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Particle capture, whereby suspended particles contact and adhere to a solid surface
(a ‘collector’), is an important mechanism in a range of environmental processes.
In aquatic systems, typically characterized by low collector Reynolds numbers (Re),
the rate of particle capture determines the efficiencies of a range of processes such
as seagrass pollination, suspension feeding by corals and larval settlement. In this
paper, we use direct numerical simulation (DNS) of a two-dimensional laminar flow to
accurately quantify the rate of capture of low-inertia particles by a cylindrical collector
for Re 6 47 (i.e. a range where there is no vortex shedding). We investigate the
dependence of both the capture rate and maximum capture angle on both the collector
Reynolds number and the ratio of particle size to collector size. The inner asymptotic
expansion of Skinner (Q. J. Mech. Appl. Maths, vol. 28, 1975, pp. 333–340) for flow
around a cylinder is extended and shown to provide an excellent framework for the
prediction of particle capture and flow close to the leading face of a cylinder up to
Re = 10. Our results fill a gap between theory and experiment by providing, for the
first time, predictive capability for particle capture by aquatic collectors in a wide (and
relevant) Reynolds number and particle size range.

Key words: low-Reynolds-number flows, particle/fluid flow, suspensions

1. Introduction
The term ‘particle capture’ refers to the physical process by which suspended

particles come into contact with a solid structure (‘collector’) and adhere to the
collector’s surface, as shown in figure 1. One important example of particle capture
in aquatic systems is the adhesion of particles to aquatic vegetation surfaces, a
phenomenon which defines the filtration and water purification capacity of vegetated
wetlands. Particle capture is also of significant ecological importance in marine
ecosystems; in particular, it controls the efficiency of seagrass pollination, suspension
feeding (of e.g. corals), and larval settlement. Despite its fundamental ecological
importance, predictive capability for the rate of particle capture in aquatic systems is
lacking.

† Email address for correspondence: Alexis.Espinosa.Gayosso@gmail.com
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Particle capture and low-Reynolds-number flow around a circular cylinder 363

FIGURE 1. Direct interception of low-inertia particles, whose trajectories match that of the
streamlines, in uniform steady flow. The maximum angle of capture (αc or θc, depending
on the coordinate system used) is indicated by the dotted line within the collector. The
trajectory of a particle captured at the maximum angle of capture is shown; the streamline
followed by the particle centre defines the limiting streamline. The separation between
limiting streamlines upstream of the influence of the cylindrical collector (2h) is used to
define the capture efficiency ηDI (1.8).

For simplicity, collectors such as vegetation stems or the capturing filaments of
suspension feeders are often modelled as cylinders and particles as spheres. The
capture efficiency (η) of a cylindrical collector can be defined as the ratio of the
number of particles captured (Nc) to the number of particles whose centres would have
passed through the space occupied by the collector were it not present in the flow
(Na):

η = Nc

Na
. (1.1)

Here we consider perfect particle–collector adhesion, such that all particles are
assumed to be captured when they contact the cylinder surface.

In general, capture efficiency depends on four parameters,

η = η(rp, ρ
+,Re,Pe), (1.2)

where rp is the particle size ratio, ρ+ is the particle density ratio, Re is the Reynolds
number of the collector and Pe is the Péclet number for particle transport. The
definition of each of these parameters is as follows:

rp = Dp

D
≡ Rp

R
, (1.3)

ρ+ = ρp

ρ
, (1.4)

Re= ρU∞D

µ
, (1.5)

Pe= U∞D

Γp
, (1.6)

where Dp and Rp are the particle diameter and radius, D and R are the collector
diameter and radius, ρp is the particle density, ρ is the fluid density, U∞ is the uniform
upstream fluid velocity, µ is the fluid viscosity and Γp is the particle diffusivity. The
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values of these parameters define the relative importance of three different mechanisms
of particle capture (Friedlander 2000): (i) inertial impaction, where particle inertia
causes deviation from fluid streamlines and contact with the collector; (ii) diffusional
deposition, where particle–collector contact is driven by random motions (such as
Brownian motion); and (iii) direct interception, where particle centres follow the
streamlines and contact is made due to the finite particle size.

Inertial impaction is typically neglected in aquatic systems due to the low Stokes
numbers (St) of suspended particles. The Stokes number, which represents the
importance of particle inertia, is defined as:

St = ρpD2
pU∞

18µ
= ρ

+r2
pRe

18
(1.7)

(Friedlander 2000). Particle inertia can be neglected when St is below a critical
value Stc ∼ O(0.1) that varies slightly with Re (Phillips & Kaye 1999). As St is
typically small in the aquatic systems of interest (due in part to the fact that ρ+ ≈ 1,
(Harvey, Bourget & Ingram 1995; Shimeta & Koehl 1997; Ackerman 1997, 2006)),
direct interception has been recognized as the more important capture mechanism
(Rubenstein & Koehl 1977; Shimeta & Jumars 1991; Wildish & Kristmanson 1997;
Palmer et al. 2004).

Capture due to Brownian diffusion is also small relative to direct interception unless
both Re and Pe are small (Friedlander 1967). For example, diffusional deposition
on oceanic suspension feeders only becomes important when Dp . O(1 µm) (Shimeta
1993).

Here we investigate direct interception of low-inertia particles by circular cylinder
collectors. It is assumed that the particles follow streamlines exactly and have a
negligible influence on the flow field. Particles are captured if their streamline comes
within one particle radius of the collector. The outermost streamline that permits
capture of a particle of radius Rp is the ‘limiting streamline’ for that particle (figure 1).
For any given particle size, there are two limiting streamlines for the symmetrical flow
around a cylinder; all suspended particles that approach the cylinder with their centres
on or between these two limiting streamlines will be captured, while no particles with
centres outside the limiting streamlines will reach the collector surface. The capture
efficiency by direct interception (ηDI) can thus be defined as

ηDI = 2h

D
≡ h

R
, (1.8)

where 2h is the minimum distance between the limiting streamlines upstream of the
cylinder. The radial velocity of any captured particle will be negative (i.e. towards the
cylinder surface) throughout its trajectory. On the other hand, a non-captured particle
may approach the cylinder but, as soon as its radial velocity becomes positive, it
can no longer be captured. Therefore, particles will be captured on the front of the
collector within −αc 6 α 6 αc, where αc is the maximum angle of capture, determined
by the point at which the radial velocity changes from negative to positive at a
distance Rp from the cylinder surface. This point also defines the limiting streamline
(figure 1). (Here, α is used for angles measured clockwise from the frontal stagnation
point, while θ is used for angles measured anticlockwise from the lee-side stagnation
point, as shown in figure 1.)

The capture efficiency, together with the upstream fluid velocity and the size of the
collector, defines the rate at which particles are captured on the collector surface. For a
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Collector Particle D
(µm)

Dp
(µm)

U∞
(cm s−1)

Reference

Soft coral tentacle Plankton 300 100 20 Wildish & Kristmanson (1997)
Red algae branch Larvae 1000 200 5 Harvey et al. (1995)
Seagrass stigma Pollen 100 100 50 Ackerman (1997, 2006)
Wetland vegetation Sediment 5000 200 1 Palmer et al. (2004)

TABLE 1. Typical collector and particle sizes in relevant aquatic ecosystems. The upstream
velocities for which Re≈ 47 are also indicated.

given concentration of particles Cp, the rate of capture is given by

dNc

dt
= ηDICpU∞Dl, (1.9)

where t is time and l is the axial length of the collector. If the flow field is known
exactly, limiting streamlines can be determined and the capture efficiency and capture
rate calculated.

The description of low-Reynolds-number flow around a circular cylinder has long
been a focus of analytical research in fluid mechanics (e.g. Stokes 1851; Oseen 1910;
Lamb 1911; Davies 1950; Kaplun 1957; Proudman & Pearson 1957; Skinner 1975;
Keller & Ward 1996; Veysey & Goldenfeld 2007). Based on drag coefficient estimates,
existing analytical predictions of the flow field around a cylinder have limited validity
above Re ≈ 1 (Lange, Durst & Breuer 1998; Veysey & Goldenfeld 2007). However,
particle capture in aquatic systems is not necessarily limited to very low Re. Here,
we aim to describe particle capture for all Reynolds numbers below the onset of
vortex shedding (Re 6 47), a range highly relevant to the aquatic systems of interest
(table 1). Previous estimation of direct interception efficiency by a single cylinder
has relied mostly on the creeping flow solution of Lamb (1911), a solution which
has been applied to particle capture in aquatic environmental systems (Shimeta 1993;
Wildish & Kristmanson 1997). This solution, however, leads to inaccurate estimation
of the capture efficiency when Re & 1 (Friedlander 1967). While there are a small
number of experimental and numerical studies that explore the capture of low-inertia
particles by circular cylinders for Re ∼ O(1–10) (Davies & Peetz 1956; Palmer et al.
2004; Humphries 2009; Haugen & Kragset 2010), they do not describe particle capture
across the entire Reynolds number and particle size ranges of interest.

In this paper, we have used direct numerical simulation (DNS) of flow around a
cylinder to provide predictive capability for particle capture in aquatic systems. In
particular, we have quantified the dependence of the capture efficiency on the particle
size ratio and on the Reynolds number. We will demonstrate the limit of validity
of prior theoretical approximations and show that the analytical solution of Skinner
(1975) for the flow field around a cylinder at low Re can be extended, for the purposes
of particle capture prediction, to Re= 10.

2. Analytical solutions of low-Re flow close to a circular cylinder
As mentioned in § 1, analytical solutions exist for low-Re flow around a cylinder

but they are not applicable to the full range of Re considered here. In this section, we
present a brief description of the mathematical formulation of flow around a cylinder,
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the creeping flow solution of Lamb (1911) for Re� 1, and the inner asymptotic
expansion of the solution by Skinner (1975).

2.1. Mathematical formulation

Two-dimensional, unbounded, incompressible and steady low-Re flow around a circular
cylinder, is sketched in figure 1. The non-dimensional continuity and Navier–Stokes
equations for this flow are

∇ ·u= 0 (2.1)

and

(∇u)u=−∇p+ 1
ε
∇2u, (2.2)

where u is the non-dimensional velocity vector, p is the non dimensional pressure
and ε is the Reynolds number using U∞ and R as the velocity and length scales,
respectively. Therefore

ε = ρU∞R

µ
= 1

2Re. (2.3)

Defining (r, θ) as the non-dimensional cylindrical coordinates with the origin at the
centre of the cylinder, the radial (ur) and tangential (uθ) velocity components can be
written in terms of the non-dimensional stream function ψ = ψ(r, θ; ε) as

ur = 1
r

∂ψ

∂θ
and uθ =−∂ψ

∂r
. (2.4)

The boundary conditions are the no-slip condition at the cylinder surface

(ur, uθ)= (0, 0) at r = 1, (2.5)

and a uniform horizontal free-stream flow far from the cylinder

(ur, uθ)→ (cos θ,− sin θ) as r→∞. (2.6)

2.2. Creeping flow solution

Lamb (1911) obtained the first approximate analytical solution of flow around a
cylinder using the simplified version of (2.2) proposed by Oseen (1910), in which
inertial forces are neglected close to the cylinder but not away from it (in the region of
uniform flow). An inner expansion of his solution valid close to the cylinder (r . 1/ε)
can be written as

ψL(r, θ; ε)= δ(ε)
(

r ln r − r

2
+ 1

2r

)
sin θ (2.7)

(Proudman & Pearson 1957), where δ is a small parameter defined in terms of ε as

δ(ε)≡ 1
ln 4− γ − ln ε + 1/2

, (2.8)

and γ = 0.5772 is Euler’s constant. The stream function (2.7) depends on ε via δ and
is only valid for Re� 1.
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2.3. Inner asymptotic solution
Skinner (1975) obtained a higher-order inner asymptotic expansion to describe the flow
field around a cylinder, following the work of Kaplun (1957) and Proudman & Pearson
(1957). The first two terms of the inner asymptotic expansion are

ψS(r, θ; ε)= a(δ)

(
r ln r − r

2
+ 1

2r

)
sin θ

+ ε
[

a2(δ)

32

(
2r2ln2r − r2 ln r + r2

4
− 1

4r2

)
+ b(δ)

8

(
r2 − 2+ 1

r2

)]
sin 2θ + O

(
ε2
)
, (2.9)

where a(δ) and b(δ) are parameters of integration which allow the solution to be
matched to an asymptotic outer expansion. The values of a and b depend on ε via δ
(2.8), and are given by

a(δ)= δ − 0.8669δ3 + O(δ5) and b(δ)=−1/2+ δ/4+ O(δ2) (2.10)

(Kaplun 1957; Skinner 1975). The asymptotic inner expansion (2.9) is valid close to
the cylinder (r . 1/ε). The corresponding drag coefficient obtained from the inner
asymptotic solution ((2.9) and (2.10)) is the same as the one obtained by Kaplun
(1957) and is accurate for Re . 1 (Lange et al. 1998; Veysey & Goldenfeld 2007).
In this study, we extend the applicability of (2.9) up to Re = 10 by using a hybrid
approach for obtaining the values of a and b, instead of the series in (2.10). A detailed
description of our hybrid approach is presented in § 3.

3. Hybrid approach for extending the applicability of the inner asymptotic
expansion

As discussed in § 2.3, the inner asymptotic solution ((2.9) and (2.10)) is not valid
and hence inaccurate for Re & 1 (ε & 0.5). This inaccuracy arises from two problems:
(i) the truncation of the series for a and b in (2.10); and (ii) the divergence induced
by the existence of a singular point in the definition of δ (2.8) at Re = 7.405. Keller
& Ward (1996) suggested avoiding the first problem through a hybrid method that
matches the inner asymptotic expansion (2.9) to a numerical solution of the outer flow,
in an effort to allow a and b to be obtained to all orders of δ and thus extend the
validity of (2.9) up to Re = 4. Unfortunately, their reported values of a and b do not
generate the correct flow field, as will be shown below. Our hybrid approach avoids
the two problems mentioned above by using a DNS of the full Navier–Stokes and
continuity equations in a wide domain that includes the inner flow (i.e. adjacent to
the cylinder surface). This hybrid approach allows accurate description of a and b and
therefore of the flow field around the cylinder for Re∼ O(1–10).

3.1. Numerical methods and boundary conditions
The steady, incompressible and two-dimensional equations of motion ((2.1) and (2.2))
were solved with the finite-volume method (Ferziger & Perić 2002) using the open
source code OpenFOAM (2012). The velocity and pressure coupling was solved with
the SIMPLE iterative algorithm (Patankar 1980). Convergence was deemed to be
satisfied when the initial residuals of the pressure and momentum equations fell below
5× 10−11.
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Although we consider an unbounded flow, the solver requires boundaries a finite
distance from the cylinder. For simulation of low-Re flow, computational domains
need to be extremely large to avoid blockage effects (Lange et al. 1998; Posdziech
& Grundmann 2007). Simulations were performed with the cylinder at the centre
of a square domain of side length L. The length of the domain always satisfied
L/D > 4000Re−0.8, reducing the blockage effect error to less than an estimated 0.1 %
(Lange et al. 1998). As the flow is steady and symmetrical for Re 6 47, the solution
was limited to the upper half of the domain. The domain around the cylinder surface
(r = 1) was discretized with an O-type grid (1 6 r 6 1.2) coupled smoothly with an
H-type grid which extended over the rest of the domain (r & 2.6) (similar to the mesh
topology used by Wu et al. 2004). Grid points were concentrated around the cylinder
and in the wake region. The size of the cell closest to the cylinder wall was 1r = 10−3

and a total of 372 cells were used to discretize the half-cylinder perimeter.
The no-slip boundary condition, (ur, uθ) = (0, 0), was applied at the surface of the

cylinder and the outflow condition, (∇u)n = 0 (where n is a unit vector normal to
the boundary), was applied at the downstream boundary. The velocity at the upstream
boundary was fixed at the free-stream value, (ur, uθ) = (cos θ,− sin θ), and the lateral
boundary was treated as a no-flux free-slip surface. The pressure was set to zero at
the outflow boundary and a Neumann-type condition was used for pressure along all
other boundaries. As we only solved for the flow in one half of the domain, symmetry
boundary conditions for all variables were applied at the plane of symmetry.

3.2. Validation of the numerical solutions

Our DNS (0.01 6 Re 6 47) were validated by comparing both the cylinder drag
coefficient (CD = 2FD/ρU2

∞D where FD is the drag force on the cylinder per unit
length) and the angle of separation (αs) to existing analytical, experimental and
numerical data. The numerical values of CD agree very well with: (i) the analytical
drag coefficients obtained from theoretical solutions within their range of validity; (ii)
the experimental measurements of Tritton (1959) and Huner & Hussey (1977) for
Re& 0.2; and (iii) the DNS of Posdziech & Grundmann (2007) for Re> 5 (figure 2a).

Flow separation from the cylinder surface occurs when Re& 7 (Wu et al. 2004). The
separation angle obtained from our DNS agrees almost exactly with the numerical and
experimental values of Wu et al. (2004) (figure 2b).

3.3. Values of a and b for the hybrid approach

The parameters a and b in the asymptotic inner expansion (2.9) were calculated by
performing a least-squares fit of (2.9) to the numerical flow field for 0.01 6 Re 6 10.
Our values of a and b converge towards the theoretical series (2.10) as the Reynolds
number decreases (figure 3), validating the hybrid approach. As expected, our values
of a and b are well-behaved and finite for Re > 1. While the Keller & Ward (1996)
values of a agree with our results and with theory, their values of b do not and
generate an erroneous velocity field for Re> 1 (see § 4.2). The expressions

a(σ )≈ 0.148+ 2.15× 10−2σ + 3.05× 10−3σ 2 + 2.13× 10−4σ 4, (3.1a)

b(σ )≈−0.462+ 5.73× 10−3σ + 8.65× 10−4σ 3 − 7.45× 10−6σ 5, (3.1b)

where σ = ln(Re) − ln(0.01), provide values of a and b within 1.5 % of the DNS
estimates for 0.01 6 Re 6 10. The first two terms of each fit in (3.1) coincide
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FIGURE 2. The agreement of the present DNS with existing analytical, experimental and
numerical data. (a) Drag coefficient CD. (b) Separation angle αs. Note that αs is measured
from the frontal stagnation point.

with the corresponding terms of a Taylor series expansion of the theoretical values
(2.10) around σ = 0. We show below that our values of a and b provide an accurate
description of the flow, and of particle capture, up to Re= 10.

3.4. Limits of validity of the hybrid approach

The values of a and b obtained with our hybrid approach (figure 3) together with
expression (2.9) are able to accurately represent the flow around the entire cylinder
for Re 6 1 (figure 4a). Streamlines from the DNS and the hybrid approach are almost
indistinguishable within the radial zone r . 1/ε for all angles (shaded zone). For
1 < Re 6 10, the hybrid approach is able to accurately represent the flow around the
leading face of the cylinder (the region of interest for particle capture) but not on
the lee side (figure 4b). This behaviour is not a failure of the fitting process, but a
characteristic of the analytical inner asymptotic expansion (2.9) which returns to the
uniform flow condition faster than the real flow. In the range 1 < Re 6 10, our hybrid
approach is accurate for r . 1 + 1/ε and −90◦ 6 α 6 90◦, with an error of less than
3 % with respect to the validated DNS. The hybrid approach is not applicable for
Re> 10.
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FIGURE 3. Dependence on Re of the parameters (a) a and (b) b to be used in (2.9) for the
hybrid approach. Circles indicate the Reynolds numbers at which DNS were performed.
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FIGURE 4. Comparison of streamlines from DNS (solid lines) and the hybrid approach
(dashed lines) for: (a) Re = 1; and (b) Re = 10. The shaded grey area shows the zone of
validity of the hybrid approach.

4. Particle capture
In this section, we quantify the maximum angle of capture and the capture efficiency

by direct interception. As low-inertia particles are assumed to follow streamlines
exactly, obtaining particle trajectories by integration of the particle equation of motion
is not necessary and the capture analysis was performed through examination of
the fluid velocity field. This methodology assumes that particle forces such as lift
(induced by shear), van der Waals attraction and hydrodynamic repulsion to contact
may be neglected to leading order, and we test this by comparing our particle capture
estimates against low-Re theory and experiments at higher Reynolds numbers.

4.1. Maximum angle of capture: theoretical considerations

Knowledge of the angle at which the radial velocity changes sign (θc or αc, figure 1)
at a distance Rp from the cylinder surface is required to estimate the particle capture
efficiency because it coincides with the maximum angle of capture of zero-inertia
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particles, as explained in § 1. Hence, θc can be obtained from the implicit equation

ur(r = 1+ rp, θ = θc)= 0, (4.1)

which can be applied to numerical or analytical solutions of the non-dimensional
problem defined in § 2.1.

Of special interest is the maximum angle of capture (θc0) of particles with a
vanishing size ratio (rp→ 0). This angle cannot be obtained from (4.1) because ur→ 0
as rp→ 0 for all θ . However, θc0 can be obtained using the fact that

∂ur

∂r

∣∣∣∣
r=1

= 0, (4.2)

which is a consequence of the conservation of mass (2.1), rewritten as

∂ur

∂r
+ ur

r
+ 1

r

∂uθ
∂θ
= 0, (4.3)

and the no-slip condition at the cylinder surface (2.5), which implies

ur = 0, uθ = 0,
∂ur

∂θ
= 0 and

∂uθ
∂θ
= 0 ∀θ at r = 1. (4.4)

Therefore, the radial velocity reaches either a maximum or a minimum at the surface
depending on its sign close to the cylinder, as implied by (4.2). The sign of the second
derivative at the surface can be used to determine if the zero radial velocity represents
a maximum or a minimum but, at θc0, the second derivative also changes sign because
there is a switch from maximum to minimum, hence

∂2ur

∂r2

∣∣∣∣
{r=1,θ=θc0}

= 0. (4.5)

Use of (4.5) together with the creeping flow solution (2.7) yields a constant
θc0 = 90◦ in this limit. More accurate values of θc0 can be obtained by substituting
the inner asymptotic expansion (2.9) into (4.5), and solving the resulting implicit
equation:

2a cos θc0 + 2bε cos 2θc0 = 0. (4.6)

Note that θc0 also coincides with the angle of maximum vorticity (and maximum
gradient of tangential velocity) at the cylinder surface.

4.2. Maximum angle of capture: results
The angle θc0 at which the radial velocity close to the cylinder changes sign was
obtained directly from the numerical simulations for 0.01 6 Re 6 47 and is in
strong agreement with both theory and experiment (see figure 5a and note that
αc0 = 180◦ − θc0). The numerical results agree with the theoretical values of Skinner
(1975) ((2.10) and (4.6)) within that study’s range of validity, and αc0 → 90◦ as
Re→ 0, in agreement with creeping flow theory (Lamb 1911). Note that αc0 decreases
with Re and reaches αc0 ≈ 50◦ for Re = 47. This agrees with the angle of maximum
vorticity found by Sen, Mittal & Biswas (2009) in their numerical analysis for
Re = 20 and with the experimental work of Palmer et al. (2004), who reported a
constant maximum capturing angle of αc0 ≈ 50◦ for their low-inertia particle capture
experiments in the range 386 Re6 486.

The predictions of the maximum angle of capture of particles of vanishing size
ratio (θc0) from the hybrid approach (values of a and b taken from (3.1) together
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FIGURE 5. Angle of change of sign of the radial velocity close to the frontal cylinder surface
(αc0) as a function of Re. This angle coincides with the maximum angle of capture of
particles of vanishing size ratio over the frontal face of the cylinder, and with the point of
maximum gradient of tangential velocity at the surface. (a) The agreement of the present DNS
with existing theoretical, experimental and numerical data. (b) The agreement of the hybrid
approach with the DNS results for Re 6 10. Existing hybrid and theoretical solutions are
plotted to demonstrate their inaccuracy above Re= 1.

with (4.6)) agree very well with the numerical results for Re6 10 (figure 5b). Previous
analytical expressions give accurate results over more restricted ranges of Re. The
capture angle in creeping flow (αc0 = 90◦) is valid only for Re < 0.001. The values
of a and b obtained by Keller & Ward (1996) do not accurately predict θc0 and,
consequently, the flow close to the cylinder for Re & 1. In summary, our hybrid
approach correctly describes the flow around the frontal face of the cylinder and
can be used for estimating θc and θc0 over a much wider range of Re than existing
techniques.

4.3. Particle capture efficiency: theoretical considerations
The definition of the capture efficiency by direct interception (1.8) can be interpreted
as a ratio of flow rates in one half of the symmetrical domain (see figure 1).
Specifically,

ηDI = Qh

QR
= qh

qR
= qh, (4.7)
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where Qh = U∞hl is the flow rate between the limiting streamline and the symmetry
streamline (ψ = 0), and QR = U∞Rl is the flow rate directly approaching the
cylinder. When analysing the solution of the non-dimensional problem defined in
§ 2.1, the capture efficiency (4.7) can be obtained with the non-dimensional flow rates
qh = Qh/QR = h/R and qR = QR/QR = 1 and the capture efficiency can therefore be
estimated directly from qh. As the flow rate between streamlines is constant, qh can be
obtained by integrating the tangential velocity profile at θ = θc (the maximum angle
of capture defined by (4.1)) from the cylinder surface (ψ = 0) up to the limiting
streamline. The capture efficiency can thus be estimated as

ηDI(rp; ε)= qh(rp; ε)=−
∫ r=1+rp

r=1
uθ(r, θc; ε) dr = ψ(1+ rp, θc; ε). (4.8)

Note that by (2.4), the limiting streamline value ψ(1 + rp, θc; ε) is equal to qh and,
therefore, the capture efficiency.

4.4. Particle capture efficiency: results
Particle capture was quantified by applying (4.8) to our DNS results for 0.01 6
Re 6 47. These results bridge the gap between existing low-Re theory and higher-
Re experimental data. We have validated our numerical particle capture efficiency
estimates against experiments performed on single cylinders by Palmer et al. (2004)
and on branched cylindrical structures by Harvey et al. (1995). Our results are also
compared to those of Shimeta & Koehl (1997), who evaluated the relative contact
rates of two sizes of particles with oceanic suspension feeders with cylindrical
capturing filaments (they report PL, the fraction of the total of particles contacting
the collector that are of the larger size). For all experimental data, St < 0.25, which
agrees with the value of Stc found by Phillips & Kaye (1999) for Re < 1000.
The ratio Λ describes the comparison between our DNS estimates with theory and
the available experimental data (Λ = ηnumerical/ηtheory for the comparison with theory,
Λ = ηnumerical/ηexperiment for the comparison with Harvey et al. 1995 and Palmer et al.
2004, while Λ= PLnumerical/PLexperiment for the comparison with Shimeta & Koehl 1997).
The modelled values of capture efficiency and PL agree (to within 15 %) with the
entire set of experimental values (figure 6), for which Re 6 47 and rp 6 1.5. It is
interesting that the DNS estimates agree with experiments with particle size ratios of
rp ∼ O(1), as typical formulations of direct interception are thought to be inapplicable
to particles whose sizes are comparable to that of the collector. As Re→ 0, the
numerical estimates of capture efficiency match theoretical estimates from the inner
asymptotic analytical solution and the creeping flow solution. Random particle size
ratios and Reynolds numbers were tested in the range of validity of the low-Re theory
(presented as a left-pointing triangle and circles in figure 6).

The hybrid approach presented in § 3 (values of a and b taken from (3.1) together
with (4.6) and (2.9)) provides an excellent means of estimating the capture efficiency
for Re 6 10. After applying (4.1) to obtain the maximum angle of capture (figure 5
or (4.6) can also be used for particles of small size ratio), (2.9) and (4.8) yield an
estimate of the particle capture efficiency. As shown by the continuous black line
in figure 7, the hybrid approach yields identical particle capture efficiencies to the
numerical estimates for Re 6 10. In contrast, theoretical estimates lose accuracy with
increasing Reynolds number and cannot be used for Re & 1. Our hybrid approach
extends the existing low-Re theory into a more relevant Re range for particle capture in
aquatic systems.
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FIGURE 6. The agreement of DNS estimates with theory and experiment. Λ represents the
ratio of the DNS estimates to theoretical and experimental values of η and PL, as explained
in the text. The symbols indicate the comparison with: C, the creeping flow solution; ©, the
inner asymptotic analytical solution; �, Shimeta & Koehl (1997); �, Harvey et al. (1995);
and 4, Palmer et al. (2004). The filling of the symbols indicates the particle size ratios:
rp 6 0.1 (filled), 0.1< rp < 0.5 (dotted) and 0.56 rp 6 1.5 (unfilled). For all the experimental
data, St < 0.25.

Present hybrid approach
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Palmer et al. (2004) 
experimental fit
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FIGURE 7. The agreement between hybrid approach estimates and DNS estimates of capture
efficiency for Re6 10 and rp = 0.031. Analytical expressions are plotted beyond their limit of
validity to demonstrate their inaccuracy above Re= 1.

The maximum particle size ratio (rp,maxH ) for which capture efficiency can be
estimated using the hybrid approach is dictated by the region in which the flow
is accurately described (see § 3.4). For Re > 1 the hybrid approach is limited to
rp,maxH ≈ 1/ε(≡2/Re). The maximum error in capture efficiency estimates from the
hybrid approach relative to those from the DNS is 1.5 % across the entire range of
validity, i.e. Re6 10 and rp . rp,maxH .

Particle capture efficiencies are presented graphically for 0.001 6 Re 6 47 and
0.001 6 rp 6 1.5 (figure 8). DNS estimates were complemented with theoretical
estimates (the inner asymptotic analytical solution, (2.9) and (2.10)) for Re < 0.01.
The capture efficiency increases monotonically with both Re and rp. The dashed lines
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FIGURE 8. Capture efficiency by direct interception (ηDI) of a circular cylinder. Re is the
Reynolds number based on the diameter of the collector and rp is the particle–collector radius
ratio. Each line corresponds to a particular value of rp (labelled on the right). Dashed lines
represent the region where the Stokes number exceeds 0.25 (for a particle density ratio of
ρ+ = 1), such that particle inertia may influence particle capture.

in this figure represent the region where, for ρ+ = 1, the Stokes number exceeds 0.25,
the value of Stc estimated by Phillips & Kaye (1999) for Re< 1000. Inertial impaction
may be non-negligible in this region.

Expressions for particle capture efficiency in creeping flow have previously been
obtained by assuming a linear variation of tangential velocity with distance from the
cylinder surface (Fuchs 1964; Friedlander 2000). This assumption, together with (4.8),
yields an expression of the form

ηDI(rp,Re)≈ 1
2

(
−∂uθ
∂r

∣∣∣∣
r=1
θ=θc0

)
rp

2, (4.9)

which is valid for particles of vanishing size ratio. We propose a similar formulation
that is valid for all particle size ratios in the range 0 < rp 6 1.5 and over the entire
Reynolds number range considered here (0< Re6 47). This formulation is given by

ηDI(rp,Re)≈ 1
2.002− lnRe+ f (Re)︸ ︷︷ ︸

G(Re)

rp
2

(1+ rp)
k(Re)︸ ︷︷ ︸

Y(rp;Re)

, (4.10)

where G is a fit of (1/2)−∂uθ/∂r at (r = 1, θ = θc0) and Y is a fit of the particle
size dependence of the capture efficiency. As the form of (4.10) suggests, the fitting
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procedure was actually applied to the auxiliary functions f and k, yielding

f (Re)= 0.953 ln(6.25+ Re)− 1.62, (4.11a)

k(Re)= 0.872 ln(19.1+ Re)− 1.92. (4.11b)

The expression in (4.10) (together with (4.11)) provides capture efficiency estimates
within 3 % of our DNS estimates (and theory) over the entire particle size ratio
and Reynolds number ranges. The reciprocal of G in (4.10) is often termed the
‘hydrodynamic factor’ (Lee & Gieseke 1980). Its creeping flow form is preserved
here, except for the addition of the auxiliary function f , which allows an accurate
representation of the maximum gradient of tangential velocity at the cylinder surface
over the entire range of Re. The function Y resembles the particle size dependence
proposed by Lee & Gieseke (1980) for creeping flow but has been modified such that
the exponent in the denominator (k) varies with Re. The approximation Y ≈ r2

p gives an
error of less than 5 % when rp 6 0.05 and Re6 10.

5. Conclusions

We have obtained accurate estimates of the rate of capture of suspended particles
by cylindrical collectors in the ranges 0 < Re 6 47 and 0 < rp 6 1.5. In doing
so, this work fills an existing gap between theoretical and experimental results in
particle capture research. The accuracy of the results is confirmed by their agreement
with both theoretical estimates at low Re and experimental data at higher Re. The
analytical and graphical tools presented here will allow considerable improvement in
the prediction of particle capture rates by biological collectors in aquatic systems.
Furthermore, our analysis allows us to present, for the first time, a physically based
expression for estimating particle capture efficiency for a particle size range relevant to
aquatic systems and at all Reynolds numbers below the onset of vortex shedding.

A hybrid approach has allowed the extension up to Re = 10 of an inner asymptotic
expansion for describing flow around a cylinder (2.9); it has been confirmed that the
existing theory is limited to Re. 1. This approach can be used for describing the flow
close to the surface of the entire cylinder when Re6 1 and along the frontal face alone
when 1 < Re 6 10, allowing estimation of the capture efficiency and maximum angle
of capture with high accuracy. Our hybrid approach is likely to have significant utility
for applications that require an analytical description of the flow close to the cylinder
surface for Re∼ O(1–10).

The maximum angle of capture (αc) over the frontal face of the cylinder coincides
with the angle at which the radial velocity changes from negative to positive at a
distance equal to the radius of the particle; αc is less than 90◦ for Re & 0.001, a fact
that has often been overlooked in analytical studies of particle capture at low Re.
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