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We present a geometric particle-in-cell (PIC) algorithm on unstructured meshes for
studying electrostatic perturbations with frequency lower than electron gyrofrequency
in magnetized plasmas. In this method, ions are treated as fully kinetic particles and
electrons are described by the adiabatic response. The PIC method is derived from
a discrete variational principle on unstructured meshes. To preserve the geometric
structure of the system, the discrete variational principle requires that the electric field
is interpolated using Whitney 1-forms, the charge is deposited using Whitney 0-forms
and the electric field is computed by discrete exterior calculus. The algorithm has been
applied to study the ion Bernstein wave (IBW) in two-dimensional magnetized plasmas.
The simulated dispersion relations of the IBW in a rectangular region agree well with
theoretical results. In a two-dimensional circular region with fixed boundary condition,
the spectrum and eigenmode structures of the IBW are obtained from simulations. We
compare the energy conservation property of the geometric PIC algorithm derived from
the discrete variational principle with that of previous PIC methods on unstructured
meshes. The comparison shows that the new PIC algorithm significantly improves the
energy conservation property.

Key words: plasma simulation, plasma waves

1. Introduction

Particle-in-cell (PIC) simulation is an important tool for plasma physics (Potter 1973;
Dawson, Okuda & Rosen 1976; Hockney & Eastwood 1981; Dawson 1983; Birdsall
& Langdon 1991). A structured mesh is easy to implement and widely used in PIC
simulations. On the other hand, many studies require modelling of plasma in specific
and complex geometries found in advanced tokamaks, stellarators, target chambers of
inertial confinement fusion, etc., where unstructured meshes have a unique advantage.
Electrostatic PIC schemes on unstructured meshes have been proposed (Celik et al. 2003;
Spirkin & Gatsonis 2004; Gatsonis & Spirkin 2009; Day 2011; Han et al. 2016). In
these schemes, the shape function for interpolating the electric field at particle positions
is identical to that for depositing particle charge to the grid points of unstructured
meshes. Numerical studies (Langdon 1970) showed that using the same shape function
for charge deposition and field interpolation restricts the grid size to the Debye length.
It is difficult to carry out large-scale simulations for collisionless plasma using these
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electrostatic PIC schemes. In the previous PIC methods, the charge-deposition schemes
and the field-interpolation schemes are independent. The shape functions for these two
schemes can be chosen to be the same or different. There is no fundamental guiding
principle on how to design the schemes. In the present study, we develop a geometric
algorithm for electrostatic PIC simulations with adiabatic electrons on an unstructured
mesh. Instead of selecting a shape function based on intuition or experience, we derive
the charge-deposition and field-interpolation algorithm from an underpinning discrete
variational principle.

Squire, Qin & Tang (2012a,b) first employed the methodology of discrete variational
principle (Lee 1983; Veselov 1988; Marsden & West 2001; Qin & Guan 2008; Qin, Guan
& Tang 2009; Qin 2020) to derive an electromagnetic PIC algorithm on an unstructured
mesh. In that work, the technique of Whitney forms (Whitney 1957) was introduced for the
first time to deposit charge and current and to interpolate fields. Discrete exterior calculus
(Bossavit 1988, 1998; Hirani 2003) was also applied to compute the electromagnetic
field on an unstructured mesh. It was demonstrated that the discrete variational principle
admits the discrete electromagnetic gauge symmetry and thus ensures the discrete charge
conservation (Squire et al. 2012a,b; Xiao et al. 2015b; Xiao, Qin & Liu 2018; Glasser &
Qin 2020). Xiao et al. (2015b) developed an explicit high-order non-canonical symplectic
electromagnetic PIC scheme starting from the discrete variational principles on a cubic
mesh. High-order Whitney forms for cubic meshes were constructed and used for
current deposition and electromagnetic field interpolation. It was found that the ‘shape
functions’ for current deposition and field interpolation are different, and even for different
components of the field the interpolation schemes are different. Similar and subsequent
studies (Xiao et al. 2013, 2015a, 2017; Xiao & Qin 2019, 2021; Zheng et al. 2020) have
also illustrated that discrete variational principles and Whitney forms are useful tools
in designing structure-preserving geometric PIC algorithms (Squire et al. 2012a,b; He
et al. 2015a; Xiao et al. 2015b; He et al. 2016b; Qin et al. 2016; Burby 2017; Kraus et al.
2017; Morrison 2017; Xiao et al. 2018; Li et al. 2019; Kormann & Sonnendrücker 2021;
Perse, Kormann & Sonnendrücker 2021). Even for PIC algorithms that are not designed
to preserve the geometric structures of the classical particle–field systems, the application
of Whitney forms has been found to be beneficial (Moon, Teixeira & Omelchenko 2015).

In plasma physics, many reduced models are used, where comparing with the fully
kinetic six-dimensional model, these reduced models keep certain physics of interest
and simplify other less important dynamics. One widely adopted reduced model is the
Vlasov–Poisson system with fully kinetic six-dimensional ions and adiabatic electrons,
which is adequate for studying the low-frequency physics associated with ions. It is
desirable to apply structure-preserving geometric algorithms to these models as well.
A structure-preserving geometric PIC algorithm on a cubic mesh for this system was
developed recently (Xiao & Qin 2019). The construction of the algorithm starts from
a field theory, i.e. a variational principle. As in the geometric PIC algorithms for
the Vlasov–Maxwell system, Whitney forms and variational symplectic integrators are
employed. In particular, the charge-deposition and field-interpolation schemes were
derived from the variational principle for the electrostatic dynamics in the cubic mesh.

We take a step-by-step approach to build a structure-preserving geometric PIC algorithm
for the Vlasov–Poisson system on unstructured meshes. In the present work, we focus
on the charge-deposition and field-interpolation methods and have not implemented the
symplectic integrator. The Lagrangian of the system is discretized on an unstructured
mesh, and the charge-deposition and field-interpolation methods are derived from the
discrete variational principle on the unstructured mesh using Whitney forms. In place of a
more structure-preserving symplectic integrator (He et al. 2015a, 2016b, 2017), the Boris
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algorithm (Boris 1970), which preserves the phase space volume (Qin et al. 2013; He et al.
2015b; Zhang et al. 2015; He et al. 2016a,c), is adopted to push particles. Our purpose
here is to demonstrate how to design effective charge-deposition and field-interpolation
algorithms on an unstructured mesh using the discrete field theory and Whitney forms.
In addition, previous geometric PIC algorithms on unstructured meshes (Squire et al.
2012a,b; Moon et al. 2015) were built on simplicial meshes, i.e. triangular and tetrahedral
meshes. In certain applications, it is advantageous to use partially unstructured meshes.
For example, in the XGC code (Chang, Ku & Weitzner 2004; Ku et al. 2006, 2018; Chang
et al. 2009, 2017), an unstructured triangular mesh is needed in the two-dimensional
(2-D) poloidal plane and the grid in the toroidal direction is structured. In this work,
we develop a geometric PIC algorithm on this type of unstructured prism mesh, starting
from the discrete variational principle. To preserve geometric structure on the prism mesh,
the discrete variational principle mandates that the Whitney 0-forms are used for charge
deposition and the Whitney 1-forms for field interpolation. We self-consistently derive the
Whitney 1-forms on the prism mesh from the discrete variational principle.

To validate the new PIC algorithm, we compare the dispersion relation of the ion
Bernstein wave (IBW) from the PIC simulation with the theory (Sturdevant 2016;
Sturdevant, Chen & Parker 2017) in a 2-D periodic plasma. Eigenmode structures of the
IBW in a 2-D circular geometry with fixed boundary conditions are also simulated. We
compare the simulation results with those of the conventional methods (Celik et al. 2003;
Spirkin & Gatsonis 2004) on the same unstructured mesh, and find that our method is able
to significantly reduce the energy error of the simulations.

The paper is organized as follows. In § 2, the geometric electrostatic PIC algorithm with
fully kinetic ions and adiabatic electrons on an unstructured mesh is derived. Simulations
of the IBW in an infinite 2-D geometry and a 2-D circular geometry are presented in
§ 3. We compare the energy conservation property of our algorithm with that of previous
methods in § 4.

2. Geometric electrostatic PIC algorithm on an unstructured mesh
2.1. Simplicial mesh

In this subsection, we build the geometric electrostatic PIC algorithm on an unstructured
simplicial mesh. The model treats ions as fully kinetic six-dimensional particles. The
response of the electrons is adiabatic (Horton 1999; Weiland 2012; Sturdevant 2016; Hu
et al. 2018; Miecnikowski et al. 2018), which, with the quasi-neutrality condition, leads to

− qi

qe
ni = ne0 exp

(
−qeφ

Te

)
, (2.1)

where ni is the ion density, ne0 is the background electron density, φ is the electric potential,
Te is the electron temperature and qe and qi are electron and ion charges, respectively. The
action integral of the system is (Xiao & Qin 2019)

S(x, φ) =
∫

dtL(x, φ), (2.2)

L =
∫

dx dv fi(x, v)

[
1
2

miẋ2 + qiẋ · A0(x, t)
]

−qi[φ(x, t) + φ0(x, t)] + ne0Te exp
[
−qeφ(x, t)

Te

]
, (2.3)
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where x = x(x0, v0, t), fi is the ion distribution function, mi is ion mass and A0 and φ0 are
the external vector and scalar potentials. The dynamics of the system is governed by the
Euler–Lagrange equations:

δS
δφ

= 0, (2.4)

δS
δx

= 0. (2.5)

Equation (2.4) links the electric potential φ and the ion charge density ρi:

φ = −Te

qe
log

(
− ρi

qene0

)
, (2.6)

where ρi = ∫
dvqi fi(x, v). Equation (2.6) recovers the electron adiabatic response and

charge-neutrality condition in (2.1). Equation (2.5) gives the equation of motion for
particles:

ẍ = qi

mi
[E0(x, t) + E(x, t) + ẋ × B0(x, t)], (2.7)

where E0(x, t) and B0(x, t) are the external electromagnetic field, and E(x, t) =
−∇φ(x, t) is the perturbed electrostatic field.

We use the method introduced in Squire et al. (2012a) and Xiao & Qin (2019) to
discretize the action integral by particles and Whitney forms (Whitney 1957) on a 2-D
unstructured triangular mesh. The discrete action integral Sd can be written as

Sd(xp, φI) =
∫

Ld(xp, φI) dt, (2.8)

Ld(xp, φI) =
∑

p

[
1
2

miẋ2
p + qiẋp · A0(xp) − qi

∑
I

Wσ0,I(xp)φI

− qiφ0(xp)

]
+

∑
I

ne0,ITe,I exp
(

−qeφI

TeI

)
, (2.9)

where I is the triangular vertex index, xp is the particle position of the pth particle, φI
is the electric potential defined on the triangular vertex and Wσ0,I is the Whitney 0-form
interpolating the value of φ in continuous space using φI . The discrete action integral is
the same as in Xiao & Qin (2019), except that here it is on a 2-D unstructured triangular
mesh.

Variations of Sd with respect to φI and xp lead to the equations of motion of the
electrostatic system:

δSd

δφI
= 0, (2.10)

δSd

δxp
= 0. (2.11)

Equation (2.10) gives

φI = −Te,I

qe
log

(
− ρI

qene0,I

)
, (2.12)
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where
ρI = qiWσ0,I(xp) (2.13)

is the charge density on the triangular vertex. Equation (2.11) is the governing equation for
ion dynamics:

ẍp = qi

mi

[
E0(xp, t) + ẋp × B0(xp, t) − ∂

∂xp

∑
I

Wσ0,I(xp)φI

]
. (2.14)

The last term of (2.14) is the derivative of Wσ0,I with respect to xp in continuous space.
According to the property of Whitney forms (Whitney 1957; Hirani 2003; Desbrun, Kanso
& Tong 2008; Squire et al. 2012a; Xiao et al. 2015b),

∇
∑

I

Wσ0,I(xp)φI =
∑

J

Wσ1,J(xp)
∑

I

∇dJ,IφI, (2.15)

where
∑

I ∇dJ,IφI is the discrete gradient of φI , and Wσ1,J is the Whitney 1-form that
interpolates a continuous 1-form from the discrete 1-form defined on the triangular edge.
The construction of Wσ0,I, Wσ1,J and ∇dJ,I is further discussed below. With property (2.15),
(2.14) becomes

ẍp = qi

mi

[
E0(xp, t) + ẋp × B0(xp, t) +

∑
J

Wσ1,J(xp)EJ

]
(2.16)

and
EJ = −

∑
I

∇dJ,IφI, (2.17)

where EJ is the discrete electrical field defined on the triangular edge labelled by J. We
want to emphasize again that, similar to the scenario in a cubic mesh (Xiao & Qin 2019),
without Whitney forms and discrete exterior calculus, it is difficult to calculate on the
electric field on an unstructured mesh to advance particle positions.

As is well known, the key parts of a PIC method include charge deposition, solving
discrete field and field interpolation, which are encapsulated in a systematic way in (2.13),
(2.17) and (2.16), respectively. Once Wσ0,I, Wσ1,J and ∇dJ,I are chosen, the PIC algorithm is
defined.

Now we describe in detail the construction of Wσ0,I, Wσ1,J and ∇dJ,I on the triangular
mesh. Figure 1(a) shows a particle in a triangle, where (x, y) is the position of
the particle p, and the three vertices of the ith triangle, i1, i2, i3, have coordinates
(xi1, yi1), (xi2, yi2), (xi3, yi3), respectively. To deposit charge at each vertex according to
(2.13), we need to specify the Whitney 0-forms, which are chosen to be linear barycentric
functions. For (x, y) inside the triangle, the Whitney 0-forms are

Wσ0,i1(x, y) = ( yi2 − yi3)(x − xi3) + (xi3 − xi2)( y − yi3)

(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)
, (2.18)

Wσ0,i2(x, y) = ( yi3 − yi1)(x − xi3) + (xi1 − xi3)( y − yi3)

(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)
, (2.19)

Wσ0,i3(x, y) = 1 − Wσ0,i1(x, y) − Wσ0,i2(x, y). (2.20)

When (x, y) is outside the triangle, all the Whitney 0-forms vanish. Note that
Wσ0,i1(x, y), Wσ0,i2(x, y) and Wσ0,i3(x, y) are the areas of the triangle �pi2i3,�pi3i1 and
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(a) (b) (c)

FIGURE 1. The PIC algorithm on a triangle. (a) Depositing a particle’s charge to the triangular
vertices using Whitney 0-forms Wσ0,I . (b) Computing EJ on the edge with the discrete gradient
operator ∇dJ,I . (c) Interpolating EJ from edges to the particle’s location through Whitney
1-forms Wσ1,J .

�pi1i2, respectively. Thus, the weighting of charge deposition with respect to a vertex is the
area weighting of the triangle enclosed by the particle and the opposite edge of the vertex.
The density plots of Wσ0,i1(x, y), Wσ0,i2(x, y) and Wσ0,i3(x, y) are shown in figure 2(a–c).
Figure 2(a) shows Wσ0,i1(x, y) approaching 1 as the particle is close to the vertex i1. The
chosen Whitney 0-forms in (2.18)–(2.20) obviously satisfy the condition

∑
I=i1,i2,i3

Wσ0,I(xp) = 1. (2.21)

In the 2-D triangular mesh, 1-forms, such as EJ , are defined on the triangular edges. And
the index J for the edges consists of an ordered pair of indices of the vertices. For example,
J = i1i2 labels the oriented edge from i1 to i2, as shown in figure 1(b). The discrete gradient
operator ∇dJ,I consistent with (2.15) is

∇di1i2,I = δi2I − δi1I. (2.22)

According to the definition of Whitney forms (Whitney 1957), the Whitney 1-form on
an unstructured triangular mesh is

Wσ1,j′j = Wσ0,j∇Wσ0,j′ − Wσ0,j′∇Wσ0,j. (2.23)

For the triangular mesh, the expressions of Wσ1,j′j(x, y) for j′, j = i1, i2, i3 and j′ �= j are

Wσ1,i1i2(x, y) =
[
( yi3 − yi1)Wσ0,i1(x, y) − ( yi2 − yi3)Wσ0,i2(x, y)
(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)

,

(xi1 − xi3)Wσ0,i1(x, y) − (xi3 − xi2)Wσ0,i2(x, y)
(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)

]
, (2.24)

Wσ1,i2i3(x, y) =
[
( yi1 − yi2)Wσ0,i2(x, y) − ( yi3 − yi1)Wσ0,i3(x, y)
(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)

,

(xi2 − xi1)Wσ0,i2(x, y) − (xi1 − xi3)Wσ0,i3(x, y)
(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)

]
, (2.25)

https://doi.org/10.1017/S0022377821000702 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000702


Geometric electrostatic PIC algorithm on unstructured meshes 7

(a) (b) (c)

(d) (e) ( f )

FIGURE 2. The values of the Whitney 0-forms and 1-forms. The density plot of the value of (a)
Wσ0,i1(x, y), (b) Wσ0,i2(x, y) and (c) Wσ0,i3(x, y). The amplitude density plot and the quiver plot
of (d) Wσ1,i2i3(x, y), (e) Wσ1,i3i1(x, y) and ( f ) Wσ1,i1i2(x, y).

Wσ1,i3i1(x, y) =
[
( yi2 − yi3)Wσ0,i3(x, y) − ( yi1 − yi2)Wσ0,i1(x, y)
(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)

,

(xi3 − xi2)Wσ0,i3(x, y) − (xi2 − xi1)Wσ0,i1(x, y)
(xi1 − xi3)( yi2 − yi3) + (xi3 − xi2)( yi1 − yi3)

]
, (2.26)

for (x, y) inside the triangle. All Wσ1,j′j(x, y) vanish when (x, y) is outside the triangle. The
amplitude density plot and the quiver plot of Wσ1,i2i3(x, y) are shown in figure 2(d), where
the amplitude approaches zero when a particle is close to the opposite vertex of the edge
and maximizes when the particle approaches the edge. Figures 2(e) and 2( f ) plot the value
and direction of Wσ1,i3i1(x, y) and Wσ1,i1i2(x, y).

After Wσ0,I , Wσ1,J and ∇dJ,I are chosen, the discrete electric potential φI at each vertex
can be calculated by (2.13) and (2.12), and the electric field on the edges according to
(2.17) is

Ei1i2 = φi2 − φi1, (2.27)

where Ei1i2 is a discrete 1-form, denoted by a boldface symbol in figure 1 following
the convention of physicists. Particles’ positions and velocities are advanced according
to (2.16), which interpolates the electrical field at xp as E(xp) = ∑

J Wσ1,J(xp)EJ
using Whitney 1-forms. This process is illustrated in figure 1(c). In the current
implementation, (2.16) is integrated by the Boris algorithm (Boris 1970), which preserves
the phase space volume (Qin et al. 2013; Ellison, Burby & Qin 2015; He et al.
2015b, 2016a; Zhang et al. 2015; He et al. 2016c) although is not symplectic. The
algorithm on a three-dimensional tetrahedral mesh can also be constructed in the
same way.
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(a) (b) (c)

FIGURE 3. The PIC algorithm on prism mesh. (a) Charge-deposition algorithm.
Here ρi1, . . . , ρi6 are the charge density on the vertices deposited from a particle
at (x, y, z). (b) Potentials φi1 , . . . , φi6 are electric potentials on the vertices, and
Ei2i3 , Ei3i1 , Ei4i5 , Ei5i6 , Ei6i4 , Ei1i4 , Ei2i5 , Ei3i6 are discrete electric field on the edges. (c)
Field-interpolation algorithm. Note that Ei3i1 , Ei5i6 and Ei1i4 are not labelled for clarity.

2.2. Three-dimensional non-simplicial mesh
In this subsection, we develop the algorithm in a special non-simplicial mesh made of
prisms. The mesh is constructed from a 2-D unstructured simplicial mesh and a structured
grid in the third perpendicular dimension. This type of unstructured mesh has been
adopted by the XGC code (Chang et al. 2004, 2009, 2017; Ku et al. 2006, 2018), where
the structured direction is the toroidal direction, and the poloidal plane is covered by a 2-D
unstructured simplicial mesh. The discrete variational principle, (2.4), gives the electric
potential on a prism:

φI = −Te,I

qe
log

(
− ρI

qene0,I

)
, (2.28)

where

ρI = qifI(xp). (2.29)

Equation (2.29) describes charge deposition on a prism with the function fI defined as

∑
I=i1,...,i6

fI(xp) = fi1(xp) + fi2(xp) + fi3(xp) + fi4(xp) + fi5(xp) + fi6(xp), (2.30)

where i1, . . . , i6 label vertices 1 to 6 of the ith prism. Define fi1(xp) = fΔ1,i1(x, y) fΔ1(z),
where Δ1 is the back triangle of the prism, (x, y) is the position of the particle in the
plane containing the triangle, fΔ1,i1(x, y) gives the weighting of (x, y) with respect to i1
on the triangle Δ1 and z is the particle’s position along the direction perpendicular to
the triangle plane. Similarly, we define fi4(xp) = fΔ2,i4(x, y) fΔ2(z), where Δ2 is the front
triangle of the prism. Functions fi2(xp), fi3(xp), fi5(xp) and fi6(xp) are defined in a similar
way (see figure 3a). Since Δ1 and Δ2 are identical, the weightings of (x, y) with respect to
the corresponding vertices i1 and i4 are identical, i.e.

fΔ1,i1(x, y) = fΔ2,i4(x, y), (2.31)

and

fΔ1,i2(x, y) = fΔ2,i5(x, y), (2.32)

fΔ1,i3(x, y) = fΔ2,i6(x, y). (2.33)
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Hence, (2.30) can be written as

fi1(xp) + fi2(xp) + fi3(xp) + fi4(xp) + fi5(xp) + fi6(xp)

= [ fΔ1,i1(x, y) + fΔ1,i2(x, y) + fΔ1,i3(x, y)] fΔ1(z)

+ [ fΔ2,i4(x, y) + fΔ2,i5(x, y) + fΔ2,i6(x, y)] fΔ2(z)

= [ fΔ1,i1(x, y) + fΔ1,i2(x, y) + fΔ1,i3(x, y)]( fΔ1(z) + fΔ2(z)). (2.34)

By choosing fΔ1,i1(x, y) + fΔ1,i2(x, y) + fΔ1,i3(x, y) = 1 and fΔ1(z) + fΔ2(z) = 1, we have∑
I−i1,...,i6 f (xp) = 1. Equation (2.11) gives the governing equation for ion dynamics:

ẍp = qi

mi

[
E0(xp, t) + ẋp × B0(xp, t) − ∂

∂xp

∑
I

fI(xp)φI

]
. (2.35)

The last term of (2.35) is

− ∂

∂xp

∑
I=i1,...,i6

fI(xp)φI = −φi1∇ fi1 − φi2∇ fi2 − φi3∇ fi3 − φi4∇ fi4 − φi5∇ fi5 − φi6∇ fi6,

(2.36)

which can be further expressed as

− φi1∇ fi1 − φi2∇ fi2 − φi3∇ fi3 − φi4∇ fi4 − φi5∇ fi5 − φi6∇ fi6

= fΔ1(z)[−φi1∇⊥ fΔ1,i1(x, y) − φi2∇⊥ fΔ1,i2(x, y) − φi3∇⊥ fΔ1,i3(x, y)]

+ fΔ2(z)[−φi4∇⊥ fΔ2,i4(x, y) − φi5∇⊥ fΔ2,i5(x, y) − φi6∇⊥ fΔ2,i6(x, y)]

− φi1 fΔ1,i1(x, y)
∂

∂z
fΔ1(z) − φi4 fΔ2,i4(x, y)

∂

∂z
fΔ2(z)

− φi2 fΔ1,i2(x, y)
∂

∂z
fΔ1(z) − φi5 fΔ2,i5(x, y)

∂

∂z
fΔ2(z)

− φi3 fΔ1,i3(x, y)
∂

∂z
fΔ1(z) − φi6 fΔ2,i6(x, y)

∂

∂z
fΔ2(z), (2.37)

where ∇⊥ = (∂/∂x + ∂/∂y). The first term of the right-hand side of (2.37) can be
expressed as

fΔ1(z)[−φi1∇⊥ fΔ1,i1(x, y) − φi2∇⊥ fΔ1,i2(x, y) − φi3∇⊥ fΔ1,i3(x, y)]

= fΔ1(z)[(φi2 − φi1)( fΔ1,i2(x, y)∇⊥ fΔ1,i1(x, y) − fΔ1,i1(x, y)∇⊥ fΔ1,i2(x, y))

+ (φi3 − φi2)( fΔ1,i3(x, y)∇⊥ fΔ1,i2(x, y) − fΔ1,i2(x, y)∇⊥ fΔ1,i3(x, y))

+ (φi1 − φi3)( fΔ1,i1(x, y)∇⊥ fΔ1,i3(x, y) − fΔ1,i3(x, y)∇⊥ fΔ1,i1(x, y))]. (2.38)

Similarly, the second term of the right-hand side of (2.37) is

fΔ2(z)[−φi4∇⊥ fΔ2,i4(x, y) − φi5∇⊥ fΔ2,i5(x, y) − φi6∇⊥ fΔ2,i6(x, y)]

= fΔ2(z)[(φi5 − φi4)( fΔ2,i5(x, y)∇⊥ fΔ2,i4(x, y) − fΔ2,i4(x, y)∇⊥ fΔ2,i5(x, y))

+ (φi6 − φi5)( fΔ2,i6(x, y)∇⊥ fΔ2,i5(x, y) − fΔ2,i5(x, y)∇⊥ fΔ2,i6(x, y))

+ (φi4 − φi6)( fΔ2,i4(x, y)∇⊥ fΔ2,i6(x, y) − fΔ2,i6(x, y)∇⊥ fΔ2,i4(x, y))]. (2.39)
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Based on (2.31), the third term of (2.37) can be written as

− φi1 fΔ1,i1(x, y)
∂

∂z
fΔ1(z) − φi4 fΔ2,i4(x, y)

∂

∂z
fΔ2(z)

= fΔ1,i1(x, y)
[
−φi1

∂

∂z
fΔ1(z) − φi4

∂

∂z
fΔ2(z)

]

= (φi4 − φi1) fΔ1,i1(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
. (2.40)

Similarly, the last two terms of (2.37) can be written as

− φi2 fΔ1,i2(x, y)
∂

∂z
fΔ1(z) − φi5 fΔ2,i5(x, y)

∂

∂z
fΔ2(z)

= (φi5 − φi2) fΔ1,i2(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
(2.41)

and

− φi3 fΔ1,i3(x, y)
∂

∂z
fΔ1(z) − φi6 fΔ2,i6(x, y)

∂

∂z
fΔ2(z)

= (φi6 − φi3) fΔ1,i3(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
. (2.42)

Finally, (2.36) is written as

− φi1∇ fi1 − φi2∇ fi2 − φi3∇ fi3 − φi4∇ fi4 − φi5∇ fi5 − φi6∇ fi6

= fΔ1(z)[(φi2 − φi1)( fΔ1,i2(x, y)∇⊥ fΔ1,i1(x, y) − fΔ1,i1(x, y)∇⊥ fΔ1,i2(x, y))

+ (φi3 − φi2)( fΔ1,i3(x, y)∇⊥ fΔ1,i2(x, y) − fΔ1,i2(x, y)∇⊥ fΔ1,i3(x, y))

+ (φi1 − φi3)( fΔ1,i1(x, y)∇⊥ fΔ1,i3(x, y) − fΔ1,i3(x, y)∇⊥ fΔ1,i1(x, y))]

+ fΔ2(z)[(φi5 − φi4)( fΔ2,i5(x, y)∇⊥ fΔ2,i4(x, y) − fΔ2,i4(x, y)∇⊥ fΔ2,i5(x, y))

+ (φi6 − φi5)( fΔ2,i6(x, y)∇⊥ fΔ2,i5(x, y) − fΔ2,i5(x, y)∇⊥ fΔ2,i6(x, y))

+ (φi4 − φi6)( fΔ2,i4(x, y)∇⊥ fΔ2,i6(x, y) − fΔ2,i6(x, y)∇⊥ fΔ2,i4(x, y))]

+ (φi4 − φi1) fΔ1,i1(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]

+ (φi5 − φi2) fΔ1,i2(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]

+ (φi6 − φi3) fΔ1,i3(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
. (2.43)

Inserting (2.43) into (2.35), the equation of motion for particles on the prism mesh is

ẍp = qi

mi
[E0(xp, t) + ẋp × B0(xp, t)

+ gi1i2(xp)Ei1i2 + gi2i3(xp)Ei2i3 + gi3i1(xp)Ei3i1

+ gi4i5(xp)Ei4i5 + gi5i6(xp)Ei5i6 + gi6i4(xp)Ei6i4

+ gi1i4(xp)Ei1i4 + gi2i5(xp)Ei2i5 + gi3i6(xp)Ei3i6 ], (2.44)
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where the discrete electric field defined on edge i1i2 is

Ei1i2 = φi2 − φi1, (2.45)

and Ei2i3, Ei3i1, E i4i5, Ei5i6, Ei6i4, Ei1i4, Ei2i5 and Ei3i6 are defined in a similar way. The
interpolation from discrete electric field to particle is defined as

gi1i2 = fΔ1(z)[ fΔ1,i2(x, y)∇⊥ fΔ1,i1(x, y) − fΔ1,i1(x, y)∇⊥ fΔ1,i2(x, y)], (2.46)

gi2i3 = fΔ1(z)[ fΔ1,i3(x, y)∇⊥ fΔ1,i2(x, y) − fΔ1,i2(x, y)∇⊥ fΔ1,i3(x, y)], (2.47)

gi3i1 = fΔ1(z)[ fΔ1,i1(x, y)∇⊥ fΔ1,i3(x, y) − fΔ1,i3(x, y)∇⊥ fΔ1,i1(x, y)], (2.48)

gi4i5 = fΔ2(z)[ fΔ2,i5(x, y)∇⊥ fΔ2,i4(x, y) − fΔ2,i4(x, y)∇⊥ fΔ2,i5(x, y)], (2.49)

gi5i6 = fΔ2(z)[ fΔ2,i6(x, y)∇⊥ fΔ2,i5(x, y) − fΔ2,i5(x, y)∇⊥ fΔ2,i6(x, y)], (2.50)

gi6i4 = fΔ2(z)[ fΔ2,i4(x, y)∇⊥ fΔ2,i6(x, y) − fΔ2,i6(x, y)∇⊥ fΔ2,i4(x, y)], (2.51)

and

gi1i4 = fΔ1,i1(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
, (2.52)

gi2i5 = fΔ1,i2(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
, (2.53)

gi3i6 = fΔ1,i3(x, y)
[

fΔ2(z)
∂

∂z
fΔ1(z) − fΔ1(z)

∂

∂z
fΔ2(z)

]
. (2.54)

The diagram of the algorithm is shown in figure 3. The charge-deposition algorithm is
shown in figure 3(a). Figure 3(b) shows the electric field on each edge calculated as (2.45).
The electric field is interpolated to a particle’s position by (2.46)–(2.54) as shown in figure
3(c). Note that (2.46)–(2.54) are consistent with the formalism of Whitney 1-forms on a
prism mesh (Nedelec 1980; Lohi & Kettunen 2021). In the PIC code, we take the linear
barycentric function for fΔ1,i1(x, y), fΔ1,i2(x, y) and fΔ1,i3(x, y), and we take the tent function
for fΔ1(z) and fΔ2(z).

3. Ion Bernstein waves on 2-D unstructured meshes

The PIC method described in § 2 is used to examine the IBW (Bernstein 1958) in 2-D
uniform plasmas. The simulations are carried out in a rectangular region with periodic
boundary conditions and in a 2-D circular region with fixed boundary conditions.

3.1. The IBW with periodic boundary conditions in a rectangular region
First, the IBW in a rectangular region of a uniform plasma is examined on an unstructured
mesh with periodic boundary conditions. The simulation domain is shown in figure 4(a),
and figure 4(b) shows a zoom-in of the red region. The simulation domain has 20 201
vertices and 40 000 triangles. To implement the periodic boundary conditions, each vertex
at the left-hand boundary is identified with the corresponding vertex at the right-hand
boundary. Similar identification is imposed for the top and bottom boundaries. The ion
mass is mi = 1.67 × 10−27 kg and charge is qi = 1.6 × 10−19 C, the initial ion density
is ni0 = 1020 m−3, the electron and ion temperatures are 1000 eV and the out-of-plane
background magnetic field is B0 = 2 T. The simulation time step is �t = 0.01/Ωi and the
total number of simulation particles is 5.12 × 107.
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(a) (b)

FIGURE 4. (a) The rectangular simulation domain. (b) A zoom-in of the red rectangular region
in (a).

During the simulation, the electric potential φ on each vertex is recorded. The potentials
φ on the vertices are interpolated to a rectangular mesh; after interpolation, data are
analysed using the fast Fourier transform. The dispersion relations of the IBW can be
inferred from φ̃(kx, ky, ω), where kx and ky are the wave numbers in the x and y directions
and ω is the angular frequency. Figure 5 plots the contours of the spectral power of φ̃,
and the contour peaks show the dispersion relation kx–ω at a fixed ky, where kx and ky are
normalized to the ion gyroradius ρi and ω to the ion gyrofrequency Ωi. The contour plots
of φ̃ at kyρi = 0, 1.0, 2.0 and 3.0 are shown in figure 5. The contour plots are compared with
the theoretical dispersion relation with kinetic ions and adiabatic electrons (Sturdevant
2016):

1 + θ

∞∑
n=−∞

nΩiΓn(b)

ω + nΩi
= 0. (3.1)

Here, θ = qiTe/qeTi, b ≡ (k⊥ρi)
2, Γn ≡ In(b)e−b, k⊥ is the perpendicular wave number

and In is the nth modified Bessel function of the first kind. For the present 2-D simulation,
k⊥ =

√
k2

x + k2
y . The dispersion relation in terms of (kx, ky, ω) can be directly compared

with the dispersion relation from the PIC simulation. The red dashed lines in figure 5 are
the dispersion relation curves at kyρi = 0, 1.0, 2.0, 3.0 from (3.1). The dispersion relations
from the PIC simulations agree well with the theory. We also carry out the simulations on
prism and tetrahedral meshes and obtain the dispersion relations of IBW for k|| = 0; the
dispersion relations are consistent with the theory results.

3.2. The IBW in a 2-D circular region with fixed boundary conditions
In this subsection, we simulate the IBW in a 2-D circular domain using an unstructured
mesh. The simulation domain is shown in figure 6(a), and figure 6(b) shows a zoom-in of
the red rectangular region. The simulation domain has 7477 vertices and 14 646 triangles.
The physical parameters are the same as in § 3.1. The total number of simulation particles
is 4.9 × 1010 in order to reduce noise and obtain eigenmode structures by the nonlinear
PIC simulation, and the time step is �t = 0.02/Ωi. The boundary condition is that φ = 0
at the outermost vertices, and particles are reflected when entering the outermost triangles.

For the fast Fourier transform analysis, φ is interpolated to a diagnostic circular mesh
which has 101 co-concentric circles with equal intervals, and 61 grid points are distributed
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(a) (b)

(c) (d)

FIGURE 5. Dispersion relation of the IBW in a 2-D rectangular domain. The contour plot of
φ̃(kx, ω) at (a) kyρi = 0, (b) kyρi = 1.0, (c) kyρi = 2.0 and (d) kyρi = 3.0. The red dashed lines
represent the theoretical dispersion relation.

(a) (b)

FIGURE 6. (a) The 2-D circular simulation domain. (b) A zoom-in of the red rectangular
region in (a).
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(a) (b)

FIGURE 7. (a) Spectrum of the IBW for m = 0, 1, 2, 3. (b) Zoom-in of (a) for 0 ≤ ω/Ωi ≤ 3.

on each circle with the same angular interval. On the diagnostic mesh, φ is a function of
time t and the radial coordinates (r, θ). Performing the fast Fourier transform analysis of
φ(r, θ, t) along the θ and t directions, we discover that for each azimuthal mode number m,
the spectrum of the system has a rich structure that can be labelled by two integer indices,
n and l. In the neighbourhood of each integer harmonics of Ωi labelled by n, there exists a
family of eigenmodes labelled by l. The value of l indicates the number of oscillations of
the eigenmode in the radial direction. Thus, the eigenmode expansion for φ is

φ =
∑
n,m,l

φ̃nml(r) exp(imθ − iωnmlt), (3.2)

where φ̃nml(r) is the eigenfunction of the mode at ω = ωnml. Figure 7(a) plots the spectrum
of φ̃ for m = 0, 1, 2, 3, where the frequency ω is normalized to ion gyrofrequency Ωi.
Figure 7(b) shows a zoom-in of the spectrum in the range 0 ≤ ω/Ωi ≤ 3. The eigenmode
structures φ̃nml(r) for m = 0, 1, 2, 3, l = 1, 2, 3 in the neighbourhood of the first harmonic
(n = 1) are shown in figure 8. We are not aware of any previous study of these eigenmodes
of the IBW in a circular domain.

4. Comparison of PIC methods on unstructured meshes

As discussed in § 1, previous PIC methods on unstructured meshes used identical shape
function for both charge deposition and field interpolation (Celik et al. 2003; Spirkin
& Gatsonis 2004). In this section, the energy conservation property of our PIC method
(Method A) is compared with that of a PIC method (Method B) using identical shape
function for both charge deposition and field interpolation. The comparison is carried out
on an unstructured mesh as in figure 4.

Method B on the unstructured mesh is illustrated in figure 9. Suppose a particle at (x, y)
is inside a triangle. The charge of the particle is deposited to the triangular vertices by the
linear barycentric functions, as shown in figure 9(a). The electric potential φI is calculated
from ρI by (2.12). With the φI on each vertex, the electric field components Ex and Ey are
calculated by a centred finite-difference method (Birdsall & Langdon 1991). At (xi1, yi1 ),
the x component of the electric field is

Ex = φ(xi1 + �x, yi1) − φ(xi1 − �x, yi1)

2�x
, (4.1)
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FIGURE 8. Eigenmode structures φ̃nml(r) for m = 0, 1, 2, 3 and l = 1, 2, 3 in the
neighbourhood of the first harmonic (n = 1). The black solid line is the real part of φ̃nml(r) and
the red dashed line is the imaginary part. The eigenfrequency ωnml for each eigenmode is listed.

(a) (b) (c)

FIGURE 9. A previous PIC method (Method B) on unstructured meshes with identical shape
function for charge deposition and field interpolation. (a) Depositing the particle’s charge into
the triangular vertices. (b) Computing Ex and Ey by a five-point finite-difference method.
(c) Interpolating E from vertices to the particle’s position.

where �x,�y is chosen to be a small value compared with the averaged length of
triangular edges. To calculate φ(xi1 ± �x, yi1), we first determine the triangle in which the
point (xi1 ± �x, yi1) locates, and then interpolate φ at (xi1 ± �x, yi1) from its values on the
triangular vertices using linear barycentric functions, as shown in figure 9(b). Component
Ey can be calculated using a similar method. As figure 9(c) shows, to advance the particle’s
position and velocity, E at the particle’s position (x, y) is obtained by interpolating E at
the triangular vertices to (x, y) using the linear barycentric function. Note that Method B
uses the linear barycentric functions for both charge deposition and field interpolation.

Contrast simulations of Methods A and B are carried out on the unstructured mesh with
periodic boundary conditions. The horizontal length of the mesh is 10 times larger than
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(a) (b) (c)

FIGURE 10. Comparison between our algorithm derived from the discrete variational principle
(Method A) and a previous method using identical shape function for charge deposition and field
interpolation (Method B). (a) The total energy error during the simulation. The blue curve is for
method A and the red curve is for Method B. (b) The dispersion relation obtained from Method
A. The red dashed lines are the theoretical results. (c) The dispersion relation obtained from
Method B.

the vertical length. The mesh has 2111 vertices and 4000 triangles. For Method B, �x is
chosen to be 1/10 of averaged length of triangular edges. The physical parameters are the
same as in § 3.1. For both simulations, the time step is �t = 0.02/Ωi and the number of
simulation particles is 1.28 × 106. Both simulations are performed to the time length of
2400/Ωi.

Figure 10(a) shows a comparison of the energy conservation property of Methods
A and B. We measure the error of total energy during the simulations. Here E is the
total energy that includes plasma kinetic energy, particles’ potential energy and electric
field energy, and E0 is the initial total energy. The blue line is the total energy error of
Method A and the red line is that of Method B. The growth rate of total energy error
of Method B is six times faster than that of Method A. The IBW dispersion relation for
ky = 0 at t ∼ 1800/Ωi is shown in figures 10(b) and 10(c) for Method A and Method
B, respectively. The dispersion relation from Method A agrees wells with the theoretical
results. In contrast, the contour plot from Method B cannot recover the dispersion relation
for all harmonics in the regime of kxρi ≥ 3. Method A has a much smaller total energy
error, and thus generates a more accurate dispersion relation. This comparison study
demonstrates that our new algorithm derived from the discrete variational principle has
a much better energy conservation property than previous methods using identical shape
function for charge deposition and field interpolation. We point out that many PIC methods
adopt identical shape function for both charge deposition and field interpolation in order
to conserve momentum. These PIC methods are commonly referred to as ‘momentum
conserving’ methods. However, as Hockney & Eastwood (1981) and Birdsall & Langdon
(1991) stated, besides using identical shape function for both charge deposition and field
interpolation, a PIC method must have ‘correctly space-centred difference approximation
to derivatives’ (Hockney & Eastwood 1981) or ‘left–right symmetry’ (Birdsall & Langdon
1991) to have momentum conservation. Solely adopting identical shape function for both
charge deposition and field interpolation, as in Method B and previous PIC methods (Celik
et al. 2003; Spirkin & Gatsonis 2004; Gatsonis & Spirkin 2009; Day 2011; Han et al.
2016), cannot guarantee momentum conservation on an unstructured mesh. In addition,
under the assumption of electron adiabatic response, the high-frequency electron motion
does not affect IBWs. The geometric PIC algorithm can have a speed-up by a factor of 104

with similar accuracy for studying IBWs comparing with standard PIC algorithms which
compute the high-frequency motion of six-dimensional electrons.
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5. Conclusions and discussion

In conclusion, we have built a geometric electrostatic PIC method on unstructured
triangular, tetrahedral and prism meshes. The PIC method uses kinetic ions and adiabatic
electrons. The discrete variational principle gives an algorithm that deposits particle
charge to triangular vertices by Whitney 0-forms and interpolates the electric field
at particle positions using the values on the triangular edges and Whitney 1-forms.
The formula of Whitney forms, the discrete exterior calculus method that computes
the discrete electric field on triangular edges and the algorithm of charge deposition
and field interpolation are described in detail. The PIC method has been used to
investigate IBWs on unstructured meshes with two different geometries and boundary
conditions. For the case with periodic boundary conditions in a rectangular domain,
the simulated dispersion relation agrees well with the theory. For the case on a 2-D
circular unstructured mesh with fixed boundary conditions, the spectrum and eigenmode
structures are obtained. The simulation results of our PIC algorithm are compared with
those of a previous PIC method using identical shape function for charge deposition
and field interpolation. The comparison shows the new algorithm has a much better
energy conservation property and thus can give a more accurate dispersion relation.
Higher-order Whitney forms can significantly reduce the noise and improve the energy
conservation property of a PIC algorithm. In a cubic mesh, Xiao et al. (2015b, 2016)
constructed high-order Whitney forms spanning over multiple cells with chosen functions
for the Whitney 0-forms. The high-order Whitney forms have significantly reduced the
noise and improved the energy conservation property of the PIC simulations. Rapetti
& Bossavit (2009) proposed another type of high-order Whitney forms on triangular
and tetrahedral meshes. Midpoints on edges are introduced to split a triangle into a
set of subtriangles, and Whitney 0-forms and Whitney 1-forms are built using the
subtriangles. These high-order Whitney forms can improve the accuracy of solving
partial differential equations. However, our numerical test shows that when implemented
in the PIC algorithm, this type of high-order Whitney forms introduces larger energy
error. This implies that we should design high-order Whitney forms for PIC algorithms
from the discrete variational principle, instead of adopting those used for partial
differential equation algorithms. The present paper focuses on demonstrating the new
charge-deposition and field-interpolation methods on unstructured meshes and has not
implemented the symplectic structure-preserving integration algorithm. The topic of
symplectic structure-preserving integration on unstructured meshes will be addressed in
future studies.
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