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driven by heat-releasing point particles

Yuhang Du1,2 and Yantao Yang1,2,†
1State Key Laboratory for Turbulence and Complex Systems, and Department of Mechanics and
Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China
2Joint Laboratory of Marine Hydrodynamics and Ocean Engineering, Pilot National Laboratory for
Marine Science and Technology (Qingdao), Shandong 266299, PR China

(Received 18 July 2022; revised 21 November 2022; accepted 22 November 2022)

In this work we investigate the thermal convection driven by heat-releasing point particles.
Three-dimensional direct numerical simulations are conducted for 1 × 107 ≤ Ra ≤ 1 ×
1010 and 0.01 ≤ St ≤ 10, where the Rayleigh number Ra and Stokes number St measure
the strengths of the heat releasing rate and the Stokes drag, respectively. A regime at
intermediate Stokes numbers is identified with most particles accumulating into the top
boundary layer region, while for other cases particles are constantly advected over the
entire domain. For the latter state, the flow motions are stronger at the upper part of
the domain. The thicknesses of both momentum and thermal boundary layers at the
top plate follow the same scaling law with Ra and show minor dependences on St. The
volume-averaged temperature and convective flux exhibit non-monotonic variations as St
increases and reach their minimums at intermediate St. The fraction coefficient of heat
flux, i.e. the ratio between the heat flux through the bottom plate and the total flux
through both plates, shares the similar dependence on St as the convective flux. The
relation between these scaling laws can be explained by using the global balance between
the dissipation and convective flux. The scaling laws for the transition between different
flow regimes are also proposed and agree with the numerical results. The preferential
concentration of particles is observed for all cases and is strongest at intermediate Stokes
numbers, for which multiscale clustering emerges with small clusters forming larger ones.

Key words: particle/fluid flow, turbulent convection

1. Introduction

The particle-laden thermal flows are commonly encountered in various natural and
engineering applications. Astrophysical and geophysical examples include the interaction
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between the cloud and radiation (Shaw 2003), and aggregation of chondrules into primitive
planetesimals (Cuzzi et al. 2001). For engineering processes, the particle-based solar
receivers are designed to directly absorb solar energy by small particles in the work fluid
(Pouransari & Mani 2017). In all these environments, particles can strongly affect the flow
dynamics compared with the single-phase thermal convection. Numerous studies have
been conducted to understand the coupling mechanisms between particles and turbulence.

For a fluid layer with dilute particles, i.e. the volume fraction of solid particles is
small compared with the total mixture volume, the interaction between particles can be
ignored (Crowe 1982; Elghobashi 1994; Balachandar & Eaton 2010). Then the coupling
mechanisms introduced by particles are the momentum coupling and thermal coupling
between the fluid carrier phase and the dispersed particle phase. Many studies have been
conducted by considering the thermal and momentum interactions between particles and
turbulent flows. Shotorban, Mashayek & Pandya (2003) investigated such a problem for
homogeneous shear turbulence with the temperature field driven by constant background
gradient, and found out that the turbulent heat flux decreases after introducing the particle
phase. For turbulent particle-laden channel flow with thermal and momentum coupling,
Kuerten, van der Geld & Geurts (2011) also observed that the turbulent heat flux decreases
with the presence of particles. However, much more heat is transported by relative motion
of particles, which results in a net enhancement of heat transfer compared with the
single-phase channel flow without particles.

In the above-mentioned works, the temperature field is treated as a passive scalar, which
is, the temperature field is advected by the velocity field but the momentum dynamics
is not affected by the temperature field. In reality the fluid density often depends on
temperature and buoyancy-driven convection occurs in the gravity field. A suitable model
system for such a problem is the particle-laden Rayleigh–Bénard convection (RBC),
i.e. convection flow between two horizontal plates across which an unstable temperature
difference is applied. Oresta & Prosperetti (2013) studied the modulation of RBC caused
by particle settling. The particles have constant temperature which does not change as the
particles move. The momentum coupling, thermal coupling and the combined coupling are
considered for their effects on the heat flux. Besides the thermal and momentum coupling
between the particle and fluid, Park, O’Keefe & Richter (2018) also included the thermal
dynamics of particles in the model. The behaviours of both heat flux and turbulent kinetic
energy were investigated with varying particle inertia, settling velocity, mass fraction and
the ratio of specific heat. In the recent work of Yang et al. (2021), only the momentum
coupling between two phases was considered. The temperature of particles is constant and
affects the particle dynamics through the thermophoresis effect. When the momentum
coupling is strong, both the heat transfer and turbulent kinetic energy are greatly enhanced.

The present study focuses on another mechanism of the particle-laden buoyancy-driven
flow. That is, particles can obtain energy from some external sources such as radiation, and
then release the energy into the fluid phase. With this process the particles not only modify
the momentum and thermal dynamics of the fluid phase through particle–fluid coupling,
but also serve as a driving mechanism. Such externally heated particles have been studied
for several groups for incompressible and compressible homogeneous turbulence in a fully
periodic domain (Zamansky et al. 2014, 2016; Frankel et al. 2016; Pouransari & Mani
2017). The RBC with externally heated particles was investigated very recently by Pan
et al. (2022), in which two-way momentum and thermal couplings were also considered.
The convection flow is then driven together by the temperature difference between the top
and bottom boundary and by the heating source from particles. Here we are interested in
the convection flow driven purely by the heating effects of particles which absorb energy
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from external supplies. Meanwhile, the one-way coupling of momentum and two-way
coupling of temperature are included between particles and the fluid phase.

It should be pointed out that our configuration is similar to certain extent to the
radiatively driven RBC. Several experimental works have been conducted recently for
such a system. Special dye can be used to absorb the external light radiation and which
releases heat into fluid which drives the convection motions (Lepot, Aumaitre & Gallet
2018; Bouillaut et al. 2019; Creyssels 2020). These experiments reveal that the scaling
law of heat flux is very different from the RBC driven by the external temperature
difference. Experiments on radiation-absorbing particles in turbulent duct flow reveal the
fluid temperature rising and different preferential concentration behaviours at the core
region and near the boundary (Banko et al. 2020).

The current work can also be viewed as the extension of our previous works on the RBC
driven by a heat-releasing concentration field (Du, Zhang & Yang 2021, 2022), where
the concentration field releases heat at a constant rate and is advected by the convection
motions. Here, we conduct a systematic study on the RBC driven by point particles
which absorb energy from external sources and drive the convection motion by heating
up the surrounding fluid. Particle distributions and global fluxes will be discussed and a
theoretical model will be developed based on the Grossmann–Lohse (GL) theory for RBC
(Grossmann & Lohse 2000, 2001, 2002, 2004).

The rest of paper is organized as follows. In § 2 we describe the governing equation and
numerical method. Sections 3 and 4 present our numerical results and discussions about
the flow regime and statistics. Finally, we give conclusions in § 5.

2. Governing equations and numerical methods

2.1. Governing equations and key parameters
Consider a fluid layer bounded by two horizontal plates which are separated by a height H
and are perpendicular to gravity. Dispersed solid particles are carried by the fluid phase.
The fluid density is assumed to be linearly dependent on temperature as ρ = ρ0(1 − αθ).
Here, ρ0 is the density at the reference state, θ = T − T0 is the temperature deviation
with respect to the value at the reference state and α is the thermal expansion coefficient,
respectively. In the current study we set the top and bottom plates at the same constant
temperature T0, saying the value of the reference state. By using the Oberbeck–Boussinesq
approximation, the governing equations for the fluid phase read

∇∗ · u∗ = 0, (2.1a)

∂∗
t u∗ + u∗ · ∇∗u∗ = −∇∗p∗ + ν∇∗2u∗ + gαθ∗ez + f ∗, (2.1b)

∂∗
t θ∗ + u∗ · ∇∗θ∗ = κ∇∗2θ∗ + q∗. (2.1c)

Here, u = (u, v, w) is the fluid velocity vector, p is pressure, ν is kinematic viscosity,
g is gravitational acceleration. The extra source term f in (2.1b) represents the rate of
momentum exchange with point particles. The rate of heat exchange between fluid and
particles is denoted by q in (2.1c). The asterisk superscript stands for the dimensional
quantities or operators.

The dispersed particles are treated by the Lagrangian framework, which is, the dynamic
and thermal equations are solved simultaneously as the particles are tracked. The particle
size is assumed to be smaller than the Kolmogorov scale so that they can be viewed as
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zero-volume points. The full set of particle equations used in the current study read

dx∗
p

dt∗
= u∗

p, (2.2a)

du∗
p

dt∗
=

u∗
f − u∗

p

τp
− g

(
1 − ρ0

ρp

)
ez, (2.2b)

dθ∗
p

dt∗
=

θ∗
f − θ∗

p

τθ

+ φ∗
p

mpcp
. (2.2c)

Hereafter, the subscript ‘p’ denotes the quantity related to the particle, and ‘f ’ is the fluid
quantity at the same location of particle, respectively. As can be seen from (2.2b), the
acceleration of particles is caused by the Stokes drag and buoyancy force. The Stokes
time is defined as τp = ρpd2

p/ρ018ν with dp being the particle diameter. The two terms in
the right-hand side of (2.2c) stand for the heat exchange with surrounding fluid and the
heating rate caused by an external input such as radiation. The former is approximated by
the relaxation of the particle temperature towards the fluid temperature with the time scale
τθ = (3/2)(ν/κ)(cp/cf )τp (Zamansky et al. 2016). Here cp and cf are the heat capacities
of the solid particle and fluid. In the second term, φp is the power of external energy input
into a single particle and mp is the mass of particle.

The source terms in (2.1b) and (2.1c) can be calculated by the Stokes drag in (2.2b)
and the thermal relaxation term in (2.2c). In the Eulerian framework for the fluid phase,
these source terms can be expressed by the Dirac distribution δ(x) and the velocity and
temperature differences at the locations of particle as

f ∗ = F ∗(x∗)
ρ0

= − 1
ρ0

Np∑
p

mp
u∗

f − u∗
p

τp
δ(x∗ − x∗

p), (2.3a)

q∗ = Q∗(x∗)
ρ0cf

= − 1
ρ0cf

Np∑
p

mpcp
θ∗

f − θ∗
p

τθ

δ(x∗ − x∗
p). (2.3b)

Here the two source terms F ∗(x∗) and Q∗(x∗) are per unit fluid volume, and the summation
is over all particles.

To non-dimensionalize the governing equations, we first discuss the choice of
characteristic scales for each quantity. The length scale can use the domain height H
as in usual Rayleigh–Bénard (RB) flow. In RB flow, usually the free-fall velocity Uf f =√

gα�TH is used as the characteristic scale, with �T being the temperature difference
between the bottom and top boundaries. Here the two boundaries are at the same constant
temperature, therefore another temperature scale has to be used. For this we turn to the
external energy input of particles. We denote the particle number density by np. For unit
volume the total power of external energy input is npφp, which causes a changing rate of
fluid temperature at (npφp)/(cf ρ0). Then by equating this changing rate to that given by
the characteristic scales for temperature, velocity and length as

npφp

cf ρ0
= �T

√
gα�TH
H

, (2.4)

the temperature scale can be obtained as �T = (n2
pφ

2
pH/gαρ2

0c2
f )

1/3. The corresponding
free-fall velocity is then Uf f = (gαnpφpH2/ρ0cf )

1/3, and the time scale is τf = H/Uf f .
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Using these characteristic scales, the non-dimensional governing equations can be readily
obtained as

∇ · u = 0, (2.5a)

∂tu + u · ∇u = −∇p + Ra−1/3Pr2/3∇2u + θez + f , (2.5b)

∂tθ + u · ∇θ = Ra−1/3Pr−1/3∇2θ + q, (2.5c)

dtxp = up, (2.5d)

dtup = uf − up

St
− ez

Fr2 , (2.5e)

Φθdtθp = θf − θp

σ
+ 1, (2.5f )

with

f = −
Np∑
p

αV

C
ρp

ρ0

uf − up

St
δ(x − xp), (2.6)

q = −
Np∑
p

αV

C
ρp

ρ0

cp

cf

θf − θp

σΦθ

δ(x − xp). (2.7)

The boundary conditions for the fluid phase at two plates are, in their non-dimensional
form,

u = 0, θ = 0, at z = 0, (2.8a)

u = 0, θ = 0, at z = 1. (2.8b)

In the horizontal directions we employ the periodic boundary conditions for all the flow
quantities and particles.

For the particle–boundary interaction, we assume elastic reflection at the upper and
bottom plates and the particle temperature is unchanged during reflection, which is
different from the numerical treatment in some RBC with heated particles (e.g. Yang
et al. 2021; Pan et al. 2022). In those works, a particle is removed from the domain
when it reaches the bottom plate. Meanwhile, a new particle is randomly ejected into
the domain from a random location of the upper wall, and its temperature is equal to the
local fluid temperature. In our configuration, since the heat released by particles is the sole
driving force, we keep the total number of particles, and therefore the total energy input
unchanged.

Key control parameters then include the Prandtl number Pr, the Rayleigh number
Ra, the Froude number Fr, the Stokes number St, the heat-mixing parameter σ , the
heat-capacity ratio Φθ and the non-dimensional particle number density C, which are
defined, respectively, as

Pr = ν

κ
, Ra = gαnpφpH5

νκ2ρ0cf
, Fr = (RaPr)1/3

(
κ2

g
(
1 − ρ0/ρp

)
H3

)1/2

,

St = τp

τf
, σ = τθ

τf Φθ

, Φθ = npmpcp

cf ρ0
, C = npH3.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

Here, Φθ is the ratio between the total heat capacity of dispersed phase and that of fluid
phase, C is the average number of particles in a volume H3. The Froude number Fr is the
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ratio of particle gravitation acceleration to the buoyancy-induced fluid acceleration. The
Stokes number St is the ratio of the particle relaxation time τp to the characteristic time τf
of flow. The heat mixing parameter σ is defined as the ratio of the fluid thermal relaxation
time τθ f = τθ/Φθ to τf (Pouransari & Mani 2017). Note that we selected the fluid thermal
relaxation time τθ f , instead of the commonly used particle thermal relaxation time τθ to
form the dimensionless heat-mixing parameter.

It can be noticed that the definition of Rayleigh number is different from that in the
RBC, where the temperature difference between the two plates is usually employed. In the
current system, the two plates have the same temperature and a different temperature scale
has to be used. Note that for unit volume the total power input is npφp, corresponding to a
time changing rate in fluid temperature of γ = (npφp)/(cf ρ0). Then the Rayleigh number
can be cast into Ra = (gαγ H5)/(νκ2), which is in the same form as that in the convection
flow driven by a uniform internal heat source (Roberts 1967).

From these parameters, the volume fraction of particles, the density and heat capacity
ratios between two phases can be calculated as

αV = Ra Pr
48π2C2σ 3 ,

ρp

ρ0
= 72π2StC2σ 2

Ra
,

cp

cf
= 2σΦθ

3StPr
. (2.10a–c)

Note that if all other parameters are fixed, αV ∼ Ra. Therefore, for large enough Ra, αV
will also be large and four-way coupling needs to be considered.

Global responses of interests are the mean temperature 〈θ〉V of fluid, with 〈 · 〉V being
the average over the flow domain and time. Note that at a statistically steady state, the total
heat flux transported out of the domain through the two plates is balanced by the energy
input into the particles, which is a control parameter in the current model. Therefore, it
is the division of the total heat flux between the top and bottom plates that has practical
importance. Similar to the internally heated RB (Goluskin & van der Poel 2016), a fraction
coefficient is defined as

FB = 〈∂zθ〉bot

〈∂zθ〉bot − 〈∂zθ〉top
, (2.11)

with 〈 · 〉top and 〈 · 〉bot standing for the average over time and top and bottom plates,
respectively. The strength of the flow motion is measured by the Reynolds number as

Re = UrmsH
ν

, (2.12)

where Urms is the root mean square (r.m.s.) value of the velocity magnitude.

2.2. Numerical methods and the explored parameter space
As discussed in the previous subsection, the parameter space is huge since seven
independent control parameters need to be considered. To keep the current study
manageable, we will fix Φθ , σ , C and Pr, and focus on the influences of Ra and St.
Furthermore, two assumptions are employed to simplify the governing equations. The first
one is that the particle suspension is dilute with the global volume fraction αV smaller or
around 10−3. According to the relation (2.10a–c), this sets an upper bound for Ra with
fixed Pr, C and σ . As suggested in Balachandar & Eaton (2010), for such low volume
fraction the one-way or two-way coupling can still be used. Therefore, we retain the
particle-heating source term q in (2.5c) and set the particle-momentum source term f = 0
in (2.5b). Another assumption is that the gravitational settling term in (2.5e) is negligible
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compared with the Stokes drag term, which requires Fr2 	 St. Note that the definition of
the Froude number can be rewritten as

Fr = (48π2)−5/12Φ
−5/12
θ σ−5/4C−1/12Pr3/4

(
g3α9ρ5

pc5
p

ν9κ6ρ14
0 c14

f

)1/12

φ3/4
p . (2.13)

Then for given fluid and particle material, Fr ∼ φ
3/4
p when Φθ , σ and C are fixed. For

large enough φp indeed the gravitational settling effect can be neglected. With the above
two assumptions, the final version of the employed governing equations reads

∇ · u = 0, (2.14a)

∂tu + u · ∇u = −∇p + Ra−1/3Pr2/3∇2u + θez, (2.14b)

∂tθ + u · ∇θ = Ra−1/3Pr−1/3∇2θ + q, (2.14c)

dtxp = up, (2.14d)

dtup = uf − up

St
, (2.14e)

Φθdtθp = θf − θp

σ
+ 1. (2.14f )

Initially the particles are randomly seeded over the flow domain with a homogeneous
distribution, and the temperature and velocity equal to the value of fluid at the same
location. With such settings for particles, the heating source for fluid phase can be treated
approximately with uniform strength at the initial time. Then a conductive solution can be
solved and used as the initial velocity and temperature field, namely,

u = 0, θ(z) = −Ra1/3Pr1/3
(

z2

2
− z

2

)
, (2.15)

in which we assume q = 1 at the initial time.
The governing equations (2.14a)–(2.14c) are then discretized by using a second-order

finite-difference scheme with the fractional-time-step method (Verzicco & Orlandi 1996;
Ostilla-Monico et al. 2015). For time integration a second-order Runge–Kutta scheme is
employed with the treatment of nonlinear terms similar to the Adams–Bashforth method
and that of diffusion terms to the Crank–Nicholson method, respectively. The location,
velocity and temperature of point particles are integrated by a second-order Runge–Kutta
scheme, i.e. with the same order of accuracy as the numerical scheme for fluid phase.
To obtain the quantities at the exact locations of particles, the cubic Hermite spline is
used to interpolate from the Eulerian grids to the particle locations. The source terms in
the momentum and temperature equations are smoothed by distributing towards the eight
neighbouring Eulerian grids around each particle (Kuerten et al. 2011). To ensure a proper
resolution in our direct numerical simulations, the mesh size is chosen to be smaller than
both the Kolmogorov scale ηu = (ν3/εu)

1/4 and the Batchelor scale ηθ = ηuPr−1/2. Here
εu = 〈ν(∇u)2〉V is the global mean dissipation rate of kinetic energy. For the convergence
of each case, we check the FB and Re averaged over the first half and second half of the
time period over which the statistics are sampled and the relative different is smaller than
3 %.

In the present study, the Prandtl number is fixed at Pr = 0.7 corresponding to heat in
air, the particle density number is fixed at C = 105 and the two thermal parameters are set
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10–2 10–1 100
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Ra

101

107

108

109

1010

Figure 1. The explored phase space in the St–Ra plane. The black diamonds mark the cases in which all the
particles gradually accumulate near the top plates and simulation cannot continue. All other cases can reach
a statistically steady state. For those marked by orange squares the normalized number density of particles
exceeds 10 in the upper viscous boundary layer (BL), while for those marked by red circles are not. The grey
dashed line marks the scaling of Stucr with slope −5/3, and the grey dash-dotted line for Stlcr with slope −5.

as Φθ = 0.1 and σ = 1, respectively. With these four parameters fixed, we simulated four
Rayleigh numbers ranging between 107 and 1010, which give a maximal volume fraction
around 1.4 × 10−3. For each Ra, the Stokes number St is gradually increased from 0.01 to
10. The explored parameter space is shown in figure 1. Details of numerical settings and
key responses are summarized in table 1 in Appendix A. Starting from the conductive state
(2.15), three different final states are obtained in our simulations for different parameters,
as indicated by different symbols in figure 1. For the Stokes numbers small or large enough,
as marked by red circles, the flow can reach a statistically steady state with particles being
convected constantly over the entire domain. For certain intermediate Stokes numbers,
see the black diamonds, most particles will eventually accumulate near the top plate,
leading to an extremely strong local heating source. The time step has to be reduced
for the simulation to continue and finally becomes unfeasibly small. Between these two
regimes, as indicated by yellow squares, the simulations can continue but the local number
density near the top plate is over 10 times bigger than the global mean value. Therefore,
for the cases marked by yellow squares and black diamonds, the local number density
adjacent to the top plate is too high and it may be problematic in using one-way and
two-way coupling in momentum and thermal interaction. However, for the cases marked
by red circles, the simulation results and the physical models used are consistent with each
other. The physical mechanism for the appearance of different regimes and the regime
boundaries will be discussed in § 4.1, and all the mean statistics will only be discussed
for the cases which reach the statistically state, namely those marked by red circles
in figure 1.

To give some idea about the correspondence between the non-dimensional parameters
and the real physical properties, we present some examples of flow settings. With air
as the carrier fluid, we take the reference density ρ0 = 1.29 kg m−3, the kinematic
viscosity ν = 1.4 × 10−5 m2 s−1, the thermal diffusivity κ = 2 × 10−5 m2 s−1, the
thermal expansion coefficient α = 3.67 × 10−3 K−1 and the heat capacities cf =
1000 J (kg K)−1, respectively. For silicon carbide particles the density and heat-capacity
ratios are ρp/ρ0 ≈ 2469 and cp/cf ≈ 1.15 (Jiang et al. 2019), one obtains Ra ≈ 2.38 × 108

and St ≈ 0.08. If copper particles are used with ρp/ρ0 ≈ 6892 and cp/cf ≈ 0.37 (Van
Heerden, Nobel & Van Krevelen 1953), one has Ra ≈ 2.88 × 108 and St ≈ 0.3. These
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two sets of parameters lie in the phase space explored here. From these values one
can determine the ratio between the particle diameter and domain height dp/H around
9 × 10−4, which is similar to those reported in Dritselis & Vlachos (2011).

3. Mean statistics and transport properties

In this section we focus on the cases in which the flow reaches a statistically steady state
and particles are convected over the entire domain. These include all the cases marked by
the red circles in figure 1.

3.1. Global balance for statistically steady flows
When the flow is in the statistically steady state, two relations about the global balance
can be obtained. At such a state, the mean temperature averaged over all particles and time
should be independent of time. Then from (2.14f ) one has

σ = 〈θp − θf 〉p. (3.1)

Here 〈 · 〉p stands for the average over all particles and time. This relation suggests that the
mean temperature difference between particles and the surrounding fluid is controlled by
σ . In the current study σ is fixed at unity. We then compute the quantity 〈θp − θf 〉p for all
the cases with a statistically steady state, which are listed in table 1 in Appendix A. The
global balance is indeed achieved.

The relation (3.1) also implies that, by taking the average of (2.7),

〈q〉V = 1. (3.2)

Then the spatial and temporal average of (2.14b) gives

Nu = Ra−1/3Pr−1/3

(
d〈θ〉h

dz

∣∣∣∣
bot

− d〈θ〉h

dz

∣∣∣∣
top

)
= 1. (3.3)

That is, the total non-dimensional heat flux Nu through the top and bottom plates is equal
to unity once the flow is in the statistically steady state. In our simulations, the error in Nu
is less than 3 %, as can be seen from table 1 in Appendix A. The accuracy of these two
global balance relations indicate that our numerical settings are adequate.

3.2. Mean statistics of the fluid phase
We then look at the mean statistics of the carrier phase. Figure 2 shows the mean profiles
for velocity and temperature fields for all the cases with Ra = 1010. The profiles for r.m.s.
values of the vertical velocity w and the horizontal velocity uh indicate that the flow
motions are stronger in the upper half-domain. For all Stokes numbers wrms reaches the
maximal value in the range 0.6 < z/H < 0.8. For uhrms profiles, the peaks near the top
boundary are both higher and closer to the wall than those near the bottom boundary.
The profiles of horizontally averaged temperature indicate the flow consists of a nearly
homogeneous bulk between two BLs which both have strong temperature gradients. The
profiles of the standard deviation of temperature also exhibit two strong peaks located in
the top and bottom BLs.

Figure 2 reveals that the mean profiles exhibit very non-trivial variations as St increases
from 0.01 to 10. Therefore, in order to obtain consistent results, we use the following
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Figure 2. Mean profiles for the cases with Ra = 1010 and different St. (a) The r.m.s. of vertical velocity.
(b) The r.m.s. of horizontal velocity. (c) The horizontally averaged temperature. (d) The standard deviation of
temperature (θstd).

definitions for the momentum and thermal BL thicknesses. Based on the r.m.s. profiles
for the horizontal velocity, as shown in figure 2(b), the thicknesses of viscous BLs are
extracted separately at the top and bottom plates by using the same method as in Sun,
Cheung & Xia (2008). The edge of the viscous BL is determined by the intersection
between the straight line which is tangential to the r.m.s. profile at the boundary and the
horizontal line which is tangential to the same profile at the corresponding peak. The
viscous BL thicknesses are denoted by λu,top and λu,bot for the top and bottom boundaries,
respectively. The thermal BL thicknesses at the top and bottom plates are extracted from
figure 2(c) as the height of the intersection between the straight line which is tangential to
the mean profile at the boundary and the horizontal line with the value of volume-averaged
temperature. They are denoted by λθ,top and λθ,bot. Similar to the RBC with uniform
internal heating (Goluskin & van der Poel 2016; Wang, Lohse & Shishkina 2020), a single
thermal BL thickness can be defined as λθ = 2/(λ−1

θ,top + λ−1
θ,bot).

Figure 3 displays the variation of viscous BL thickness versus the Rayleigh number for
different Stokes numbers. The thickness of top BL λu,top is only slightly affected by St
and exhibits a single power-law scaling of Ra. The scaling exponent is determined by the
linear fitting of data in the logarithmic scale. Note that for intermediate Stokes number,
not all Rayleigh numbers correspond to cases with a statistically steady state. Therefore,
the standard linear fitting is conducted for the two groups of cases with St = 0.01 and
10, respectively. Then the scaling exponent is taken as the mean of two values from the
fitting of two groups. Throughout the present study, the same procedure is adopted when a
scaling exponent is determined for the dependence on Ra. The linear fitting suggests that

953 A41-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.983


Wall-bounded turbulent driven by heat-releasing particle

107 108

Ra Ra

λ
u,

to
p

λ
u,

bo
t

109 1010

0.01

0.02

0.03

0.04

107 108 109 1010

0.01

0.02

0.03

0.04

(b)(a)

St = 0.01 St = 0.02 St = 0.04 St = 0.1 St = 0.4 St = 1 St = 2 St = 4 St = 10

Figure 3. The thickness of (a) top viscous BL, (b) bottom viscous BL. The dashed lines in both panels have
the same slope of −0.196. The value of the slope is obtained through linear regression with the details given in
the main text.
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Figure 4. The thickness of (a) top thermal BL, (b) bottom thermal BL and (c) single thermal BL versus
Rayleigh number. The dashed lines in the three panels have the same slope of −0.196.

λu,top ∼ Ra−0.196, which is shown in figure 3(a). The thickness of the bottom BL λu,bot
does not follow a single power-law scaling but shows complex dependence on Ra. Note
that λu,bot is much larger than λu,top, which is consistent with the fact that the flow motions
are stronger in the upper part of domain. Nevertheless, at larger Ra, λu,bot starts to follow
the same scaling law as that for λu,top.

The variations of λθ,top, λθ,bot and λθ are plotted in figure 4. Numerical results reveal that
the thickness of the top thermal BL follows the same scaling law as λu,top, namely λθ,top ∼
Ra−0.196, while the thickness of bottom thermal BL does not. Again, λθ,bot is considerably
larger than λθ,top. The combined thickness λθ shares the same scaling behaviour as λθ,top.
This is expected since by its definition, λθ is dominated by λθ,top which has smaller values
than λθ,bot. The power-law scaling for λu,top and λθ,top will be used to explain the particle
accumulation towards the top boundary for intermediate Stokes numbers.

Figure 5 shows the dependences of the volume-averaged temperature 〈θ〉V and the
volume-averaged convective flux 〈wθ〉V on St for different Ra. Again, the two quantities are
assumed to follow a certain power-law scaling about Ra and the exponents are determined
by the same fitting method as for the BL thickness. The exponent is approximately 0.137
for 〈θ〉V and 0.084 for 〈wθ〉V , respectively. In figure 5(c,d) the Ra-compensated values
are plotted versus St. Both 〈θ〉V and 〈wθ〉V first decrease and then increase as St increases
from 0.01 to 10. The minima are expected to be reached approximately at 0.1 ≤ St ≤ 0.4.
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Figure 5. The dependences of (a) volume-averaged temperature 〈θ〉V and (b) volume-averaged convective flux
〈wθ〉V on the Stokes number St and Rayleigh number Ra. (c,d) The Ra-compensated plots of the same dataset.

3.3. Transport properties
For the current flows, the heat is extracted from the two cold walls from the top and bottom.
For the pure conductive state with uniformly distributed particles, the heat flux should be
the same at two boundaries. When flow motions exist, the heat flux is not even at the two
plates. The asymmetry of heat flux between the two plates is measured by the fraction
coefficient FB defined in (2.11). Note that two mechanisms can contribute to FB. The first
one is of course the vertical flow motion, which is similar to the internally heated RB
flow. The other one is the distribution of particles which affects the distribution of heating
source.

To separate the two mechanisms, we make use of the temperature equation (2.14c) of
the fluid phase. By taking the temporal and horizontal average for the statistically steady
state, one has

d〈wθ〉h

dz
= Ra−1/3Pr−1/3 d2〈θ〉h

dz2 + 〈q〉h. (3.4)

The above equation can be integrated twice, starting from the bottom plate, and gives

〈wθ〉V = −Ra−1/3Pr−1/3 d〈θ〉h

dz

∣∣∣∣
bot

+
∫ 1

0

∫ z

0
〈q〉h ds dz. (3.5)

Then with the help of (3.2) and (3.3), one obtains

FB = Fturb
B + Fpart

B , (3.6)
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Figure 6. The variations of the fraction coefficient FB and its two components versus the control parameters:
(a) increasing St for fixed Ra = 1010; (b,c) increasing Ra for fixed St = 0.01 and St = 10, respectively.
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Figure 7. (a) The dependence of fraction coefficient FB on the Stokes number St and Rayleigh number Ra.
(b) The Ra-compensated plot of the same dataset.

with

Fturb
B = 1

2
− 〈wθ〉V , Fpart

B =
∫ 1

0

∫ z

0
(〈q〉h − 〈q〉V) ds dz. (3.7a,b)

Note that Fturb
B is the same as in the internally heated RB (Goluskin & van der Poel

2016; Wang et al. 2020), while Fpart
B is unique to the current system. In figure 6 we

plot the variations of FB and its two components for three groups of cases. Clearly, FB is
dominated by Fturb

B . For most cases the contribution Fpart
B from particles is small and close

to zero. For fixed Ra = 1010, FB and the two components first increase and then decrease
as St increases from 0.01 to 10. They reach the maximal values at St = 0.4. For the two
fixed St, FB decreases as Ra increases, which is very similar to the three-dimensional
(3-D) simulations of internally heated RBC of Goluskin & van der Poel (2016). Actually,
Goluskin & van der Poel (2016) found out that FB ∼ Ra−0.055. In figure 7 we plot the
dependence of FB on St for all simulated cases, and the compensated value FBRa0.055

versus St. The exponent is directly adopted from Goluskin & van der Poel (2016). The
rescaling of FB indeed collapses the data with different Ra, especially at the large St range.

We then turn to the scalings of Reynolds number and the volume-averaged temperature.
Similar to Shraiman & Siggia (1990), we start from the exact balance between the viscous
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dissipation rate and the convective flux, which can be readily obtained as

εu = ν〈(∂∗
i u∗

j )
2〉V = ν3

H4 RaPr−2〈wθ〉V . (3.8)

Following the argument of the GL theory in RB flows (Grossmann & Lohse 2000, 2001,
2002, 2004), the total dissipation rate can be divided into the contributions from the BLs
and the bulk, namely,

εu = εBL,top
u + εBL,bot

u + εbulk
u . (3.9)

Here the top and bottom BLs are separated from each other, since as suggested by figure 3,
the two BLs have different scaling behaviours. The scaling relations between the viscous
dissipation rate and the Reynolds number are different for BL and bulk. In the framework
of GL theory and assuming laminar BLs, the two scalings are

εBL
u ∼ ν3

H4 Re5/2, εbulk
u ∼ ν3

H4 Re3. (3.10a,b)

Moreover, for the convection flow with not very strong thermal driving, it is usually
believed that the dissipation is dominated by the contribution from BL regions. For
instance, Wang et al. (2020) reported that the BL contribution εBL

u is dominant for
Rr ≤ 1011 in the two-dimensional (2-D) simulations of the internally heated convection.
Here, Rr = (gαΩH5)/(νκ2) is the Rayleigh–Robert number with Ω being the strength of
the uniform heat source.

However, the current system exhibits different behaviours. Figure 8 shows the mean
profiles of εu for increasing St and fixed Ra = 1010. The dissipation rate is larger
in the upper bulk due to the stronger fluid motions there. Meanwhile, εu at bulk is
consistently smaller for the intermediate Stokes numbers than that for small or large Stokes
numbers, which is probably a consequence of the stronger preferential concentration at
the intermediate Stokes numbers. In figure 9 we plot the dependences of dissipation
rates on the Reynolds number for three regions. Clearly, the dissipation rate in the bulk
region is much higher than those in the two BL regions. The exact physical reasons
for the difference between the current flow and the internally heated convection with
uniform source are not clear at this stage, but we do observe that the bulk has different
morphology in the two systems. Goluskin & van der Poel (2016) has shown that there is
no large-scale circulation in 3-D simulations of the uniformly heating RB. However, for the
current system large-scale circulation is observed and shown in figure 10. In the figure the
streamlines of the temporally averaged velocity field on the vertical midplane are displayed
for three cases with Ra = 1010 and different St, and a pair of large-scale convection
rolls are presented. Since heat-releasing particles are advected by convection motions,
the spatial structures of the internal heat source can be very different from a uniform
one, which is very likely to induce a different flow state. Interestingly, a very recent
study (Kazemi, Ostilla-Mónico & Goluskin 2022) reveals that large-scale convection rolls
can develop in the non-uniformly heating RB where the internal heating source has an
exponential distribution. All these different studies imply that the flow morphology in the
bulk strongly depends on the spatial distribution of heating source in the internally heating
RB flows.

Nevertheless, by using the fact that the dissipation rate is dominated by the bulk
contribution, and employing the power-law scaling in figure 9(c), one obtains the following
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Figure 8. The mean profiles of the viscous dissipation rate 〈εu〉h versus the height z for different St and fixed
Ra = 1010.
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Figure 9. The total dissipation rate in (a) the top BL region, (b) the bottom BL region and (c) the bulk versus
the Reynolds number, respectively. In panels (a–c) the slope of the dashed line is 2.4, 2.33 and 2.7, respectively.
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Figure 10. The temporally averaged flow field on a vertical midplane. Contours show the vertical velocity,
and the streamlines are integrated with the in-plane velocity vector. Here (a) St = 0.01, (b) St = 0.4, and (c)
St = 10, respectively, and the Rayleigh number is Ra = 1010.

scaling relation:

Re2.7 ∼ εbulk
u

H4

ν3 ≈ RaPr−2〈wθ〉V . (3.11)

We have also shown that 〈wθ〉V ∼ Ra0.084, which implies that

Re ∼ Ra0.40Pr−3/2. (3.12)

In figure 11 the above scaling is compared with the numerical results and the agreement
is very good. Moreover, for laminar BL one has λu ∼ Re−1/2 ∼ Ra−0.2, which is also
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Figure 11. The compensated plot of Reynolds number Re versus Ra.

very close to the scaling of the top BL thickness in figure 3(a). For the volume-averaged
temperature 〈θ〉V , we note that the total heat flux from two boundaries can be approximated
as 〈θ〉V/λθ . For laminar BLs λθ ∼ λuPr−1/3 ∼ Re−1/2Pr−1/3. Then by using (3.3), one
has

〈θ〉V ∼ Ra1/3Pr1/3λθ ∼ Ra0.133Pr2/5. (3.13)

The exponent 0.133 is also close to that given by the linear fitting, see figure 5(c).

4. Particle distributions and different flow regimes

With the help of the flow characteristics and transport properties discussed in the previous
section, the spatial distribution of particles will be investigated in this section. We first
identify the boundaries of the flow regime where the consistency between simulation
results and physical models holds, and then discuss the preferential concentration of
particles for those cases with a statistically steady state.

4.1. Particle accumulation and different flow regimes
For some cases at Ra ≤ 109 and certain range of St, as mentioned before and indicated by
the black diamonds in figure 1, most particles will eventually accumulate into a thin layer
adjacent to the top plate, where the local heating intensity is very strong. If the time step is
reduced, the simulation can continue for longer time period. But eventually the time step
becomes extremely small and the simulation is unfeasible. Outside this regime the flow
can reach a statistically steady state in several hundreds of non-dimensional time units.
The heat released from particles drives the convection flow which transport particles over
the whole domain. The local particle number density remains small at all heights and the
physical models we employed are still valid.

To illustrate these different states, we uniformly divide the flow domain into 40 slabs
along the vertical direction. The mean number density cs is then calculated for each slab
and normalized by the initial mean number density of the entire domain. Therefore, if all
particles stay in a single slab, this slab will have cs = 40. In figure 12 we plot the time
history of the profile cs for two cases with Ra = 109 from different regimes. For the case
with St = 0.1, at approximately 100 time units cs is very close to 40 for the slab adjacent to
the top plate, indicating that almost all particles stay within this thin layer at the top. The
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Figure 12. The time evolution of the profile of mean number density of particles for two cases
with (a) St = 0.1 and (b) St = 0.02, respectively. The Rayleigh number Ra = 109 is same for the two cases.

simulation has to stop at approximately t = 120 due to the extreme large heating source
close to the top boundary. Meanwhile, for the case with St = 0.02, cs is still higher at the
slabs close to the top and bottom plates, but in the bulk cs does not approach zero. Particles
can still travel inside the bulk region for this case, and finally a statistically steady state is
established.

For some cases close to the regime where the particle accumulation happens, flow
can still reach a statistically steady state and the simulation can continue. However, the
normalized number density is elevated over 10 within the upper viscous BL adjacent to
the top boundary. These cases are marked by the yellow squares in figure 1. Therefore,
the transitions between these two regimes on the St–Ra phase plane are not sharp ones,
and can be roughly understood as follows. Two processes are responsible for the left-hand
and right-hand transition boundaries in the phase space. For the first process, one can start
from the large Stokes number where a statistically steady state exists. With large enough
St, particles which enter the top boundary layer cannot decelerate and stop moving in the
vertical direction within the top BL. As St decreases, particles become more responsive
to the change of fluid momentum. If the vertical velocity of particles can decrease to zero
before particles penetrate the top BL, they will be trapped inside the BL region. For the
second process, one starts from the small Stokes number where again a statistically steady
state exists. Now because particles can perfectly follow the flow motions, they are carried
out of the top BL by the descending plumes. However, as St increases, particles become
less responsive and they may not gain enough downward velocity to escape the top BL
during the time period as they travel over the height of the top BL. In the following we
establish the scaling laws for the transition boundaries based on the two processes.

For the first process, we notice that inside the viscous BL next to the top plate, the
vertical velocity component wf is small compared with the horizontal velocity component.
As an approximation we take wf ≈ 0. When a particle enters the BL with a certain vertical
velocity w0

p, the vertical velocity of the particle will decrease due to the vertical component
of the Stokes drag. From (2.14e) one obtains a formal solution as

wp(t) = w0
p exp (−t/St) . (4.1)

Then the total height which the particle travels until wp reaches zero is given by

δzp =
∫ ∞

0
wp(t) dt =

∫ ∞

0
w0

p exp (−t/St) dt = w0
pSt. (4.2)
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If wp decreases to zero before the particle moves through the height of BL, i.e. δzp ≤ λu,top,
then the particle will stay within the BL. This gives a scaling relation of the minimum
particle entry velocity w0

p,min for a particle to travel into and through the BL:

w0
p,minSt ∼ λu,top. (4.3)

In the previous section we have show that λu,top ∼ Re−1/2 and Re ∼ Ra2/5.
Meanwhile, the entry velocity w0

p should have the same order as the velocity scale in the
bulk, namely w0

p ∼ Urms ∼ Re. When the particles are trapped in the BL by a drag force,
the entry velocity w0

p should be smaller than w0
p,min. The critical Stokes number Stucr can

be obtained when w0
p ∼ w0

p,min. Thus, one has

Stucr ∼ λu/w0
p ∼ Re−3/2 ∼ Ra−3/5. (4.4)

Since for fixed Ra and therefore fixed λu, δzp increases as St becomes larger. The first
process is effective when St < Stucr, and particles with smaller St will stay inside the
BL while those with larger St will not. This suggests that Stucr corresponds to the upper
transition boundary between two regimes.

For the second process, as the particles already inside the BL cannot escape, we point
out that particles escaping the top BL are mainly carried downwards by the cold plumes
ejected from the top BL. The time scale for a fluid element to move through the BL can be
estimated as τ bl

f ∼ τfλu,top/H, in which we assume that the fluid element moves through
the entire domain height H with the time scale τf . When τp < τ bl

f , particles will gain a
vertical downward velocity close enough to fluid velocity and are likely to be transported
away from the BL. Then a scaling relation for this transition is τp/τ

bl
f ∼ 1. Recalling that

λu,top ∼ Ra−1/5, one obtains

Stlcr ∼ Ra−1/5. (4.5)

For the second process to be effective, the Stokes number should be larger than Stlcr,
and the above scaling corresponds to the lower transition boundary between the two
regimes.

The two scaling relations (4.4) and (4.5) for the transition boundaries between
different regimes are plotted in figure 1 with properly chosen prefactors. The above two
mechanisms are both necessary for particles to accumulate in the BL, which means
the Stokes number should satisfy Stlcr ≤ St ≤ Stucr. As can be seen from figure 1, the
predictions given by the above scaling analyses capture the transition boundaries every
well.

4.2. Preferential concentration of particles and mean statistics
When the flow reaches the final statistically steady state, particles still exhibit preferential
concentration. We first look at the vertical distribution of particles. In figure 13 we show
the instantaneous flow fields and particle distributions on a vertical plane for three cases
with the same Ra = 1010 and increasing St = 0.01, 0.4 and 10, respectively. For the
two cases with small or large St, particles are fairly uniform in the bulk. Due to the
nearly uniform distribution in the bulk, the fluid temperature is also relatively high as
particles are heating the fluid. However, for the case with intermediate St, particles show
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Figure 13. (a–c) The contours of vertical velocity on a middle vertical plane, and (d–f ) the contours of
temperature field along with the instantaneous particle distribution on the same vertical plane, respectively.
Here (a,d), (b,e) and (c, f ) are St = 0.01, 0.4 and 10, respectively. The Rayleigh number is Ra = 1010.

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6
zz

p.
d.

f.

St
η

0.8 1.0
10–2

100

102

St = 0.01 St = 0.1 St = 0.4 St = 1 St = 10

(b)(a)

Figure 14. (a) The probability density function of the vertical positions of particles. (b) The Stokes number
Stη defined by the local Kolmogorov time scale versus the height. For all the shown cases Ra = 1010.

clear non-uniform distribution. The number density is higher near the top and bottom
boundaries, and inside the rising flow in the bulk, as can be seen by comparing figure 13(b)
and figure 13(e).

To quantitatively measure the possible non-uniform distribution along the vertical
direction, figure 14(a) plots the probability density function (p.d.f.) of the vertical location
z of particles for the five cases with fixed Ra = 1010 and different St. For the largest St = 10
and the smallest St = 0.01, the p.d.f. is lower near the bottom boundary, and higher near
the top boundary. The difference is that for St = 0.01, the p.d.f. has a single peak close
to the top boundary. While for St = 10, the high p.d.f. happens in a wider region without
an apparent peak near the top. For the three intermediate Stokes numbers, their p.d.f.s all
have two peaks located close to the top and bottom plates, and are relatively low in the
bulk, indicating stronger non-uniformity along the vertical direction. The fact that p.d.f.
is the lowest in the bulk for St = 0.1 and 0.4 is consistent with the behaviours shown in
figure 5. Since particles release heat to the surrounding fluid, lower number density in
the bulk corresponds to weaker heating source and volume-averaged temperature is also
smaller.

The different shapes of p.d.f.s for different St can be understood as follows. In
figure 14(b) we plot the vertical profiles of Stη = τp/τη with τη = η2

u/ν being the local
Kolmogorov time scale. Here ηu is the Kolmogorov length scale calculated at each height.
Here Stη is slightly larger than St in all cases. Still, for St = 0.01 and 10, Stη is far
away from unit and the momentum coupling between flow and particles is weak. When
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St = 0.01 the particles follow the fluid almost perfectly. Since particles release heat into
the surrounding fluid, particles are more likely to rise towards the top plate, and stay
at the top until being carried away by the downward plumes. For St = 10, the particle
inertia is very large and their movement is hardly affected by the flow. They prefer to
move upward due to the heat-releasing effect. But when they move towards the top plate,
they can easily penetrate the BL, rebound at the top boundary, and then leave the top BL
due to the large inertia. Therefore, p.d.f. does not have a peak near the top plate as in the
case with St = 0.01. For the other three cases, Stη is close to unity and the momentum
coupling is strong between the fluid flow and the particles. It is well known that the
preferential concentration is most distinct for Stη ≈ 1 in turbulent channel flows (Sardina
et al. 2012). Also as discussed in the previous section, for the cases with intermediate St,
particles are more likely to be trapped within the BL regions where the vertical velocity
is small.

The preferential concentration in the horizontal directions is examined by the Voronoï
diagrams (Ferenc & Néda 2007; Monchaux, Bourgoin & Cartellier 2010; Yang et al. 2021).
That is, the horizontal plane is divided into Voronoï cells based on particle locations.
The area A of the Voronoï cell associated with each particle is inversely correlated to
the local concentration of particles. We choose three horizontal planes at the edges of
two viscous BLs and z/H = 0.5. Typical Voronoï diagrams on these planes are shown in
figure 15 for three cases with fixed Ra = 1010 and St = 0.01, 0.4 and 10, respectively. For
St = 0.4, the preferential concentration is strongly presented in all three heights. Small
clusters form large clusters which non-uniformly distribute over the horizontal planes.
For St = 10, small clusters can be observed but they do not form large clusters, but
randomly distribute over the plane. For St = 0.01, the behaviours are similar to those
with St = 10 at the mid plane and the edge of top viscous BL. However, large voids
with nearly no particles form at the edge of bottom viscous BL. This is because particles
with St = 0.01 are more likely to be carried away from the bottom viscous BL by fluid
motions.

The p.d.f.s of the area of Voronoï cells are sampled at three different heights and
plotted in figure 16 for different Stokes numbers and fixed Ra = 1010. The p.d.f. for a
random Poisson process (RPP), which corresponds to the uniformly random distribution
of particles, is shown for comparison. For all three heights, the right-hand tails of the
p.d.f.s approach the RPP distribution as St becomes larger, while a flat tail always exists
on the left-hand side. Moreover, the left-hand tails exhibit different behaviours at different
heights as St increases. For both the midheight and the edge of the top BL, p.d.f. at small
A/〈A〉p is highest at the intermediate Stokes numbers, indicating the strongest preferential
concentration due to the momentum interaction between fluid and particles. At the edge of
the bottom BL, the p.d.f. of the smallest St = 0.01 has the highest left-hand tail, consistent
with the distribution shown in figure 15(a–c).

Figure 17 displays the p.d.f.s of the area of Voronoï cells for two fixed St and increasing
Ra at three heights. For St = 0.01, the clustering at the edge of the bottom BL becomes
stronger as Ra increases, as indicated by the elevation of the left-hand tails in figure 17(a).
Meanwhile, the right-hand tails deviate from the RPP distribution. At the midheight and
the edge of top BL, the influence of increasing Ra is much smaller. For St = 10, the p.d.f.
does not change much with Ra at all three heights. The right-hand tails are very close to
the RPP distribution, and the flat left-hand tails are produced by the small clusters shown
in figure 15.

To quantitatively investigate the multiscale nature of particle clusters on horizontal
planes, we employ the radial distribution functions (RDF) (e.g. Ireland, Bragg & Collins
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Figure 15. Typical snapshots of the horizontal distribution of particles and their Voronoï diagram for Ra =
1010 and different St: (a–c) St = 0.01; (d–f ) St = 0.4; (g–h) St = 10. Here (a,d,g), (b,e,h) and (c,f ,i) are z =
λu,bot, 0.5H, H − λu,top, respectively.

2016). The RDF g(r) is calculated by

g(r) = Nr/Vr

N/V
. (4.6)

Here, Ni is the number of particle pairs whose separation distances fall inside the shell with
a radius range (r − �r/2, r + �r/2). Here Vr is the volume of the corresponding shell in
the distance space, N is the total number of particle pairs and V is the total volume. When
g(r) is equal to 1, the particle field is uniformly distributed. Here g(r) greater than unity
indicates a clustered particle field at scale r.

The 2-D RDFs are computed over the horizontal slices at z = λu,bot, z = 0.5H and
z = H − λu,top for fixed Ra = 1010 and different St, which are shown in figure 18. At
the lower slice shown, g(r) is considerably larger than 1 for almost all the computed
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Figure 16. The p.d.f.s of normalized Voronoï area A/〈A〉p in the horizontal planes for different St and
Ra = 1010: (a) z = λu,bot; (b) z = 0.5H; (c) z = H − λu,top.
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Figure 17. The p.d.f.s of normalized Voronoï area A/〈A〉p in the horizontal planes for different St and Ra:
(a,d) z = λu,bot; (b,e) z = 0.5H; (c, f ) z = H − λu,top. Here panels (a–c) are for St = 0.01, and (d–f ) for St =
10, respectively.

distance r at St = 0.01, corresponding to the large voids shown in figure 15(a). As St
increases, g(r) gradually decreases at nearly all r. This is consistent with figure 15(a,d,g),
where large voids at St = 0.01 transit into large clusters at St = 0.4 and then nearly
uniformly distributed small clusters at St = 10. At the two higher slices with z = 0.5H
and H − λu,top, g(r) experiences non-monotonic variations as St becomes larger. Now g(r)
exceeds unity over wider range of r for intermediate St, indicating again the preferential
distribution with large clusters formed by small clusters.
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Figure 18. The RDFs in the horizontal planes for different St and fixed Ra = 1010: (a) z = λu,bot;
(b) z = 0.5H; (c) z = H − λu,top.

5. Conclusions

In this work we conducted a systematic study of the convection flow driven by
heat-releasing point particles which absorb energy from an external source. The energy
absorbed by particles is then released to heat the surrounding fluid, which drives the
buoyancy flow motions in the domain. The heat is then transferred out from the domain
through the top and bottom plates. We confine ourselves within the parameter space where
the global volume fraction of particles is small and the Froude number is large, so that
one-way coupling is used for momentum interaction and two-way coupling for thermal
interaction, respectively. Meanwhile, the gravitational settling of particles is neglected.
The current study then focuses on the influences of the Rayleigh number Ra within the
range (107, 1010) and the Stokes number St within the range (0.01, 10), while the other
non-dimensional numbers are fixed.

Within the parameter range simulated here, we reveal a regime in which nearly all
the particles will eventually accumulate towards the top plate. We identify the physical
mechanism of this accumulation as the interaction between the inertial particles and the top
BL. Specifically, for intermediate Stokes numbers at certain Rayleigh number, the particles
do not respond to the fluid motion quickly enough and cannot be carried away from the
BL. Meanwhile, their inertia is not too strong to fully decouple with the flow within the
BL. By scaling analyses we propose the upper and lower boundaries in the Ra − St phase
plane, which can describe the numerical results perfectly. Outside this regime, the flow
can reach a statistically steady state with particles constantly advected over the entire
domain.

For the flow at a statistically steady state, the flow and mean statistics are asymmetric
between the upper and lower parts of the domain. The flow motions are stronger in
the upper part of bulk region, and the top BL is thinner than the bottom one for both
momentum and temperature fields. Both the volume-averaged temperature and convective
heat flux exhibit non-monotonic dependences on St and their minima are expected to
locate at 0.1 ≤ St ≤ 0.4. The fraction coefficient FB, which measures the asymmetry
between the heat fluxes through the top and bottom plates, is dominated by the convective
flux. Our numerical results indicate that the dependences of both the convective flux
and FB on Ra are similar to those reported for internally heated RB with a uniform
source.
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However, our investigations also reveal several behaviours which are different from the
internally heated RB with a uniform source. The viscous dissipation rate is dominated
by the contribution from the bulk, while for uniformly heated RB with similar driving
strength, the dominant contribution comes from the BLs. Also, in the current flow
large-scale convection rolls develop in the bulk which were not found in the 3-D
simulations of uniformly heated RB (Goluskin & van der Poel 2016). Nevertheless, by
using the global balance between the dissipation rate and the convective flux and by
adopting the relation extracted from the numerical data, the scaling behaviours of the
Reynolds number, the volume-averaged temperature and the thicknesses of BLs can be
explained.

Preferential concentration is also observed in the present flow. For intermediate Stokes
numbers, particles have higher number density in both the top and bottom viscous BLs. In
the horizontal directions the clustering of particles has a multiscale nature: the horizontal
RDFs exceed unity over a wide range of particle separation distance at planes with
different height. For small and large Stokes numbers, the multiscale clustering in the
horizontal directions is much weaker. It should be pointed out, though, for the smallest
Stokes number large voids with very low particle number density were observed over the
horizontal plane near the bottom plate. Since the local strength of heating source strongly
depends on the local particle concentration, the preferential concentration should have
profound influences on the convection motions. This may explain the differences between
the present flow and the uniformly heated RB.

The current work opens up several interesting directions for future study. For
instance, two-way coupling in the momentum interaction can be included and the
gravitational settling of particles may be considered. Note that gravitational settling
and the heat-releasing to the surrounding fluid have competing effects on the vertical
translation of particles, and non-trivial behaviours can be expected when the gravitational
settling process is introduced in the system. These are the subjects of our ongoing
research.
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Appendix A. Numerical details
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Ra St Nx Nz FB Re 〈θ〉V λ
top
u λbot

u λθ ctop
s 〈θp − θf 〉p Nu

107 0.01 192 192 0.359 130.2 6.92 0.0290 0.0363 0.0725 1.33 0.999 0.995
107 0.02 192 192 0.379 129.8 6.42 0.0293 0.0381 0.0674 2.05 1.00 0.988
107 0.04 192 288 0.477 115.5 5.05 0.0298 0.0412 0.0526 4.61 1.00 0.997
107 0.08 192 288 — — — — — — 18.8 0.999 0.978
107 0.1 192 192 — — — — — — — — —
107 0.4 192 192 — — — — — — — — —
107 1 192 192 — — — — — — — — —
107 2 192 288 0.379 110.3 5.54 0.0288 0.0387 0.0580 5.10 0.999 0.983
107 4 192 192 0.349 113.8 6.21 0.0303 0.0373 0.0650 3.81 1.00 0.976
107 10 192 192 0.336 129.1 7.15 0.0310 0.0378 0.0749 1.66 1.00 0.988
108 0.01 288 192 0.313 329.3 9.77 0.0185 0.0266 0.0475 1.71 1.00 0.992
108 0.02 288 192 0.367 318.7 8.73 0.0189 0.0287 0.0424 2.98 1.00 0.987
108 0.04 288 288 — — — — — — 10.5 1.00 0.987
108 0.08 288 192 — — — — — — — — —
108 0.1 288 192 — — — — — — — — —
108 0.4 288 192 — — — — — — — — —
108 1 288 288 — — — — — — 23.3 1.00 1.00
108 2 288 192 0.335 291.7 8.31 0.0200 0.0269 0.0412 7.52 1.00 0.985
108 4 288 192 0.326 318.7 9.59 0.0198 0.0252 0.0467 2.74 0.999 0.972
108 10 288 192 0.296 344.4 10.2 0.0207 0.0310 0.0498 1.47 1.00 0.988
109 0.01 432 192 0.247 829.5 13.5 0.0117 0.0225 0.0304 2.91 1.00 0.993
109 0.02 432 192 0.266 808.8 12.1 0.0122 0.0232 0.0273 8.11 1.00 0.995
109 0.04 432 192 — — — — — — — — —
109 0.1 432 192 — — — — — — — — —
109 0.4 432 288 — — — — — — 21.4 0.999 1.02
109 1 432 192 0.322 791.2 11.7 0.0129 0.0226 0.0270 9.48 0.999 0.993
109 2 432 192 0.297 826 13.1 0.0128 0.0229 0.0295 3.11 1.00 0.980
109 4 432 192 0.277 839 13.7 0.0126 0.0228 0.0308 1.73 1.00 0.991
109 10 432 192 0.252 898.4 14.0 0.0132 0.0265 0.0315 1.16 1.00 0.993
1010 0.01 648 288 0.181 2000 17.8 0.00739 0.0163 0.0186 4.94 1.00 1.00
1010 0.02 648 288 — — — — — — 10.2 1.00 1.00
1010 0.04 648 288 — — — — — — 14.9 1.00 1.00
1010 0.1 648 288 0.283 2068 16.1 0.00818 0.0151 0.0163 9.39 1.00 1.03
1010 0.4 648 288 0.309 2041 16.5 0.00835 0.0157 0.0172 3.06 1.00 1.00
1010 1 648 288 0.282 2028 17.3 0.00804 0.0152 0.0181 1.67 0.999 1.00
1010 2 648 288 0.258 1997 17.9 0.00799 0.0153 0.0186 1.29 1.00 0.999
1010 4 648 288 0.242 2024 18.3 0.00792 0.0167 0.0191 1.20 1.00 1.00
1010 10 648 288 0.227 2135 18.4 0.00814 0.0170 0.0193 0.980 1.00 1.00

Table 1. Summary of the numerical simulations. Columns from left to right are the Rayleigh number, the
Stokes number, the resolutions in the horizontal and vertical directions, the fraction of internally heat across
bottom boundaries, the Reynolds number based on the r.m.s. value of velocity, the mean system temperature,
the thickness of top and bottom viscous BL, the thickness of temperature BL, the mean concentration cs for
the top BL, the mean temperature difference of two phases, the non-dimensional total heat flux across top and
bottom plates Nu, respectively. The resolution in the y direction is the same as that in the x direction. For all
cases the aspect ratio of the domain L = 4, the Prandtl number Pr = 0.7, the non-dimensional particle number
density C = 1 × 105, the heat-capacity ratio Φθ = 0.1 and the heat-mixing parameter σ = 1.
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