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Abstract Let (K, v) be a valued field and φ ∈ K[x] be any key polynomial for a residue-transcendental
extension w of v to K (x). In this article, using the φ-Newton polygon of a polynomial f ∈ K[x] (with
respect to w), we give a lower bound for the degree of an irreducible factor of f. This generalizes the
result given in Jakhar and Srinivas (On the irreducible factors of a polynomial II, J. Algebra 556 (2020),
649–655).
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1. Introduction

The problem of finding the irreducibility of a given polynomial with integer coefficients
has fascinated several mathematicians. Some well-known classical irreducibility criteria
such as Schönemann–Eisenstein–Dumas irreducibility criteria have seen various exten-
sions and generalizations over the years. Recently, in [8, 9], Jakhar and Srinivas also
extended some of these criteria and provided information about the lower bounds on the
degrees of irreducible factors of polynomials over valued fields. In this paper, we improve
and generalize these results. To state the main results, we first recall some notation and
definitions.
Let (K, v) be a valued field with value group Γv, valuation ring Ov having maximal

ideal Mv and residue field kv = Ov/Mv. An extension w of v to a simple transcendental
extensionK (x ) is called residue-transcendental (abbreviated r. t.) if the corresponding
residue field extension kw|kv is transcendental.

Definition 1.1. Let v̄ be an extension of v to a fixed algebraic closure K of K with
value group Γv̄. A pair (α, δ) in K × Γv̄ is called a (K, v)-minimal pair if for every β
in K satisfying v̄(α− β) ≥ δ, we have deg β ≥ degα, where by degα we mean the degree
of the extension K(α)|K.

An extension w of w to K(x) which is also an extension of v̄ is called a common
extension of w and v̄.
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For a (K, v)-minimal pair (α, δ) ∈ K × Γv̄, the map wα,δ : K[x] −→ Γv̄, given by

wα,δ

∑
i≥0

ci(x− α)i

 := min
i≥0

{v̄(ci) + iδ}, ci ∈ K,

is a valuation on K[x] and extends uniquely to K(x) [3, Theorem 2.2.1]. The valuation
wα,δ is said to be defined by min, v̄, α and δ.

Definition 1.2. If w = wα,δ, then we say that (α, δ) is a minimal pair of definition
for w and denote its restriction to K(x) by w := wα,δ.

Let w = wα,δ and φ be the minimal polynomial of α over K, then by [2, Theorem 2.1],
for any polynomial f ∈ K[x] with φ-expansion

∑
i aiφ

i, ai ∈ K[x], deg ai < deg φ, we
have

w(f) = min
i
{v̄(ai(α)) + iw(φ)}. (1.1)

Such a valuation w is an r. t. extension and any r. t. extension can be obtained in this
way (see [2]). In particular, w = w0,0 is called the Gaussian extension of v to K (x )
and is denoted by vx.
For an r. t. extension w of v to K (x ) and polynomials f, g in K[x], we say that f and

g are w-equivalent if w(f − g) > w(f) = w(g); g is w -divisible by f (denoted f |wg) if
there exists some polynomial h ∈ K[x] such that g is w -equivalent to fh.
Let us now recall the definition of key polynomials, introduced by Mac Lane [11] in

1936 for discrete rank-one valuations and generalized to arbitrary valued fields by Vaquié
[14] in 2007. Key polynomials have been used to classify all possible extensions of v
to K (x ) (see [12]). Over the years, key polynomials have been extensively used to find
irreducible factors of polynomials over valued fields (for example see [1], [4] and [7]).

Definition 1.3. A monic polynomial f is called a key polynomial for w if it is

(i) w-irreducible, i.e. for any h, q ∈ K[x], whenever f |w hq, then either f |w h or
f |w q,

(ii) and w-minimal, i.e. for every non-zero polynomial h ∈ K[x], whenever f |w h,
then deg h ≥ deg f.

We denote by KP(w) the set of all key polynomials for w. If w = wα,δ and φ the
minimal polynomial of α over K, then φ ∈ KP(w) (see [13, Theorem 4.4]).
For any φ ∈ KP(w), consider the subset

Γ◦
w := {w(a) | a ∈ K[x], deg a < deg φ} ⊂ Γw.

Then Γ◦
w is a subgroup of Γw and Γw = 〈Γ◦

w, w(φ)〉. Since w is r. t., so there is a smallest
positive integer e such that ew(φ) ∈ Γ◦

w.
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Let w be an r. t. extension of v to K (x ) and let Γ be the divisible closure of Γw. Any
φ ∈ KP(w) determines a Newton-polygon operator

Nφ,w : K[x] −→ P(Q× Γ),

where P(Q× Γ) is the power set of the rational vector space Q× Γ. For any A ⊆ Q× Γ,
the set

L = {(a, b) ∈ A | b ≤ b′ for every (a, b′) ∈ A}

is called the lower part of A.

Definition 1.4. For any non-zero polynomial f ∈ K[x], not divisible by φ, with
φ-expansion

∑n
i=0 aiφ

i, an 6= 0, the φ-Newton polygon Nφ,w(f) is defined as the lower
part of the convex hull in Q× Γ of the finite set {(i, w(ai)) | ai 6= 0, 0 ≤ i ≤ n}.

Therefore, Nφ,w(f) is either a single point or a chain of sides (or edges), S1, . . . , Sr,
ordered from left to right by increasing slopes.

Definition 1.5. The principal Newton polygon N+
φ,w(f) of f is the polygon formed

by the sides of Nφ,w(f) of slope less than −w(φ).

In 2020, Jakhar and Srinivas proved the following.

Theorem 1.6. ([8], Theorem 1.3). Let φ ∈ Ov[x] be a monic polynomial of degree m
which is irreducible modulo Mv. Let f ∈ Ov[x] be a polynomial not divisible by φ. Assume
that the φ-Newton polygon of f with respect to vx has l many sides with positive slopes λj ,
1 ≤ j ≤ l. If ej is the smallest positive integer such that ejλj ∈ Γv for 1 ≤ j ≤ l, then f
has an irreducible factor of degree at least max1≤j≤l{ejm} over K.

Remark 1.7. It may be pointed out that any monic polynomial which is irre-
ducible modulo Mv is a key polynomial for vx and conversely (see [13, Theorem 4.6,
Corollary 4.7]). However, if w( 6= vx) is r. t., then not every key polynomial for w is
irreducible modulo Mv (see Example 1.10).

In view of Remark 1.7, Theorem 1.6 follows from our following result.

Theorem 1.8. Let (K, v) be a valued field and w an r. t. extension of v to K(x). Let
φ ∈ KP(w) be of degree m. Let f ∈ K[x] be a polynomial not divisible by φ. Assume
that N+

φ,w(f) has l many sides with slopes −λj < −w(φ), 1 ≤ j ≤ l. If ej is the smallest
positive integer such that ejλj ∈ Γ◦

w, then f has an irreducible factor of degree at least
max1≤j≤l{ejm} over K.

For (K, v) = (Q, vp) and w = vx, the next result immediately follows from the above
theorem, which also generalizes [5, Theorem 1.1].

Corollary 1.9. ([8], Theorem 1.5). Let f =
∑n

i=0 aix
i with a0 6= 0 be a polynomial

over Z. Assume that N+
x,vx(f) has l many sides with slopes −λj = − rj

sj
< −vx(x) = 0,
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where gcd(rj , sj) = 1, 1 ≤ j ≤ l, then f has an irreducible factor of degree at least
max1≤j≤l{sj} over Q.

The following examples illustrate the importance of our result.

Example 1.10. Let Q be the field of rational numbers with the p-adic valuation vp,
p an odd prime, having value group Z, valuation ring Z(p) and maximal ideal pZ(p). Let

w = w0,1/2 be the valuation on Q(x) defined by the minimal pair (0, 1/2) with Γw = 1
2Z.

Take the polynomial φ = x2 + px+ p. Then in view of [13, Theorem 4.6], it can be easily
shown that φ ∈ KP(w). However, φ is not irreducible modulo pZ(p). Clearly Γ◦

w = 1
2Z.

Let

f =
1

p5
φ7 +

(
x+

1

p5

)
φ6 +

1

p4
φ5 +

1

p
φ3 + (px+ p)φ2 + p6x+ p6.

Then Nφ,w(f) has slopes

−λ1 = −5

2
< −λ2 = −2 < −λ3 = −3

2
< −λ4 = −1 < −λ5 = 0.

Since w(φ) = 1, so N+
φ,w(f) has three sides with slope strictly less than −w(φ) = −1,

and e1 = 2, e2 = 1 and e3 = 2. Therefore, by Theorem 1.8, f has an irreducible factor of
degree at least max{4, 2, 4} = 4 over Q. However, Theorem 1.6 provides no information
about the degrees of irreducible factors of f.

Example 1.11. Let (Q, vp), w and φ be as in the above example. Let a, b and c be
polynomials of degree at most one over Z with w valuation 0, 1 and 6, respectively. Take
the polynomial f = aφ4 + bφ3 + c ∈ Z[x]. Then N+

φ,w(f) has a single side with slope
−5/3 < −w(φ), which implies that e =3. Hence by Theorem 1.8, f has an irreducible
factor of degree at least 6 over Q.

Our next result gives a lower bound on the degrees of all irreducible factors of f
over K.

Theorem 1.12. Let φ ∈ K[x] be a monic polynomial of degree m which is irreducible
modulo Mv. Let f =

∑n
i=0 aiφ

i, a0 6= 0, be the φ-expansion of f with vx(an) = 0 and
vx(ai) > 0 for 0 ≤ i ≤ n − 1. Assume that Nφ,vx(f) has l many sides with slope −λj ,
1 ≤ j ≤ l. If ej is the smallest positive integer such that ejλj ∈ Γv for 1 ≤ j ≤ l, then
each irreducible factor of f has degree at least min1≤j≤l{ejm} over K.

Remark 1.13. It may be pointed out that the above theorem extends [9,
Theorem 1.2], which in turn also generalizes Eisenstein–Dumas irreducibility criterion
[9, Theorem 1.5]. Further, on taking φ = x in the above theorem, if Nx,vx(f) has a single
side, then we obtain the main result of [6].

Example 1.14. Consider the valued field (Q, vp) and φ ∈ Q[x] be a monic polynomial
of degree m which is irreducible modulo pZ(p). For any odd positive integer n, take the
polynomial f = a2nφ

2n + panφ
n + p3a0, where a2n, an and a0 are polynomials over Q

https://doi.org/10.1017/S0013091524000889 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000889


Irreducible factors of a polynomial 5

having degree at most m − 1 with Gaussian valuation zero. Then Nφ,vx(f) has slopes
−λ1 = − 2

n < −λ2 = − 1
n , and therefore, by Theorem 1.12, either f is irreducible or f

has two irreducible factors each of degree mn. However, if we take p=3 and φ = x2 +1,
then [9, Theorem 1.2] provides no information about the degrees of irreducible factors
of f.

The following example highlights the importance of Theorems 1.8 and 1.12.

Example 1.15. Let (Q, vp) and φ be as in the above example. Let q ≥ 5 be prime
such that 2(q − p) > p ≥ 3. Then clearly, q > p. Now consider the polynomial
f = aqφ

q + papφ
p + p3a0, where aq, ap and a0 be polynomials over Q of degree at

most m − 1 with Gaussian valuation zero. Then for the vertices (0, 3), (p, 1) and (q, 0),
Nφ,vx(f) has slopes −λ1 = − 2

p < −λ2 = − 1
q−p , which in view of Theorems 1.8 and

1.12 implies that either f is irreducible or f has two irreducible factors of degree mp and
m(q − p).

2. Proof of Theorems 1.8 and 1.12

Let (K, v) and (K, v̄) be as in the previous section. Let w be an r. t. extension of v to
K(x).

Definition 2.1. Let φ ∈ K[x] be a key polynomial for a valuation w′ on K(x), and
let γ > w′(φ) be an element of a totally ordered abelian group Γ containing Γw′ as an
ordered subgroup. The map w : K[x] −→ Γ ∪ {∞} defined by

w(f) := min
i≥0

{w′(ai) + iγ},

where
∑

i≥0 aiφ
i, deg ai < deg φ, is the φ-expansion of f ∈ K[x], gives a valuation on

K(x) (see [14, Section 1.1]) called the ordinary augmentation of w
′
and is denoted by

[w′;φ, γ].

Remark 2.2. If φ ∈ Ov[x] is a monic polynomial of degree m ≥ 1 such that φ is
irreducible modulo Mv and α is a root of φ, then (α, δ) is a (K, v)-minimal pair for each
positive δ ∈ Γv̄. Moreover, for any polynomial g =

∑
i≥0 aix

i ∈ K[x] having degree less
than m, we have

v̄(g(α)) = vx(g). (2.1)

Let (α, δ) be the minimal pair of definition for w, w = w|K(x), and φ the minimal poly-
nomial of α having degree m over K. Keeping in mind (1.1), for any non-zero polynomial
f ∈ K[x] with φ-expansion

∑
i≥0 aiφ

i, denote

Iφ,w(f) := min{i | w(f) = v̄(ai(α)) + iw(φ)} (2.2)

Sφ,w(f) := max{i | w(f) = v̄(ai(α)) + iw(φ)}. (2.3)
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Theorem 2.3. ([10], Lemma 2.1). For any non-zero polynomials f, g ∈ K[x], we
have

(i) Iφ,w(fg) = Iφ,w(f) + Iφ,w(g),
(ii) Sφ,w(fg) = Sφ,w(f) + Sφ,w(g).

The main idea in the proof of Theorems 1.8 and 1.12 is as follows: For the given
valuation w (or vx), we first construct suitable augmentations wj with respect to φ and
slopes λj and show that if λj is the slope of N

+
φ,w(f) (or Nφ,vx(f)) connecting the vertices

(kj−1, w(akj−1
)) and (kj , w(akj )) (or (kj−1, v

x(akj−1
)) and (kj , v

x(akj ))) then Iφ,wj
(f) =

kj−1 and Sφ,wj
(f) = kj . On applying Theorem 2.3 on the factorization of f, we then

obtain the desired lower bounds.

Proof of Theorem 1.8. Let f =
∑n

i=0 aiφ
i be the φ-expansion of f and let

{(k0 = 0, w(ak0)), (k1, w(ak1)), . . . , (kl, w(akl))}

denote the successive vertices corresponding to the sides of N+
φ,w(f) with slopes

−λ1,−λ2, . . . ,−λl. Then k0 < k1 < · · · < kl and −λ1 < −λ2 < · · · < −λl < −w(φ). For
each λj > w(φ), 1 ≤ j ≤ l, consider the ordinary augmentation of w, wj = [w;φ, λj ] so
that wj(φ) = λj . Then

wj(f) = wj

(
n∑

i=0

aiφ
i

)
= min

0≤i≤n
{w(ai) + iλj}. (2.4)

Let Iφ,wj
(f) and Sφ,wj

(f) be as in (2.2) and (2.3). Since −λj is the slope of N+
φ,w(f)

connecting the vertices (kj−1, w(akj−1
)) and (kj , w(akj )), so by definition

min
0≤i≤kj−1

{
w(akj )− w(ai)

kj − i

}
≤ −λj , (2.5)

min
kj−1<i≤n

{
w(ai)− w(akj−1

)

i− kj−1

}
≥ −λj . (2.6)

The smallest and largest index i for which equality holds in (2.5) and (2.6) is kj−1 and
kj , respectively. Consequently, by (2.4), we have

wj(f) = w(akj ) + kjλj = w(akj−1
) + kj−1λj .

i.e. Iφ,wj
(f) = kj−1 and Sφ,wj

(f) = kj . Let f = f1f2 · · · ft be the factorization of f into

irreducible factors over K. Denote Iφ,wj
(fr) by k

(r)
j−1 and Sφ,wj

(fr) by k
(r)
j for 1 ≤ r ≤ t.
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Then by Theorem 2.3,

kj = k
(1)
j + · · ·+ k

(t)
j and kj−1 = k

(1)
j−1 + · · ·+ k

(t)
j−1.

Since kj > kj−1, so kj − kj−1 = (k
(1)
j − k

(1)
j−1) + · · · + (k

(t)
j − k

(t)
j−1) > 0, implies that

k
(r)
j − k

(r)
j−1 > 0 for some 1 ≤ r ≤ t. Without loss of generality, we can assume that

k
(1)
j − k

(1)
j−1 > 0. Let f1 =

∑d1
u=0 buφ

u be the φ-expansion of f1. Then

wj(f1) = w

(
b
k
(1)
j

)
+ k

(1)
j λj = w

(
b
k
(1)
j−1

)
+ k

(1)
j−1λj ,

which implies that (k
(1)
j −k

(1)
j−1)λj = w(b

k
(1)
j

)−w(b
k
(1)
j−1

) ∈ Γ◦
w. Now ej being the smallest

positive integer such that ejλj ∈ Γ◦
w, so k

(1)
j − k

(1)
j−1 ≥ ej . Since, Sφ,wj

(f1) = k
(1)
j , so

deg f1 ≥ deg b
k
(1)
j

+ k
(1)
j m ≥ k

(1)
j m ≥ (k

(1)
j − k

(1)
j−1)m ≥ ejm.

As j is arbitrary, so f has an irreducible factor of degree at least max1≤j≤l{ejm}
over K. �

Remark 2.4. It may be pointed out that the proof of the above theorem is motivated
by [8, Theorem 1.3]. However, the main difference is the presence of key polynomials and
corresponding augmented valuations with their respective value groups.

Proof of Theorem 1.12. Let (k0 = 0, k1, . . . , kl−1, kl = n) be integers such that the
successive vertices of the sides of Nφ,vx(f) are given by

{(k0, vx(ak0)), (k1, v
x(ak1)), . . . , (kl, v

x(akl))}.

Let −λ1 < −λ2 < · · · < −λl denote the corresponding slopes in Nφ,vx(f). In particular,

−λj =
vx(akj

)−vx(akj−1
)

kj−kj−1
, 1 ≤ j ≤ l, i.e.

vx(akj ) + kjλj = vx(akj−1
) + kj−1λj . (2.7)

For a root α of φ, let φ = cm(x− α)m + · · ·+ c1(x− α), cm = 1 and set

δj = max
1≤i≤m

{
λj − v̄(ci)

i

}
∈ Γv̄.

Since λj > 0, ∀j, so (α, δj) is a (K, v)-minimal pair. Let wα,δj
be the valuation of K(x)

defined by the pair (α, δj) and let wj := wα,δj
be its restriction to K(x). Then by the

choice of δj , we have

https://doi.org/10.1017/S0013091524000889 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000889


8 S. Mavi and A. Bishnoi

wj(φ) = min
i
{v̄(ci) + iδj} = λj . (2.8)

As deg ai < deg φ, by Remark 2.2, we have vx(ai) = v̄(ai(α)) and hence wj(f) =
min1≤i≤n{vx(ai) + iλj}. Again as −λj is the slope of Nφ,vx(f) connecting the vertices
(kj−1, v

x(akj−1
)) and (kj , v

x(akj )), by definition

min
0≤i≤kj−1

{
vx(akj )− vx(ai)

kj − i

}
≤ −λj , (2.9)

min
kj−1<i≤n

{
vx(ai)− vx(akj−1

)

i− kj−1

}
≥ −λj . (2.10)

The smallest index i for which equality holds in (2.9) is kj−1 and the largest index i for
which equality holds in (2.10) is kj . This implies that

wj(f) = vx(akj−1
) + kj−1λj = vx(akj ) + kjλj . (2.11)

Therefore, Iφ,wj
(f) = kj−1 and Sφ,wj

(f) = kj . Let f = f1f2 · · · ft be the factorization of

f into irreducible factors over K and let fs =
∑ds

u=0 bsuφ
u, bsds 6= 0, be the φ-expansion

of fs. Fix any s, 1 ≤ s ≤ t, and assume that for 2 ≤ j ≤ l, Sφ,wj−1
(fs) = k

(s)
j−1, with

0 ≤ k
(s)
j−1 ≤ ds. We claim that Iφ,wj

(fs) = k
(s)
j−1, and

wj(fs) = vx

(
b
sk

(s)
j−1

)
+ k

(s)
j−1λj = vx

(
b
sk

(s)
j

)
+ k

(s)
j λj , 1 ≤ j ≤ l, (2.12)

with 0 ≤ k
(s)
j−1 ≤ k

(s)
j ≤ ds and k

(s)
l = ds, k

(s)
0 = 0.

Since Sφ,wj−1
(fs) = k

(s)
j−1, so

wj−1(fs) = min
0≤u≤ds

{vx(bsu) + uλj−1} = vx

(
b
sk

(s)
j−1

)
+ k

(s)
j−1λj−1. (2.13)

We first show that

kj−1 = k
(1)
j−1 + · · ·+ k

(t)
j−1. (2.14)

By the choice of k
(s)
j−1, we have

wj−1(fs) ≤ vx(bsu) + uλj−1, (2.15)

for 0 ≤ u ≤ ds with strict inequality if u > k
(s)
j−1. Keeping in mind (2.15) together with

the fact that kj−1 is the largest index for which wj−1(f) = vx(akj−1
) + kj−1λj−1, we

https://doi.org/10.1017/S0013091524000889 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000889


Irreducible factors of a polynomial 9

have that k
(1)
j−1 + · · ·+ k

(t)
j−1 is the largest at which wj−1(f) = wj−1(f1) + · · ·+ wj−1(ft)

is attained and hence (2.14) follows. Now on using Equations (2.11), (2.13) and (2.14),
we obtain

vx
(
akj−1

)
= vx

(
b
1k

(1)
j−1

)
+ · · ·+ vx

(
b
tk

(t)
j−1

)
. (2.16)

Recall that kj−1 is the smallest at which wj(f) = vx(akj−1
) + kj−1λj is attained and

wj(fs) ≤ vx(bsu)+uλj for 0 ≤ u ≤ ds. By (2.14) and (2.16), it can be easily varified that

k
(s)
j−1 is the smallest index at which wj(fs) is attained which proves that Iφ,wj

(fs) = k
(s)
j−1.

Therefore, we have for 1 ≤ j ≤ l, w1(fs) = vx(b
sk

(s)
1

) + k
(s)
1 λ1,

wj(fs) = vx

(
b
sk

(s)
j−1

)
+ k

(s)
j−1λj = vx

(
b
sk

(s)
j

)
+ k

(s)
j λj , 2 ≤ j ≤ l − 1, (2.17)

wl(fs) = vx
(
b
sk

(s)
l−1

)
+ k

(s)
l−1λl, (2.18)

where 0 ≤ k
(s)
j−1 ≤ k

(s)
j ≤ ds for 2 ≤ j ≤ l − 1, k

(s)
1 is the largest index at which w1(fs)

is attained and k
(s)
l−1 is the smallest at which wl(fs) is attained. Let Iφ,w1

(fs) = k
(s)
0 and

Sφ,wl
(fs) = k

(s)
l . Clearly, 0 ≤ k

(s)
0 ≤ k

(s)
1 ≤ ds and 0 ≤ k

(s)
l−1 ≤ k

(s)
l . We now show that

k
(s)
l = ds and k

(s)
0 = 0. (2.19)

Since, kl = n and vx(an) = 0, so we may assume that vx(bsds) = 0 for 1 ≤ s ≤ t. By
definition, we have wl(fs) = min0≤u≤ds{vx(bsu) + uλl} ≤ dsλl, with

wl(f) = wl(f1) + · · ·+ wl(ft). (2.20)

Keeping in mind that vx(an) = 0, we have wl(f) = nλl. Since n = d1 + d2 + · · ·+ dt, it
follows from (2.20) that wl(fs) = min0≤u≤ds{vx(bsu) + uλl} = dsλl, which implies that

k
(s)
l = ds. Now on using (2.11), we have

w0(f) = vx(ak0) = vx(a0) (2.21)

and by definition, w0(fs) = min0≤u≤ds{vx(bsu) + uλ0} ≤ vx(bs0) and

w0(f) = w0(f1) + · · ·+ w0(ft). (2.22)

Keeping in mind that vx(a0) = vx
(∏t

s=1 bs0

)
= vx(b10) + · · · + vx(bt0) together with

(2.21) and (2.22), we obtain that w0(fs) = vx(bs0), i.e. k
(s)
0 = 0, which completes the

claim.
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If k
(s)
0 = k

(s)
1 = · · · = k

(s)
l , then ds = k

(s)
l = k

(s)
0 = 0 contradicting the fact that

ds ≥ 1. Therefore, we must have that k
(s)
j > k

(s)
j−1, for some j, 1 ≤ j ≤ l, which in view

of (2.12) implies that (k
(s)
j − k

(s)
j−1)λj ∈ Γv. Since ej is the smallest positive integer such

that ejλj ∈ Γv, so (k
(s)
j − k

(s)
j−1) ≥ ej . Thus, we have

deg fs = dsm ≥ dsm− k
(s)
j−1 ≥ k

(s)
j m− k

(s)
j−1m = (k

(s)
j − k

(s)
j−1)m ≥ ejm.

Since s is arbitrary, so each irreducible factor of f has degree at least min1≤j≤l{ejm}
over K. �
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