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This study considers the interaction of two identical solid axisymmetric bodies (of
diameter d and thickness h) freely falling in a fluid at rest. We determine the domains
of existence of the different interaction behaviour of the two bodies (i.e. attraction,
repulsion and indifference) as a function of their initial relative position. We then
investigate in detail the case of bodies falling in tandem, for both rectilinear and
periodic paths, and the associated attraction behaviour. For all the Reynolds numbers
and aspect ratios of the bodies (χ = d/h) investigated, the trailing body catches
up with the leading body. We provide a quantitative description of the kinematics
leading to the regrouping of the bodies and analyse its relationship with the wake of
the leading body. In the case of rectilinear paths, a dynamical model that takes into
account the axial evolution of the wake of the leading body is proposed to reproduce
the acceleration observed for the trailing body until a vertical separation distance
between the bodies of 1.5 diameters. In parallel, direct numerical simulations (DNS)
of the flow about two fixed bodies in tandem in an oncoming flow are carried out,
providing a good estimation of the motion of the bodies for separation distances
larger than 5 diameters. For periodic paths, the kinematics leading to the regrouping
of the bodies is slower than for rectilinear paths. However, in this case, the interaction
also leads to significant changes in the characteristics of the oscillatory motion and
is strongly dependent on the aspect ratio of the bodies. To explain the observed
differences, we consider the effect of the transverse inhomogeneity of the wake of
the leading body on the oscillatory motion of the trailing disk.

Key words: multiphase flow, multiphase and particle-laden flows, wakes/jets

1. Introduction
This paper investigates the hydrodynamical interaction at moderate Reynolds

numbers of two identical solid axisymmetric bodies falling in tandem in a fluid
otherwise at rest. The tandem configuration designates the situation in which the
centres of gravity of the bodies are aligned with the average direction of motion
of the bodies. A well-known feature of the interaction in this configuration is that
the downstream body is entrained and accelerated by the wake of the leading body.

† Email address for correspondence: ern@imft.fr
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Interaction of two axisymmetric bodies falling in tandem 209

In sports and biology, this phenomenon is at the origin of several types of cooperative
behaviour between individuals. In multiphase flows, it may promote clusters or
aggregates. It has therefore drawn considerable attention.

The first approach to analyse the entrainment phenomenon has been to consider
the model case of two fixed bodies whose line of centres is parallel to the oncoming
flow. The case of two fixed cylinders has been the subject of numerous numerical
studies in two dimensions (Mittal, Kumar & Raghuvanshi 1997; Meneghini et al.
2001) and more recently in three dimensions (Carmo & Meneghini 2006). These
studies demonstrated the reduction of the drag force on the second body. Mizushima
& Norihisa (2005) noted in the case of an unsteady wake a significant reduction in
drag for separations less than ∆z = 3.3 (∆z is the distance between the centres of
gravity of the cylinders normalized with their diameter d). They also found that this
configuration has a stabilizing effect on the flow: the critical Reynolds number for
the transition from a steady to an unsteady wake increases from approximately 46
for an isolated cylinder to approximately 85 for two cylinders having a separation
∆z = 2.5.

The tandem configuration has also been studied for fixed three-dimensional objects,
in particular for two spheres. The experimental studies of Tsuji, Morikawa &
Terashima (1982) and Zhu, Liang & Fan (1994) focused on the evolution of the
flow field and of the loads experienced by the bodies when their separation distance
varies. The downstream sphere faces a reduced drag compared to an isolated sphere.
The upstream sphere also sees its drag coefficient modified: it decreases or increases
by approximately 15 % depending on the relative distance between the spheres. Zhu
et al. (1994) proposed a dynamical model that includes the Basset force to simulate
the velocity of a trailing sphere during the approach of two spheres. They found
that the velocity of the trailing sphere increases linearly as the spheres get closer
for ∆z < 3. More recently, Tsuji et al. (2003) obtained numerically that, as in the
case of two-dimensional cylinders, the tandem configuration may stabilize the flow:
the wakes are stationary and axisymmetric for Reynolds numbers up to 250 for a
distance ∆z = 3 between the spheres, whereas for an isolated sphere the bifurcation
corresponding to the loss of axial symmetry occurs at Rec1 ≈ 210 (Natarajan &
Acrivos 1993; Johnson & Patel 1999).

Yuan & Prosperetti (1994) in turn studied numerically the loads acting on two
spherical bubbles for Reynolds numbers in the range 50 to 200. They found the
existence of an equilibrium distance, denoted ∆z1, that increases with the Reynolds
number (∆z1 = 3 for Re = 50 and ∆z1 = 5.6 for Re = 200). When ∆z < ∆z1 bubbles
repel and otherwise they attract one another. They however pointed out that if the
bubbles were free to move laterally relative to the incident flow, the trailing sphere
would then deviate from the leading sphere wake. At this stage, it is interesting to
recall that potential flow predicts that two spheres (or bubbles) placed one behind the
other would repel. A first correction to this prediction that takes into account the effect
of vorticity for an isolated bubble is the correction of Moore (1963). This viscous
correction was used to predict the behaviour of a pair of spherical bubbles rising in a
fluid at rest by Kok (1993a). Bubbles attract or repel one another depending on their
separation distance and on the angle formed by the line of centres of the bubbles
and the direction of the flow. He obtained that the stable position for two bubbles is
when they come into contact, with the line passing through their centres of gravity
perpendicular to their velocity. Kok (1993b) conducted an experimental study of two
bubbles in a fluid free of contamination at Re = 240. He found results consistent
with the foregoing: bubbles initially in tandem or slightly skewed, approach, turn
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and get aligned horizontally, then they attract each other and coalesce. Contaminated
bubbles behave as solid spheres: they touch and bounce back, eventually staying
side by side. More recently, Hallez & Legendre (2011) simulated numerically the
interaction between two fixed spherical undeformable bubbles. They included an
additional correction that takes into account the effect of the wake on both the drag
and the transverse force experienced by the second bubble when located in the wake
of the first bubble and concluded that the stable final position for two bubbles rising
in interaction would be the side-by-side configuration.

Jayaweera & Mason (1965) are to our knowledge the first to investigate the
interaction between two disks freely falling in tandem for Reynolds numbers ranging
from one to hundreds. In their experiment, the attraction between the two falling
disks is visible for distances greater than 40 diameters. They also noted that when
the trailing disk is close to the leading one, it may start to oscillate for 26∆z 6 3.
For smaller distances, both disks begin to oscillate. Furthermore, after contact the
disks continue their fall together adopting a Y-configuration (the planes containing the
disks form an angle of 30◦ for a Reynolds number of 100). For Reynolds numbers
between 1 and 10, Jayaweera, Mason & Slack (1964) studied the interaction of
two identical spheres freely falling in a fluid at rest. They observed that when the
spheres are placed one behind the other, the trailing sphere is accelerated until the
spheres meet, then the line joining their centres of gravity tends to become horizontal
and the two spheres move away from each other. For Reynolds numbers of several
hundreds, Fortes, Joseph & Lundgren (1987) studied experimentally the motion of
two spheres in tandem. They described a dynamic scenario called ‘drafting, kissing
and tumbling’ corresponding to the same events: the trailing sphere is drawn by the
wake of the leading one, they meet and turn around each other. Then the scenario
repeats possibly many times, the role of each sphere being reversed each time. Hu,
Joseph & Crochet (1992) also observed the same chain of events numerically for
two-dimensional cylindrical particles having Reynolds numbers of 30.

The goal of the present paper is to provide a quantitative description of the
kinematics leading to the regrouping of the bodies and to improve our understanding
of its coupling with the wake of the leading body, in particular in relation to the
axial and transverse inhomogeneities of the wake. After describing the experimental
setup and the numerical tool (§ 2), we present a general map showing the domains
of existence for the different interaction behaviour of the two bodies as a function
of their initial relative position (§ 3). We then focus on the tandem configuration,
first for bodies having rectilinear paths (§ 4) and then for oscillatory paths (§ 5). In
the first case, we propose a dynamical model for the trajectories of the bodies and
investigate the relevance of the prediction provided by simulations for fixed bodies.
In the second, we emphasize the effect of the interaction on the characteristics of the
oscillatory motion and its strong dependence on the aspect ratio of the bodies. The
paper ends with concluding remarks (§ 6).

2. The experimental and numerical tools

The bodies are released in a large glass tank (1.70 m high with a square
cross-section of 0.4 m width) containing salted water of density ρf = 1010 kg m−3

and kinematic viscosity ν = 1.020 mm2 s−1 (see figure 1 of Fernandes et al. 2007).
The bodies are short-length cylinders of density ρs ' 1020 kg m−3 (the density ratio
between the bodies and the fluid is thus close to unity). Their diameters d (resp.
heights h) range from 5 to 20 mm (resp. 1–5 mm). The aspect ratio χ = d/h, which
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χ = d/h d (mm) Um (mm s−1) Re Path (isolated body) Wake (isolated body)

Case 1 3 5.7 18.8 105 Rectilinear Steady
Case 2 6 7.2 14.9 105 Rectilinear Steady
Case 3 10 9 13.2 115 Rectilinear Steady
Case 4 3 6.9 19.9 145 Rectilinear Steady
Case 5 6 8.4 14.9 125 Rectilinear Steady
Case 6 10 11 13.6 152 Rectilinear Steady
Case 7 3 10.5 24.6 255 Oscillatory Unsteady
Case 8 6 13.2 18.5 242 Oscillatory Unsteady
Case 9 10 16 16.1 255 Oscillatory Unsteady
Case 10 3 12 23.9 285 Oscillatory Unsteady
Case 11 6 15 19.2 285 Oscillatory Unsteady
Case 12 10 18 15.4 275 Oscillatory Unsteady

TABLE 1. Characteristics of the bodies used for the experiments (‘steady’ means steady
axisymmetric; ‘unsteady’ means unsteady with vortex shedding).

characterizes the anisotropy of the body, is chosen to be 3, 6 and 10, determined with
an accuracy of ±1 %. The motion of the body depends on the Archimedes number
Ar defined by Ar = ((1ρ/ρf ) g req)

1/2req/ν, where 1ρ = |ρf − ρs|, req is the radius
of the sphere having a volume equal to that of the body, and g is the gravitational
acceleration. Note that Ar corresponds to a Reynolds number based on a gravitational
velocity. Four characteristic values of Ar are considered here, approximately 35, 45,
85 and 110, allowing us to investigate both rectilinear and periodic motion (Fernandes
et al. 2007). When a body is released alone in the tank, these values of Ar correspond
to the Reynolds numbers Re = (Um d)/ν ' 110, 140, 250 and 280, where Um is the
mean vertical velocity of the isolated body. The characteristics of the bodies used
for the experiments, along with their type of path and the nature of their wake when
they are falling alone in the tank, are summarized in table 1.

In this study, we investigate the hydrodynamic interaction of two bodies that can be
considered within experimental accuracy as identical. To investigate the case of bodies
moving in tandem, the bodies are released consecutively through a 20 cm long tube.
The diameter D of the release tube is at least twice the body diameter, in general
2.5–3 times larger (D= 12, 16, 22, 30 and 40 mm). The motion of the bodies is then
recorded by means of two perpendicular travelling cameras. Recording of the body
kinematics begins when the second body has left the release tube, and is at a distance
from the first body corresponding to the field of view of the cameras (approximately
12 cm). At the exit of the tube, the bodies have a vertical velocity which is close
to their terminal velocity in the isolated body case (approximately 90 % of Um). In
rectilinear motion, the bodies are falling broadside to the vertical and their inclination
at the exit of the tube is weak (less than 3◦), having no detectable effect on the
recorded kinematics of the bodies. Bodies displaying periodic motion oscillate in the
release tube with an amplitude comparable to that in the isolated body case. At the
exit of tube, the inclination of the bodies varies from one experiment to the other
but, as can be seen in figure 12(a) along with the differences in ∆z and ∆h,m, this
variation does not affect significantly the kinematics of regrouping of the bodies, and
does not change the nature of the hydrodynamical interaction (attraction or repulsion)
shown in figure 2. The image- and signal-processing techniques used to determine the
time evolution of the coordinates of the centres of the bodies and the angles defining
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the inclinations of their symmetry axes are described in detail in Fernandes et al.
(2007). The use here of two PCO 2000 cameras of resolution 2048 pixel× 2048 pixel
provides an accuracy of ±0.06 mm for the position and of ±0.75◦ for the inclination.

To compare our results for freely moving bodies to the case of fixed bodies, we
performed direct numerical simulations (DNS) of the flow past two fixed disks in
a two-dimensional axisymmetric geometry at a Reynolds number of 100. We used
the finite-volume code JADIM (see Legendre & Magnaudet 1998 for details and
validation). We consider the case of two fixed disks placed in tandem in an incident
flow aligned with their axes of symmetry. The simulations were performed for three
aspect ratios (χ = 3, 6 and 10) and for different relative distances ∆z between
the bodies ranging from 0.5 to 25 diameters (19 distances were tested for each
aspect ratio). The computational domain extends over at least 35 diameters in the
axial direction z and 20 diameters in the radial direction x. The grid was chosen
according to the distance between the disks, comprising at least 174 meshes in the
axial direction and 80 in the radial direction. For a given configuration, χ = 10 and
∆z = 3.25, we checked that the mesh size (232× 80 mesh) had no influence on the
results by comparing them with those obtained with a finer mesh (415 × 98 mesh).
The difference obtained for the drag coefficient Cd is less than 0.8 %. For χ = 10, we
also performed three-dimensional axisymmetric calculations for ∆z= 2 and ∆z= 4 in
order to verify that the axisymmetric solution is stable and that the two-dimensional
axisymmetric simulations are relevant. The difference obtained for the drag coefficient
between the two-dimensional axisymmetric case and the three-dimensional case is for
both distances less than 1 %.

3. Interaction behaviour as a function of the relative position
Depending on the initial relative position of the two disks, different interaction

behaviour can be observed: attraction, repulsion and indifference. The relative position
of the bodies is characterized by the vertical distance ∆z and the horizontal distance
∆h between the centres of gravity of the bodies, both normalized with the diameter
d of the disks. Experiments for various relative initial positions were performed for
Reynolds numbers in the range Re≈ 100–160 and for the three aspect ratios (χ = 3, 6
and 10). Figure 1 shows some examples of the evolution of the distance separating
the two disks in the plane (∆h, ∆z). The initial relative position is identified by a
black diamond. When the separation distance tends towards the point (∆h= 0, ∆z= 0)
it is regarded as an attraction case. If the distance does not vary significantly the
case corresponds to a regime of independence, i.e. of no interaction. Bodies moving
away from each other indicate a repulsion behaviour, as observed in the lower right
of figure 1.

It should be noted that weak variations in the separation distance between the
bodies are not necessarily due to their interaction but can also come from the
dynamics of each body, as observed in Fernandes et al. (2007). The behaviour of the
bodies might be influenced by weak residual movements in the liquid. Also, small
differences in homogeneity, density and geometry between the bodies may lead to
differences in their kinematics and thus to changes in their relative position. Insofar
as the separation distance between the bodies does not vary significantly, it is unclear
whether the changes are due to the interaction between the bodies or to perturbations
in the path of each body. Therefore boundaries separating the different types of
behaviour can be defined only with a horizontal uncertainty of ±0.5d.

The domains corresponding to the different interaction behaviour are mapped out in
the plane (∆h, ∆z) in figure 2. The initial relative positions of all tests are indicated
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FIGURE 1. Examples of evolution of the separation distance between the bodies. Initial
relative positions are indicated with black diamonds. Solid lines: cases 1–3 from table 1
and dashed lines: cases 4–6.
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FIGURE 2. Domains of existence of the different interaction behaviour depending on the
initial separation distance between the bodies: ◦, weak attraction; •, strong attraction; �,
repulsion; ×, no interaction. Aspect ratios χ = 3 (light grey), χ = 6 (dark grey), χ = 10
(black). (Cases 1–3 from table 1.)

with circles and dots for the attraction cases, squares for the repulsion cases and
crosses for the cases of independence. Three domains are clear in figure 2. For ∆z> 1,
a first region extending along the vertical coordinate and delimited by ∆h= 2.5± 0.5
separates the situations of attraction from those of independence. This narrow region
corresponds to a configuration of the bodies that will be termed ‘in tandem’ or ‘in
line’ in what follows. In this configuration, the trailing body always catches up with
the leading body. Our experiment allowed us to detect this phenomenon up to large
vertical separation distances, ∆z ' 14. Furthermore, we distinguish two regions of
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attraction called ‘weak’ and ‘strong’. In the region of weak (resp. strong) attraction,
the attraction leads to an increase of the vertical velocity of the trailing disk which is
less (resp. larger) than 5 % of its vertical velocity in the absence of interaction (equal
to the vertical velocity of the body when it is falling alone in the tank, Um). The
area corresponding to the situations of strong attraction is identified by the dots in
figure 2 and corresponds to horizontal separations ∆h less than 0.5 diameters. To the
right of the attraction area, the domain of independence between the bodies, where no
significant interaction is observed, extends along both ∆h and ∆z. The third region of
interest is confined to ∆z < 1. In this area, the bodies are regarded as staying in the
configuration called ‘side by side’. For a horizontal distance ∆h< 4.5 we observe that
the bodies repel one another. For distances spanning between 4.5 and 6, they never
come closer. For distances greater than 6, the disks are independent of each other.

No significant difference in the boundaries separating the different regimes of
interaction is observed when changing the aspect ratio and Reynolds number, in the
ranges investigated. Yet these parameters have a strong impact on the kinematics
of interaction. In particular, when thin bodies (χ = 6 and 10) are falling in
tandem, they eventually come into contact and continue their fall together adopting
a Y-configuration described in Brosse & Ern (2011) and visible in the online
supplementary movie available at http://dx.doi.org/10.1017/jfm.2014.407. In the case
of thick bodies (χ = 3), the disks separate after the first contact. In most cases, the
trailing disk then goes past the leading disk and the sequence repeats as the latter
now catches up with the former. However, after the second contact, the bodies always
separate leading to the side-by-side configuration, where they eventually repel one
another. In the case of thick bodies, attraction thus eventually leads to repulsion. The
behaviour of thick bodies brings to mind the similar periodic sequence of attraction,
contact and repositioning, called ‘drafting, kissing and tumbling’ by Fortes et al.
(1987) for two spheres initially in tandem.

In the light of figure 2, two particular configurations come to the fore. While the
side-by-side configuration and the associated repulsion behaviour are investigated in
detail in the companion paper Ern & Brosse (2014), the focus of the present paper is
on bodies falling in tandem and on the attraction behaviour. After the transient phase
following the release of the bodies, we observed that the trailing body accelerates and
that the two disks eventually meet. The aim of this paper is to characterize and model
the phenomenon of entrainment experienced by the trailing body and driven by the
wake of the leading body, both in the case of rectilinear and periodic paths and for
three different aspect ratios of the bodies.

4. Body falling in tandem along straight paths

For a Reynolds number near 110, each disk follows a straight path when dropped
alone. We observe that these bodies still follow a rectilinear path when they are
interacting (i.e. they do not display any periodic oscillation in position or inclination).
However, they accelerate along their paths, until they join. Since the vertical velocity
of the bodies evolves in time, the mean fall velocity Um and the Reynolds number
Re used in this section are those of a disk dropped alone. Also, for the sake of
readability, results shown in the figures of this section correspond to only one test for
each aspect ratio, the results being reproducible between experiments (10 trials were
performed for each aspect ratio and Re). In all the cases investigated in this section,
the horizontal distance between the centres of gravity of the bodies ∆h remains less
than 0.5.
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FIGURE 3. Example of the paths of two bodies projected in the vertical planes (X,Z) and
(Y, Z). The coordinates are rescaled with the diameter d. (Case 1.)

4.1. Paths of the bodies in the laboratory frame
Figure 3 shows an example of the projections in the vertical planes, (X, Z) and
(Y, Z), of the paths followed by two disks falling in tandem. The two disks exhibit
a rectilinear vertical path, if we disregard the small horizontal drift occurring in this
example in the plane (X, Z). The final horizontal drift of the bodies is always less
than 3 % of the overall distance travelled vertically and varies from one experiment
to the other, as it also happens for bodies falling alone (Fernandes et al. 2007). It
is however noteworthy that the trailing disk presents a horizontal drift comparable
to that of the leading disk, which is all the more remarkable given that this drift
is weak. Furthermore, the mean direction of drift of the leading disk is opposite to
the side where the trailing body is present. Two horizontal distances between the
disks are relevant for the analysis of the interaction: the horizontal distance between
the two centres of gravity ∆h at a given time and the distance ∆h traj between the
two trajectories at a given height (figure 4a). The second definition determines the
distance of the trailing disk from the path of the leading disk, and therefore provides
a characterization of its position in the wake of the leading disk. We observe that the
horizontal distance ∆h traj between the two paths is generally lower than the distance
between the centres of gravity ∆h (figure 4b). Moreover, it seems that the disks tend
to align vertically during their fall, ∆h tending to decrease with time (figure 4b). All
these observations point to a coupling between the drifts experienced by the two
bodies through the wake of the leading body.

We now turn our attention to the effect of the interaction on the vertical motion
of the bodies. Examples of the evolution in time of the vertical distance ∆z between
the centres of gravity of two disks are presented in figure 5(a). At first sight, this
evolution seem independent of the aspect ratio, which is not exactly the case as will
be shown later. The figure has to be read from right to left, the disks coming into
contact at time t= tc. Note that time has been made dimensionless using the inertial
timescale d/Um. We see that the vertical separation distance between the bodies
decreases nonlinearly in time until they meet at t = tc, indicating a non-uniform
vertical velocity of the bodies. As a first characterization of the kinematics of
approach of the two disks, the evolution of ∆z can be approximated by

∆z ∼ (tc − t)2/3 giving ∆U ∼∆−1/2
z , (4.1)
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FIGURE 4. (a) Schematic representation of the horizontal distance between the centres of
the bodies ∆h and between the trajectories ∆h traj; (b) example of the evolution in time of
the distances ∆h and ∆h traj. (Case 1.)
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(a) (b)

FIGURE 5. (a) Vertical distance between the two bodies ∆z as a function of tc − t;
(b) corresponding relative velocity between the bodies ∆U = d∆z/dt as a function of ∆z
and comparison with (4.1) (dashed line). (Cases 1–3.)

where ∆U is the velocity difference between the two disks. This is presented in
figure 5(b) along with (4.1), showing that the latter is unable to describe the decrease
in relative velocity occurring for distances less than two diameters, where it also
misses the effect of the aspect ratio. We now investigate in more detail the evolution
of the velocities of the bodies with their separation distance.

4.2. Velocities of the bodies in the laboratory frame
Figure 6(a) shows the evolution of the vertical velocity of the leading body, denoted
Uz1, as a function of the vertical separation ∆z between the bodies. Again, the figure
reads from right to left, since ∆z decreases with time – the bodies get closer until
they meet – as shown previously. When the vertical separation is greater than four
diameters, the leading disk has a constant velocity equal to its velocity in the absence
of a second body. For sufficiently large separations, the kinematics of the leading
disk thus seems unaffected by the presence of the trailing disk. However, whatever
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FIGURE 6. Velocity in the laboratory frame as a function of the vertical distance ∆z
between the bodies for (a) the leading body, Uz1 and (b) the trailing body, Uz2. In (b),
the dashed line corresponds to Uf +Um, where Uf is the axial velocity in the wake of an
isolated body, averaged over a disk of diameter d, obtained by numerical simulation for
χ =∞ and Re= 100. The velocities are normalized with the vertical velocity Um of the
freely falling body in the absence of interaction. (Cases 1–3.)

the aspect ratio, at ∆z ' 4, the leading body starts to accelerate. When the bodies
come into contact, the velocity of the leading body is 1.5 times larger than Um, its
velocity when falling alone. This suggests that the near wake of the leading disk
is modified by the presence of the trailing disk beyond this separation distance. In
particular, the recirculation zone is altered when it becomes confined between the two
disks, as observed from wake visualizations (visible in Brosse & Ern (2011) and in
the online supplementary movie).

Figure 6(b) shows the evolution of the vertical velocity Uz2 of the trailing disk with
∆z. The trailing disk has a vertical velocity always larger than that of the leading
disk, even at large separation distances (15–20 body diameters). We can also see
that Uz2 increases as the bodies get closer until a maximum reached at about one
diameter of vertical separation and decreases further beyond. While the evolution of
Uz2 is identical for all χ until a distance of approximately 2 diameters, the maximum
depends on the aspect ratio of the bodies. For thin (resp. thick) bodies, it corresponds
to approximately 2 (resp. 1.8) times the velocity of the isolated body. When the bodies
come into contact, they have the same velocity, equal to 1.5 times the velocity of
the isolated disk, whatever the aspect ratio. Figure 6(b) also presents with a dashed
line the evolution of Uf + Um, where Uf is the axial velocity of the fluid in the
wake of an isolated disk, averaged over a disk of diameter d, obtained by numerical
simulation for χ = ∞ and Re = 100 (Auguste 2010; Auguste, Magnaudet & Fabre
2013). The evolution of the velocity in the wake of an isolated body shows clearly
a trend similar to that measured for the trailing body. Furthermore, the numerical
simulations by Fernandes et al. (2007) have shown that the maximum velocity of the
fluid in the recirculation zone of an isolated disk is larger for thin disks than for thick
disks. These results suggest that the attraction phenomenon is essentially governed by
the axial evolution of the fluid velocity in the wake of the first body. In the next
section, we use this idea to elaborate a model for the entrainment undergone by the
trailing body. We also explore how far the results from numerical simulations for two
fixed bodies in tandem can allow prediction of the kinematics observed for the two
freely moving bodies.
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4.3. Some theoretical and numerical considerations
4.3.1. A simple model for the entrainment phenomenon

The aim of this section is to obtain a prediction for the velocities of two bodies
falling in tandem along rectilinear paths. We denote Us1 and Us2 the vertical velocities
of the leading and trailing bodies to be determined with the model. For each body, a
one-dimensional model along the vertical z axis is written using the formulation which
applies to the case of an inclusion small compared to the inhomogeneity scales of
the surrounding flow (Magnaudet 1997; Magnaudet & Eames 2000). We consider that
the flow Uf 1(z, t) induced by the leading body has an impact on the motion of the
trailing body by changing the drag force and by generating an inertial force related
to the spatial variation of the flow. For the leading disk, we only take into account
the deficit in drag related to the flow Uf 2(z, t) generated by the motion of the trailing
body. We therefore have

(ms +ma)
dUs1

dt
= 1

2
Cd ρf S |Uf 2 −Us1| (Uf 2 −Us1)+ (ms −mf ) g, (4.2)

(ms +ma)
dUs2

dt
= 1

2
Cd ρf S |Uf 1 −Us2| (Uf 1 −Us2)

+ (mf +ma)
DUf 1

Dt

∣∣∣∣
p

+ (ms −mf ) g (4.3)

where ma=ρf d3(1+0.5χ−1/2)/3 is the added mass coefficient along the axial direction
of a disk of aspect ratio χ (Fernandes et al. 2008), ms = ρsϑ and mf = ρfϑ where
ϑ = Sh is the volume of the body with S= πd2/4, and Cd is the drag coefficient of
the isolated body such that Cdρf SU2

m/2= |ms −mf |g. For the equation of the trailing
body, in a coordinate system linked to the centre of gravity of the leading body, we
take Uf 1(∆z, t)= U′f 1(∆z)Us1(t) where U′f 1 is the dimensionless axial velocity in the
wake of an isolated disk (with χ = ∞) in uniform rectilinear motion at Re = 100,
averaged at each z over the surface of the disk, obtained by numerical simulation
(Auguste 2010). The particulate derivative of the fluid velocity at the position of the
body then is

DUf 1(∆z, t)
Dt

∣∣∣∣
p

= ∂Uf 1(∆z, t)
∂t

+ (Uf 1(∆z, t)−Us1(t))
∂Uf 1(∆z, t)

∂∆z
. (4.4)

In the same way, we take for the leading body in the moving frame of the trailing
body Uf 2(∆z, t) = U′f 2(∆z)Us2(t) where U′f 2 is the dimensionless axial velocity of
the fluid upstream of a single disk (with χ = ∞) in uniform rectilinear motion at
Re= 100, averaged at each z over the surface of the disk (Auguste 2010). Using the
velocity scale Um and the timescale d/Um to render the equations dimensionless, the
system becomes(

ρs

ρf
+ A

)
d Us1

d t
= 1

2
Cd χ

[|Uf 2 −Us1|(Uf 2 −Us1)+ 1
]
, (4.5)

(
ρs

ρf
+ A

)
dUs2

dt
= (1+ A)

DUf 1

Dt

∣∣∣∣
p

+ 1
2

Cd χ
[|Uf 1 −Us2|(Uf 1 −Us2)+ 1

]
, (4.6)

where A = ma/mf . We solve the coupled equations (4.5)–(4.6) using a Runge–Kutta
algorithm of order 4, with the initial conditions ∆z,0 = 11, Us1,0 = 1 and Us2,0 = 1.15,
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FIGURE 7. Comparison in the laboratory frame of the evolution of the vertical velocities
of the disks with ∆z for (a) the leading body and (b) the trailing body, obtained
experimentally and with the model. (Case 3.)
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FIGURE 8. (Colour online) Forces rescaled by (ms +ma)U2
m/d obtained (a) for the

leading body, (b) for the trailing body. (Case 3.)

and with Cd = 1.26 (corresponding to the drag coefficient of an isolated body with
aspect ratio χ = 10 and Re = 100). Figures 7(a) and 7(b) compare the velocities
Uz1 and Uz2 measured experimentally to the velocities Us1 and Us2 predicted by the
model for each body. We observe that the model provides a good approximation of
the evolution of the velocity of the leading body with ∆z (figure 7a). As regards the
trailing disk, the model reproduces the body acceleration for separations greater than
1.5 diameters (figure 7b).

Figure 8 shows the evolution with ∆z of the various loads acting on the bodies in
the model. For the leading disk (figure 8a), when the vertical separation between the
bodies is greater than four diameters, the drag force balances the Archimedes force, as
in the isolated body case. For distances ∆z < 4, the absolute value of the drag term
decreases due to the upstream flow of the trailing disk and drives the acceleration
of the leading disk. As shown in figure 8(b), the acceleration of the trailing body
is mainly provided by the decrease of the absolute value of the steady drag term
and is slightly moderated by the term proportional to the fluid particulate derivative
(4.4). For the two bodies, the model fails for ∆z < 1.5. As can be seen from the
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FIGURE 9. (Colour online) The wake of two fixed bodies placed in tandem with
aspect ratio χ = 10 at Re = 100: streamlines and axial velocity obtained by numerical
simulation for different relative distances: (a) ∆z = 5, (b) 3.5, (c) 3.25, (d) 3, (e) 2.75,
(f ) 2, (g) 1.

dye visualizations presented in Brosse & Ern (2011) and in the online supplementary
movies, when the bodies are close, a complex interaction occurs between the liquid
motions induced by the bodies, which is not accounted for by the model.

4.3.2. Numerical prediction for two fixed disks in tandem
The determination by numerical simulations of the hydrodynamical loads acting on

two fixed bodies placed in an oncoming flow is generally the prevalent approach
to obtain a prediction for the behaviour of freely moving bodies. To investigate the
suitability of this approach, we performed numerical simulations of the flow about two
fixed disks placed in tandem at different distances ∆z, for Re= 100 and three aspect
ratios (χ = 3, 6 and 10). The distances separating the fixed disks vary from ∆z= 0.5
to 25. For each separation distance, we determine the loads acting on the bodies. The
evolution of the loads as a function of the separation distance is then used to estimate
what would be the accelerations of the bodies if they were free to move.

Figure 9 plots the streamlines and the axial velocity of the flow for various distances
∆z between the bodies. As a complement, figure 10 shows the axial velocity Ufz of
the flow past the two fixed disks taken on the symmetry axis of the disks for different
relative distances ∆z. For comparison, the flow about an isolated body is also drawn
with a dashed line in figure 10. The first body is placed at the origin. The position
of the second body for each separation distance corresponds to the plateau at zero
velocity. The velocity at upstream infinity is set to one; negative velocities at the
rear of each body correspond to the recirculation zones. For separations ∆z larger
than 3.5 (figure 9a) the near wake of the first disk is very similar to that of an
isolated disk with a recirculation zone that extends two diameters behind the disk.
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FIGURE 10. Evolution of the axial velocity Ufz of the flow about two fixed disks along
the direction z (corresponding to the symmetry axis of the bodies), obtained by numerical
simulations for different separation distances ∆z between the disks, for χ = 10 and
Re = 100. The flow is directed towards the positive z values and equals 1 at upstream
infinity. The first body is placed at the origin. The position of the second body in each
case corresponds to the plateau at zero velocity.

For separations ∆z in the interval [3.25, 3.5] the recirculation zone of the first body
is slightly stretched. Moreover, a secondary recirculation zone develops in front of
the second body (figure 9b,c) due to the deficit in flow velocity induced on the
axis by the wake of the first body. When the bodies are slightly closer than ∆z = 3
(figure 9d) the two recirculation zones come into contact and merge giving rise
to a larger recirculation region that entirely fills the gap between the two bodies.
As the bodies separation decreases from 2.75 to 1 diameters (figure 9e–g), this
recirculation zone is correspondingly constricted. These results are consistent with
the two-dimensional numerical simulations by Mizushima & Norihisa (2005), which
observed that for a Reynolds number of 60 the recirculation zone between the two
cylinders could be stretched or compressed depending on the relative distance between
the cylinders. Finally, note that for all ∆z, the length of the recirculation zone of the
second disk is reduced compare to that of an isolated body and decreases in intensity
until about ∆z = 2.

For each separation distance, we determine from the numerical simulations the
magnitude of the drag force acting on each body. Figure 11(a) shows the evolution
of the drag coefficient for each disk, denoted Cd1 and Cd2, as a function of the
distance ∆z between the bodies for χ = 3 and Re = 100. The figure presents the
ratios between Cd1 and Cd2 with respect to the value Cd0 for an isolated disk. The
drag coefficient of the first body is close to Cd0. We observe that the presence of the
second body changes the forces acting on the first body only for distances less than
5 diameters. The drag coefficient of the second body is always smaller than Cd0 and
decreases as the disks are set closer together. These results are in agreement with the
experimental study of Zhu et al. (1994) for two spheres in tandem at Re= 106, also
shown in figure 11(a).

We now consider the quasi-static motion of a body resulting from the balance
between the Archimedes force and a drag force evolving with ∆z according to the
results provided by the numerical simulations. The resulting velocities of the bodies,
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FIGURE 11. (a) Evolution of the drag coefficient Cd/Cd0 of the first and second disks (for
χ = 3, Re = 100, Cd0 = 1.255) as a function of ∆z. The dashed lines correspond to the
case of spheres obtained experimentally at Re= 106 by Zhu et al. (1994). (b) Comparison
of the evolution of the vertical velocities of the bodies with ∆z, obtained experimentally
and from the numerical simulations for fixed bodies. (Case 1.)

Un1 and Un2, are then given by

U2
ni =

Fg
1
2 Cdi ρf S

with Fg = 1
2

Cd0 ρf S U2
m (4.7)

so that

Uni(∆z)=
√

Cd0

Cdi(∆z)
Um for i= 1, 2. (4.8)

Recall that the drag coefficient Cd0 and the velocity Um considered are the values for
an isolated disk at the same Reynolds number. Figure 11(b) compares the experimental
velocities Uz1 and Uz2 of the freely moving bodies with those found using this method.
The quasi-static prediction matches the experimental kinematics of the disks with a
good approximation for relative distances ∆z > 5 with differences smaller than ±3 %,
while it overestimates the acceleration of the trailing body and underestimates that
of the leading body for ∆z < 5. For these small separation distances, the quasi-static
approach is no longer valid as the unsteady terms associated with the solid and the
fluid motion are no longer negligible with respect to the steady drag component.
Also, the dynamics of the interaction of the wake vortices are not properly taken
into account in the numerical simulations with fixed disks. In the wake visualizations
performed for freely moving bodies with χ = 3 and χ = 10 and provided in Brosse
& Ern (2011) (see also the online supplementary movies), a completely different
behaviour from that of figure 9 is observed for freely moving bodies for distances
∆z < 4. In particular, as the separation distance decreases, instead of remaining
confined between the two disks, the recirculation region of the leading disk stretches
and encompasses the trailing body and its wake, leading to a leap-frog behaviour
between the two recirculation regions.

5. Bodies falling in tandem with periodic paths
We now consider the case of disks having periodic paths. When the bodies are

falling alone, their mean vertical velocities correspond to Reynolds numbers ranging
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FIGURE 12. Vertical distance separating the bodies ∆z as a function of (a) time tc− t and
(b) the mean horizontal distance between the bodies ∆h,m (solid lines: cases 7–9; dashed
lines: cases 10–12; dashed-dotted line in (a) case 1).

from 240 to 285 (cases 7–12 from table 1). In all cases, we observe that the trailing
disk catches up with the leading disk, as in the previous records for rectilinear paths.
Again, thick bodies (χ = 3) tend to separate after they meet, while thinner bodies
(χ = 6 and 10) stay together (Brosse & Ern 2011). However, for isolated bodies
having periodic paths, the impact of the interaction on the kinematics of the trailing
body is twofold: an increase of its mean vertical velocity and a modification of the
characteristics of its oscillatory motion. The next two subsections investigate these two
effects.

5.1. Entrainment by the wake
Figure 12(a) shows the evolution of the vertical distance ∆z between the disks as a
function of the dimensionless time tc − t for the three aspect ratios. At variance with
the case of rectilinear paths, the kinematics of oscillating bodies strongly depends
on the aspect ratio. In fact, the slope of the curves is higher for the thin disk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.407


224 N. Brosse and P. Ern

0 5 10 15 20 25 30 35 40 45
–2
0
2

z 
(m

m
)

0 15 30 45
–4

–2

0

2

4

x,
 y

 (
m

m
)

z

x
y

0 15 30 45
–45

–30

–15

0

15

30

45

t (s)t (s)

(a) (b)

(d
eg

.)

FIGURE 13. Example of the oscillations of the trailing body after signal processing:
(a) oscillations of the centre of gravity of the body in the vertical direction relative to a
mean vertical evolution (top) and in a horizontal plane (bottom); (b) angles of inclination
of the axis of symmetry of the body relative to the vertical. Solid black lines represent
the fitted part of the curves. (Case 7.)

(χ = 10) indicating that they are closing together faster than thick disks (χ = 3).
For comparison, the evolution corresponding to the straight paths is plotted with a
dashed-dotted line in figure 12(a). Whatever the aspect ratio, closing is slower for
oscillatory paths than for rectilinear paths.

To investigate more deeply the effect of the aspect ratio, we look at the evolution
of the horizontal distance between the centres of gravity of the bodies, ∆h. Due to
the horizontal oscillations of the disks, ∆h also oscillates. For clarity, we focus on its
mean component, denoted ∆h,m (where ∆h,m=

(
(x̂2 − x̂1)

2 + (ŷ2 − ŷ1)
2
)1/2 and where x̂i

and ŷi are the horizontal coordinates of a body in the principal frame of oscillations as
defined in Fernandes et al. 2007, i= 1 or 2 each standing for one body). Figure 12(b)
shows the evolution of ∆h,m associated with the evolution of ∆z for several trials.
We observe that the thin trailing body (χ = 10) remains aligned vertically with the
thin leading disk, the horizontal distance ∆h,m being always less than 0.3. On the
contrary, for thick bodies (χ = 3) the trailing body first drifts away from the centre
of the wake of the leading body (∆h,m > 1.2 for ∆z > 4) but is later captured at
smaller ∆z, eventually joining the leading disk. As they travel in a flow area of less
intense velocity, they benefit from a weaker entrainment and their approach is slower.
Thin trailing disks travel in the central zone of the wake where larger fluid velocities
speed their approach. The horizontal ejection observed for the thick trailing disk at
large ∆z might be related to the way the body evolves along its path. Placed in a shear
zone of decreasing velocities as in figure 4(a), the body undergoes a torque that leads
it to rotate counterclockwise around one diametrical direction. When a thick disk is
tilted, it tends to move in the direction of its symmetry axis (Fernandes et al. 2005),
in this case away from the centreline of the wake of the leading disk. On the contrary,
for the same rotation, a thin disk tends to move sideways, in this case towards the
centreline of the wake.

5.2. Characteristics of the oscillations
In this section, we explore the characteristics of the oscillatory motion of the two
disks. Figures 13(a) and 13(b) show an example of the oscillations in time of the
position and the inclination of the trailing body after signal processing. This consists
of removing the average drift and determining the principal frame of the oscillations
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(see Fernandes et al. 2007 for the details of the method). We see that the signals still
display irregular oscillations and that the amplitude and frequency of the oscillations
of the position and of the orientation are not constant over time. In particular, one
or two temporal periods before the bodies come into contact, the interaction leads to
a change in the oscillations of the bodies that depends on the way they are getting
nearer. However, a few periods before (corresponding to about 2<∆z < 6) the mean
vertical velocities of the leading and trailing bodies (respectively Um,B1 and Um,B2)
are almost constant and so is the mean horizontal distance ∆h,m between the bodies.
Also, the order of magnitude of the frequency and of the amplitude of the oscillations
in position and orientation can be determined by fitting the signals (as shown with
black solid lines in figure 13a,b). In this range of separation distances, a Reynolds
number for both the leading and the trailing body can be defined based on their
velocities Um,B1 and Um,B2. In figure 14, these Reynolds numbers are all called Re,
as is the Reynolds number of the isolated body, but the legend indicates which body
is considered (B1 for leading body and B2 for the trailing body). In the same way, a
Strouhal number, denoted St for all cases, is defined for the isolated body, for the
leading body and for the trailing body, using their frequencies of oscillation, their
diameter and their mean vertical velocities.

Figure 14 shows that the kinematics of the leading body (open symbols) is not
significantly different from the isolated body case (solid lines), whereas the case of
the trailing disk (filled symbols) deserves a closer examination. The Strouhal number
of the trailing disk follows the same evolution as that of an isolated body for aspect
ratios χ = 3 and χ = 6 but tends to decrease for thinner bodies χ = 10 (figure 14a).
The amplitudes of oscillation of the horizontal position of the trailing body are
larger than those of the isolated body at the same Reynolds number (figure 14b),
increasingly so as the body gets thinner. At the same time, the amplitudes of the
angular oscillation of the trailing body (figure 14c) seem to be less affected by the
interaction. For the same amplitude of inclination, the trailing body performs a greater
horizontal motion and the phase difference between the horizontal velocity and the
inclination (figure 14d) is slightly modified. The increase in amplitude of horizontal
oscillation is even more significant as the nature of the path has also been affected
by the interaction. As can be seen in figure 14(e), the eccentricity of the path of the
trailing body is much larger than that of the isolated body, whatever the aspect ratio.
The path can no longer be considered as a planar zigzag but approaches a helical
shape, the eccentricity being in most cases half or more.

An additional remarkable feature is the increase in the amplitude of vertical
oscillation of the trailing body with aspect ratio χ = 3. In the isolated body case, the
amplitude of the oscillation in vertical position is negligible for a thick body (χ = 3).
This amplitude is here multiplied by a factor ten for this aspect ratio, exceeding the
amplitudes for the aspect ratio χ = 10, which appear unaffected by the interaction
(figure 14f ). Furthermore, for the aspect ratio χ = 3, the frequency of the vertical
oscillation is the same as that of the horizontal oscillation, whereas for an isolated
body it is doubled. To investigate the origin of the vertical oscillation we plot in
figure 15 the vertical velocity of the trailing body Uz2 as a function of the distance
between the centre of gravity of the trailing body and the path of the leading body
∆h traj (represented in figure 4a). Over a period, we observe that when the trailing
body gets closer to the centreline of the wake of the leading body, it accelerates.
Likewise, when it retreats, it decelerates. This result indicates that the transverse
inhomogeneity of the flow in which the trailing body is travelling drives the large
oscillations of its vertical velocity.
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FIGURE 14. Characteristics of the oscillations of bodies falling in tandem as a function of
the Reynolds number: (a) Strouhal number, (b) amplitude of oscillation of the horizontal
position, (c) amplitude of the inclination, (d) phase difference between the horizontal
velocity and the inclination, (e) eccentricity of the path, (f ) amplitude of oscillation of
the vertical position. The solid lines represent the mean values for isolated disks: light
grey χ = 3, dark grey χ = 6, black χ = 10. The leading body is labelled B1 and the
trailing body B2.

A different, yet particularly interesting, situation is the case of disks having
rectilinear paths with Reynolds numbers slightly below the threshold of path instability
in the absence of interaction. For these Re, we observe a great variability in the
kinematics for the same disks, especially for χ = 3 and χ = 6, without being able to
determine its cause. We observe that the path of the trailing disk can be either stable
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FIGURE 15. Vertical velocity of the trailing disk (relative to its velocity Um in the absence
of interaction) as a function of the distance between the trajectories of the bodies ∆h traj.
The curve evolves from right to left as time increases. (Case 7.)

or destabilized, i.e. the body can lose its rectilinear motion and start to oscillate.
As observed previously, in the cases where the trailing body oscillates, its approach
is slower. In the following, we will focus our attention on the oscillatory cases.
For a thick body with χ = 3, we observe that the oscillations present the same
features as those previously described at higher Reynolds numbers for a trailing body
having a periodic path. Moreover, we observe that these oscillations are triggered
when the entrainment provided by the wake of the leading body drives the trailing
disks at Reynolds numbers that exceed the threshold for path instability for isolated
disks. For thin disks (χ = 10), the oscillation occurs at lower Reynolds number than
the threshold leading to large-amplitude path oscillations of the body (Fernandes
et al. 2007). However, the amplitudes of oscillation in position are larger than
those observed numerically for an isolated disk at the same Reynolds number in
the so-called ‘A-regime’ (Ern et al. 2012; Auguste et al. 2013), where paths of very
small amplitude were observed only numerically (displacements here of approximately
0.15 diameters compared to displacements of approximately 0.015 diameters for the
isolated body in the simulations by Auguste (2010) and Auguste et al. (2013)). At
the same time, the oscillation frequency corresponds to the Strouhal numbers of the
modes of the A-regime, St ≈ 0.12, which is close to the Strouhal number of the
natural instability of the wake of the fixed body. For thin disks, the wake of the
leading body seems to destabilize the path of the trailing body by destabilizing its
wake and the induced oscillations seem to mainly correspond to an amplification of
the modes of the A-regime.

6. Conclusion

We consider the interaction of two identical disks falling in a fluid otherwise at
rest. Depending on the relative position of the bodies, different interaction behaviour
is observed. Bodies in tandem with a horizontal distance less than 0.5 diameters are
attracted even for vertical separation distances ∆z as large as 14 diameters, so that
the trailing body eventually catches up with the leading body. For ∆z < 1, bodies
falling side by side repulse one another for horizontal separation distances less than
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4.5 diameters. For the other relative positions, the bodies seem independent of the
presence of the other body and no change in their path is observed relative to the
isolated body case.

We investigate in detail the kinematics of the bodies in the tandem configuration as
a function of the Reynolds number and of the aspect ratio of the bodies. For disks
following a straight path, the kinematics leading to the regrouping of the bodies is
independent of the aspect ratio for ∆z > 2.5. We observe that the leading body is
unaffected by the presence of the trailing body when ∆z > 4, beyond which it starts
to accelerate. The trailing body experiences, on the contrary, an acceleration even far
away from the leading disk. Its velocity is already 20 % larger than its velocity in the
absence of interaction for ∆z ' 10 and reaches about twice this velocity for ∆z ' 1.

To analyse the key role of the wake of the leading body on the entrainment
experienced by the trailing body, we propose a model for the velocities of the bodies
that includes a stationary drag force as well as an inertia force, both dependent
on the axial evolution of the flow about a freely moving single body. The model
correctly reproduces the experimental kinematics for separations ∆z > 1.5. In addition,
we performed numerical simulations for two fixed disks placed in tandem in an
oncoming flow to determine the evolution of their drag coefficient as a function of
their separation distance. Using these evolutions to predict the motion of the bodies
yields satisfactory results only for disks sufficiently far apart, ∆z > 5. For smaller
separation distances, the numerical prediction overestimates the acceleration of the
trailing body, while that of the leading body is underestimated. As can be seen in
Brosse & Ern (2011) and in the supplementary online movies, dye visualizations
of the wakes of freely moving bodies indicate a completely different behaviour of
the recirculation regions for freely moving bodies than in the case of fixed bodies,
shedding light on why the fixed body approach is unable to reproduce the kinematics
of the freely moving bodies at small ∆z.

For Reynolds numbers close to the threshold of path instability, the interaction
may cause the trailing disk to oscillate and the characteristics of the oscillation then
strongly depend on χ . For thick bodies, χ = 3, the entrainment results in an increase
of the vertical velocity, that may correspond to Reynolds numbers larger than the
threshold of path instability, thus giving rise to oscillations. For thin bodies, χ = 10,
the onset of oscillations seems to be caused by the inhomogeneity of the wake of
the leading body that destabilizes the wake of the trailing body, inducing oscillations
at lower Strouhal numbers.

We show that the kinematics leading to the regrouping of the bodies depends
on the Reynolds number, being faster for the rectilinear paths than for periodic
paths. However, in the case of periodic paths, the interaction not only leads to a
gain in vertical velocity for the trailing body but also induces significant changes
in the characteristics of its oscillatory motion. In particular, the oscillations of the
trailing body are amplified, displaying amplitudes in the horizontal plane or along the
vertical direction markedly larger than those observed for isolated bodies at the same
Reynolds numbers. We investigate how the transverse inhomogeneity of the wake of
the leading body may contribute to this behaviour. For bodies with oscillatory paths,
the kinematics leading to the regrouping of the bodies depends on the aspect ratio.
Thin trailing disks stay centred in the wake of the leading disk and approach the
leading disk faster than thick disks that drift away from the wake centreline, thereby
benefiting from a weaker entrainment.

Finally, we observe that after the bodies meet, thin disks (χ = 6 and 10) continue
their fall together whatever the Reynolds number, adopting the Y-configuration
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investigated in Brosse & Ern (2011). On the contrary, thick disks (χ = 3) tend
to separate after contact so that they eventually fall side by side, a configuration
considered in Ern & Brosse (2014).
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