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Mode matching technique-based modeling
of coaxial and circular waveguide
discontinuities for material characterization
purposes
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In this paper, it is proposed to use a cylindrical cell for the characterization of dielectric material. The extraction of complex
permittivity is based on inverse gradient approach where the full-wave simulation results are mapped to experimental data to
extract the complex permittivity. As the operational frequency of radio frequency (RF)/microwave devices is increased, it
becomes difficult to accurately model waveguide transitions using traditional methods based on meshing such as
finite-element method (FEM) where mesh size is determined according to the wavelength. Moreover, these techniques
usually require extensive computational resources. Mode matching technique (MMT) is the full-wave tool implemented in
this current work. It is used to compute the generalized scattering matrices (GSMs) of the different discontinuities of test
setup. These GSMs model precisely discontinuities as they include the effects of all higher-order modes propagating and eva-
nescent. Simulation and experimental results are included to validate the proposed approach for the rigorous modeling of
those discontinuities and hence the extraction of complex permittivity.
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I . I N T R O D U C T I O N

Accurate modeling of waveguide discontinuities is critical
to build radio frequency (RF)/microwave components.
Although, it is possible to model those discontinuities using
techniques based on meshed configuration like finite-element
method (FEM) or finite-difference time-domain method,
they require quite expensive resources and time. Thus, it
becomes inappropriate to use those techniques and/or com-
mercial softwares as design tools. The scattering parameters
of waveguide discontinuities and structures composed of
the cascade of these discontinuities are better characterized
based on the full-wave mode matching technique (MMT).
MMT is a fast-rigorous technique in which electromagnetic
fields on each side of a discontinuity are expressed in terms
of a complete set of orthogonal functions. The field com-
ponents on both sides of the discontinuity obey the appropri-
ate boundary conditions. The computation of scattering

parameters is straightforward when the material filling the
structure is known. However, to find the complex permittiv-
ity of unknown material from measured scattering par-
ameters becomes solving an inverse problem which requires
much iteration and hence the computation is time consum-
ing. For this purpose, MMT promptly characterizes the
different discontinuities and gives their corresponding scat-
tering. An iterative optimization gradient method is used in
conjunction with MMT to compare the simulated and
measured scattering parameters to extract the unknown
complex permittivity. This technique has been successfully
implemented and validated by extracting the complex per-
mittivity of water and pulverized materials at room tempera-
ture over a broadband of frequencies [1, 2]. Different material
characterization techniques used to extract complex permit-
tivity are presented in [3]. Resonant methods usually offer a
better accuracy yet a narrow frequency band of characteriz-
ation, whereas non-resonant methods give results over a
broadband. Single-port-based measurements allow the
extraction of either the complex permittivity or the per-
meability. On the other hand, both complex permittivity
and permeability can be extracted with two-port network
measurements. Open-ended coaxial probe [4] is considered
the easiest implementation of non-destructive measurements
but the accuracy of extracted permittivity is limited to the
surface roughness and the skin depth of material under test
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(MUT). Adding a shorted circular waveguide filled with MUT
at the end of a coaxial line allows electromagnetic waves to
propagate inside the material and also provides a better
control on packing density and temperature. In [5, 6],
coaxial discontinuities are analyzed based on the compu-
tation of the admittance of dominant mode in addition to
the summation of contributions from higher-order modes.
The computed admittance is compared to measured data
from impedance analyzer and complex permittivity is
extracted using an iterative method. The extraction method
was limited to 18 GHz due to the usage of APC-7 mm con-
nector. Increasing the size of the circular waveguide improves
the accuracy of the method at low frequencies but puts a limit
on the upper end of frequency measurement band. Published
papers based on coaxial discontinuity referred to the same
formulas described in [5, 6] based on impedance measure-
ment. In this work, each discontinuity is described by its gen-
eralized scattering matrix (GSM) [7–9] obtained from full-wave
MMT and compared to microwave scattering parameters
measured using performance network analyzer (PNA).
The accuracy of analysis comes from the consideration of all
higher-order modes propagating and evanescent excited by a
discontinuity. The analytical derivations of the self-inner and
mutual-inner products of the coaxial-to-coaxial and coaxial-
to-circular discontinuities are presented. Cascading of all dis-
continuities is carried out to compute the reflection coefficient
of the entire structure. To simplify modeling, yet without lack of
accuracy, waveguide metallization is assumed to be perfect con-
ducting and to have negligible surface roughness. Reflection
coefficient computed based on mode matching is compared
to those obtained based on FEM using HFSS software [10] as
well as microwave measurements.

I I . G E O M E T R I C A L D E S C R I P T I O N
O F S E T U P

The test structure is presented in Fig. 1. It consists of a cylind-
rical waveguide shorted at one end and connected to a
1.85 mm (female (F)) to 2.4 mm (male (M)) precision
adapter at the other end. For modeling purposes, the test
structure is divided into three main regions. Region I,
shown in Fig. 1(a), is the 2.4 mm (M) part of the precision
adapter. The other side of the adapter is the 1.85 mm (F)
part attached to 50-V coaxial cable connected to PNA at the
other end. Region II is defined by the overlap volume
between the 2.4 mm connector and cylindrical cell as the
inner conductor of adapter protrudes inside the cell.

This region is modeled as a coaxial transmission line.
Region III is the circular waveguide terminated by a short
circuit. Regions II and III define the volume of cell where
the MUT is inserted. The microwave circuit model of the
test structure based on GSMs building blocks is given in
Fig. 1(b). The model consists of the two main discontinuities:
(i) coaxial 1 to coaxial 2 represented by the GSM Scoax–coax and
(ii) coaxial 2 to circular waveguide represented by Scoax–coax.
The connection between the two discontinuities is a coaxial
transmission line (region II) of length L1 and characteristic
impedance Zcoax2. The circular waveguide (region III) has a
length L2, its characteristic impedance is Zcirc, and it is
shorted at its end. The discontinuity interface between
coaxial 1 to coaxial 2 coincides with the calibration plane,
i.e., the calibration plane is right at the surface of MUT to

remove any phase ambiguity related to measured reflection
coefficient.

MMT is applied to find the GSMs corresponding to the
different discontinuities, transmission lines are added to
account for the phase delay between discontinuities, and all
blocks are cascaded to obtain the final model of the testing
structure. The first step to perform MMT is to find the appro-
priate eigenmodes and field components in each waveguide
section.

I I I . F U L L - W A V E M O D E L I N G O F
T E S T S T R U C T U R E

A) Eigenmodes
Coaxial transmission line supports TEM, TM, and TE modes
whereas circular waveguides supports only TM and TE
modes. The expressions of field components inside circular
waveguides and field expressions of TEM mode in coaxial
waveguides are given in [11]. Expressions for TM and TE
higher-order modes in coaxial waveguides are similar to those
for TM and TE modes in circular waveguide with additional
term including Bessel function of second kind, also called
Neumann functions, to describe the fields close to the inner
conductor of coaxial waveguide. The expressions of electric
and magnetic field components in coaxial line for the different
modes are given in the appendix. Within the context of this
paper, the superscript numbers in parentheses refer to the
respective waveguide region shown in Fig. 1 or Fig. 2.

B) Generalized scattering matrices
Once all field components and eigenmodes are derived for
coaxial and circular waveguides, field matching is applied at
each discontinuity. Figure 2 represents a general discontinuity
between two waveguide regions with different cross sections.
The incident and reflected waves in each region are defined in
the figure where wave propagation is assumed to be along z-axis.

On each side of discontinuity, total transverse electric and
magnetic fields are expressed as the summation of incident
and reflected field components. Matching the total magnetic
and electric fields on both sides of the discontinuity according
to appropriate boundary conditions gives a set of equations that
are solved based on the orthogonality properties of the fields.

† Continuity of tangential electric field at z ¼ 0:

∑1

j=1

(a(2)
j + b(2)

j ) e
�(2)

j (r, f)

=
∑1
i=1

(a(1)
i + b(1)

i ) e
�(1)

i (r, f) on S1,

0 on S2 − S1.

⎧⎨
⎩ (1)

† Continuity of tangential magnetic field at z ¼ 0:

∑1

j=1

(− a(2)
j + b(2)

j ) h
�(2)

j (r, f)

=
∑1

i=1

(a(1)
i − b(1)

i ) h
�(1)

i (r, f) on S1, (2)

680 emmanuel decrossas et al.

https://doi.org/10.1017/S1759078711000808 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078711000808


where ( e
�(k)

i , h
�(k)

i ) are the tangential electric and magnetic
fields of the ith mode in kth region with k [ {1, 2} and (ai

(k),
bi

(k)) represents the corresponding field coefficients of

incident and reflected waves. S1 refers to the cross section
area of region 1 whereas S2 represents the cross section
area of region 2 as shown in Fig. 2. Theoretically, the
fields in each region should be described as the summation
of infinite number of modes; however, practically it is
necessary to truncate the number of modes in each region.
J modes are considered for region 2 and I modes for
region 1. Equations (1) and (2) are solved by using the
orthogonality properties of the electric and magnetic fields.
The electric field continuity equation is tested on both
sides by the magnetic field intensity of the larger cross
section of region 2. The magnetic field continuity equation
is tested on both sides by the electric field intensity of
region 1. Hence, the incident and reflected coefficients of
fields in regions I and II are related through the following
two matrix equations:

l(2)(a(2) + b(2)) = M(a(1) + b(1)), (3)

Fig. 1. (a) Schematic of the test structure. Dimensions of design parameters are: r1
(1) ¼ 1.2 mm, r2

(1) ¼ 0.52 mm, r1
(2) ¼ 1.26 mm, r2

(2) ¼ 0.254 mm, L1 ¼ 1.1 mm,
and L2 ¼ 5 mm. (b) Microwave circuit model of test structure based on GSMs building blocks.

Fig. 2. Cross section of a general discontinuity: S1 is the input smaller cross
section of region 1 and S2 represents the output larger cross section of
region 2. (ai

(k), bi
(k)) represent the incident and reflected field coefficients in

kth region with k [ {1, 2}.
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Mt(− a(2) + b(2)) = l(1)(a(1) − b(1)), (4)

where vectors a(1) and b(1) [ CI×1, a(2) and b(2) [ CJ×1 rep-
resent the incident and reflected field coefficients in regions I
and II shown in Fig. 2. The matrix l(2) [ CJ×J represents
the matrix of self-inner products for region 2 and its
elements are given as

∫
S2

e
�(2)

j (r, f) × h
�(2)

j (r, f).r dr df âz = l(2)
jj , (5)

where j [ {1,2, . . . , J} and âz is the unit vector. M [ CJ×I is the
matrix of mutual inner products between regions 1 and 2

∫
S1

e
�(1)

i (r, f) × h
�(2)

j (r, f).r dr df âz = Mji. (6)

The matrix Mt [ CI×J, the superscript “t” denotes the
transpose of matrix. The diagonal matrix l(1) [ CI×I is the
self inner product of region 1 and its elements are given as

∫
S1

e
�(1)

i (r, f) × h
�(1)

i (r, f).r dr df âz = l(1)
ii , (7)

where i [ {1, 2, . . . , I} .
The GSM modeling the discontinuity between regions 1

and 2 in Fig. 2 is obtained by rearranging (1) and (2):

b(1)

b(2)

[ ]
= S11 S12

S21 S22

[ ]
a(1)

a(2)

[ ]
, (8)

where

S11 = (U + RT)−1(U − RT) [ CI×I ,

S12 = (U + RT)−12R [ CI×I ,

S21 = (U + TR)−12T [ CJ×I ,

S22 = (U + TR)−1(TR − U) [ CJ×J ,

(9)

R [ CI×J, T [ CJ×I are defined as R ¼ l(1)21

Mt and
T ¼ l(2)21

M. U is the identity matrix.
It is noted that this is a general formulation describing a

discontinuity between any two waveguides with different
cross sections.

C) Coaxial-to-coaxial discontinuity
Hence, the problem is resumed to perform the self and mutual
inner products in each region, respectively. Region 1 is a
coaxial 50-V filled with air whereas region 2 corresponding
to the probe of the 2.4 mm male part of the adapter which
can also be approximated by a coaxial waveguide filled with
dielectric material and different dimensions.

self-inner product

The analytical calculations can speed up if the recurrence
relations of Bessel functions are used. Self-inner products

for a coaxial waveguide are given below:

l(i)TEM –TEM = 2p
k(i)

vm
ln

r(i)
1

r(i)
2

( )
(10)

l(i)TM –TM
nmnm′

=
E1(i)

I1

I2

{ }{
r(i)2

1

[
Z2

n+1

(
k(i)TM

cnm
r(i)

1

)]
m = m′ and n = n′

−r(i)2

2

[
Z2

n+1

(
k(i)TM

cnm
r(i)

2

)}
,

0, m = m′ or n = n′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(11)

l(i)TE –TE
nmnm′

=
Em(i) I1

I2

{ }[
r(i)2

1 FZ2
n

(
k(i)TE

cnm
r(i)

1

)
m = m′ and n = n′

−r(i)2

2 GZ2
n

(
k(i)TE

cnm
r(i)

2

)]
0, m = m′ or n = n′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(12)

where E = 1
2
g(1)TM/TE

nm

k2(1)TM/TE
cnm

jv, F = 1 − n2

k2(i)TE
cnm r(1)2

1

( )
,

G = 1 − n2

k2(i)TE
cnm r(1)2

2

( )
,

i = 1, 2 to describe region 1 or 2,

I1 =
2p n = n′ = 0,

p, n = n′
= 0 for PEW,

0, n = n′,

⎧⎪⎨
⎪⎩

I2 =
0, n = n′ = 0,

p, n = n′
= 0 for PMW,

0, n = n′.

⎧⎪⎨
⎪⎩

1(i) and m(i) are permittivity and permeability, respectively,
in region i. It should be noted that there is no coupling between
modes due to the assumption of perfect conducting boundary
conditions and the orthogonality properties of the Bessel, sine,
and cosine functions. The outer and inner radii of the coaxial
in region i are, respectively, denoted as r1

(i) and r2
(i), where i [

{1, 2} refers to region 1 or 2, respectively as shown in Fig. 1.
The cutoff constants are expressed as kcnm

(i)TM for TMnm

modes, kcnm

(i)TE for TEnm modes, and k(i) for TEM modes as
derived in the appendix. Similarly, the propagation constant
for the TMnm and TEnm are expressed as gnm

(i)TM and gnm
(i)TE.

mutual inner product

The mutual inner product computation follows exactly the
same procedure applied for the calculation of the self-inner
product. All possible combinations between the three existing
modes in coaxial waveguides are studied. However, the ortho-
gonality properties in addition to the boundary conditions
have considerably simplified the calculation and only four
cases are possible. Here is the summary of the results for the

682 emmanuel decrossas et al.

https://doi.org/10.1017/S1759078711000808 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078711000808


derivation of the mutual inner product concerning the
coaxial-to-coaxial discontinuity. Analytical analysis shows
that the incident TEM fundamental mode in region 1 only
couples with TEM fundamental mode and TM0m higher-order
modes in region 2:

MTEM(1) –TEM(2) = 2p
k
vm

ln
r(1)

1

r(1)
2

( )
, (13)

MTEM(1)–TM(2)
nm

=
− jv1(2)

k2TM(2)
c0m

J1

J2

{ }[
Z0

(
kTM(2)

c0m
r(1)

1

)
−Z0

(
kTM(2)

c0m
r(1)

2

)]
, n = 0, ∀m

0, n = 0, ∀m (14)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Finally, the mutual inner products of higher order modes

are expressed as follows:

MTM(1)–TM(2)
nm,n′m′

=
−jv1(2) g

TM(1)
nm

kTM(1)
cnm

I1

I2

{ }
H Zn(

kTM(2)
cn′m′ r(1)

2

)
Zn+1

(
kTM(1)

cnm
r(1)

2

)]
, n = n′, ∀m, m′

0, n = n′, ∀m, m′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(15)

MTE(1)–TE(2)
nm,n′m′

=
−jvm(1) g

TE(2)
n′m′

kTE(2)
cn′m′

I1

I2

{ }
HZ′

n

(kTE(2)
cnm

r(1)
2 )Zn(kTE(1)

cnm
r(1)

2 )], n = n′, ∀m, m′

0, n = n′, ∀m, m′

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(16)

where

J1 =
0, n = 0

2p, n = 0

{
for PEW,

J2 =
0, n = 0

0, n = 0

{
for PMW,

and

H = r(1)
2

k2TM/TE(1)
cnm − k2TM/TE(2)

cn′m′

.

Concerning the TM and TE higher-order modes only
coupling with same order n can be possible due to the ortho-
gonality properties of the sine and cosine functions, indepen-
dently of the order m. The derivation of the mutual and
self-inner products gives the GSMs which describe the
coaxial to coaxial discontinuity. By following the same
process, the rigorous calculation of the self and mutual
inner product of the coaxial to circular discontinuity is
performed.

D) Coaxial-to-circular discontinuity
The results are similar to the previous derived solutions
because the first kind and the second kind of the Bessel func-
tions have same properties. As explained in the previous
section, the difference between fields in a coaxial waveguide
and circular waveguides is the added term of Bessel function
second kind that describes the field around the inner conduc-
tor of coaxial line.

1) self inner product

Self-inner products for a circular waveguide are given below:

l
(3)TM –TM
nm,n′m′

= jv1(3) g
TM
nm

k2TM

cnm

I1

I2

{ }
r(2)2

1

2
J2

n+1

(
kTM

cnm
r(2)

1

)
, n = n′ and m = m′

0, n = n′ or m = m′

⎧⎪⎨
⎪⎩

(17)

l(3)TE –TE
nm,n′m′

=

−jvm(3) g
TE
nm

k2TE

cnm

I1

I2

{ }
r(2)

2

1

2

1− n2

k2TE
cnm r(2)

2
1

( )
J2

n

(
kTE

cnm
r(2)

1

)
,

n = n′, and m = m′

0, n = n′, or m = m′

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(18)

2) mutual inner product

MTEM(2)−TM(3)
nm

=
jv1(3)

k2TM(3)

com

J1

J2

{ }
Jo

(
kTM(3)

com
r(2)

2

)
, n = 0, ∀m

0 n = 0, ∀m

⎧⎨
⎩

(19)

MTM(2)−TM(3)
nm,n′m′

=
jv1(3) g

TM(2)
nm

kTM(2)
cnm

I1

I2

{ }
KJn(

kTM(3)
cn′m′ r(2)

2

)
Zn+1

(
kTM(2)

cnm
r(2)

2

)
,

n = n′, ∀m, m′

0, n = n′, ∀m, m′

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(20)

MTE(2)−TE(3)
nm,n′m′

=

−jvm(1) g
TE(3)
nm

kTE(3)
cnm

I1

I2

{ }
KJ ′n(

kTE(3)
cn′m′ r(2)

2

)
Zn

(
kTE(2)

cnm
r(2)

2

)
,

n = n′, ∀m, m′

0, n = n′, ∀m, m′

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(21)

where

K = r(2)
2

k2TM/TE(2)
c nm − k2TM/TE(3)

c n′m′
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and r1
(2) and r2

(2) describe, respectively, the radius of the outer and
inner conductors of the coaxial line in region 2 shown in
Fig. 1(a). TM and TE higher-order modes only couple with
the same order n and m due to the approximation on the
perfect conducting wall and the orthogonality properties of the
Bessel, sine, and cosine functions. This derivation concludes
the calculation of the coaxial–coaxial and coaxial–circular dis-
continuities. By matching the modes at the interface between
the different transitions, we have modeled and computed the
corresponding GSMs: Scoax2coax from coaxial 1 to coaxial 2
and Scoax2circ from coaxial 2 to circular waveguide as indicating
in Fig. 1. So, the next step is to cascade the building blocks by
introducing the coaxial transmission line of length L1 and the
circular transmission line of length L2 to model the entire
testing structure.

E) Cascading GSMs
As shown in Fig. 3, the problem can be seen as cascaded
matrices separated by transmission lines. The following deri-
vation is a general formulation and can be easily applied for
any number of discontinuities.

As presented in Section B, vectors a and b represent the
amplitude of the respective incident and reflected fields
according to their modes. One important fact is that the
order of the modes inside each GSM block should be consist-
ent all along the calculation as follows:

Sij =
[TEM] 0 0

0 [TM] 0
0 0 [TE]

⎡
⎣

⎤
⎦.

The block scattering matrices can be expressed as:

SA = SA
11 SA

12
SA

21 SA
22

[ ]
, SB = SB

11 SB
12

SB
21 SB

22

[ ]
.

Reflected field coefficients are related to the incident field
coefficients as follows:

b1 = SA
11a1 − SA

12a2,

b2 = SA
21a1 − SA

22a2,

b3 = SB
11a3 − SB

12a4,

b4 = SB
21a3 − SB

22a4.

(22)

In the region between the two discontinuities, transmitted
and reflected fields are continuous which allows us to write the
following equalities:

a2 = b3 and a3 = b2.

At the plane of short circuit at the end of the structure:

a4 = −b4.

By substituting and rearranging the previous system of
equation, we have:

a2 = (U − SB
11SA

22)−1(SB
11SA

21a1 + SB
12a4),

a3 = (U − SA
22SB

11)−1(SA
21a1 + SA

22SB
12a4).

(23)

where U is the identity matrix. Transmission lines are
introduced in between the discontinuities to account for
the proper phase shift. The first transmission line
between the two discontinuities is described by the diag-
onal matrix:

T1 =
e−ri

nmL1 . . . 0

..

. . .
. ..

.

0 · · · e−rl
nmL1

⎡
⎢⎣

⎤
⎥⎦, (24)

where rnm
i is the propagation constant corresponding to the

ith mode and L1 is the distance between the two discontinu-
ities as presented in Fig. 1. The second transmission line
between the second discontinuity and the short circuit is
described by the following diagonal matrix:

T2 =
e−2ri

nmL2 . . . 0

..

. . .
. ..

.

0 · · · e−2rl
nmL2

⎡
⎢⎣

⎤
⎥⎦, (25)

where L2 is the length between the short circuit and disconti-
nuity plane between coaxial 2 and circular waveguide.

The submatrices of the resultant cascaded matrices are:

SC
11 = SA

11 + SA
12T1(U − SB

11T1SA
22T1)−1SB

11T1SA
21,

SC
12 = SA

12T1(U − SB
11T1SA

22T1)−1SB
12,

SC
21 = SB

21(U − T1SA
22T1SB

11)−1T1SA
21,

SC
22 = SB

22 + SB
21(U − T1SA

22T1SB
11)−1T1SA

22T1SB
12.

(26)

The reflection coefficient of shorted structure is given as:

Sshort
11 = SC

11 − SC
12T2(U − T2SC

22)−1SC
21. (27)

The general formulation of these cascaded matrices is
applied to all the discontinuities existing in the structure.
The number of modes selected to model each discontinuity
has to be sufficient to ensure numerical convergence mean-
while minimizing computational time.

I V . N U M E R I C A L R E S U L T S

From the theoretical formulation of mode matching in pre-
vious section, it is observed that the theoretical required
number of modes is infinite; however, for practical numerical
computations, the number of modes is truncated. To deter-
mine the appropriate number of modes to be used in calcu-
lation, it is important to investigate the numerical
convergence of scattering parameters versus the number of
modes in each waveguide region. It is noted that the derivationFig. 3. Cascade of two GSMs.
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carried out in the previous section show that TMom modes are
only excited through the different regions. In-house program
code is developed in Matlab [14] to carry out all computations
presented in this work.

The convergence of the scattering parameters of the dis-
continuity from coaxial 1 to coaxial 2 is given in Fig. 4. The
number of modes in each region is the same and the modes
considered are the fundamental TEM and TM0m higher-order
modes. The convergence results are reported at the highest
frequency of 40 GHz. In this case, coaxial 1 is a 50-V air-filled
coaxial line, representing the 2.4 mm male part of the
adapter. Coaxial 2 corresponds to a coaxial line with a
larger cross section and filled with a fictive dielectric material
of relative complex permittivity 1r ¼ 17 2j1.7. It is observed
that 15 modes result in satisfactory convergence for the
studied case. We choose to use a fictive relative high
complex permittivity to verify the validity of the code for

lossy materials and to compare our results with a commercial
software HFSS using the FEM. Figure 5 shows the compari-
son of the reflection and transmission coefficients for the
coaxial 1 to coaxial 2 discontinuity with 15 modes used in
modeling.

Figure 5 shows clearly that the results of scattering par-
ameters obtained from MMT and HFSS are in very good
agreement. The convergence studies at 40 GHz of the discon-
tinuity between coaxial 2 and circular waveguide are presented
in Fig. 6. In this case, coaxial 2 is also filled with the dielectric
material of complex permittivity 1r ¼ 17 2j1.7. The circular
waveguide has the same radius as the outer radius of coaxial
2 as shown in Fig. 1(a) and it is filled with the same dielectric
material. It is observed that 15 modes are enough to assure
that the scattering parameters are within acceptable error.

Figure 7 presents the model used for HFSS simulation [10].
Using the appropriate planes of symmetry, it is possible to

Fig. 4. Convergence of the reflection and transmission scattering parameters of a coaxial–coaxial discontinuity versus the number of modes in each side at 40 GHz:
(a) magnitude S11 and S12 in dB and (b) phase S11 and S12 in degree. Dimensions of design parameters shown in Fig. 1(a) are: r1

(1) ¼ 1.2 mm, r2
(1) ¼ 0.52 mm, r1

(2) ¼

1.26 mm, r2
(2) ¼ 0.254 mm, and 1r ¼ 17 2j1.7.

Fig. 5. Scattering parameters of the coaxial-to-coaxial discontinuity: (a) magnitude Sij in dB and (b) phase Sij in degree. Dimensions of design parameters shown in
Fig. 1(a) r1

(1) ¼ 1.2 mm, r2
(1) ¼ 0.52 mm, r1

(2) ¼ 1.26 mm, r2
(2) ¼ 0.254 mm, and 1r ¼ 17 2j1.7.
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simulate only one-fourth of the structure which allows increas-
ing the number of iterations to achieve required accuracy
without increasing significantly the computational time.

The HFSS and MMT simulations are carried out on a
64-bit operating system windows 7 enterprise PC with
Intelw CoreTM2 Quad CPU Q9550 @2.84 GHz and 4 GB
RAM memory. In HFSS, simulations are set with a

convergence criteria delta S of 0.001, only one excitation
port TEM mode is defined sufficiently far enough from the
discontinuity to avoid misinterpretation due to evanescent
modes excited by the discontinuities. The number of mesh
elements of the structure is 37 201 and the HFSS
ComEngine memory is 66.7 M. About 12 min are sufficient
to solve the model with a step frequency of 100 MHz from
10 MHz to 40 GHz.

Using the same frequency steps and limiting the number of
modes based on the convergence criteria presented in Fig. 6 to
15 modes in each region, the MMT solves the same problem in
2 min on the same computer. The number of modes needs to
be carefully chosen to achieve a compromise between compu-
tational time and desired accuracy. Figure 8 presents a com-
parison between HFSS and MMT results for the complex
reflection coefficient of the actual test structure shown in
Fig. 1.

From the reflection coefficient obtained from HFSS with
the fictive relative complex permittivity as presented in

Fig. 6. Convergence of the reflection and transmission scattering parameters of a coaxial–circular discontinuity versus the number of modes in each side: (a)
magnitude of S11 and S12 in dB and (b) phase of S11 and S12 in degree. Dimensions of design parameters shown in Fig, 1(a) are: r1

(2) ¼ 1.26 mm, r2
(2) ¼

0.254 mm, and 1r ¼ 17 2j1.7.

Fig. 7. HFSS model for the test structure shown in Fig. 1 (a).

Fig. 8. Comparison of the reflection coefficient simulated with the MMT and HFSS of the testing structure shown in Fig. 1(a): (a) magnitude of S11 in dB and (b)
phase of S11 in degree. Dimensions of design parameters shown in Fig. 1(a) are: r1

(1) ¼ 1.2 mm, r2
(1) ¼ 0.52 mm, r1

(2)¼ 1.26 mm, r2
(2) ¼ 0.254 mm, 1r ¼ 17 2j1.7,

L1 ¼ 1.1 mm, and L2 ¼ 5 mm.
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Fig. 8, an optimized gradient method has been implemented
where both the real and imaginary parts of complex permittiv-
ity are varied until the reflection coefficient calculated from
MMT comes to the one obtained from HFSS simulations.
We observed a standard deviation less than 2% on the real
and imaginary parts of the fictive material simulated with
HFSS as shown in Fig. 9. It should be noted that the obtained
reflection coefficient from HFSS plays the same role as doing
microwave measurements using PNA. This step was necessary
to validate the developed approach before starting real
measurements.

V . E X P E R I M E N T A L R E S U L T S

The extraction of complex permittivity from measured
complex reflection coefficient (S11) requires the implemen-
tation of an iterative technique such as the gradient optimiz-
ation method explained in [13]. The gradient technique is a
general method to solve inverse problem by iteration. This
technique is based on the knowledge of the distance and the

direction of the minimum from an initial value. Hence, the
criteria of convergence to the actual permittivity are adjusted
based on the accuracy of results extracted from PNA.
Figure 10 presents the comparison between measurements
and MMT results for reflection coefficient when the cell is
air filled. Figure 11 shows the extracted permittivity from
the measured reflection coefficient presented Fig. 10. The
results are in good agreement with the theoretical value of
air (1r ¼ 1 2j0). The fact is with such lossless material like
air, the method of extraction is limited to the calibration pre-
cision related to phase measurement, specifically at low fre-
quencies. To achieve accurate measurements over a
broadband of frequencies, the calibration of the PNA is
carried out over two frequency ranges: (i) from 10 MHz to
20 GHz and (ii) from 20 GHz to 40 GHz. The SOLT (short,
open, load, and thru) calibration is adopted and 201 frequency
points are considered in each frequency range. The intermedi-
ate frequency bandwidth is set to 70 Hz to ensure reduction of
calibration errors and minimization of random noise. The
reference plane is in direct contact with the MUT as shown
in Fig. 1 to avoid phase ambiguity. The minor phase

Fig. 9. Relative complex permittivity extracted using MMT based on
numerical results obtained from HFSS for a fictive material (1r ¼ 17 2j1.7).
The corresponding reflection coefficients are shown in Fig. 8.

Fig. 10. Comparison of the reflection coefficient obtained from MMT and microwave measurements of the testing structure shown in Fig. 1(a) when the cell is air
filled (1r ¼ 1 2j0): (a) magnitude S11 in dB and (b) phase S11 in degree. Dimensions of design parameters as shown in Fig. 1(a) r1

(1) ¼ 1.2 mm, r2
(1) ¼ 0.52 mm, r1

(2)¼

1.26 mm, r2
(2) ¼ 0.254 mm, L1 ¼ 1.1 mm, and L2 ¼ 5 mm.

Fig. 11. Extraction of the relative complex permittivity of air when the cell is
empty (1r ¼ 1 2j0) computed from the measured reflection coefficient
presented Fig. 10.
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fluctuations observed in Fig. 10(b) are due to the surface
roughness of metallization which has been neglected in our
modeling, tolerance of manufactured structure that degrades
the extraction of the complex permittivity. However, we
have proven that with this method we can extract the relative
permittivity with sufficient accuracy for lossless and lossy
material over wide frequency range using only a single test
structure based on the numerical and experimental results [1].

To validate the technique presented in this paper, the
extraction of the complex permittivity of deionized (DI)
water at room temperature is shown in Fig. 12.

The frequency dependence of water complex permittivity
can be modeled by Debye function:

1(y) = 1(1) + 1(0) − 1(1)
1 + jvt

,

where the parameters of Debye relaxation spectral function
for water at 258C are given in [15]. Static dielectric constant
1(0) ¼ 78.36 + 0.05, permittivity at high frequency 1(1) ¼
5.2 + 0.1, relaxation time t ¼ 8.27 + 0.02 ps, and v is the
angular frequency. The Debye relation represented by the
Argand diagram (solid line) is presented in the inset and com-
pared to our extracted measurements (black cross marker).

V I . C O N C L U S I O N S

The approach proposed in this paper combines accurate mod-
eling based on full-wave technique and microwave measure-
ments of scattering parameters. The full-wave approach that
is based on MMT is implemented to derive the GSMs of all
discontinuities existing in the test structure. Very good agree-
ment between MMT simulation and measurement results is
obtained. We have shown that by using the inverse problem
based on the gradient optimization method concurrently
with MMT, we are able to extract the complex permittivity
from the measured and accurately calculated reflection coeffi-
cient. Finally, the accuracy of MMT is experimentally vali-
dated by comparing the measured refection coefficient and
the extracted complex permittivity in case of air and DI
water at room temperature.

A P P E N D I X

The expressions of field components in a coaxial transmission
line are given as follows:

TEM mode:

er(r, f, z) = 1
r

e−jk0z ,

hf(r, f, z) = 1
ZTEM

er(r, f, z),
(A.1)

where the TEM wave impedance is

ZTEM = vm

k0
.

TMnm modes:
The solution of the Helmholtz equation gives:

ezn (r, f) = Zn(kcr)
cos(nf), PEW,

sin(nf), PMW,

{
(A.2)

where Zn(kcr) ¼ Jn(kcr) + GnYn(kcr) and the constant Gn is
found by applying the boundary conditions: ezn

(r, f) ¼ 0 at
r ¼ r1

(1) and r ¼ r2
(1). PEW and PMW denote perfect electric

wall and perfect magnetic wall, respectively:

Gn = − Jn(kcr(1)
1 )

Yn(kcr(1)
1 )

= − Jn(kcr(1)
2 )

Yn(kcr(1)
2 )

. (A.3)

In addition, the solution of the transcendental equation
allowed us to find the roots of the equation.If the mth roots of

Jn(kcr(1)
1 )Yn(kcr(1)

2 ) − Jn(kcr(1)
2 )Yn(kcr(1)

1 ) = 0 (A.4)

is designated by pnm
TM, the allowed values of kc are kTM

cnm
= pTM

nm

r(1)
1

where n ¼ 0, 1, 2, 3, . . . , N and m ¼ 0, 1, 2, 3, . . . , M.
Therefore the propagation constant can be described as

g2TM

nm = k2TM

cnm
− k2 , (A.5)

where k2 ¼ v2m1.
Finally, the field components for TMnm higher-order

modes are:

eznm (r, f, z) = Zn(kTM
cnm

r)e−gTM
nm z cos(nf), PEW,

sin(nf), PMW,

{
(A.6)

hrnm (r, f, z) = jnv1

rk2TM

cnm

Zn(kTM
cnm

r)e−gTM
nm z

− sin(nf), PEW,

cos(nf), PMW,

{ (A.7)

hfnm
(r, f, z) = −jv1

kTM
cnm

Z′
n(kTM

cnm
r)e−gTM

nm z

cos(nf), PEW,

sin(nf), PMW,

{ (A.8)

Fig. 12. Relative complex permittivity of water extracted by applying the
described process in this paper and compared with data found in [15] for
distilled water at 258C.
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efnm
(r, f, z) = −ZTMhrnm (r, f, z)

ernm (r, f, z) = ZTMhfnm
(r, f, z)

hznm (r, f, z) = 0

(A.9)

where the wave impedance for the TMnmth mode is

ZTM = gTM
nm

jv1
.

TEnm modes:
Similarly, the solution of the Helmholtz equation gives

hzn (r, f) = Zn(kcr)
cos(nf), PEW,

sin(nf), PMW,

{
(A.10)

where Zn(kcr) ¼ Jn(kcr) + gnYn(kcr) and the constant gn is
found by applying the boundary conditions. Therefore the
longitudinal component of the magnetic field must vanish at
the surface conductors. Hence,

∂

∂r
hzn (r, f)

∣∣∣∣
r=r(1)

1

r=r(1)
2

= d
dr

[Zn(kcr)]

∣∣∣∣
r=r(1)

1

r=r(1)
2

= 0
(A.11)

and we get the constant

gn = − J ′n(kcr(1)
1 )

Y ′
n(kcr(1)

1 )
= − J ′n(kcr(1)

2 )

Y ′
n(kcr

(1)
2 )

. (A.12)

Similarly, if the mth roots of the transcendental equation

J ′n(kcr(1)
1 )Y ′

n(kcr(1)
2 ) − J ′n(kcr(1)

2 )Y ′
n(kcr

(1)
1 ) = 0 (A.13)

is designated by pnm
TE , we find that the allowed values of kc are

kTE
cnm

= pTE
nm

r(1)
1

, where n ¼ 0, 1, 2, 3. . . , N and m ¼ 0, 1, 2, 3. . . , M.

Finally, the field components for TEnm higher-order modes
can be expressed as

hznm (r, f, z) = Zn(kTE
cnm

r)e−gTE
nmz cos(nf), PEW,

sin(nf), PMW,

{
(A.14)

hrnm (r, f, z) = −gTE
nm

kTE
cnm

Z′
n(kTE

cnm
r)e−gTE

nmz cos(nf), PEW,

sin(nf), PMW,

{
(A.15)

hfnm
(r, f, z) = −gTE

nm

k2TE

cnm

n
r

Zn(kTE
cnm

r)e−gTE
nmz − sin(nf), PEW,

cos(nf), PMW,

{
(A.16)

ernm (r, f, z) = ZTEhrnm (r, f, z),

efnm
(r, f, z) = −ZTEhrnm (r, f, z),

eznm (r, f, z) = 0,

(A.17)

where the wave impedance for TEnmth mode is

ZTE = jvm
gTE

nm

.
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