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Abstract

Recent advances in knowledge compilation introduced techniques to compile positive logic

programs into propositional logic, essentially exploiting the constructive nature of the least

fixpoint computation. This approach has several advantages over existing approaches: it

maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or

the introduction of auxiliary variables, and significantly outperforms existing algorithms.

Unfortunately, this technique is limited to negation-free programs. In this paper, we show how

to extend it to general logic programs under the well-founded semantics.

We develop our work in approximation fixpoint theory, an algebraical framework that

unifies semantics of different logics. As such, our algebraical results are also applicable to

autoepistemic logic, default logic and abstract dialectical frameworks.

1 Introduction

There is a fundamental tension between the expressive power of a knowledge repre-

sentation language, and its support for efficient reasoning. Knowledge compilation

studies this tension (Cadoli and Donini 1997; Darwiche and Marquis 2002), by

identifying languages that support certain queries and transformations efficiently. It

studies the relative succinctness of these languages, and is concerned with building

compilers that can transform knowledge bases into a desired target language. For

example, after compiling two CNF sentences into the OBDD language (Bryant 1986),

their equivalence can be checked in polynomial time. Applications of knowledge

compilation are found in diagnosis (Huang and Darwiche 2005), databases (Suciu

et al. 2011), planning (Palacios et al. 2005), graphical models (Chavira and Darwiche

2005; Fierens et al. 2015) and machine learning (Lowd and Domingos 2008). These

techniques are most effective when the cost of compilation can be amortised over

many queries to the knowledge base.

Knowledge compilation has traditionally focused on subsets of propositional

logic and Boolean circuits in particular (Darwiche and Marquis 2002; Darwiche

2011). Logic programs have received much less attention, which is surprising given

their historical significance in AI and current popularity in the form of answer set

programming (ASP) (Marek and Truszczyński 1999). Closest in spirit are techniques
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to encode logic programs into CNF (Ben-Eliyahu and Dechter 1994; Lin and Zhao

2003, 2004; Janhunen 2004, 2006). A notable difference with traditional knowledge

compilation is that many of these encodings are task-specific: the resulting CNF is

not equivalent to the logic program. Instead, it is equisatisfiable for the purpose of

satisfiability checking, or has an identical model count for the purpose of probabilistic

inference (Fierens et al. 2015).1 These encodings often introduce new variables and

loop-breaking formulas, which blow up the representation. Lifschitz and Razborov

(2006) showed that there can be no polynomial translation of ASP into a flat

propositional logic theory without auxiliary variables.2

Recently, Vlasselaer et al. (2015) introduced a novel knowledge compilation

technique for positive logic programs. As an example, consider the logic program P
defining the transitive closure r of a binary relation e:{

∀X,Y : r(X,Y ) ← e(X,Y ).

∀X,Y , Z : r(X,Y )← e(X,Z) ∧ r(Z, Y ).

}

Intuitively, Vlasselaer et al. (2015) compute the minimal model of P for all

interpretations of e(·, ·) simultaneously. They define a lifted least fixpoint computation

where the intermediate results are symbolic interpretations of r(·, ·) in terms of e(·, ·).
For example, in a domain {a, b, c}, the interpretation of r(a, b) in the different steps

of the least fixpoint computation would be.

r(a, b) : f � e(a, b) � e(a, b) ∨ (e(a, c) ∧ e(c, b))

I.e., initially, r(a, b) is false; next r(a, b) is derived to be true if e(a, b) holds; finally,

r(a, b) also holds if e(a, c) and e(c, b) hold. The result of this sequence is a symbolic,

Boolean formula representation of the well-founded model for each interpretation

of e; this formula can be used for various inference tasks. This approach has several

advantages over traditional knowledge compilation methods: it preserves logical

equivalence3 (and hence, enables us to port any form of inference—e.g., abductive or

inductive reasoning, (weighted) model counting, query answering, . . . ) and does not

require (expensive) loop-breaking preprocessing or auxiliary variables. Vlasselaer

et al. (2015) showed that this method for compiling positive programs (into the

SDD language (Darwiche 2011)) significantly outperforms traditional approaches

that compile the completion of the program with added loop-breaking formulas.

Unfortunately, the methods of Vlasselaer et al. (2015) do not work in the presence

of negation, i.e., if the immediate consequence operator is non-monotone. In this

paper, we show how the well-founded model computation from Van Gelder et al.

(1991), that works on partial interpretations, can be executed symbolically, resulting

in the parametrised well-founded model. By doing this, we essentially compute the

well-founded model of an exponential number of logic programs at once.

1 Probabilistic inference on the CNF may itself perform a second knowledge compilation step.
2 Similar, task-specific, translation techniques of logic programs into difference logic (Janhunen et al.

2009) and ordered completion (Asuncion et al. 2012) exist.
3 In the sense that an interpretation is a model of the resulting propositional theory if and only if it is a

model of the given logic program under the parametrised well-founded semantics.
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Our algorithm works in principle on any representation of Boolean formulas;

we study complexity for this algorithm taking Boolean circuits as target language;

in this case we find that our algorithm has polynomial time complexity. General

Boolean circuits are not considered to be an interesting target language, as they

are not tractable for any query of interest. However, what we achieve here is a

change of semantic paradigm that uncovers all the machinery for propositional logic

(SAT solvers, model counters, etc.). It is a required step before further compiling

the circuit into a language such as OBDD or SDD, which do permit tractable

querying. It is also possible to encode the circuit into CNF, similar to Janhunen

(2004). There is a long list of queries and transformations that become supported on

logic programs (under the well-founded semantics), by virtue of our algorithm. After

a transformation to propositional logic, we can use standard tools to check whether

one logic program is entailed by another, find models that are minimal with respect to

some optimisation term, check satisfiability, count or enumerate models, and forget

or condition variables (Darwiche and Marquis 2002). For example, the following

definition of the transitive closure of e syntactically differs from the previous.{
∀X,Y : r(X,Y ) ← e(X,Y ).

∀X,Y , Z : r(X,Y )← r(X,Z) ∧ r(Z, Y ).

}

With our algorithm, we can compile both programs into an OBDD representation.

On these OBDDs, we can verify the equivalence of the logic programs using existing

OBDD algorithms. As logic programs under the well-founded semantics encode

inductive definitions (Denecker and Vennekens 2014), we now have the machinery

to check that two definitions define the same concept for each interpretation of

the parameters (e in our example). Moreover, our algorithm can be stopped at any

time to obtain upper and lower bounds on the fixpoint, which gives us approximate

knowledge compilation for logic programs (Selman and Kautz 1996).

The original motivation for this research is the fact that probabilistic inference

tools such as ProbLog (Fierens et al. 2015) use knowledge compilation for proba-

bilistic inference by (weighted) model counting; they compile a logic program into

a d-DNNF or SDD (with auxiliary variables) and subsequently calling a weighted

model counter. Vlasselaer et al. showed that for positive logic programs, this can

be done much more efficiently using bottom-up compilation techniques. We extend

these techniques to general logic programs to capture the full ProbLog language.

More generally, we develop our ideas in approximation fixpoint theory (AFT),

an abstract algebraical theory that captures all common semantics of logic pro-

gramming, autoepistemic logic, default logic, Dung’s argumentation frameworks

and abstract dialectical frameworks (as shown by Denecker et al. (2000) and Strass

(2013)). Afterwards, we show how the algebraical results apply to logic programming.

We thus extend the ideas by Vlasselaer et al. (2015) in two ways; first, by developing

a theory that works for general logic programs and secondly by lifting the theory to

the algebraical level. Due to the high level of abstraction, our proofs are (relatively)

compact and our algebraical results are immediately applicable to all aforementioned

paradigms. Due to page restrictions, proofs are postponed to the online appendix

(Appendix B) and we only apply our theory to logic programming.
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Summarised, the main contributions of this paper are as follows: (i) we present

the algebraical foundations for a novel knowledge compilation technique for general

logic programs, (ii) we apply the algebraical theory to logic programming, resulting

in a family of equivalence-preserving algorithms, (iii) we show that Boolean circuits

are at least as succinct as propositional logic programs (under the parametrised

well-founded semantics), and (iv) we pave the way towards knowledge compilation

for other non-monotonic formalisms, such as autoepistemic logic.

2 Preliminaries

2.1 Lattices and approximation fixpoint theory

A complete lattice 〈L,�〉 is a set L equipped with a partial order � such that

every subset S of L has a least upper bound, denoted
∨
S and a greatest lower bound,

denoted
∧
S . If x and y are two lattice elements, we use the notations x∧y =

∧
{x, y}

and x∨y =
∨
{x, y}. A complete lattice has a least element ⊥ and a greatest element


. An operator O : L → L is monotone if x � y implies that O(x) � O(y). Every

monotone operator O in a complete lattice has a least fixpoint, denoted lfp(O). A

mapping f : (L,�L) → (K,�K ) between lattices is a lattice morphism if it preserves

least upper bounds and greatest lower bounds, i.e. if for every subset X of L,

f(
∨
X) =

∨
f(X) and f(

∧
X) =

∧
f(X).

Given a lattice, approximation fixpoint theory makes uses of the bilattice L2. We

define projections as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2 are used

to approximate all elements in the interval [x, y] = {z | x � z ∧ z � y}. We call

(x, y) ∈ L2 consistent if x � y, that is, if [x, y] is non-empty. We use Lc to denote

the set of consistent pairs. Pairs (x, x) are called exact. The precision ordering on L2

is defined as (x, y)�p (u, v) if x � u and v � y. In case (u, v) is consistent, (x, y) is

less precise than (u, v) if (x, y) approximates all elements approximated by (u, v), or

in other words if [u, v] ⊆ [x, y]. If L is a complete lattice, then so is 〈L2, �p 〉.
AFT studies fixpoints of operators O : L → L through operators approximating

O. An operator A : L2 → L2 is an approximator of O if it is �p -monotone, and has

the property that for all x, O(x) ∈ A(x, x). Approximators are internal in Lc (i.e.,

map Lc into Lc). As usual, we restrict our attention to symmetric approximators:

approximators A such that for all x and y, A(x, y)1 = A(y, x)2. Denecker et al.

(2004) showed that the consistent fixpoints of interest are uniquely determined by

an approximator’s restriction to Lc, hence, we only define approximators on Lc.

AFT studies fixpoints of O using fixpoints of A. The A-Kripke-Kleene fixpoint is

the �p -least fixpoint of A and has the property that it approximates all fixpoints

of O. A partial A-stable fixpoint is a pair (x, y) such that x = lfp(A(·, y)1) and

y = lfp(A(x, ·)2). The A-well-founded fixpoint is the least precise partial A-stable

fixpoint. An A-stable fixpoint of O is a fixpoint x of O such that (x, x) is a partial A-

stable fixpoint. The A-Kripke-Kleene fixpoint of O can be constructed by iteratively

applying A, starting from (⊥,
). For the A-well-founded fixpoint, Denecker and

Vennekens (2007) worked out a similar constructive characterisation as follows.

An A-refinement of (x, y) is a pair (x′, y′) ∈ L2 satisfying one of the following

conditions (i) (x, y)�p (x′, y′)�p A(x, y), or (ii) x′ = x and A(x, y′)2 � y′ � y.
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An A-refinement is strict if (x, y) �= (x′, y′). We call refinements of the first kind

application refinements and refinements of the second kind unfoundedness refinements.

A well-founded induction of A is a sequence (xi, yi)i�β with β an ordinal such that

• (x0, y0) = (⊥,
);

• (xi+1, yi+1) is an A-refinement of (xi, yi), for all i < β;

• (xλ, yλ) =
∨
�p
{(xi, yi) | i < λ} for each limit ordinal λ � β.

A well-founded induction is terminal if its limit (xβ, yβ) has no strict A-refinements.

For a given approximator A, there are many different terminal well-founded

inductions of A. Denecker and Vennekens (2007) showed that they all have the

same limit, which equals the A-well-founded fixpoint of O. Denecker and Vennekens

(2007) also showed how to obtain maximally precise unfoundedness refinements.

Proposition 2.1 (Denecker and Vennekens, 2007 )

Let A be an approximator of O and (x, y) ∈ L2. Let SxA be the operator on L that

maps every y′ to A(x, y′)2. This operator is monotone. The smallest y′ such that

(x, y′) is an unfoundedness refinement of (x, y) is given by y′ = lfp(SxA).

2.2 Logic programming

In this paper, we restrict our attention to propositional logic programs. However,

AFT has been applied in a much broader context (Denecker et al. 2000; Pelov et al.

2007; Antic et al. 2013) and our results apply in these richer settings as well.

Let Σ be an alphabet, i.e., a collection of symbols called atoms. A literal is an

atom p or its negation ¬p. A logic program P is a set of rules r of the form

h← l1 ∧ l2 ∧ · · · ∧ ln, where h is an atom called the head of r, denoted head (r), and

the li are literals. The formula l1 ∧ l2 ∧ · · · ∧ ln is the body of r, denoted body(r). A

rule r = ∀X : h← ϕ is, as usual, a shorthand for the grounding of r, the collection of

rules obtained by substituting the variables X by elements from a given domain. If

p ∈ Σ, the formula ϕp is
∨
r∈P∧head (r)=p body(r). An interpretation I of the alphabet

Σ is an element of 2Σ, i.e., a subset of Σ. The set of interpretations 2Σ forms a lattice

equipped with the order ⊆. The truth value (t or f ) of a propositional formula ϕ in

a structure I , denoted ϕI is defined as usual. With a logic program P, we associate

an immediate consequence operator (van Emden and Kowalski 1976) TP mapping

structure I to TP(I) = {p | ϕIp = t}.
In the context of logic programming, elements of the bilattice

(
2Σ

)2
are four-valued

interpretations, pairs I = (I1, I2) of interpretations. A four-valued interpretation

maps atoms p ∈ Σ to tuples of two truth values (pI1 , pI2 ). Such tuples are often

identified with four-valued truth values (true (t), false (f ), unknown (u) and incon-

sistent (i)). Intuitively, pI1 represents whether p is true, and pI2 whether p is possible,

i.e., not false. Thus, the following correspondence holds t = (t, t), f = (f , f ), u = (f , t)

(and i = (t, f )). The pair (I1, I2) approximates all interpretations I ′ with I1 ⊆ I ′ ⊆ I2.
We are mostly concerned with consistent (also called partial) interpretations: tuples

(I1, I2) with I1 ⊆ I2, i.e., interpretations that map no atoms to i. If I is a partial

interpretation, and ϕ a formula, we write ϕI for the standard three-valued valuation
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based on Kleene’s truth tables (Kleene 1938). We often identify interpretation I with

the partial interpretation (I, I).

The most common approximator for logic programs is Fitting’s (2002) immediate

consequence operator ΨP , a generalisation of TP to partial interpretations:

ΨP(I)1 = {a ∈ Σ | ∃r ∈ P : body(r)I = t ∧ head(r) = a},
ΨP(I)2 = {a ∈ Σ | ∃r ∈ P : body(r)I �= f ∧ head(r) = a}

Denecker et al. (2000) showed that the ΨP-well-founded fixpoint of TP is the well-

founded model of P (Van Gelder et al. 1991) and that ΨP-stable fixpoints are

exactly the stable models of P (Gelfond and Lifschitz 1988).

Parametrised Logic Programs We briefly recall the parametrised well-founded se-

mantics. This semantics has been implicitly present in the literature for a long time,

by assigning a meaning to an intensional database. We follow the formalisation by

Denecker and Vennekens (2007). For parametrised logic programs, the alphabet Σ

is partitioned into a set Σp of parameter symbols and a set Σd of defined symbols.

Only defined symbols occur in heads of rules. Given a Σp-interpretation I , P
defines an immediate consequence operator TI

P : 2Σd → 2Σd equal to TP except that

the value of atoms in Σp is fixed to their value in I . Similarly, Fitting’s immediate

consequence operator ΨI
P induces an operator on (2Σd )2. J is a model4 of P under the

parametrised well-founded semantics (denoted J |=wf P) if J ∩Σd is the Ψ
J∩Σp
P -well-

founded fixpoint of T
J∩Σp
P . By adding a probability distribution over the parameter

symbols, we obtain the ProbLog language (Fierens et al. 2015).

3 Algebraical theory

In this section we develop the algebraical foundations of our techniques. We

follow the intuitions presented in the introduction: we define one operator that

“summarises” an entire family operators (these will be immediate consequence

operators for different interpretations of the parameter symbols). We study the

relationship between the well-founded fixpoint of the summarising operator and

the original operators. Before formally introducing parametrisations, we focus on

a simpler situation: we show that surjective lattice morphisms preserve the well-

founded fixpoint.

3.1 Surjective lattice morphisms

Definition-Proposition 3.1

Let O : L → L be an operator and f : L → K a lattice morphism. We say that O

respects f if for every x, y ∈ L with f(x) = f(y), it holds that f(O(x)) = f(O(y)).

If f is surjective and O respects f, then there exists a unique operator Of : K → K

with Of ◦ f = f ◦ O, which we call the projection of O on K .

4 Note that this definition of model differs from the traditional definition of model of a logic program.
To emphasise this difference, we use J |=wf P to refer to the parametrised well-founded semantics and
J |=T for the satisfaction relation of propositional logic.
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Fig. 1. Overview of the operators

If f : L→ K is a lattice morphism, f2 : L2 → K2 : (x, y) �→ (f(x), f(y)) is a lattice

morphism from the bilattice L2 to the bilattice K2.

Definition 3.2

Let A : L2 → L2 be an approximator and f : L → K a lattice morphism. We say

that A respects f if A respects f2 in the sense of Definition 3.1. Furthermore, if f is

surjective, we define the projection of A on K as the unique operator Af : K2 → K2

with Af ◦ f2 = f2 ◦ A.

Below, we assume that f : L → K is a surjective lattice morphism, that O :

L → L is an operator and A : L2 → L2 an approximator of O such that both

O and A respect f (see Figure 1). Intuitively elements of L can be thought of as

symbolic representations of interpretations, while the elements of K are classical

interpretations.

The following proposition explicates the relationship between well-founded induc-

tions in L and in K . This proposition immediately leads to a relationship between

the A-well-founded model of O and the Af-well-founded model of Of .

Proposition 3.3

If (xj, yj)j�α is a well-founded induction of A, then (f(xj), f(yj))j�α is a well-founded

induction of Af . If (xj, yj)j�α is terminal, then so is (f(xj), f(yj))j�α.

Theorem 3.4

If (x, y) is the A-well-founded fixpoint of O, then, (f(x), f(y)) is the Af-well-founded

fixpoint of Of .

3.2 Parametrisations

Definition 3.5

Let L and K be lattices. Suppose (fi : L → K)i∈I is a family of surjective lattice

morphisms. We call L a parametrisation of K (through (fi)i∈I ) if for every x, y ∈ L
it holds that x � y if and only if for every i ∈ I , fi(x) � fi(y).

A parametrisation L of a lattice K can be used to “summarise” multiple operators

(the Ofi ) on K by means of a single operator O on L which abstracts away certain

details. In the next section, we use this to compute a symbolic representation of the

parametrised well-founded model.

Theorem 3.6

Suppose L is a parametrisation of K through (fi)i∈I . Let O : L→ L be an operator

and A an approximator of O such that both O and A respect each of the fi. If (x, y)

is the A-well-founded fixpoint of O, the following hold.
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1. For each i, (fi(x), fi(y)) is the Afi -well-founded fixpoint of Ofi .

2. If the Afi -well-founded fixpoint of Ofi is exact for every i, then so is the

A-well-founded fixpoint of O.

4 Operator-based knowledge compilation

We assume throughout this section that P refers to a parametrised logic program

with parameters Σp and defined symbols Σd. In order to apply our theory to logic

programming, we will define an operator (and approximator) that summarises the

immediate consequence operators of P for all Σp-interpretations.

Partial interpretations map defined atoms to a tuple (t, p) of two-valued truth

values. We generalise this type of interpretations: we want (partial) interpretations

to be parametrised in terms of the parameters of the logic program. Instead of

assigning a tuple (t, p) of Boolean values to each atom, we will hence assign a tuple

of two propositional formulas over Σp to each atom in Σd.

In order to avoid redundancies, we work modulo equivalence. Let LΣp be the

language of all propositional formulas over vocabulary Σp. If ϕ is a propositional

formula, we use ϕ̄ to denote the equivalence class of ϕ, i.e., the set of propositional

formulas equivalent to ϕ.5 Let Lp be the set of equivalence classes of elements

in LΣp . We define an order �Lp on Lp as follows: ϕ̄ �Lp ψ̄ if ϕ entails ψ (in

standard propositional logic). This order is well-defined (independent of the choice

of representatives ϕ and ψ); with this order, Lp is a complete lattice. Boolean

operations on Lp are defined by applying them to representatives.

Definition 4.1

A symbolic interpretation of Σd in terms of Σp is a mapping Σd → Lp. The symbolic

interpretation lattice Ldp is the set of all symbolic interpretations of Σd in terms

of Σp. The order � on Ldp is the pointwise extension of �Lp . A partial symbolic

interpretation is an element of the bilattice (t, p) ∈ (Ldp)
2 such that t � p.

The condition t � p in Definition 4.1 excludes inconsistent interpretations. If Σp

is the empty vocabulary (i.e., if P has no parameters), then the lattice Lp is {f̄ , t̄}
with order f̄ � t̄. Hence, in this case, a (partial) symbolic interpretation is “just” a

(partial) interpretation. As with classical interpretations, we often identify a symbolic

interpretation A with the partial symbolic interpretation (A,A).

Intuitively, a (partial) symbolic interpretation summarises many different classical

(partial) interpretations; when we instantiate such as (partial) symbolic interpreta-

tion with a Σp-interpretation, we obtain a unique (partial) Σd-interpretation. The

following definition formalises this intuition.

Definition 4.2

If S = (At,Ap) is a partial symbolic interpretation and I is a Σp-interpretation, the

concretisation of S by I is the partial interpretation SI such that for every symbol

a ∈ Σd with At(a) = ϕt and Ap(a) = ϕp, it holds that SI (a) = (ϕIt , ϕ
I
p).

5 Notice that ā is not the negation of an atom a. We use ¬a for the negation of a.
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The above concept is well-defined (independent of the choice of representatives ϕt en

ϕp). A symbolic interpretation can thus be seen as a mapping from Σp-interpretations

to Σd-interpretations. This kind of mapping is of particular interest, since the

parametrised well-founded semantics induces a similar mapping: it associates with

every Σp-interpretation a Σd-interpretation, namely the ΨI
P-well-founded model of

TI
P. It is this relationship between Σp- and Σd-interpretations that we wish to capture

in propositional logic. Furthermore, as explained below, it is easy to translate a

symbolic interpretation into propositional logic.

Definition 4.3

LetA be a symbolic interpretation and ψp a representative ofA(p) for each p ∈ Σd.

We call a propositional theory T a theory of A if it is equivalent to
∧
p∈Σd

p⇔ ψp.

All theories of A are equivalent. We sometimes abuse notation and refer to the

theory of A, denoted Th(A), to refer to any theory from this class. The goal now is

to find a symbolic interpretation A such that Th(A) is equivalent to P. Our choice

of representatives will depend on the target language of the compilation.

The value of a propositional formula ϕ in a partial interpretation I is an element

of {t, f , u} (or, a tuple of two Booleans) obtained by standard three-valued valuation.

This can easily be extended to symbolic interpretations, where the value of a formula

in a (partial) symbolic interpretation is a tuple of two Σp formulas.

Definition 4.4

Let ϕ be a Σ-formula andS = (At,Ap) a partial symbolic interpretation. The value

of ϕ in S is a tuple (ϕt, ϕp) ∈ L2
p defined inductively as follows:

• p(At ,Ap) = (p̄, p̄) if p ∈ Σp and p(At ,Ap) = (At(p),Ap(p)) if p ∈ Σd,

• (ψ ∧ ξ)(At ,Ap) = (ψt ∧ ξt, ψp ∧ ξp) if ψ(At ,Ap) = (ψt, ψp) and ξ(At ,Ap) = (ξt, ξp)

• (ψ ∨ ξ)(At ,Ap) = (ψt ∨ ξt, ψp ∨ ξp) if ψ(At ,Ap) = (ψt, ψp) and ξ(At ,Ap) = (ξt, ξp)

• (¬ψ)(At ,Ap) = (¬ψp,¬ψt) if ψ(At ,Ap) = (ψt, ψp).

Evaluation of formulas has some nice properties. It commutes with concretisation

(Proposition 4.5) and induces a parametrisation (Proposition 4.6).

Proposition 4.5

For every formula ϕ over Σ, S ∈ (Ldp)
2 and I ∈ 2Σp , it holds that ϕS

I

= (ϕS)I .

Proposition 4.6

The lattice Ldp is a parametrisation of 2Σd through the mappings (πI : Ldp → 2Σd :

A �→ AI )I∈2Σp .

Recall from Section 2.2 that ϕp is the disjunction of all bodies of rules defining

p; using this we can generalise both TP and ΨP to a symbolic setting.

Definition 4.7

The partial parametrised immediate consequence operator ΨP : (Ldp)
2 → (Ldp)

2 is

defined by ΨP(S)(p) = ϕSp for every p ∈ Σd.

The parametrised immediate consequence operator is the operator TP : Ldp → Ldp
that maps A to TP(A), where TP(A)(p) = ϕAp for each p ∈ Σd.
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It deserves to be noticed that the operator TP almost coincides with the operator

TcP defined by Vlasselaer et al. (2015) (the only difference is that we work modulo

equivalence). The following proposition, which follows easily from our algebraical

theory, shows correctness of the methods developed by Vlasselaer et al. (2015).

Theorem 4.8

If P is a positive logic program, then TP is monotone. For every Σ-interpretation

I , it then holds that I |=wf P if and only if I |= Th(lfp(TP)).

Theorem 4.9

For any parametrised logic program P, the following hold:

1. ΨP is an approximator of TP.

2. For every Σp-structure I , it holds that ΨI
P ◦ π2

I = π2
I ◦ΨP.

Definition 4.10

Let P be any parametrised logic program. The parametrised well-founded model of

P is the ΨP-well-founded fixpoint of TP.

Applying Theorem 3.4, combined with Proposition 4.5 and Theorem 4.9 yields:

Theorem 4.11

If the parametrised well-founded model of P is exact, i.e., of the form (A,A) for

some symbolic interpretation A, then for every Σ-interpretation I , it holds that

I |=wf P if and only if I |= Th(A).

Example 4.12

We illustrate the various concepts introduced above on the smokers problem, a

popular problem in probabilistic logic programming. Consider a group of people. A

person of this group smokes if he is stressed, or if he is friends with a smoker. This

results in the following logic program Ps with a domain of three people {a, b, c}:{
∀X : smokes(X)← stress(X)

∀X,Y : smokes(X)← fr(X,Y ) ∧ smokes(Y )

}

This program has parameters stress(·) and fr(·, ·) and defined symbols smokes(·). The

parametrised well-founded model ofPs is the symbolic interpretationAs : Σd → Lp :

such that

As(smokes(a)) =stress(a) ∨ (stress(b) ∧ fr(a, b)) ∨ (stress(c) ∧ fr(a, c))

∨(stress(c) ∧ fr(b, c) ∧ fr(a, b))

∨(stress(b) ∧ fr(c, b) ∧ fr(a, c))

and symmetrical equations hold for smokes(b) and smokes(c).

Notice that Th(As) is equivalent to Ps, in the sense that J |= Th(As) if and

only if J |=wf Ps. For example, let I be the Σp-interpretation {stress(a), fr(b, a)}. We

know that the ΨI
Ps -well-founded fixpoint of TI

Pr is I ′ := {smokes(a), smokes(b)}; this

equals AI
s and I ∪ I ′ is indeed a model of Th(As).

Since Ps is positive, TPs is monotone and its least fixpoint can be computed

by iteratively applying the operator TPs starting from the smallest symbolic
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Fig. 2. A circuit representation of the smokers theory Th(As) and the different steps in the

computation of TPs .

interpretation; this yields the following sequence (only the value of smokes(a) is

explicated; for smokes(b) and smokes(c), similar equations hold):

⊥ : smokes(a) �→ f̄

TPs (⊥) : smokes(a) �→ stress(a)

T2
Ps (⊥) : smokes(a) �→ stress(a) ∨ (stress(b) ∧ fr(a, b)) ∨ (stress(c) ∧ fr(a, c))

T3
Ps (⊥) = As.

In Figure 2, a circuit representation of Th(As) is depicted. In this circuit, the

different layers correspond to different steps in the computation of the parametrised

well-founded model of Ps. Figure 2 essentially contains proofs of atoms smokes(·);
this illustrates that the compiled theory can be used for example for abduction.

For general logic programs, TP is not guaranteed to be monotone and hence the

parametrised well-founded model cannot be computed by iteratively applying TP.

Luckily, well-founded inductions provide us with a constructive way to compute it.

Example 4.13

Consider a dynamic domain in which two gear wheels are connected. Both wheels

can be activated by an external force; since they are connected, whenever one wheel

turns, so does the other. Both wheels are connected to a button. If an operator hits

the button associated to some gear wheel, this means that he intends the state of

the wheel to change (if a wheel was turning, its external force is turned off, if the

wheel was standing still, its external force is activated). If the operator does not hit

the button, the external force is set to the current state of the wheel. Initially, both
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external forces are inactive. This situation (limited to two time points) is modelled

in the following logic program Pw (turns i(T ) means that wheel i is turning at time

point T and button i(T ) means that the button of wheel i is pressed at time T ):⎧⎪⎪⎨
⎪⎪⎩

turns1(0)← turns2(0) turns2(0)← turns1(0)

turns1(1)← turns2(1) turns2(1)← turns1(1)

turns1(1)← turns1(0) ∧ ¬button1(0) turns2(1)← turns2(0) ∧ ¬button2(0)

turns1(1)← ¬turns1(0) ∧ button1(0) turns2(1)← ¬turns2(0) ∧ button2(0)

⎫⎪⎪⎬
⎪⎪⎭

This logic program has defined symbols turns ·(·) and parameters button ·(·). The

parametrised well-founded model of Pw is computed by a well-founded induction

of ΨPw . We start from the least precise partial symbolic interpretation, i.e., S0 that

maps every turns ·(·) to (f̄ , t̄). Since S0 is a fixpoint of ΨPw , the only possible type of

refinement is unfoundedness refinement, resulting in S1 that maps

turns1(0) �→ (f̄ , f̄ ) turns2(0) �→ (f̄ , f̄ )

turns1(1) �→ (f̄ , t̄) turns2(1) �→ (f̄ , t̄)

Application refinement then results in the partial symbolic interpretation S2 =

ΨPw (S1) that maps

turns1(0) �→ (f̄ , f̄ ) turns2(0) �→ (f̄ , f̄ )

turns1(1) �→ (button1(0), t̄) turns2(1) �→ (button2(0), t̄)

Another application refinement then results in the partial symbolic interpretation

S3 = ΨPw (S2) that maps

turns1(0) �→ (f̄ , f̄ ) turns2(0) �→ (f̄ , f̄ )

turns1(1) �→ (button1(0) ∨ button2(0), t̄) turns2(1) �→ (button2(0) ∨ button1(0), t̄)

Finally, one last unfoundedness refinement results in the symbolic interpretationAw

that maps

turns1(0) �→ f̄ turns2(0) �→ f̄

turns1(1) �→ button1(0) ∨ button2(0) turns2(1) �→ button1(0) ∨ button2(0)

In Figure A.1 in online Appendix A, a circuit representation of Th(Aw) is depicted.

In this circuit, the different layers correspond to the evolution of the lower bound

in different steps in the computation of the parametrised well-founded model of Pw
(unfoundedness refinements are not visualised). In Figure A.2, the circuit for this

examples with time ranging from 0 to 2 is depicted.

Example 4.14 (Example 4.12 continued )

Well-founded inductions also work for positive logic programs. Let S0 denote the

least precise partial interpretation. Since Ps is positive, it holds for every i and X

that

Ψi
Ps (S0)(smokes(X)) = (Ti

Ps (⊥)(smokes(X)), t̄).

Hence, repeated application refinements yield the partial symbolic interpretation

(As,
). One final unfoundedness refinement then results in the parametrised well-

founded model of Ps, namely As.
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Discussion

The condition in Theorem 4.11 naturally raises the question “what happens if the

parametrised well-founded model is not exact?”. First of all, our techniques also

work in this setting. Indeed, Theorem 3.6 (1) guarantees that instantiating the the

parametrised well-founded model of P with a Σp-interpretation I results in the

ΨI
P-well-founded fixpoint of TI

P.

Example 4.15

Let PNT be the following logic program{
a← ¬b. b← ¬a. c← ¬b c← e. d← a ∧ ¬c.

}
with parameter symbol e and defined symbols a, b, c and d. The parametrised well-

founded model of PNT is then SNT such that

SNT (a) = (f , t) SNT (b) = (f , t) SNT (c) = (e, t) SNT (d) = (f ,¬e)

However, in this text we mainly focus on programs with an exact parametrised

well-founded model. Corollary 3.6 guarantees that this condition is satisfied for all

logic programs in which the standard well-founded model is two-valued. This kind

of programs is common in applications for deductive databases (Abiteboul and

Vianu 1991) and for representing inductive definitions (Denecker and Vennekens

2014). Classes that satisfy this condition include monotone and (locally) stratified

logic programs (Przymusinski 1988).

This restriction is typically not satisfied by ASP programs, where stable semantics

is used. However, it deserves to be stressed that there is a strong relationship

between ASP programs and logic programs under the parametrised well-founded

semantics. Most ASP programs, e.g., those used in ASP competitions, are so-called

generate-define-test (GDT) programs. They consist of three modules. A generate

module opens the search space (i.e., it introduces parameter symbols); a define

module contains inductive definitions for which well-founded and stable semantics

coincide (as argued by Denecker and Vennekens (2014)) and a test module consist of

constraints. Denecker et al. (2012) have argued that a GDT program is the monotone

conjunction of its different modules. Hence, our technique can be used to compile the

define part of a GDT program. The example below illustrates that only compiling

this part results in an interpretation that captures the meaning of this definition

more closely, by preserving more structural information.

Example 4.16 (Example 4.15 continued )

The first two rules of PNT encode a choice rule for a (or b). The define module of

this program is the program

Pdef =
{
b← ¬a. c← ¬b c← e. d← a ∧ ¬c.

}
with parameter symbols a and e, and defined symbols b, c and d. The parametrised

well-founded model of Pdef is the symbolic interpretation Adef such that

Adef (b) = ¬a Adef (c) = a ∨ e Adef (d) = a ∧ ¬(a ∨ e) = f
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As can be seen, the parametrised well-founded model now contains the information

that d is false, independent of the value of the parameter symbols (independent of

the choice made in the choice rules in the original example).

5 Algorithms

Based on the theory developed in the previous section, we now discuss practical

algorithms for exact and approximate knowledge compilation of logic programs.

5.1 Exact knowledge compilation

The definition of a well-founded induction provides us with a fixpoint procedure

to compute the parametrised well-founded model. Our algorithms are parametrised

by a language L, referred to as the target language; this can be any representation

of propositional formulas. We describe our algorithm, which we call Compile(L),

as a (non-deterministic) finite-state-machine. A state S consists of an assignment

of two formulas St(q) and Sp(q) in L (over vocabulary Σp) to each atom q ∈ Σd.

Hence, a state S corresponds to the partial symbolic interpretation SS = (At,Ap)

such that for each q ∈ Σd, At(q) = St(q) and Ap(q) = Sp(q). The transitions in

our finite-state-machine are exactly those tuples of states (S,S′) such that SS′ is a

ΨP-refinement of SS.

We further restrict these transitions to maximally precise transitions: application

refinements that refine S to ΨP(S) and unfoundedness refinements as described in

Proposition 2.1. Furthermore, we propose to make the resulting finite-state-machine

deterministic by prioritising application refinements over unfoundedness refinements

since they are cheaper, i.e., they only require one application of ΨP.

The final output of Compile(L) is a theory Th(A) in L, where A is the

parametrised well-founded model of P. When L denotes Boolean circuits, each

application of ΨP adds a layer of Boolean gates over the circuits in Ss. When L
denotes a language with a so-called Apply function (Van den Broeck and Darwiche

2015) (e.g., SDDs), each application of ΨP calls Apply to conjoin or disjoin circuits

from Ss.

Figure 2 contains an example circuit for the smokers problem (Example 4.12).

The different layers in the circuit correspond to different steps in a well-founded

induction (or the least fixpoint computation). Our algorithm follows the well-founded

induction as described in Example 4.14, by prioritising application refinements over

unfoundedness refinements. Similarly, our algorithm also follows the well-founded

induction from Example 4.13. During the execution, circuits to represent the upper

and lower bounds are gradually built (layer by layer).

Theorem 5.1

LetLBC be the language of Boolean circuits. The following hold: (i) Compile(LBC )

has polynomial-time complexity and (ii) the size of the output circuit of

Compile(LBC ) is polynomial in the size of P.
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In the terminology of Darwiche and Marquis (2002), this means that Boolean

circuits are at least as succinct as logic programs under the parametrised well-

founded semantics. With other languages, for example when L denotes OBDDs or

SDDs, our algorithm can take exponential time, and its output can take exponential

space in the size of P. This is not surprising given the fact these languages support

many (co-)NP hard inference tasks in polynomial time. Because they support

equivalence checking (which is convenient to detect fixpoints early) and have a

practically efficient Apply function (Van den Broeck and Darwiche 2015), OBDDs

and SDDs are excellent languages for use in Compile.

5.2 Approximate knowledge compilation

The above section provides us with a way to perform various types of inference on

logic programs: we can compile any logic program into a target formalism suitable

for inference (e.g., SDD for equivalence checking or weighted model counting, CNF

for satisfiability checking, etc.). However, when working with large programs this

approach will be infeasible, simply because compilation is too expensive. In this

case, we often want to perform approximate knowledge compilation (Selman and

Kautz 1996). Well-founded inductions provide us with the means to do this.

Proposition 5.2

Suppose the parametrised well-founded model of P is (A,A). Let (Ai,1,Ai,2) be a

well-founded induction of ΨP. Then for every i, Th(Ai,1) |= Th(A) |= Th(Ai,2).

One application of approximate knowledge compilation is in approximate inference

by weighted model counting (WMC) (Chavira and Darwiche 2008) for probabilistic

logic programs (Fierens et al. 2015). Let ϕ be a formula (query) over Σ and w a

weight function on Σ. Then it follows immediately from Proposition 5.2 that

WMC(Th(Ai,1) ∧ ϕ,w) �WMC(P∧ ϕ,w) �WMC(Th(Ai,2) ∧ ϕ,w).

As Compile(L) follows a well-founded induction, it can be stopped at any time to

obtain an upper and lower bound on the weighted model count (and therefore on

the probability of the query). In fact, Proposition 5.2 can be used to perform any

(anti)-monotonic inference task approximately.

6 Conclusion

In this paper, we presented a novel technique for knowledge compilation of general

logic programs; our technique extends previously defined algorithms for positive

logic programs. Our work is based on the constructive nature of the well-founded

semantics: we showed that the algebraical concept of a well-founded induction

translates into a family of anytime knowledge compilation algorithms. We used

this to show that Boolean circuits are at least as succinct as logic programs (under

the parametrised well-founded semantics). Our technique also extends to Kripke-

Kleene semantics and to other knowledge representation formalisms. Extending the
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implementation by Vlasselaer et al. (2015) to general logic programs and testing it

on a set of benchmarks are topics for future work.
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