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This paper concerns the energy conservation for the weak solutions of the
compressible Navier–Stokes equations. Assume that the density is positively
bounded, we work on the regularity assumption on the gradient of the velocity, and
establish a Lp–Ls type condition for the energy equality to hold in the distributional
sense in time. We mention that no regularity assumption on the density derivative is
needed any more.
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1. Introduction

The time-evolutionary compressible fluids play an important role in many fields
of applications, including astrophysics (star-formation, interstellar/intergalactic
medium), engineering (supersonic aircraft, gas turbines, combustion engines), and
so on. In this paper, we focus on the isentropic compressible Navier–Stokes
equations {

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + ∇P (ρ) = μ�u+ (μ+ λ)∇div u.
(1.1)

Here, t > 0, x ∈ Ω ⊆ R
3, functions ρ(x, t) and u(x, t) = (u1(x, t), u2(x, t), u3(x, t))

are the density and the velocity fields, respectively; the pressure P (ρ) is determined
from the equation of state

P (ρ) = ργ , (1.2)

where γ > 1 is the adiabatic exponent; the viscosity coefficients μ and λ are constant
and satisfy physical restrictions μ > 0 and 2μ+ 3λ � 0.
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We limit ourselves to the periodic domain Ω = T
3, and impose equations (1.1)

with the initial functions

(ρ, u)(x, t = 0) = (ρ0, u0)(x). (1.3)

Definition 1.1. For a given T ∈ (0,∞), we call (ρ, u) a weak solution in (0, T ) to
the problem (1.1)–(1.3) if the following assertions are fulfilled:

• equations (1.1) hold in D′(0, T ; Ω); and

ργ , ρ|u|2 ∈ L∞ (0, T ;L1(Ω)
)
, ∇u ∈ L2

(
0, T ;L2(Ω)

)
(1.4)

• (ρ, u) is a renormalized solution of (1.1)1 in the sense of [12] by DiPerna-Lions;

• (1.3) holds in D′(Ω);

• the energy inequality holds

d

dt

∫
Ω

E(x, t)dx+
∫

Ω

(
μ|∇u|2 + (μ+ λ)(divu)2

)
dx � 0 in D′(0, T ), (1.5)

where

E(x, t) =
1
2
ρ|u|2 +

ργ

γ − 1
. (1.6)

Equations (1.1) is one of the most important mathematical models in continuity
mechanism. Lions [26] and Feireisl et al. [17] proved that the problem (1.1)–(1.3)
admits a weak solution in the sense of definition 1.1, as long as the adiabatic
exponent γ > 3

2 . The possibility of strict inequality sign in (1.5) is mainly due to
the wildness of the weak solutions. The energy dissipation is one of basic properties
of equations (1.1) related to its physical origin, and it is also reminiscent of the
Leray–Hopf weak solutions to the incompressible Navier–Stokes equations. Having
the energy conservation in Navier–Stokes equations would rule out the possibility
of interior anomalous energy dissipation (system will possess an energy balance law
in vanishing viscosity limit procedure). It is very well motivated from a physical
perspective, but still an open problem up to now.

Motivated from Kolmogorov’s theory of turbulence (cf. [20]), relationship
between regularity of weak solution and conservation of energy is the subject of the
celebrated Onsager conjecture [28]: every weak solution with spatial Hölder con-
tinuity exponent α > 1

3 conserves its energy, and anomalous dissipation of energy
occurs when α < 1

3 . To date, the progress toward both directions on this conjecture
are satisfactory. Please refer to the papers [2,10,11] and [6,19], as well as the
references therein. There are also related studies on inhomogeneous incompressible
flows and compressible flows, see, e.g., [1,7,13,18].

In the context of Navier–Stokes equations, the pioneering work can be traced to
Lions [24] and Prodi [29], where they proved that, for homogeneous incompressible
flow, the energy balance law holds true if the velocity field satisfy

u ∈ L4(0, T ;L4(Ω)).

This was reproduced by Ladyz̆zenskaja et al. [21] in the general context of parabolic
equations. Serrin [30] derived a dimension-dependent regularity condition on weak
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solutions:

u ∈ Lp(0, T ;Lq(Ω)),
2
p

+
n

q
� 1, n < q,

where n is the space dimensionality. With minor changes Shinbrot [31] improved
Serrin’s result to

u ∈ Lp(0, T ;Lq(Ω)),
1
p

+
1
q

� 1
2

q > 4.

Recently, Berselli and Chiodaroli [5] worked on the gradient of the velocity instead
of velocity itself, and therefrom, they received a high level on regularity crite-
rion. We also mention the density-dependent incompressible flow. By choosing the
momentum as test function and assuming some extra restrictions on pressure,
Leslie and Shvydkoy [22] proved the energy conservation for the weak solu-
tions. Besides the results mentioned above, we also refer readers to the papers
[1,3–5,8,9,14,15,23,27,33,34] and so on.

For compressible Navier–Stokes equations, the appearance of ρ makes ∂t(ρu) is
nonlinear, and therefore some density regularity is required in using commutator
estimates. In case when the viscosity is either density-dependent or constant, Yu
[32] discussed the energy conservation for weak solutions of equation (1.1) in peri-
odic domain. The approach in [32] is using the commutator estimates developed
in DiPerna and Lions [12], and thus requires the integrability of the derivative
of the density. We developed in [8] a global approximation technique in gen-
eral bounded domain, and proved that the weak solution of (1.1) with physical
boundaries conserves its energy, provided⎧⎪⎨

⎪⎩
√
ρ ∈ L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;H1(Ω)),

u ∈ Lp(0, T ;Lq(Ω)),
2
p

+
3
2q

� 3
4
, 6 � q.

(1.7)

It is worthy to mention that the assumption on the density assumed in (1.7) is not
optimal. Recently, Nguyen et al. [27] proved that if the weak solutions satisfy⎧⎪⎪⎨
⎪⎪⎩

0 < c1 � ρ � c2 <∞, sup
t∈(0,T )

sup
|h|<ε

|h|− 1
2 ‖ρ(· + h, t) − ρ(·, t)‖

L
12
5 (Ω)

<∞,

u ∈ Lp(0, T ;Lq(Ω)),
1
p

+
1
q

� 1
2
, q � 4,

(1.8)
then the energy balance law holds true.

Unfortunately, all the regularity criterions claimed above have yet excluded
the classical weak solutions. Taking the compressible fluid flows for example, the
regularity condition in (1.7) and (1.8) requires

2
p

+
3
q

� 3
4

+
3
2q

� 3
4

+
3
12

= 1, (1.9)

or
2
p

+
3
q

� 2
p

+
2
q

� 1 +
1
q

=
5
4
. (1.10)
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However, by interpolation, we see that the weak solution in definition 1.1 satisfies
(if the density is positive bounded from below)

u ∈ Lp (0, T ;Lq(Ω)) ,
2
p

+
3
q

=
3
2
, q ∈ [2, 6]. (1.11)

Obviously, there are still interval gaps from exponents assumptions (1.9), (1.10) to
(1.11).

The goal of this paper is connected to the relationship between the energy con-
servation and the degree of regularity for weak solutions to (1.1)–(1.3). Assume
that the density is positive bounded from above and below, we establish regular-
ity condition on the level of the gradient of the velocity to ensure that the energy
equality holds true in the distributional sense in time. We state the result in detail
in the theorem below.

Theorem 1.2. Assume that (ρ, u) is a weak solution to system (1.1)–(1.3) in the
sense of definition 1.1. Assume in addition that

0 < ρ � ρ(x, t) � ρ <∞, ∇u ∈ Lp(0, T ;Ls), (1.12)

where the constants ρ, ρ are given, the exponents p and s satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
p

+
3
s
< 2, if

3
2
< s � 9

5
,

5
p

+
6
s
< 5, if

9
5
< s � 3,

1
p

+
2

s+ 2
< 1, if 3 < s <∞.

(1.13)

Then, the energy is conserved in the sense of distribution in (0, T ), i.e.,

d

dt

∫
Ω

E(x, t)dx+
∫

Ω

(
μ|∇u|2 + (μ+ λ)(divu)2

)
dx = 0 in D′(0, T ), (1.14)

where E(x, t) is defined in (1.6).

Some remarks are in order:

Remark 1.3. In accordance with [18], we say that energy equality (1.14) is local
in time.

Remark 1.4. Compared with previous results in [8,27,32] for compressible flows,
we make no any regularity assumption on the derivative of the density.

Remark 1.5. We relaxed the regularity criterion for the energy conservation of the
weak solutions. In particular, from (1.13) and the standard Sobolev embedding (in
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Figure 1. The regularity level

dimension three), one has (e.g., 3
2 < s � 2)

2
p

+
3
q

=
2
p

+
3
s
− 1 =

⎧⎪⎨
⎪⎩

3 − 3
s

� 4
3

if
3
2
< s � 9

5
,

1 +
3
5s

<
4
3

if
9
5
< s � 2.

In this connection, the range of 2/p+ 3/q is wider than the previous ones obtained
in [8,27,32].

The following diagram (Fig. 1) gives an explicit understand and comparison.

Remark 1.6. Our results work for bounded domains with C1 smooth boundaries,
by slightly modifying the argument of [8].

Remark 1.7. It is interesting to discuss the case when the vacuum state is allowed.

The basic strategy used in theorem 1.2 is mollification approximation and
commutator estimates. Observe that the nonlinearity of ∂t(ρu) in (ρ, u) usually
requires commutator in time, and therefore, the additional regularity assumption
on the derivative of the density appears essential. So, new difficulty arises if the
integrability of the derivative of the density is unavailable.

In the light of [5], we consider the energy conservation of the weak solution of
(1.1)–(1.3) in terms of the gradient of the velocity fields Let us briefly analyse the
proof of theorem 1.2 in paragraphs below.

Time evolution term. We first mollify the momentum equations and mass
equation in space variables only, and then test them against ((ρu)ε/ρε)ψ(t) and
(((ρu)ε/ρε)2)ψ(t), respectively. Doing this allows us to avoid the commutator
involved in the time variable.

Convective term. In dealing with the error terms induced from the convective
term, we need to guarantee that the value of ∇((ρu)ε/ρε) in Lp–Ls Sobolev space
depends only on ∇u, but not on ∇ρ. This can be overcome by lemma 2.3, whose
proof is based on the commutator technique originally due to DiPerna and Lions
[12,25].

Pressure term. Since the pressure is nonlinear in density and no derivative
information is known, we proceed by decomposing it as∫ T

0

∫
(ργ)εdiv

(
(ρu)ε

ρε

)
ψ =

∫ T

0

∫
(ρε)γdivuψ + error terms.

For the right-hand side terms, we reformulate the mass equation (see (3.18) below),
and therefrom, estimate the resulting expressions by properties of mollification and
classical commutator estimates.
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Diffusion term. Since the test function ((ρu)ε/ρε)ψ(t), in stead of uε, is
used in momentum equations, we have difficulty in proving the convergence of∫ ∫ ∇uε : ∇((ρu)ε/ρε) to

∫ ∫ |∇u|2. Fortunately, it can be overcome by a two-fold
approximation procedure. See lemma 3.4 for details.

Notation: During this paper, the capital letter C denotes a positive constant
which may vary from line to line and rely on γ, μ, λ, ρ, ρ, p, s, as well as the initial
functions, particularly, C(α) is used to emphasize that C depends on α. For p ∈
[1,∞], we denote by p′ the conjugate of p satisfying 1 = 1/p+ 1/p′. The standard
Sobolev spaces

W 1,p(Ω) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
f :

∑
|α|�1

(∫
Ω

|∂αf |p
)1/p

<∞ if p ∈ [1,∞),

∑
|α|�1

ess sup
Ω

|∂αf | <∞ if p = ∞

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

For simplicity reason, we denote by

W 1,p(Ω) = W 1,p, W 1,2 = H1, W 0,p = Lp,

∫
f =

∫
Ω

f dx.

2. Preliminaries

Mollify function f(x, t) in spatial variables with

f ε(x, t) =
∫
f(y, t)ηε(x− y) dy (2.1)

where ηε is the Friedrichs mollifier of width ε. See, e.g., [16].
The first lemma below follows directly from basic properties of the mollifier.

Lemma 2.1. Assume that ρ ∈ Lp1 , u ∈ Lp2 with 1 � p1, p2 � ∞. Then,

(ρu)ε − ρεu→ 0 in Lp̃ as ε ↓ 0, (2.2)

where

1 � 1
p̃

=
1
p

=
1
p1

+
1
p2

if p1 <∞, 1 � 1
p̃
>

1
p

if p1 = ∞. (2.3)

Lemma 2.2 [25, lemma 2.3]. Assume that ρ ∈ Lp1 , u ∈W 1,p2 with 1 � p1, p2 � ∞.
Then,

‖∂(ρu)ε − ∂(ρεu)‖Lp � C‖ρ‖Lp1 ‖∇u‖Lp2 , (2.4)

with ∂ = ∂xi
. Moreover,

∂(ρu)ε − ∂(ρεu) → 0 in Lp̃ as ε ↓ 0,

where the exponents p and p̃ satisfy (2.3).
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Lemma 2.3. In addition to the hypotheses in lemma 2.2, we assume that

0 < ρ � ρ(x, t) � ρ <∞. (2.5)

Then, ∥∥∥∥∂
(

(ρu)ε

ρε
− u

)∥∥∥∥
Lp

� C‖∇u‖Lp . (2.6)

Moreover,

∂

(
(ρu)ε

ρε
− u

)
→ 0 in Lp̃ as ε ↓ 0, (2.7)

where p̃ satisfies (2.3).

Proof. The proof is a modification of lemma 2.2. Direct computation shows

∂

(
(ρu)ε

ρε
− u

)
=
∂ ((ρu)ε − ρεu)

ρε
− ((ρu)ε − ρεu) ∂ρε

(ρε)2
:= I1 + I2. (2.8)

Thanks to lemma 2.2 and (2.5), one has

‖I1‖Lp � C‖∇u‖Lp . (2.9)

Next to consider I2. From (2.5), (2.1) and Hölder inequality, we deduce

I2 =

∣∣∣∣∣
∫
ηε(x− y)ρ(y)(u(y) − u(x))dy

∫ ∇xηε(x− y)ρ(y) dy(∫
ηε(x− y)ρ(y) dy

)2
∣∣∣∣∣

� Cε−1

∣∣∣∣
∫
ηε(x− y)ρ(y)(u(y) − u(x)) dy

∣∣∣∣
� Cε−1−n

∫
Bε(x)

|ρ(y)||u(y) − u(x)|dy

� C

(
ε−n

∫
Bε(x)

∣∣∣∣u(y) − u(x)
ε

∣∣∣∣
p
)1/p

,

(2.10)

where Bε(x) denotes the ball which centres in x with radius ε. However,

ε−n

∫
Bε(x)

∣∣∣∣u(y) − u(x)
ε

∣∣∣∣
p

dy � ε−n

∫
Bε(x)

∫ 1

0

∣∣∣∣∇u(x+ (x− y)s) · (x− y)
ε

∣∣∣∣
p

dsdy

=
∫ 1

0

∫
B1(0)

|∇u(x+ wεs)|p|w|p dw ds

�
∫ 1

0

∫
B1(0)

|∇u(x+ wεs)|p dw ds

=
∫

Rn

|∇u(x− z)|p
∫ 1

0

1Bsε(0)(z)
(sε)n

dsdz

= |∇u|p ∗ J,
(2.11)
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where J(z) =
∫ 1

0
(1Bsε(0)(z)/(sε)

n) ds belongs to L1. Therefore, by Young’s inequal-
ity,

‖I2‖Lp � C
∥∥∥(|∇u|p ∗ J)1/p

∥∥∥
Lp

� C ‖∇u‖Lp ‖J‖1/p
L1 � C ‖∇u‖Lp . (2.12)

In conclusion, (2.6) follows from (2.8)–(2.12).
We prove (2.7) by density argument. Putting 1/p1 = 1/p̃− 1/p > 0, we construct

the smooth sequence {ρn} such that ρn → ρ in Lp1 as n tends to infinity. Decompose
I1 as

I1 =
∂ (((ρ− ρn)u)ε − (ρ− ρn)εu)

ρε
+
∂ ((ρnu)ε − ρε

nu)
ρε

.

This and (2.5) imply

‖I1‖Lp̃ � C‖(ρ− ρn)‖Lp1 ‖∇u‖Lp + C‖∂ ((ρnu)ε − ρε
nu) ‖Lp̃ .

Since ρn is smooth and ∇u ∈ Lp, for fixed n, it has ∂(ρnu)ε − ∂(ρn)εu→ 0 in Lp̃

as ε goes to zero, after that, sending n to infinity yields ‖(ρ− ρn)‖Lp1 → 0. Hence,
we obtain ‖I1‖Lp̃ → 0 by sending ε to zero firstly, and then n to infinity.

We estimate I2 as follows:

I2 = (((ρ− ρn)u)ε − (ρ− ρn)εu)
∂ρε

(ρε)2

+ ((ρnu)ε − ρε
nu)

∂(ρ− ρn)ε

(ρε)2
+ ((ρnu)ε − ρε

nu)
∂ρε

n

(ρε)2

:= I1
2 + I2

2 + I3
2 .

For fixed n, lemma 2.1 and (2.5) guarantee

I3
2 → 0 in Lp̃ as ε ↓ 0.

The first two terms can be treated as (2.10)–(2.12). In particular,

I1
2 =

∣∣∣∣∣
∫
ηε(x− y)(ρ− ρn)(y)(u(y) − u(x)) dy

∫ ∇xηε(x− y)ρ(y) dy(∫
ηε(x− y)ρ(y) dy

)2
∣∣∣∣∣

� ε−1−n

∫
Bε(x)

|(ρ− ρn)(y)||u(y) − u(x)|dy

� C

(
ε−n

∫
Bε(x)

|(ρ− ρn)(y)|s1

)1/s1
(
ε−n

∫
Bε(x)

∣∣∣∣u(y) − u(x)
ε

∣∣∣∣
s
)1/s

= C
(
|ρ− ρn|s1 ∗ J̃

)1/s1

(|∇u|s ∗ J)1/s
,
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where 1 � s � p, 1 � s1 � p1, 1/s+ 1/s1 = 1 and J̃ = ε−n1Bε(0) ∈ L1. Hence, by
Hölder and Young’s inequalities,

‖I1
2‖Lp̃ � C

∥∥∥∥(|ρ− ρn|s1 ∗ J̃
)1/s1

∥∥∥∥
Lp1

∥∥∥(|∇u|s ∗ J)1/s
∥∥∥

Lp

� C ‖(ρ− ρn)‖Lp1 ‖∇u‖Lp

� C ‖(ρ− ρn)‖Lp1 → 0 as n ↑ ∞, uniformly in ε.

By similar argument,

I2
2 =

∣∣∣∣∣
∫
ηε(x− y)ρn(y)(u(y) − u(x)) dy

∫ ∇xηε(x− y)(ρ− ρn)(y) dy(∫
ηε(x− y)ρ(y) dy

)2
∣∣∣∣∣

� C
(
|ρ− ρn|s1 ∗ J̃

)1/s1

(|∇u|s ∗ J)1/s
,

which leads to

‖I2
2‖Lp̃ � C ‖ρn − ρ‖Lp1 → 0 as n ↑ ∞, uniformly in ε.

Therefore, ‖I2‖Lp̃ → 0 as ε goes to zero. This proves (2.7). �

3. Proof of theorem 1.2

Define

U(x, t) =
(ρu)ε

ρε
and ψ(t) ∈ C∞

0 ((0, T )). (3.1)

Mollifying the mass equation and the momentum equations respectively, multi-
plying them by 1

2U
2ψ(t) and Uψ(t), respectively, and integrating the resulting

expressions, we obtain

1
2

∫ T

0

∫
∂tρ

εU2ψ =
1
2

∫ T

0

∫
(ρu)ε · ∇U2ψ (3.2)

and

∫ T

0

∫
∂t(ρu)εUψ =

∫ T

0

∫
(ρu⊗ u)ε : ∇Uψ +

∫ T

0

∫
(ργ)εdivUψ

−
∫ T

0

∫
(μ∇uε : ∇Uψ + (μ+ λ)div uεdivUψ) .

(3.3)
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Subtracting (3.2) from (3.3) yields∫ T

0

∫
∂t(ρu)εUψ − 1

2

∫ T

0

∫
∂tρ

εU2ψ

−
∫ T

0

∫
(ρu⊗ u)ε : ∇Uψ +

1
2

∫ T

0

∫
(ρu)ε · ∇U2ψ

−
∫ T

0

∫
(ργ)εdivUψ

+
∫ T

0

∫
(μ∇uε : ∇Uψ + (μ+ λ)div uεdivUψ) = 0.

(3.4)

In the following lemmas 3.1–3.4, we are devoted to proving ε-limit for the integral
quantities in (3.4).

Lemma 3.1. Under the assumptions listed in theorem 1.2, we have

lim
ε↓0

(∫ T

0

∫
∂t(ρu)εUψ − 1

2

∫ T

0

∫
∂tρ

εU2ψ

)
= −

∫ T

0

ψ′
∫

1
2
ρ|u|2. (3.5)

Proof. Owing to (3.1), we compute

1
2

∫ T

0

∫
∂tρ

εU2ψ = −
∫ T

0

∫
(ρu)ε∂tUψ − 1

2

∫ T

0

∫ |(ρu)ε|2
ρε

ψ′

and ∫ T

0

∫
∂t(ρu)εUψ = −

∫ T

0

∫
(ρu)ε∂tUψ −

∫ T

0

∫ |(ρu)ε|2
ρε

ψ′.

The two equalities above provide us∫ T

0

∫
∂t(ρu)εUψ − 1

2

∫ T

0

∫
∂tρ

εU2ψ = −1
2

∫ T

0

∫ |(ρu)ε|2
ρε

ψ′. (3.6)

Thanks to (1.4), (1.12) and (1.13), one has

u ∈ L∞(0, T ;L2) ∩ Lp(0, T ;Ls∗
) (3.7)

with

s∗ =

⎧⎨
⎩

3s
3 − s

,
3
2
< s < 3,

∞, 3 � s.

(3.8)

Utilizing (1.12), (3.7) and lemma 2.1, we easily check

lim
ε↓0

∫ T

0

∫ |(ρu)ε|2
ρε

ψ′ =
∫ T

0

ψ′
∫
ρ|u|2.

This and (3.6) yield the desire (3.5). �
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Lemma 3.2. Under the assumptions listed in theorem 1.2, we have

lim
ε↓0

(∫ T

0

∫
(ρu⊗ u)ε : ∇Uψ − 1

2

∫ T

0

∫
(ρu)ε · ∇U2ψ

)
= 0. (3.9)

Proof. Direct calculation shows

∫ T

0

∫
(ρu⊗ u)ε : ∇Uψ − 1

2

∫ T

0

∫
(ρu)ε · ∇U2ψ

=
∫ T

0

∫
(ρu⊗ u)ε : ∇Uψ −

∫ T

0

∫
(ρu)ε ⊗ U : ∇Uψ

=
∫ T

0

∫
((ρu⊗ u)ε − (ρu)ε ⊗ u) : ∇Uψ +

∫ T

0

∫
(ρu)ε ⊗ (u− U) : ∇Uψ

= I1 + I2.
(3.10)

Observe from (1.12), (1.13) and lemma 2.3 that

‖∇U‖Lp(0,T :Ls) � ‖∇(U − u)‖Lp(0,T :Ls) + ‖∇u‖Lp(0,T :Ls)

� C‖∇u‖Lp(0,T :Ls) � C.
(3.11)

Let us divide (3.10) into three cases, according to (1.13).

• Case I: 3
2 < s � 9

5 . It has s∗ � 2s′ < 6, where s∗ is defined in (3.8).

By (1.4), (1.12), (1.13), (3.7) and (3.11), it satisfies

|I1| � C‖(ρu⊗ u)ε − (ρu)ε ⊗ u‖Lp′ (0,T ;Ls′ )‖∇U‖Lp(0,T ;Ls)

� C‖(ρu⊗ u)ε − (ρu)ε ⊗ u‖Lp′ (0,T ;Ls′ )

� C‖u‖2
L2p′ (0,T ;L2s′ )

� C‖u‖2θ

L
s

2s−3 (0,T ;Ls∗ )
‖u‖2(1−θ)

L2(0,T ;L6)

� C‖∇u‖2θ

L
s

2s−3 (0,T ;Ls)
‖∇u‖2(1−θ)

L2(0,T ;L2)

� C‖∇u‖2θ
Lp(0,T ;Ls)

� C,

(3.12)

where θ = (2s− 3)/(3(2 − s)). Utilizing (3.12) and lemma 2.1, we obtain

lim
ε↓0

I1 = 0. (3.13)

• Case II: 9
5 < s � 3. It has 2 < 2s′ < s∗, where s∗ is defined in (3.8).
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From (1.12), (1.13), (3.7) and (3.11), one deduces

|I1| � C‖(ρu⊗ u)ε − (ρu)ε ⊗ u‖Lp′ (0,T ;Ls′ )‖∇U‖Lp(0,T ;Ls)

� C‖(ρu⊗ u)ε − (ρu)ε ⊗ u‖Lp′ (0,T ;Ls′ )

� C‖u‖2
L2p′ (0,T ;L2s′ )

� C‖u‖2θ

L
5s

5s−6 (0,T ;Ls∗ )
‖u‖2(1−θ)

L∞(0,T ;L2)

� C‖∇u‖2θ
Lp(0,T ;Ls)

� C,

(3.14)

where θ = 3/(5s− 6). Hence, (3.14) and lemma 2.1 show that (3.13) holds true if
9
5 < s � 3.

• Case III: 3 < s <∞.

Notice that

|I1| � C‖(ρu⊗ u)ε − (ρu)ε ⊗ u‖Lp′ (0,T ;Ls′ )‖∇U‖Lp(0,T ;Ls)

� C‖ρu‖L2p′ (0,T ;L2s′ )‖u‖2
L2p′ (0,T ;L2s′ )

� C‖u‖2
L2p′ (0,T ;L2s′ )

� C‖u‖2θ

L1+ 2
s (0,T ;L∞)

‖u‖2(1−θ)
L∞(0,T ;L2)

� C‖∇u‖2θ
Lp(0,T ;Ls)

� C,

(3.15)

where θ = 1/s. By (3.15) and lemma 2.1, we see that (3.13) is valid for s > 3.
Using similar method, one deduces

lim
ε↓0

I2 = 0. (3.16)

Equation (3.9) thus follows from (3.10), (3.13) and (3.16). The proof of lemma 3.2
is completed. �

Lemma 3.3. Under the assumptions listed in theorem 1.2, we have

lim
ε↓0

∫ T

0

∫
(ργ)εdivUψ =

∫ T

0

ψ′
∫

ργ

γ − 1
. (3.17)

Proof. Mollifying the mass equation and expressing the resultant equation as

∂tρ
ε + u · ∇ρε = div(ρεu− (ρu)ε) − ρεdiv u. (3.18)
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By this, we calculate

∫ T

0

∫
(ργ)εdivUψ

=
∫ T

0

∫
(ρε)γdiv uψ −

∫ T

0

∫
((ρε)γ − (ργ)ε) div uψ +

∫ T

0

∫
(ργ)εdiv(U − u)ψ

= −
∫ T

0

∫
(ρε)γ−1 (∂tρ

ε + u · ∇ρε)ψ

+
∫ T

0

∫
(ρε)γ−1div(ρεu− (ρu)ε)ψ −

∫ T

0

∫
((ρε)γ − (ργ)ε) div uψ

+
∫ T

0

∫
(ργ)εdiv(U − u)ψ.

(3.19)
Using (3.18) once more, one has

∫ T

0

∫
(ρε)γ−1 (∂tρ

ε + u · ∇ρε)ψ

=
1

γ − 1

∫ T

0

∫
ρε
(
∂t(ρε)γ−1 + u · ∇(ρε)γ−1

)
ψ

= − 1
γ − 1

∫ T

0

ψ′
∫

(ρε)γ − 1
γ − 1

∫ T

0

ψ

∫
(ρε)γ−1(∂tρ

ε + div(ρεu))

= − 1
γ − 1

∫ T

0

ψ′
∫

(ρε)γ − 1
γ − 1

∫ T

0

ψ

∫
(ρε)γ−1div(ρεu− (ρu)ε).

Substituting it back into (3.19) yields

∫ T

0

∫
(ργ)εdivUψ =

1
γ − 1

∫ T

0

ψ′
∫

(ρε)γ

+
γ

γ − 1

∫ T

0

∫
(ρε)γ−1div(ρεu− (ρu)ε)ψ

−
∫ T

0

∫
((ρε)γ − (ργ)ε) div uψ +

∫ T

0

∫
(ργ)εdiv(U − u)ψ

=
1

γ − 1

∫ T

0

ψ′
∫

(ρε)γ + J1 + J2 + J3.

We need to control the terms appeared on the right-hand side of (3.20).
Thanks to (1.12), one easily checks

lim
ε↓0

∫ T

0

ψ′
∫

(ρε)γ =
∫ T

0

ψ′
∫
ργ . (3.20)

Let us discuss J1 in three cases.
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• Case I: 3
2 < s � 9

5 .

Choose a number s ∈ ( 3
2 , s) be close to s and satisfy s/(2s− 3) < p. If we select

p ∈ (s/(2s− 3)), p), then we see that p, s still satisfy case I of (1.13). Utilizing
(1.12), (1.13) and lemma 2.2, we deduce

|J1| =

∣∣∣∣∣
∫ T

0

∫
(ρε)γ−1div(ρεu− (ρu)ε)

∣∣∣∣∣
� C‖div(ρεu− (ρu)ε)‖Lp(0,T ;Ls)

� C‖∇u‖Lp(0,T ;Ls)

� C‖∇u‖Lp(0,T ;Ls),

(3.21)

and additionally, div(ρεu− (ρu)ε) → 0 in Lp(0, T ;Ls). Therefore,

lim
ε↓0

J1 = 0. (3.22)

• Case II: 9
5 < s � 3.

Choose a number s ∈ ( 9
5 , s) be close to s and satisfy (5s/(5s− 6)) < p. If we

select p ∈ ((5s/(5s− 6)), p), then we see that p, s satisfy case II of (1.13). The
same deduction as case I ensures that (3.22) is still valid.

• Case III: 3 < s <∞.

Choose a number s ∈ (3, s) be close to s and satisfy 1 + 2/s < p. If we select
p ∈ (1 + 2/s, p), then we see that p, s satisfy case III of (1.13). Using the same
argument as case I, we conclude (3.22).

Thanks to (1.12) and (1.13), we use similar method as in J1 and obtain

lim
ε↓0

|J3| = lim
ε↓0

∣∣∣∣∣
∫ T

0

∫
(ργ)εdiv(U − u)

∣∣∣∣∣
� C lim

ε↓0
‖div(U − u)‖Lp(0,T ;Ls)

= 0,

(3.23)

for some s < s and p < p.
Next to estimate J2. By (1.12) and (1.13), as well as the fact

|(ρε)γ − ργ | � C(ρ, ρ, γ)|ρε − ρ|,
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we deduce

lim
ε↓0

|J2| = lim
ε↓0

∣∣∣∣∣
∫ T

0

∫
((ρε)γ − (ργ)ε) div u

∣∣∣∣∣
� lim

ε↓0

∫ T

0

∫
(|(ρε)γ − ργ | + |ργ − (ργ)ε|) |div u|

� C lim
ε↓0

∫ T

0

∫
(|ρε − ρ| + |ργ − (ργ)ε|) |div u|

� lim
ε↓0

(‖ρε − ρ‖Lp′ (0,T ;Ls′ ) + ‖(ργ)ε − ργ‖Lp′ (0,T ;Ls′ ))‖∇u‖Lp(0,T ;Ls)

� C lim
ε↓0

(‖ρε − ρ‖Lp′ (0,T ;Ls′ ) + ‖(ργ)ε − ργ‖Lp′ (0,T ;Ls′ ))

= 0.
(3.24)

As a result of (3.20)–(3.24), we get the required (3.17). The proof of lemma 3.3 is
finished. �

Lemma 3.4. Under the assumptions listed in theorem 1.2, we have

lim
ε↓0

∫ T

0

∫
(μ∇uε : ∇Uψ + (μ+ λ)div uεdivUψ)

=
∫ T

0

ψ

∫ (
μ|∇u|2 + (μ+ λ)|div u|2) .

(3.25)

Proof. Define the smooth approximate sequence {un} such that

∇un → ∇u in L2(0, T ;L2). (3.26)

By this, we write

μ

∫ T

0

∫
∇uε : ∇Uψ = μ

∫ T

0

∫
∇(uε − (un)ε) : ∇Uψ

+ μ

∫ T

0

∫
∇(un)ε : ∇(U − u)ψ + μ

∫ T

0

∫
∇(un)ε : ∇uψ

= K1 +K2 +K3.
(3.27)

The Ki (i = 1 ∼ 3) are estimated as follows:
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As in lemma 3.3, we may choose exponents s, p such that s < s, p < p and (1.13)
holds true. Then, we deduce from lemma 2.3, for fixed n,

|K2| �
∣∣∣∣∣μ
∫ T

0

∫
∇(un)ε : ∇(U − u)ψ

∣∣∣∣∣
� ‖∇(un)ε‖

Lp′
(0,T ;Ls′ )‖∇(U − u)‖Lp(0,T ;Ls)

� C(n)‖∇(U − u)‖Lp(0,T ;Ls)

� C(n)‖∇u‖Lp(0,T ;Ls)

� C(n)‖∇u‖Lp(0,T ;Ls)

� C(n),

and furthermore, ∇(U − u) → 0 in Lp(0, T ;Ls) as ε goes to zero. Hence,

lim
ε↓0

K2 = 0. (3.28)

Next, observe from (1.4), (1.12) and lemma 2.3 that

‖∇U‖L2(0,T :L2) � ‖∇(U − u)‖L2(0,T :L2) + ‖∇u‖L2(0,T :L2) � C‖∇u‖L2(0,T :L2) � C.

This together with (3.26) provide us

|K1| �
∣∣∣∣∣μ
∫ T

0

∫
∇(uε − (un)ε) : ∇Uψ

∣∣∣∣∣
� C‖∇(uε − (un)ε)‖L2(0,T :L2)‖∇U‖L2(0,T :L2)

� C‖∇(u− un)‖L2(0,T :L2) (uniformly in ε).

(3.29)

Thus,

lim
n↑∞

K1 = 0. (3.30)

Finally, taking limits in ε and n in subsequent yields

K3 = μ

∫ T

0

∫
∇(un)ε : ∇uψ → μ

∫ T

0

∫
∇un : ∇uψ → μ

∫ T

0

∫
|∇u|2ψ. (3.31)

In terms of (3.28)–(3.31), we conclude

lim
ε↓0

μ

∫ T

0

∫
∇uε : ∇Uψ = μ

∫ T

0

∫
|∇u|2ψ. (3.32)

Similar argument runs that

(μ+ λ) lim
ε↓0

∫ T

0

∫
div uεdivUψ = (μ+ λ)

∫ T

0

∫
|div u|2ψ. (3.33)

With the aid of (3.32) and (3.33), we get (3.25). The proof of lemma 3.4 is
completed. �
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Proof of (1.14). As a result of lemmas 3.1–3.4, we pass ε-limit in (3.4) and deduce∫ T

0

[
ψ′
∫ (

1
2
ρ|u|2 +

ργ

γ − 1

)
− ψ

∫ (
μ|∇u|2 + (μ+ λ)|div u|2)] = 0.

This together with (1.6) give birth to the desired (1.14). The proof of theorem 1.2
is completed. �
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