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Abstract

Wolbachia bacteria are among the most common endosymbionts in insects. In
Wolbachia research, the Wolbachia surface protein (wsp) gene has been used as a
phylogenetic tool, but relationships inferred by single-locus analysis can be
unreliable because of the extensive genome recombination among Wolbachia
strains. Therefore, a multilocus sequence typing (MLST) method for Wolbachia,
which relies upon a set of five conserved genes, is recommended. In this study, we
examined whether the alnus ambrosia beetle, Xylosandrus germanus (Blandford), is
infected with Wolbachia using wsp and MLST genes. Wolbachia was detected from
all tested specimens of X. germanus (n= 120) by wsp amplification. Five distinct
sequences (i.e. five alleles) for wsp were found, and labeled as wXge1–5. MLST
analysis and molecular phylogeny of concatenated sequences of MLST genes
identified wXge3 and wXge5 as closely-related strains. The detection rate of wXge4
and wXge1 was 100% and 63.3%, respectively; wXge2, wXge3 and wXge5 were
detected from less than 15% of specimens. We performed mitochondrial haplotype
analyses that identified three genetic types of X. germanus, i.e. Clades A, B and C.
Wsp alleles wXge1, wXge2 and wXge4 were detected in all clade A beetles; wXge2
allele was absent from Clades B and C. We concluded that (i) five wsp alleles were
found from X. germanus, (ii) use of MLST genes, rather than the wsp gene, are more
suited to construct Wolbachia phylogenies and (iii) wsp alleles wXge2 and wXge3/
wXge5 would infect clade A and clade B/C of X. germanus, respectively.
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Introduction

Wolbachia is an intracellular alpha-proteobacterium that
infects an estimated 66% of arthropod species (Hilgenboecker
et al., 2008). Wolbachia are vertically transmitted from parents
to offspring only through the egg cytoplasm. In order to
enhance maternal transmission, Wolbachia manipulates host
reproduction by inducing cytoplasmic incompatibility (CI),
male-killing, parthenogenesis and feminization of genetic
males (O’Neill et al., 1997).

Previous studies have reported different sequence types
(i.e. alleles) for the wsp gene within a host species. Some host
species are often detected with two or more alleles of a
Wolbachia gene, referred to as multiple infections. Double or
triple infection in a single host species are well documented
(Breeuwer et al., 1992; Vavre et al., 1999; Kondo et al., 2002a).
Detection of four or more alleles (especially defined as
superinfections here) are reported in a few insects, such as
ants, fruit flies and beetles (Malloch et al., 2000; Jamnongluk
et al., 2002; Reuter & Keller, 2003; Dedeine et al., 2005).
Superinfection is caused by frequent occurrence of horizon-
tal transmission of Wolbachia from other host species
(Jamnongluk et al., 2002), mutation of Wolbachia genome
(Malloch et al., 2000) and/or recombination between differ-
ent Wolbachia strains co-existing in a single individual
(Reuter & Keller, 2003). Genetic recombination confounds
phylogenetic analyses of Wolbachia based on single loci, e.g.
16S rDNA, ftsZ or wsp (Werren & Bartos, 2001; Baldo et al.,
2005). Therefore, Baldo et al. (2006) has proposed a multi-
locus sequence typing (MLST) scheme for Wolbachia, which
uses five housekeeping and ubiquitous genes to study
Wolbachia strain relationships.

The subfamily Scolytinae (Curculionidae) is composed of
subcortical-feeding insects (bark beetles) and fungus-feeding
beetles (ambrosia beetles) (Rudinsky, 1962). Some of them
seriously damage forest trees, and their ecology and
evolutionary history have been extensively studied for the
purpose of pest control (e.g. Kirkendall, 1983, 1993; Beaver,
1989; Normark et al., 1999; Farrell et al., 2001). The alnus
ambrosia beetle, Xylosandrus germanus, is one such species. It
is highly inbred with female-biased sex ratio ( > 0.9) (Kaneko,
1965) that is reduced with outbreeding (Peer & Taborsky,
2004). However, outbreeding reduces egg viability (Peer &
Taborsky, 2005). This observation is suggestive of Wolbachia
infections (Peer & Taborsky, 2005).

The objectives of this study were to reveal whether
Wolbachia infects X. germanus; and, if so, to investigate
the Wolbachia infection pattern and evolutionary history in
X. germanus, which may provide information on outbreeding
depression. We performed amplification and sequence of
five MLST and wsp Wolbachia genes and conducted mole-
cular phylogenetic analyses. The revealed pattern of Wolba-
chia infection was then compared to the X. germanus
phylogeny based on mitochondrial COI.

Materials and methods

Insect collection

We collected flying adults of this species at nine sites in
Japan in 2005 and 2006 (table S1). Ethanol-bait traps, 10-ml
vials filled with 99.5% ethanol (Ito et al., 2008), were set up in
a mixed stand of broad-leaved trees and shrubs and trapped
insects were collected two weeks post set up. Trapped live
insects were all females because males of X. germanus are not

capable of flying in forests (Kaneko, 1965). Captured insects
were placed in absolute ethanol and stored at x30�C until
DNA was extracted. Numbers of samples used in this study
are shown in table S1.

DNA extraction and PCR

DNA was extracted from the abdomens of individual
specimens. After the abdomens were crushed, each homo-
genate was incubated with 200 ml of 5% (wt/wt) Chelex-100
sodium (sigma) and 4ml of 20mg mlx1 Proteinase K at 56�C
overnight. After boiling, the supernatant was used directly
as the PCR template.

Because, in this study, we used two distinguishable
regions of ftsZ (Holden et al., 1993; Baldo et al., 2006), we
described ftsZ-a and ftsZ-b, respectively (table S2). We
amplified three Wolbachia genes (wsp, 16S rDNA and ftsZ-a)
and a mitochondrial gene (COI) of X. germanus by PCR using
specific primer pairs (table S2). Each 10-ml reaction volume
consisted of 1ml of DNA extract, 0.5ml of dNTPs (2.5mM
each), 0.05 ml of Taq polymerase (5Umlx1), 5.45ml of sterile
water, 1 ml of 10r buffer (TAKARA) and 1 ml of forward and
reverse primers for the target gene (100 mM). We carried out
the standard PCR following conditions: denaturation for
3min at 94�C, 35 cycles of 94�C for 1min, the optimal
annealing temperature (55�C for wsp, 50�C for ftsZ-a and 16S
rDNA, and 48�C for COI) for 1min and 72�C for 1min, and
final extension at 72�C for 10min. PCR products were
visualized in 1.5% agarose gel under natural light by staining
with Mupid Blue (ADVANCE-BIO) or under UV illumi-
nation by staining with ethidium bromide.

Cloning and sequencing

PCR products of wsp (550–600 bp) in 3–6 individuals from
Furano, Sapporo, Iwate and Aichi, respectively, were cloned
with the p-GEMT Easy Vector (Promega) using ampicillin
and X-gal blue-white selection system. About ten white
colonies expected to contain the inserted plasmid from each
product were directly subjected to PCR using the primers
M13M4 (50-GTT TTC CCA GTC ACG AC-30) and M13RV (50-
CAG GAA ACA GCT ATG AC-30), useful for determining
the length of the inserted DNA fragment. The colonies
containing the expected fragment were isolated and cultured
in 2ml of LB medium with ampicillin, and the purified
plasmid DNA were directly sequenced using M13M4 and
M13RV primers. From the medium, purified plasmids (50 ml)
were eluted using a QIAprep-Spin Miniprep Kit (Qiagen).
A dye terminator-labeled cycle sequencing reaction was
conducted with BigDye DNA Sequencing Kit ver. 3.1 (PE
Applied Biosystems). Reaction products were analyzed
using an ABI PRISM 310 Genetic Analyzer (PE Applied
Biosystems). The temperature profile was 96�C for 10 s
followed by 25 cycles of 96�C for 10 s, 50�C for 5 s and 60�C
for 4min. We assigned the wsp alleles in X. germanus the
names ‘wXge1-5’, according to wsp sequences.

Amplicons of 16S rDNA, ftsZ-a and COI were puri-
fied using QIAprep-Spin Miniprep Kit (Qiagen) and bi-
directionally sequenced using BigDye DNA Sequencing Kit
ver. 3.1 (PE Applied Biosystems). Reaction products of these
genes then were analyzed by the same method as those of
wsp.

The wsp, ftsZ-a, 16S rDNA and COI sequences deter-
mined were deposited in the DDBJ/EMML/GenBank
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nucleotide sequence databases. Accession numbers are
shown in table S3a, b.

Phylogenetic analysis

Multiple alignments of wsp and COI sequences were
conducted using the program package CLUSTALW (Thompson
et al., 1994). The final alignment was inspected and corrected
manually using the sequence analysis software BioEdit
7.0.5.3 (Hall, 1999). Ambiguously-aligned regions were ex-
cluded from phylogenetic analysis. Nucleotide sites, includ-
ing alignment gaps, were also omitted from the analysis.
Phylogenetic trees were constructed with neighbor-joining
(NJ), maximum parsimony and UPGMA methods, using the
program package MEGA 3 (Kumar et al., 2004) or PHYLIP 3.65
(Felsenstein, 2004). Bootstrap tests were conducted with 1000
resamplings.

For the phylogenetic tree of the COI sequence, we
selected only five X. germanus populations (Furano, Sapporo,
Iwate, Aichi and Tottori). The other four populations
(Yamagata, Saitama, Kochi and Miyazaki) were very similar
in haplotypes to Aichi and Tottori (Ito et al., 2008). As an
outgroup species, we used the closely-related species,
Xylosandrus crassiusculus (Motshulsky), captured in the traps
placed in Aichi.

Detection of Wolbachia alleles infecting each individual

Wsp alleles in each X. germanus sample were detected by
diagnostic PCR. Allele-specific reverse primers (table S4)
were designed according to wsp or 16S rDNA sequences.
Multiplex-PCR for detection of wXge1, wXge2 and wXge3/
wXge5 (lengths of expected PCR products were 312, 245 and
406 bp, respectively) was performed in 20-ml reaction
volumes consisting of 1 ml of DNA extract, 1 ml of dNTPs
(2.5mM each), 0.2ml of Taq polymerase (5U mlx1), 9.8ml of
sterile water, 2ml of 10r buffer (TAKARA), 3 ml of wsp81F
and 1 ml of each reverse primer (wxge1wr, wxge2wr and
wxge3/5wr) (100 mM). wXge4 was detected by standard PCR
using another reverse primer (wxge4wr) (255 bp). For
wxge3/5wr-positive individuals, standard PCRs for detec-
tion of wXge3 and wXge5 were also conducted using
different reverse primers, wxge3wr and wxge5_16sr, respec-
tively. The conditions of multiplex PCR and standard PCR
for wXge4 detection were identical to those of wsp PCR. To
discriminate between wXge3 and wXge5 (489 and 632 bp,
respectively), we carried out touchdown PCR using the
following conditions: denaturation for 3min at 94�C; 94�C
for 1min, 70�C decreasing by 2�C for 1min and 72�C for
1min; 35 cycles of ten cycles of 94�C for 1min, 50�C for 1min
and 72�C for 1min and final extension at 72�C for 10min.
All PCR products were visualized in 1.5% or 2% agarose gel
for standard PCR and multiplex PCR, respectively, under
natural light by staining with Mupid Blue (ADVANCE-BIO)
or under UV illumination by staining with ethidium
bromide. To check whether accurate alleles were detected,
a few randomly selected PCR products were sequenced
directly.

Multilocus sequence typing method for Wolbachia

The MSLT method consists of (i) PCR, (ii) sequenced, (iii)
assigned and (iv) reconstruction of the MLST tree. MLST
genes (gatB, hcpA, coxA, ftsZ-b, fbpA) were amplified by

touchdown PCR using specific primers (table S2). The PCR
conditions were as follows: denaturation for 3min at 94�C;
94�C for 30 s, 70–50�C decreasing by 2�C for 45 s and 72�C
for 1min; 35 cycles of 94�C for 30 s, 50�C for 45 s and 72�C
for 1min and final extension at 72�C for 10min. PCR
products of these genes were purified and bi-directionally
sequenced by the same method as 16S rDNA, ftsZ-a and COI.
Because MLST genes of wXge4 could not be amplified and
sequenced, we removed the strain from MLST analysis.

Wolbachia strains were assigned to their own sequence
types (ST), defined as the combination of five alleles in
MLST genes. Strain and host information was deposited in
the MLST database at http://pubmlst.org/wolbachia (see
table S5).

UPGMA and NJ trees were reconstructed from MLST
allelic profiles (table S5) using START2 program (Jolley et al.,
2001). Moreover, the concatenated alignment of MLST genes
(2079 bp) for the phylogenetic tree was analyzed as described
above.

Results

Wolbachia infection in local populations of X. germanus

The wsp gene was successfully amplified from all the
specimens analyzed, confirming fixation of Wolbachia infec-
tions in all X. germanus populations.

Wolbachia alleles in X. germanus

Five alleles for wsp were detected. Lengths of the five wsp
sequences, coded as wXge1to wXge5, ranged from 538 to
580 bp. Based on molecular phylogenetic analysis using wsp
sequences, our five wsp sequences were apparently inde-
pendent of each other (fig. 1).

wXge3 differed from wXge5 by only 2 bp. With respect to
ftsZ-a and 16S rDNA, however, genetic differences between
wXge3 and wXge5 were greater (ftsZ-a: 4 bp/728 bp; 16S
rDNA: 5 bp/853 bp). Therefore, we regarded wXge3 and
wXge5 as different alleles and designed primers for detecting
infecting Wolbachia based on the polymorphisms existing
between these sequences for either the wsp and 16S rDNA
(table S4) (see Materials and methods).

Multilocus sequence typing for Wolbachia

We obtained a phylogeny of the five Wolbachia strains
using an MLST method based on Wolbachia-housekeeping
genes with strains from Baldo & Werren (2007) and the
MLST database (fig. 2a). Sequence tagging (ST) profiles are
shown in table S5. Because MLST genes of wXge4 could not
be amplified, we excluded this strain from MLST analysis.
wXge1 (ST-131) and wXge2 (ST-138) were closely related to
ST-82 and ST-119, respectively (fig. 2a), containing two
common alleles (table S5). wXge3 and wXge5 belonged to the
ST-139 and ST-140 complex, which shares three alleles with
each other (table S5). The complex is phylogenetically similar
to the ST-88 and ST-130 complex (fig. 2a).

A molecular phylogenetic tree using the concatenated
alignment of MLST genes (2079 bp) is shown in fig. 2b. All
the Wolbachia strains in this analysis belonged to the A
supergroup as defined by Werren et al. (1995). wXge1 was
closely related to ST-12, ST-66 and ST-73, and wXge2 to ST-
65. wXge3 and wXge5 showed the greatest similarity to ST-2,
not to ST-88 or ST-130.
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Detection rates and polymorphism of Wolbachia

Prevalence of each Wolbachia alleles found by diagnostic
PCR is summarized in table 1. wXge4 was detected in all the

insects tested. wXge1 also occurred in all the populations
accounting for > 55% of the infection rates except that from
Sapporo. wXge2 was detected in Furano, Sapporo and Iwate,
wXge3 in Furano and Iwate and wXge5 only in Furano.

Drosophila willistoni wWil: AY620229

Drosophila simulans wAu: DQ235409

Drosophila yakuba: AY291348

Pseudacteon obtusus wPcurA2: AY878111

Pseudacteon tricuspis wPtriA: AY878110

Pleistodontes imperialis. AY567683

Trichogramma brassicae wBra12: AF452645

Trichogramma evanescens. AY177734

Chilocoris piceus. AB109592

Armigeres omissus wOmiA: AY462852

Charagochilus angusticollis: AB109612

Xylosandrus germanus wXge4: AB359042

Xylosandrus germanus wXge2: AB359040

Xylosandrus germanus wXge5: AB359043

Xylosandrus germanus wXge3: AB359041
Nurscia albofasciata wNuralb2: EU916178

Formica exsecta wFex1: AY101196

Adomerus triguttulus: AB109598

Ephestia kuehniella: AB024570

Leptopilina heterotoma: AF124860

Diopsis apicalis: AF481162

Drosophila sp.: EU395834

Drosophila sp.: DQ235410

Drosophila ananassae: AY858801

Drosophila simulans wNo: AF020074

Trichogramma deion wDei: AF020084

Diachasmimorpha longicaudata: AY157680

Leptopilina heterotoma: EU288006

Byturus ochraceus wKue: AJ585383

Byturus unicolor: AJ585381

Byturus unicolor: AJ585384

Dacus destillatoria wDes: AF295344

Callosobruchus chinensis wBruAus: AB038325

Glossina austeni wAus: AF020077

Culex pipiens wPip: AF020061

Byturus ocharaceus: AJ585382

Scotinophora coarctata: AF481169

Scotinophara lurida: AB109595

Diaea circumlita wDiacir1: AY486093

Drosophila septentriosaltans wSpt: AY620209

Rhagoletis cerasi w Cer2: AF418557

Asobara tabida: AY581191

Anastrepha striata: EU116319

Xylosandrus germanus wXge1: AB359039

61

68

100

99

100

100

100
100

100

100

93

73

64

64

99

99
94

88

88

92

99

0.02

Fig. 1. Molecular phylogenetic tree of five Wolbachia alleles infecting X. germanus based on the wsp gene.

Host insect species, accession number of wsp sequence and name of each Wolbachia are described in the neighbor-joining tree. Bootstrap
values of more than 60% which were obtained with 1000 resamplings are shown at the nodes. Both maximum-parsimony analysis and
UPGMA analysis essentially produced the same result. No amplification was obtained with ftsZ-a and 16S rDNA primers in the wXge4.
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ST-119 no data

ST-88 no data

ST-130 no data

ST-130 no data
ST-88   no data

ST-82   no data

ST-138 Xylosandrus germanus wXge2

ST-131 Xylosandrus germanus wXge1

ST-131 Xylosandrus germanus wXge1

ST-138 Xylosandrus germanus wXge2

ST-139 Xylosandrus germanus wXge3

ST-140 Xylosandrus germanus wXge5

ST-2 Aedes albopictus

ST-5 Acromis sparsa
ST-22 Incistitermes syderii

ST-29 Solenopsis invicta

ST-33 Camponotus pennsylvanicus

ST-75 Agelenopsis longistyla

ST-140 Xylosandrus germanus wXge5
ST-139 Xylosandrus germanus wXge3
ST-29   Solenopsis invicta
ST-22   Incistitermes snyderII
ST-75   Agelenopsis longistyla

ST-73   Agelenopsis utahana

ST-73 Agelenopsis utahana

ST-66   Agelenopsis aperta (CBR1)

ST-66 Agelenopsis aperta (CBR1)

ST-65 Agelenopsis aperta (CDP21)

ST-35   Brugia malayi
ST-34   Drosophila bifasciata

ST-16   Drosophila simulans

ST-17   Drosophila simulans wRi

ST-17 Drosophila simulans wRi

ST-16 Drosophila simulans
ST-30 Tribolium confusum

ST-35 Brugia malayi

ST-25   Nasonia giraulti

ST-12   Drosophila orientacea

ST-12 Drosophila orientacea

ST-13   Drosophila recens
ST-1     Drosophila melanogaster wMel

ST-1 Drosophila melanogaster wMel

ST-13 Drosophila recens

ST-34 Drosophila bifasciata

ST-23 Muscidifurax uniraptor

ST-19 Ephestia kuenhiella

ST-25 Nasonia giraulti

ST-23   Muscidifurax uniraptor

ST-9     Culex pipiens
ST-19   Ephestia kuenhiella

ST-33   Camponotus pennsyulvanicus
ST-30   Tribolium confusum
ST-18   Encarsia formosa

ST-26   Nasonia vitripennis
ST-3     Acraea encedon

ST-3 Acaea encedon

ST-26 Nasonia virtipennis

ST-9 Culex pipiens

ST-18 Encarsia fomosa

ST-5     Acromis sparsa
ST-2     Aedes albopictus

ST-65   Agelenopsis aperta (CDP21)

A

B 99
62

69

100

96

100

100

100 93
68

89

99
75

81

72

100
87

90

0.01

0.1

a

b

Fig. 2. (a) MLST tree based on sequence type (ST) profiles and (b) neighbor-joining (NJ) tree based on concatenated alignment of MLST
genes of four Wolbachia strains infecting X. germanus without wXge4, including other strains from Baldo et al. (2007) and the database
http://www.pubmlst/wolbachia.

ST numbers, host species and names of Wolbachia strains are described in both trees. ST profiles are shown in table S5. Bootstrap values
of more than 60% which were obtained with 1000 resamplings, and delineation of supergroup (A, B) are shown at the nodes of the NJ
tree. No amplification is found in five MLST genes of wXge4.
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The detection rates for these alleles were lower than those for
wXge1, except for wXge2 in Sapporo and wXge3 in Furano.

The maximum number of Wolbachia combinations in
X. germanus was 16 ( = 24) because wXge4 was detected from
all the individuals. We have developed an abbreviation
system for the possible combinations (e.g. detection of three
alleles, wXge1, wXge2 and wXge3, is represented as X123). At
least nine combinations out of 16 were detected from nine
populations (table 2): one pattern of a allele (X4); four
combinations of two alleles (X14, X24, X34 and X45); three
combinations of three alleles (X124, X134 and X345); and
one combination of four alleles (X1345). The Furano popu-
lation showed the greatest combination of Wolbachia alleles
(seven combinations). In Sapporo and Iwate, there were
three and five Wolbachia combinations, respectively. In
contrast, Yamagata, Saitama, Aichi, Tottori, Kochi and
Miyazaki were less polymorphic (X4 and X14).

Relationship of Wolbachia combinations with X. germanus
haplotypes

A molecular phylogenetic tree based on COI of mtDNA
in X. germanus is shown in fig. 3 (cf. table S6). Description of
haplotypes (Xg2–36) and clades (A–C) was determined
according to Ito et al. (2008). Six new haplotypes (Xg31–36)
were found in this study. Clade A (Xg02–04, 10, 31, 35 and
36; N= 40) was consistently found in all five populations,
whereas clade B (Xg22–24, 27, 32–34; N= 17) belonged to
individuals from Furano and Iwate. Clade C (only Xg30;
N= 3) was found only in Furano.

Figure 3 also illustrates relationship between Wolbachia
combination and COI haplotypes. Individuals in clade A had
wXge1 and/or wXge2 in addition to wXge4 (X4, X14, X24 and
X124). On the other hand, wXge2 was absent from Clades B
and C: X14, X34, X45, X134, X345 and X1345.

Discussion

Wolbachia infection in an ambrosia beetle

This is the first report of Wolbachia infection in ambrosia
beetles. Wolbachia infections had already been found in four
species of bark beetles: Ips typographus (Stauffer et al., 1997),
Hypothenemus hampei (Vega et al., 2002), Coccotrypes dactyl-
iperda (Zchori-Fein et al., 2006) and Pityogenes chalcographus
(Arthofer et al., in press). However, there are no sequence

data of Wolbachia infecting I. typographus, C. dactyliperda and
P. chalcographus, and the data for H. hampei (accession
number: AF389084) is too short to compare with our wsp
sequences.

In X. germanus, outbreeding depression reduces egg
viability (Peer & Taborsky, 2005), suggesting CI induced by
Wolbachia. In our results (figs 1 and 2), X. germanus was
determined to be infected with at least five Wolbachia strains
and with a total of nine allele combinations (table 2).
Although we did not investigate Wolbachia phenotypes in
the present study, our results imply outbreeding depression
is probably caused by Wolbachia-induced multi-directional
CI, which occurs in crosses where both males and females
are infected with different CI-inducing Wolbachia (e.g.
Hoffmann & Turelli 1997). We recognize the possibility that
female-biased sex ratios in X. germanus may be caused by
infection of other sex-altering bacteria (e.g. Cardinium: Gotoh
et al., 2007). Surveys of such bacteria are planned in the
future.

Comparison of MLST analysis with wsp-based phylogeny

In the present study, we determined Wolbachia taxonomy
by both wsp-based phylogeny (fig. 1) and MLST analysis
(fig. 2). Although molecular phylogenetic analysis, based on
wsp, has often been reported since Zhou et al. (1998), the
surface protein wsp is highly recombinant and wsp-based
inferences are not reliable (Baldo & Werren, 2007). After the
MLST method was proposed as the better analysis for
Wolbachia taxonomy (Baldo et al., 2006), some studies using
MLST have been carried out (Baldo & Werren, 2007; Baldo
et al., 2007, 2008; Zabalou et al., 2008; Narita et al., 2009;
Ratchoudhury et al., 2009 (cf. MLST database)). However, the
MLST tree (fig. 2a) has low resolution in the point of
phylogeny because it focused on differentiation of each-gene
sequences not sequences themselves (Maiden et al., 1998).
Therefore, at the moment, molecular phylogenetic analysis
using concatenated alignment of MLST genes may reveal
Wolbachia evolution more clearly.

Historical dynamics of Wolbachia strains infecting
X. germanus

We have detected five alleles of wsp gene from
X. germanus. Detection of distinct wsp alleles in a single
specimen is common (Breeuwer et al., 1992; Vavre et al., 1999;
Kondo et al., 2002a). However, only four studies reported
detection of more than five alleles in one insect species: ants
Formica exsecta (five alleles: Reuter & Keller, 2003), Solenopsis
daguerrei (nine alleles: Dedeine et al., 2005), the fruit fly
Bactrocera ascita (five alleles: Jamnongluk et al., 2002) and the
raspberry beetle Byturus tomentosus (seven alleles: Malloch
et al., 2000).

wXge4 is unique because only wsp gene was amplified in
all the insects tested. Some recent papers have reported
lateral gene transfer from Wolbachia to host insects (Kondo
et al., 2002b; Hotopp et al., 2007). Although we do not have
any direct evidence, wXge4 might be the only gene fragment
inserted in the host chromosome.

The phylogenetic analyses (figs 1 and 2) show that
Wolbachia infecting X. germanus are divergent between
wXge3 and wXge5; the difference in the wsp sequence
between wXge3 and wXge5 was only 2 bp, and wXge3 was
identical in three out of five MLST genes with wXge5

Table 1. Detection rates (%) of each Wolbachia allele in Japanese
X. germanus populations.

Locality Detection rate (%)

wXge1 wXge2 wXge3 wXge4 wXge5

Furano 66.7 4.8 76.2 100.0 23.8
Sapporo 10.0 70.0 0.0 100.0 0.0
Iwate 61.1 38.9 5.6 100.0 0.0
Yamagata 60.0 0.0 0.0 100.0 0.0
Saitama 60.0 0.0 0.0 100.0 0.0
Aichi 94.1 0.0 0.0 100.0 0.0
Tottori 55.6 0.0 0.0 100.0 0.0
Kochi 71.4 0.0 0.0 100.0 0.0
Miyazaki 75.0 0.0 0.0 100.0 0.0

Total 63.3 12.5 14.2 100.0 4.2

236 Y. Kawasaki et al.

https://doi.org/10.1017/S000748530999023X Published online by Cambridge University Press

https://doi.org/10.1017/S000748530999023X


(cf. table S5). These results suggest that a common strain
differentiated to wXge3 or wXge5. Although when they were
differentiated has not been clear, it may have occurred in the
current host, X. germanus.

We have found nine different combinations with four
Wolbachia alleles, without wXge4, in X. germanus (table 2). To
date, this species has the most variable combinations of
Wolbachia among the reported hosts. This combination may
have been formed by multiple horizontal transmissions to
different host lineages. wXge2 and wXge3/wXge5 did not
infect the same individuals (table 2) and their combinations
were related to the beetle phylogeny (fig. 3). Ito et al. (2008)
implied that X. germanus has already developed into three
lineages (clades A, B and C) before colonization of Japan.
Thus, wXge1 and wXge4 may infect the common ancestor
of three clades of X. germanus before its differentiation.
After that, wXge2 and the ancestor strain of wXge3 and
wXge5 may infect its descendants, clades A and B/C. Finally,

wXge3 and wXge5 would differentiate from the common
Wolbachia.
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Table 2. Wolbachia infection polymorphism in Japanese X. germanus populations.

Locality No. of individuals

with an allele with two alleles with three alleles with four alleles Total

X4 X14 X24 X34 X45 X124 X134 X345 X1345

Furano – 2 1 3 2 – 10 1 2 21
Sapporo 2 1 7 – – – – – – 10
Iwate 6 4 1 – – 6 1 – – 18
Yamagata 6 9 – – – – – – – 15
Saitama 6 9 – – – – – – – 15
Aichi 1 16 – – – – – – – 17
Tottori 4 5 – – – – – – – 9
Kochi 2 5 – – – – – – – 7
Miyazaki 2 6 – – – – – – – 8

Total 29 57 9 3 2 6 11 1 2 120

Combinations of Wolbachia alleles are shown in abbreviations (e.g. triple detection of wXge1, wXge2 and wXge3 as X123).

Xc

Xg36: X14 (1)

Xg04: X4 (1)

Xg10: X14 (1)

Xg35: X14 (1)

X31: X24 (1)

Xg34: X134 (1)

Xg24: X134 (1)
Xg32: X134 (1)

Xg33: X134 (1)

Xg27: X134 (1)

Xg02: X4 (2), X24 (5), X124 (1)

Xg30: X34 (1), X45 (2)
Xg22: X14 (1), X34 (1), X134 (1)

Xg03: X4 (5), X14 (16), X24 (1), X124 (5)

Xg23: X14 (1), X34 (1), X134 (5), X345 (1), X1345 (1)

64

100

100

78

85
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C
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Fig. 3. Molecular phylogenetic tree of X. germanus haplotypes based on CO1 of mtDNA with reference to Wolbachia combinations.

Bootstrap values of more than 60% which were obtained with 1000 resamplings and clade of X. germanus (A–C) are shown at the nodes.
Localities of the haplotypes (in abbreviation as Xg02–36) are shown in table S6.Wolbachia combinations in X. germanus, belonging to each
haplotype are described in the same manner as table 2, together with number of individuals in parentheses. Xylosandrus crassiusculus
(Xc) was used as an outgroup.
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Supplementary material

The following online table can be viewed at http://
journals.cambridge.org/ber:

Table S1. Location of sampling sites and numbers of
individuals tested in each year.
Table S2. Information on primers for amplifying Wolbachia
and host insect X. germanus DNA.
Table S3a. Accession numbers of three genes (wsp, ftsZ-a and
16S rDNA) of each Wolbachia strain.
Table S3b. Accession numbers of COI of mtDNA in each
haplotypes of X. germanus and X. crassiusculus.
Table S4. Information on reverse primers for differentiating
between Wolbachia alleles.
Table S5. Sequence type profile of eachWolbachia strain used
in MLST.
Table S6. Composition of X. germanus haplotype on COI of
mtDNA in each locality.
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