitinol wire as a substitute for a flexible needle. One
stepper motor drives the linear slide to insert the needle into the phantom tissue, while the other
one located on the top of the linear slide rotates the needle shaft. The stepper motors are operated
via RS-485 communication protocol and have 1.8o in each rotation step, also partitioned into 256
microsteps. The phantom tissue was made from clear gelatin sheets mixed with powder sugar for
sufficient transparency and hardness. The Nitinol wire (Nitinol Devices and Components, Fremont,
CA) we used has a 0.71-mm (0.028-in) diameter and a bevel angle of roughly 45o. In order to prevent
unexpected bending and buckling during insertion, the Nitinol wire is enclosed within a support
sheath outside the artificial tissue.

A pair of C210 web cameras (Logitech, Morges, Switzerland) were mounted above the artificial
tissue perpendicular to its plane of vertical symmetry in order to obtain the 3D coordinates of the
needle tip. For this purpose, a pair of images captured by two cameras were processed using the
Epipolar (Stereo) Geometry5, 28 approach, which resulted in the Cartesian coordinate accuracy of 1
mm. The dimensions of the phantom tissue are 140 × 280 × 40 mm, its transparency is sufficient
to identify the needle tip by means of a pair of web cameras, and its top surface is assumed to be
horizontal, for which its support plate was appropriately leveled.

The insertion procedure was accomplished by motor control software programmed in C# language
using Visual Studio 2010. The needle was inserted to the total depth of 130 mm with a 10-mm step at
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the constant rotation angle. Using 13 sets of coordinates of the needle tip and fitting a circle through
the points with these coordinates, we obtained the circle radius of approximately 203 mm. In Fig. 18,
the insertion results captured by both left and right web cameras with 110-mm insertion depth and
203-mm radius of curvature (corresponding to the curvature κ = 0.0043) are shown. A rectangle
in the image indicates the detecting area to avoid image noise, and three numbers represent the 3D
coordinates of the needle tip in millimeters.
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