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SUMMARY

Common geared industrial robots call for force control
methods with special properties such as good rejection of
frictional disturbances, smoothness of corrective motions,
and more. A new method is presented which meets these
requirements and provides a high control bandwidth. In
the manner of hybrid control, directions of a task frame
can be selected to be force, impedance or position
controlled. A joint-based inner position loop and a
superimposed predictive force controller are used.
Practical results include data from a robotic grinding
facility. Here, the controller proved robustness and good
performance under rough conditions.

KEYWORDS: Industrial robots; Force control; Impedance
control; Predictive control; Inner loop.

1 INTRODUCTION

Many processing or assembly tasks require the control of
contact forces rather than pure positon control. Position
control is sufficient only in case of exactly positioned
workpieces of well-known shape, a robot of high
positioning accuracy and perfect tools. In practical
applications it often is impossible or uneconomic to
satisfy these conditions. A force controlled robot in
contrast can cope with uncertainties, tolerances, detrition
of tools etc.

The contact forces can be measured with a
force-torque sensor that is mounted in the robot’s wrist.
Methods to feedback the force measurements have been
developed by many researchers. A survey of the early
ones is given by Whitney.' The methods can roughly be
divided into explicit force control which aims at tracking
a commanded set point of force and into impedance
control which makes the robot respond to contact forces
like an artificial system of mass, spring and damper.
Generally, a task frame can be specified of which some
directions are force controlled and others are position
controlled.? This is referred to as aybrid control* and can
be extended by replacing position control with
impedance control.

In spite of the big effort in research over the past
decades, there is still only negligible application of force
control in industrial environments. One reason for
this — among several others — is the fact that many force
control methods simply cannot be applied to real
industrial robots, and with all known methods the
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achievable force control bandwidth is too slow for many
applications. The problems with industrial robots (in
contrast to some experimental robots) are caused by
friction and flexibilities which mainly are due to their
gears. This requires a force controller with good rejection
of frictional disturbances and smooth corrective motions
in order not to excite vibrations.

In this paper a new force control method is presented
which is very well applicable to industrial robots and
provides high bandwidth. It allows both explicit force
control and inpedance control. Distance control is
possible, too.

2 FORCE FEEDBACK STRUCTURES

In the past, many force feedback structures have been

developed. They can be classified into methods that

directly supply the driving torques (called direct or torque
based methods) and those methods that use an
underlying position control loop (called inner loop or
position based methods). In addition, there exists a minor
group of methods with an underlying velocity control
loop. This criterion of classification has been used in
previous surveys.>® Most classical force control methods
such as Raibert and Craig’s hybrid position/force
control,> Shin and Lee’s resolved-acceleration force
control” and Khatib’s operational space force control® are
torque based. Position based methods have been
introduced by Hirzinger and Landzettel,” Maples and

Becker,” and De Schutter and Van Brussel."’

There are some important advantages of the inner
loop approach over the torque based and velocity based
methods which in part have been reported by Maples
and Becker:’

» The controllers of industrial robots do not provide an
interface to the driving torques, so they have to be
replaced by special experimental controllers in order
to implement a torque-based force control method.
However, the controllers of industrial robots are
equipped with a well-tuned position feedback loop and
many controllers provide an interface to the set point
of position which can be used for force control.

« Industrial robots often require different adjustments
for their joint-based position controllers to cope with
different joint characteristics concerning flexibilities
and Coulomb friction. Cartesian position control
schemes which are the basis of direct force control
methods are inadequate in this case.
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e The computationally expensive force feedback loop
can be implemented with a slower rate than the inner
position loop. The position loop (and the force loop of
direct methods) must be very fast in order to stabilize
the natural oscillations of the industrial robot’s joints
which are due to their flexibilities.

The most important advantage of the inner-loop
approach is its ability to realize a high-gain position
feedback loop and a slower external force feedback
loop. The high-gain position feedback is necessary to
achieve a good rejection of Coulomb friction and other
disturbances acting in industrial robots. This can only
be realized with a fast position sensor. The loop
closure with a force sensor cannot provide high gain
because of its dead time and low-pass dynamics. Thus,
direct force control methods show poor disturbance
rejection. Some disturbance effects of the nonlinear
robot dynamics can be compensated by an inverse
model which therefore has been inserted into most
direct methods. But at least Coulomb friction — which
in practice is time-varying and position dependent —
cannot be compensated completely. For this reason,
direct force control methods mostly have been realized
with experimental robots equipped with low-friction
direct drives only. In contrast to this, inner loop
methods have been realized successfully with industrial
robots.

The basic idea of the inner loop approach is to
transform the force deviation into a desired change of

position
ﬁles B

— M

In equation (1) f,, and f,., are the desired and actual
force, and k, is an assumed stiffness constant. With this
approach distance control can be achieved very easily by
replacing the force values with distance values, and
replacing the stiffness constant with —1.

In order to achieve a change of position the external
force controller supplies positional increments in task
space “*8p. This six-dimensional vector contains
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increments of both translation and rotation. The
increments have to be added up, superimposed on the
planned trajectory, and passed to the joint-space position
servo. There is a variety of ways to arrange the necessary
summations and coordinate transformations.

One possibility is to transform the task-space
increments “**§p into joint increments §q and to add up
these.'” This is shown in Figure 1. The transformation is
performed in sequential steps with intermediate data in
tool and in base coordinates. The increments are
transformed into another Cartesian coordinate system by
multiplying both the translational and the rotational part
with an orientation matrix R. The subsequent transfor-
mation from base coordinates into joint space is
performed by multiplication with the inverse jacobian
J7' or an equivalent transformation of velocity. The
summation and the computation of associated velocity
and acceleration (which are necessary to enable
feedforward) are expressed by discrete transfer functions
(z-transforms). The corrective motion ¢, is then
superimposed on the planned trajectory q,,, yielding the
set point of position for the joint-space position servo
qdes'

Alternatively to this control signal interface, the
summation can be performed in base coordinates® or in
tool coordinates.” The Cartesian summation requires
more computation than the joint-space summation but it
is advantageous in case of redundant robots. Moreover,
some industrial robot controllers provide Cartesian
interface for path corrections.

For all these multi-dimensional control signal inter-
faces the feedback dynamics can be modeled by
independent one-dimensional loops for each coordinate
of the task space. This is depicted in Figure 2 where p,,,
is the planned trajectory, p.,, is its correction, p,, is the
resulting corrected set point of position, p,,, is the actual
position, and p,,, is the position of the environment
which acts as disturbance.

The summing unit in Figure 2 represents the control
signal interface. For continuous controller design, it can

Fig. 1. Control signal interface with summation in joint space.
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Fig. 2. One-dimensional force feedback loop.

be modeled by an integrator. In digital implementations,
the summation of the positional increments 8p and the
computation of feedforward terms is performed accord-
ing to the discrete transfer functions given in Figure 1:

pcor,k :pcnr,k~1 + %(5pk + 8pkf1)) (2)
) 1
pcor,k = ?—‘ 8pl<) (3)
, 1
p(:()r,k = F (6pk - 6pk"l)) (4‘)

where T is the sampling interval and k is its count.
The position loop dynamics can be modeled by a
second-order system:

w?

Gs)y=5———.
() 2+ 20 w8+ w?

®)

This model will be used for simulations throughout this
paper. Following De Schutter and Van Brussel,' a
damping ratio ¢, =0.75 is chosen. A frequency
w, =50s"" is assumed exemplarily.

The sensor dynamics which results from filtering and
communication delay can be modeled by a first-order
system plus dead time:

Sta,® - ©

Gi(s) =
In simulations the sensor dynamics will be neglected for
simplicity. In practical applications equation (6) will be
included to enable high-bandwidth control.

The simplest model of contact stiffness is a single
constant k, as implied by equation (1). More generally,
inertia and damping terms could be considered. For
subsequent simulations a stiffness of k, = 1000 N/m is
assumed.

The structure depicted in Figure 2 works for explicit
force control as well as for impedance control. In the
following, explicit force control is considered first. An
extension towards impedance control is given
subsequently.

3 REQUIREMENTS AND KNOWN FORCE
CONTROLLERS

The external force controller shall meet the following
requirements in order to be suitable for practical
application:
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¢ no steady-state error,

¢ no overshooting,

* high bandwidth,

» smoothness, i.e. the correction of position shall be
differentiable in order not to excite vibrations,

» robustness with respect to varying position loop
dynamics and inexactly known stiffness constant,

+ little on-line computation,

« casily adjustable controller parameters.

In the literature, mostly PID type controllers and
similar have been applied. Volpe and Khosla'' give a
survey of these and state the proportional controller to
be best (they as well as some other authors call it integral
controller because they consider the integrator from the
control signal interface as part of the controller).
However, the proportional controller generates con-
tinuous but not differentiable corrections of position. A
first-order low-pass filter gives differentiability but it
decreases the achievable bandwidth. All these controllers
overshoot, the higher the bandwidth is adjusted.
Simulation results for a step of 1N in fi., with p,, =0
are shown in Figure 3. According to De Schutter and
Van Brussel,'” the controller adjustments are kp=
0.5w,/k, for the proportional controller, and k, = w,/k,,
k, = 1/k, for the proportional-plus-derivative controller.
The low-pass controller’s pole is placed at s = —50s"",
and its proportional gain is adjusted to k, = 0.32w,/k, so
that it produces the same overshoot is as the
proportional controller.

Many other controller types have been investigated by
various researchers, including state-space feedback,'
adaptive strategies,”> neural networks,'* and fuzzy

control.’> However, none of these meets all the
requirements. The most common deficiencies are
unsmoothed corrections and a low closed-loop
bandwidth.

4 A NEW APPROACH

The basic idea is to create a new desired position pj.,
which shall be tracked by the set point of position p,.,
with configurable dynamics. The desired position pJ,, is
the actual position plus the desired change given in
equation (1). Since the actual position is not known
within the force controller, an estimate p}, is used:

p:lkes = p\:zku + Apde.\" (7)
The estimate is computed by a plant model which covers
the integrator from the control signal interface, the
position servo, and the sensor dynamics. The resulting
control structure is depicted in Figure 4. Here already a
simple low-pass filter is included which lets the set-point
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Fig. 3. Simulated step responses of simple force controllers.

estimate p,., track p¥,.. The real set point p,,, follows
with an offset caused by p,,,. The low-pass filter makes
use of the integrator which is part of the plant model.
With this and the P-unit ¢ a first-order system with a pole
at s = —c results. Figure 5 shows a simulated step
response of this controller with ¢=50s""'. For
comparison the response of the proportional controller
from Figure 3 is given. In contrast to this one, the set
point of position p,, does not overshoot. Instead, it
shows the response of a first-order system. The actual
force value follows with the dynamics given by the

025 030 035 0.40

5
time [s]

The Smith predictor uses a plant model
Gp(S) - GI(S)GQ(S). (9)
If the model is correct, a simplified structure results
where the dead time is removed from the feedback loop,
as shown in Figure 6. Thus standard techniques can be
applied to design the internal controller G(s).
This concept works for all stable dynamics with a

steady-state gain of 1 as G,(s) and can be applied to the
force control problem with

ky
position servo and the sensor. It overshoots slightly Gl(S)ZT, (10)
because of ¢, <1 in equation (5). ‘

The control structure is similar to a Smith predictor Go(s) = G(s)G(s). (11)
which has been developed for systems with dead time.'* Stabilization of G(s) is achieved with a simple
Its general structure is depicted in Figure 6. The plant proportional controller
function consists of two parts: ¢

NP o Gils) =+ (12)
Gp(s) = G(s)Gy(s) with G,(s)=e " (8) k,
ppln p
Saes 1 |APas  Pis op ition |2, sens 1
s O i es \ position | Fact contact sensor act
+ I kg + V+ +o ¢ servo + stiffness dynamics
T‘ p es Aac A;C
. Ples ] G, (5) |2t 50 Lar
s

low-pass filter

Fig. 4. New model based control structure.
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which leads to a first-order system as closed-loop
dynamics for the inner part. According to Figure 6, the
complete dynamics of the closed force feedback loop is
given by the dynamics resulting from the inner feedback
of Gi(s) multiplied with the second part of the plant
dynamics:
Jaer
Gi(s) Fros
The resulting feedback structure becomes equal to that
one depicted in Figure 4 if the stiffness constant is shifted
so that positions instead of forces are predicted. Thus,
the new force feedback structure can be regarded as a

c

o Gr0)Gs).

(13)

Smith predictor plant
f les 5 : f act
5 Gi() 1 Gu(®) [ Ga(o)
Gi(») 4= Ga(®)
Gi() = Gi(s)
G, (s) = Gy(s)
f des o ) f act

Gr(s) Gi(s) > Gy (s)

't

Fig. 6. Smith predictor.
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modified Smith predictor. It follows that the controller
performs well for dynamics with long dead time, too.

5 SMOOTHING THE CORRECTIONS

As can be seen in Figure 5, the new controller so far
produces non-differentiable corrections of the position.
Therefore the first-order low-pass filter is replaced by a
second-order one. This is done with a proper design of
the controller G for the first part of the plant model, an
integrator here. A computationally efficient structure is
obtained with a state-space design for an artificial plant
with an additional integrator in front. Taking into
account the discrete summation from equation (2) and
choosing the state variables x, = 8p and x,=p.,, the
state-space model of the artificial plant is

ol e W R T
= +1, | u
X2,k +1 T Tilxg, 2
The model imput « is the increment of 8p and thus
proportional to the acceleration; see equation (4). It is

connected to the output of a state-space controller with
plk. as desired value:

(14)

(15)

The feedback gains can be determined by pole-
placement using Ackermann’s formula. A placement of
both poles at z = ¢’ yields the vector of feedback gains

[kl] B l:% _ e*(?']‘ _ ée-ch'I]
k, 1-2¢"+e >}

For steady-state accuracy the gain of the prefilter v must

u=vpdes — kix; — kaxo.

(16)
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Fig. 7. Second-order low-pass filter with limiters for velocity
and acceleration.

be equal to k, which simplifies the low-pass filter’s
structure as depicted in Figure 7. If this one is inserted
into the control structure depicted in Figure 4, the
resulting closed-loop dynamics (see equation (13)) can be
described with the discrete transfer function

1—e<" )21 477!
__efc7'z~1 2

G()=; GA2)Gy(z).  (17)
Herein, the first factor is a second-order low-pass filter,
the second is a transversal filter resulting from the
summation according to equation (2), and the third is the
unchanged dynamics of position servo and sensor,
Limitation of the corrective velocity and acceleration is
an important aspect for practical application because

Robots control

every industrial robot has such limitations which might
be exceeded by high-bandwidth corrections. The filter
depicted in Figure 7 already includes appropriate
limiters. The relations of the limited values 6p and u to
velocity and acceleration are given in equation (3) and
(4), respectively.

While the limitation of velocity is unproblematic, the
limitation of acceleration may result in instability if it
cuts the deceleration that is demanded by the linear
controller when approaching the set point. This can be
avoided if the limitation of velocity is adapted properly
as shown in the following.

The maximum deceleration a,,,, that occurs in the
unlimited system during the stopping phase depends on
the maximum velocity v, It is obtained by solving the
system’s equation of motion for an initial velocity of
x1(0)=v,.« and a stopping distance that can be
computed from the condition u(0) = 0. The result can be
solved for v, which finally leads to

¢ Imax. (18)
c

Figure 8 shows a simulated response to a step in f,,, for
Amax = 0.1 m/s® and the response in case of no limitation.
In both cases the double-pole was placed with ¢ =50s7".

This force controller smoothes desired and measured
forces simultaneously. Alternatively, separate filters
could be used. Moreover, instead of a low-pass fllter path
planning methods could be applied which directly allow
for limitation of velocity and acceleration. However, they
do not filter noisy force measurements. The method
presented here provides both filtering and limitation, and
is computationally very efficient.

v =

max
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Fig. 8. Step response with second-order low-pass filter.
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6 ROBUSTNESS

Smith predictors are reputed to be of poor robustness.
This is due to the circumstance that it is possible to set
up a high-bandwidth feedback loop despite of the
presence of a long dead time (or similar dalay as shown
in this paper). In fact, robustness increases the more the
bandwidth of the feedback loop is decreased.

In a comparative study the new predictive force
controller with reduced bandwidth competed against
some simple force controllers. The amount of overshoot
and the transition to instability in case of slower
dynamics or stiffer contact than modeled were
investigated. The new controller performed even slightly
better than the simple controllers. For example, Figure 9
shows the nominal step responses of the new controller
with ¢ =20s™" in comparison to the low-pass controller
from section 3 with a pole at s = —=50s™" and a reduced
proportional gain kp=0.16w,/k,. With this adjustment
the low-pass controller overshoots less and its response is
comparable to the new controller. The effect of a slower
dynamics than modeled can be seen in Figure 10. The
amount of overshoot is smaller for the new controller.
Increasing the stiffness yields a similar behavior as can be
seen in Figure 11. Again the new controller overshoots
less. This is mainly due to its overshoot-free response in
the case of no model error. The increase of overshoot is
similar for all controllers and essentially depends on the
control bandwidth.

If dynamics and contact stiffness are known impre-
cisely or if they vary, the bandwidth has to be reduced in
order to achieve stable behavior for all variations.
Moreover, the predictor’s model should assume rather
slow dynamics and stiff contact. This way the controller

0.80

0.60

force [N]

0.40

0.201

81

responses weakly on the average, but undesirable
overshooting is avoided.

7 FEEDBACK OF THE POSITION LOOP

ERROR

Whereas the sensor dynamics is invariant and therefore

well predictable, the dynamics of the position loop varies

because of several mechanisms:

* The nonlinear robot dynamics yields position and
velocity dependent dynamics if not compensated
appropriately.

 Different adjustments of the joint-space position
controllers (which is typical for industrial robots) yield
position-dependent dynamics in task space.

* Coulomb friction in interaction with the position
controller’s integral action yields slower dynamics for
small deviations.

These effects are not modeled in Equation (5), and
they are too complicated to be reproduced in real-time
by a more sophisticated model. However, these effects
spoil the prediction and thus a low-bandwidth (i.e.
robust) controlier has to be chosen. In particular
Coulomb friction and stick-slip effects result in
undesirable limit cycles if a high bandwidth is adjusted.
To overcome this problem, a surprisingly simple method
has been developed which is presented in the following.

The predictor contains the equation

ﬁact = G,(Z )ﬁdes (19)

to model the position feedback loop. If the position loop
eIror Ap = Puu — Pue 18 available within the force
controller then equation (19) can be replaced with

ﬁacl = pdm - Ap (20)

—

new controller
low-pass controller——————————"—

0.004

0.80

0.60-

0.40

0.201

set point of position [mm]

0.00 0.05 0.10 0.15 0.20

1

0.25 0.30 0.35 0.40 0.45
time [s]

Fig. 9. New predictive controller with reduced bandwidth in comparison to low-pass controller. No model error.
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Fig. 10. Same as Figure 9, but the position servo’s w, is 25s™" instead of 50s™' as modeled.

The position loop operates in joint space, thus a
transformation of the joint error into task space by
means of the jacobian is necessary. Since a kinematic
transformation is already computed for the control signal
interface, the additional amount of computation is small,
especially if taking into account that the model G.(z) can
be dropped.

With this perfect ““prediction” all the above mentioned

0.40+

0.201

robustness problems with regard to the varying position
loop dynamics are solved, and a high-bandwidth force
control is enabled.

8 EXTENSION TO IMPEDANCE CONTROL

The objective of impedance control is to make the robot
respond to environmental contact forces f,,, with a
compliant movement p,. that can be described by an

new controller
low-pass controller ——————————=

0.00
0.60

© o o o
N w P [4)]
.2 .2 .9

set point of position [mm]

0.00 005 010 015 020

025 030 035 040 045 '
time [s]

Fig. 11. Same as Figure 9, but stiffness is k, = 2000 N/m instead of 1000 N/m as modeled.
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adjustable impedance which usually consists of stiffness
k,, damping b, and inertia m,:
Jow _ 2 g
=m,s-+b,s+k,. @21
pbl()l

The most straightforward solution to achieve this
behavior with the inner loop approach is to use an
external force controller that generates positional set
points from the measured force with a dynamics equal to
the inverse impedance. The resulting impedance differs
from the desired impedance due to the dynamics of
position servo and sensor. This affects the stability when
in contact and forbids arbitrary small stiffness and
damping."” Since the force controller’s output is not a
position but a positional increment, the realization of this
basic idea shown in Figure 12 uses an extra integrator in
front of the stiffness term k&, and a feedback. The
feedback loop together with the integrator from the
control signal interface gives the inverse impedance. The
desired value of force f,, acts as a bias which is zero in
pure impedance control. The measured force f,., is the
counterforce to f,,,,,.

Obviously, for k,=0 this impedance controller
becomes equal to an explicit force controller with a
first-order low-pass filter as the transfer function. The
stiffness term generates a force that pulls the robot back
to the planned position.

This concept of impedance control implementation can
be combined with the new force controller. Its predictor
already contains the sum of positional increments in the
state variable x, from Figure 7. It is convenient to shift
the feedback with k, so that it is located within the
low-pass filter. For this a relative stiffness k, is defined:

k, = k'k,. (22)

The new controller’s extended structure is shown in
Figure 13. With &, = 0 it performs explicit force control,
with £/ >0 it is an impedance controller.

In contact with an environment of stiffness k;, the
simple impedance controller from Figure 12 yields a
force response to a change of environmental position

fm (o KG(5)Gi(s)
pm“"“(l k.“G,(s>Gs<s)+(mrs2+b,s+k,>> @)

whereas the continuous-time equivalent of the new

p pin
f des 6p P car+l Pes
'—+’C\ » 2 g

impedance controller

83

impedance controller (which is regarded for simplicity
here) yields

Los g 1-
pL‘VlU

k,G,(s)G,(s) ) (24)

s+ ks + k(1 + k)

In equation (23) the dynamics of position servo and
sensor appear in the denominator. This causes the simple
impedance controller’s stability problems. In contrast to
this, these delays appear only in the numerator of
equation (24) where they cause no stability problems.

In order to determine the controller parameters, first
an appropriate relative stiffness &/ is chosen. Then k, and
k, can be determined by pole-placement. Since the
controller is realized digitally, this should be done with
the discrete-time formulation of equation (24). For a
double-pole at z =e " the result is equal to the vector
of feedback gains given in equation (16) except that k, is
divided by 1+ k,. With these gains the response is

fen 1
Peny L+k/

G(2)) 25)

where the dynamics G;(z) is given by equation (17). The
response to a step in p,,,, of 1 mm is shown in Figure 14.
A stiffness k, =k, i.e. k/ =1 has been chosen which
results in a movement of 0.5 mm. The new impedance
controller is parameterized with ¢ =50s~". The simple
impedance controller is parameterized so that the explicit
force controller which would result for £, =0 is a
first-order system with a pole at ¢ =50s™" and a gain of
kp=0.32w,/k,, see section 3. The related impedance
parameters are b, = 1/kp and m, = 1/ckp.

9 ASPECTS OF HYBRID CONTROL

Each coordinate of the task frame 1is controlled
individually. Various controllers are possible for this.
Beyond explicit force control, impedance control and
(explicit) distance control which have been described so
far, two further ones are useful: position control and
velocity control.

From the external controller’s point of view, position
control essentially is a “halt” control because the
planned trajectory is not corrected. The halt control can
be regarded as a special case of velocity control, in which

pEVlV
positio;‘ Pact Y. contact | ~Sem| sensor et
Servo + stiffness dynamics

Fig. 12. Impedance control with inner position loop.
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Fig. 13. New controller with the ability of both explicit force control and impedance control.

the desired corrective velocity is zero. Replacing
equation (15) and using the structure of Figure 7, a

velocity controller with limited acceleration is given by
(26)

u :p.:}il,\'_xl

where p},, is the desired corrective velocity.

The external controller contains some state variables
which have to be initialized appropriately. At the
beginning of a task-frame control phase, x, and x, are set

0.80

0.60+

to zero and the model of sensor dynamics is initialized so
that p%, is zero, too. When switching from one controller
to another, e.g. from distance control to explicit force
control or from explicit force control to halt control, x,
and x, remain unchanged. If more than one sensor is
used, e.g. a force sensor and a distance sensor, models of
each are computed permanently. This enables a simple
switch to the other model output p%,. With this method a
perfect switch-over is obtained.

0.401

force [N]

0.20

simple impedance controller
new impedance controller —————~~=-==—~=~=-

0.001

-0.201

-0.40

T T T T 1

-0.60+

-0.801

set point of position [mm)]

-1.00: T T T T
0.00 0.05 0.10 0.15 0.20

Fig. 14. Response to a step in the environmental position.
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Switching to impedance control requires an additional
step. The controller of Figure 13 generates an artificial
stiffness that pulls the robot back to the planned position.
If at switch-over the amount of correction x, is non-zero
then the robot should be pulled back to this position. To
achieve this behavior the current value of x, is stored at
switch-over and in future subtracted from the actual
value prior to the multiplication with k.

10 PRACTICAL RESULTS

The results presented here have been obtained with a
Manutec r2 six-joint industrial robot. Its factory-provided
controller has been replaced with a VMEbus-based
self-development in order to realize a very fast force
control and for other reasons. The joint-based position
control loop as well as the superimposed force controller
operate at a sample period of 2ms. A force-torque
sensor SCHUNK FT 65/5 is mounted in the robot’s wrist
and connected to the robot controller with a serial line
providing measurements at a sample period of
approximately 7 ms.

Using the feedback of the position loop error, the
force controller’s predictor only needs a model of the
sensor dynamics and an estimate of the contact stiffness.
These can be obtained experimentally with appropriate
test movements. Figure 15 shows the recordings of
position and force during a position-controlled move-
ment while the robot was in contact with a spring. From
the graph of the actual position a fast response in the
beginning and a slower one at the end of the movement
(where the position error is small) can be observed. This
is the effect of the interaction of Coulomb friction with
the integral part of the position controller which in
section 7 has been stated to be hardly predictable. The
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comparison of the change in the force measurements
with the change of position yields a stiffness constant of
k,~3.85N/1.7mm ~2260 N/m. The sensor dynamics
causes the delay of the force measurement to the actual
position. The parameters 7, =10 ms and a, = 120s™" for
the model given in equation (6) have been identified.
The output of the simulated model with the actual
position as input is shown in Figure 15, too. The
identification was performed by repetitive simulation and
manual adaptation of the model parameters to match the
measured graph. No complicated identification methods
were necessary.

In a second step the force controller was para-
meterized with these experimentally identified model
parameters. A double-pole with ¢=50s"' and a
limitation of acceleration of a,,,, = 1 m/s* with associated
limitation of velocity according to equation (18) were
selected. Figure 16 shows a response of this controller to
a step in f,., with explicit force control. The lower graphs
show the actual position and its set point which is smooth
as desired. In spite of this smoothness a very fast
response without overshoot is achieved.

As test application a robotic grinding facility has been
built, wherein the Manutec r2 is equipped with a grinding
tool as sketched in Figure 17. Explicit force control is
used to regulate the normal force while moving the tool
along the surface. The grinding tool is a wheel with
radially mounted abrasive paper. No additional passive
compliance is used. The identification of the contact has
shown a nonlinear stiffness which is roughly approxim-
ated with a stiffness constant k, = 12000 N/m. The force
controller’s low-pass filter is parameterized with ¢ =
20s~" for a lower cut-off frequency in order to filter out
high-frequency noise due to mechanical vibrations

1.60]
1.401
1.20]
Emo—
50,801
20.60-
0.40-
0.20-

desired position——————————-
actual position

0.00-

35.01
34.5
34.04
=2 335
§ .
L 33.04
32.54
32.01

simulated force ~——————————
measured force ——————

000 005 010 015 020

Fig. 15. Position controlled test movement in contact with spring.
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Fig. 16. Step response of force controlled robot in contact with a spring.

resulting from the grinding process. Figure 18 shows
recordings of force-controlled grinding. To visualize the
control performance, the set point of normal force is
switched between 10 and 30N. Since the force
measurements are very noisy, the control performance
can better be evaluated from the graph of position which
is well smoothened by means of the second-order
low-pass filter. The lower cut-off frequency makes the
force controller very robust, so that it performs well even
under rough conditions including a very imprecisely
modeled contact stiffness.

11 CONCLUSION

A new force and impedance control method has been
presented. It uses an underlying position feedback loop
which is the best way to reject frictional disturbances and
has some further advantages with industrial robots. The

force-torque
sensor

tool exchange
system

grinding wheel

superimposed force controller generates smooth correc-
tive motions and performs well even with sensors that
insert a long dead time into the feedback loop. It is
computationally very efficient, easy to understand, and
therefore well applicable.

Beyond the experimental data presented in this paper,
the force controller has been implemented within a
multi-robot control system that is used as testbed for
space applications at the Institute of Robotics
Research.'®

The efficiency of force control in practical applications
depends on adequate programming methods which are
not available with today’s robot programming languages.
Therefore a new language dedicated to the programming
of sensor functions has been integrated into the above
mentioned robot control systems and is currently being
further developed.

aluminium carrier

flexible drive shaft

Fig. 17. Configuration of robotic grinding.
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Fig. 18. Step responses of force controlled grinding.
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